Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
A STUDY OF THE PATHOGENESIS
AND IMMUNOBIOLOGY OF PYELONEPHRITIS

THOMAS MILLER

DEPARTMENT OF MEDICINE
SCHOOL OF MEDICINE
UNIVERSITY OF AUCKLAND

Ph.D. THESIS MAY, 1975

I agree to this thesis being consulted and/or photocopied for the purpose of research or private study provided that due acknowledgment is made where appropriate and that my permission is obtained before any material is published.

Signed: [Signature]

Date: Sept. 28th, 1978
TABLE OF CONTENTS

CHAPTER 1. Introduction
clinical observations 1
some factors affecting the establishment of urinary tract infections 6
host immune response to urinary tract infection .. 10
experimental renal infections 14
local immune response in urinary tract infections .. 17
immunobiology of experimental pyelonephritis ... 21
tabular summary .. 26

EXPERIMENTAL PATHOLOGY

CHAPTER 2. Experimental pyelonephritis: a method for inducing pyelonephritis in the rat by the direct inoculation of E.coli into the kidney .. 28

CHAPTER 3. Experimental pyelonephritis: the specificity of the inflammatory lesion . 41

CHAPTER 4. Determination of glomerular filtration rate in the rat using 51Cr-EDTA and a single blood sample 48

CHAPTER 5. Experimental pyelonephritis: the effect of chronic active pyelonephritis on renal function 58

CHAPTER 7. Bacterial interference as a factor in renal infection 81

THE IMMUNOBIOLOGY OF PYELONEPHRITIS

CHAPTER 8. Acquiescent infection as a factor in pyelonephritis 100

CHAPTER 9. The in-vitro stimulation of rat lymphocytes by PHA and other mitogens .. 116
CHAPTER 10. Antigen presentation as a factor in immunity to renal infection 127
CHAPTER 11. Quantitation of immunoglobulin-bearing lymphocytes and the lymphocyte response to PHA in experimental pyelonephritis . 142
CHAPTER 12. Nature of the factor associated with renal cells causing ablation of T lymphocyte function 156
CHAPTER 13. Selective deficiency of thymus derived lymphocytes in pyelonephritis 167
CHAPTER 14. B cell ablation. Immunological enhancement as a factor in chronic renal infection 181

DIAGNOSTIC AND THERAPEUTIC STUDIES

Introductory comment 199
CHAPTER 15. Estimation of the immune response to bacterial antigen using a haemagglutinating autoanalyser 200
CHAPTER 16. Diagnostic parameters in experimental renal infection 208
CHAPTER 17. Relationship of the immunogenicity of the infecting organism to the host response in urinary tract infection ... 220
CHAPTER 18. Antimicrobial resistance in urinary tract infections 225

Summary .. 236
Acknowledgements 247
References ... 248
SHORT ABSTRACT

The experiments carried out during this investigation have studied the pathogenesis and immunobiology of pyelonephritis. Two experimental models of the disease were developed in laboratory animals and several new analytical procedures for studying biological changes during the course of the disease were established. In particular, methods for the determination of glomerular filtration rates in small animals, the automated analysis of antibacterial antibody and the in-vitro determination of the response of rat lymphocytes to phytohaemagglutinin (PHA) were established.

The effect of chronic active pyelonephritis on renal function was studied and the effect of antibiotic treatment and elimination of infection on the pathological changes in pyelonephritis was determined. Eradication of infection did not affect the gross pathology and histopathological changes found at autopsy. These experiments have also investigated the role of bacterial interference as a determinant in the epidemiology of renal infection. It was shown that mixed renal infections with E. coli were uncommon and that the pattern of infection was determined by the resident pathogen. The relationship between bacterial infection of the renal parenchyma with E. coli and the establishment of pathological lesions was investigated and the conclusion reached that infection of the kidney is not always associated with pathological changes. The term "acquiescent infection" was then used to describe the host parasite relationship in which active persistent bacterial infection is not associated with pathological lesions.
Antigen presentation as a factor in the protective immune response to renal infection was also studied and experiments carried out which demonstrated that immunological memory to the somatic antigen of *E. coli* persisted for at least six months after primary immunization and appeared to be carried by the B lymphocytes. The distribution of B lymphocytes in the peripheral blood and lymphoid sites and the functional capacity of T cells during the course of pyelonephritis were also investigated. Lymphocytes forming the lymphocytic infiltrate in the kidney were identified as thymus derived lymphocytes by their surface labelling characteristics but further experiments showed that T lymphocytes in the kidney, which would normally respond to stimulation with PHA in-vitro, were non-responsive and presumably non-functional. A unique factor associated with renal cells was found to be capable of blocking the PHA response of T lymphocytes, suggesting that ablation of cell-mediated immune mechanisms in the kidney may contribute to the persistence of infection in pyelonephritis. This concept was investigated by studying the effect of a selective deficiency of thymus derived lymphocytes on the course of pyelonephritis. The experiments showed, however, that ablation of T lymphocytes did not appreciably alter the course of the disease. Further experiments were then carried out investigating the role of B lymphocytes in the immune response by manipulation of the hosts immune capacity using immunosuppressive drugs. Animals with pyelonephritis did not produce antibacterial antibody but were able to eliminate organisms more readily from the infected kidney than untreated animals with a normal immune response. This suggests that blocking of the phenomenon of immunologic
enhancement may explain these unexpected results and that the immune response to renal infection could have an enhancing role, protecting the bacterial cell from otherwise effective host defense mechanisms.

Clinical aspects of antimicrobial resistance in pyelonephritis were also investigated in a study of urinary tract pathogens from 120 patients. The results showed that standard methods for testing antibiotic sensitivity may reject potentially useful antibiotics and that up to 75% of microorganisms considered resistant to individual antibiotics may in fact be sensitive to concentrations of antibiotic attainable in the tubular lumen. In certain circumstances the determination of minimum inhibitory concentration of selected antibiotics may be of considerable value in patient management.