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Abstract We study the dynamic scheduling problem for jobs with fixed start
and end times on multiple machines. The problem is to maintain an optimal
schedule under the update operations: insertions and deletions of jobs. Call the
period of time in a schedule between two consecutive jobs in a given machine
an idle interval. We show that for any set of jobs there exists a schedule such
that the corresponding set of idle intervals forms a tree under the set-theoretic
inclusion. Based on this result, we provide a data structure that updates the
optimal schedule in O(d+logn) worst-case time, where d is the depth of the set
idle intervals and n is the number of jobs. Furthermore, we show this bound to
be tight for any data structure that maintains the nested set of idle intervals.

1 Introduction

Imagine an operator in a delivery company with two responsibilities. The first
is to provide delivery service to clients who request specific times for delivery.
The second is to schedule the requests for the drivers such that conflicting
requests are assigned to different drivers. The goal of operator’s work is to
accept all client requests and to use as few drivers as possible. The work
becomes harder if clients often cancel their requests or change the delivery
times of their requests.

The example above is a basic setup for the interval scheduling problem,
one of the well-known problems in the theory of scheduling [10,11]. Formally,
the problem can be described as follows. An interval a is the usual closed
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2 A. Gavruskin et al.

non-empty interval [s(a), f(a)] on the real line, where s(a) is the starting time
and f(a) is the finishing time. Naturally, intervals represents jobs that have
to be completed in the specified periods. We say that two intervals a and b

overlap if a ∩ b 6= ∅; otherwise we say that they are compatible. We are given
a set I of n intervals. The problem is to partition I into sets S1, . . . , Sk such
that intervals in every set Si are pairwise compatible and the number k of the
sets is as minimal as possible. The partition of jobs represent schedules for the
machines.

Definition 1 A subset J ⊆ I is compatible if the intervals in J are pairwise
compatible.

Depending on the context, we view an interval a as either a process or as
a set of real numbers. In the first case, we call s(a) and f(a) respectively the
start and the end of a. In the second case, we refer to s(a) and f(a) as the
left and right endpoints of a. We define the depth of I, denoted by d(I), to
be the maximal number of intervals in I that contain a common point. In the
context of machines, the depth of I is the maximal number of processes that
pass over any single point on the time line. We linearly order elements in the
set I of intervals by their left endpoints. Namely, we define the order ≺ on the
set I by setting a ≺ b whenever s(a) < s(b) for all a, b ∈ I.

A scheduling function for the set of intervals I is a function σ : I →
{1, . . . , k} such that any two distinct intervals a, b ∈ I where σ(a) = σ(b) are
compatible. The number k is called the size of the scheduling function. The
scheduling function σ : I → {1, . . . , k} partitions I into k schedules S1, . . . , Sk,
where for each i ∈ {1, . . . , k} we have

Si = {a ∈ I | σ(a) = i}.

It is easy to see that d(I) is the smallest size of any scheduling function of I.
This gives us the following important definition.

Definition 2 We call a scheduling function σ optimal if its size is d(I).

We briefly describe two algorithms solving the basic interval scheduling
problem. The standard greedy algorithm [7], which we call Algorithm 1, finds
an optimal scheduling function σ for the given set of intervals I as follows.
It starts with sorting the intervals in order of their starting time. Let a1, a2,
. . ., an be the listing of the intervals in this order. Schedule a1 into the first
machine, that is, set σ(a1) = 1. Then, for the given interval ai and each j < i,
if ai and aj overlap, exclude the machine σ(aj) for ai. Schedule ai into the
first machine m that has not been excluded for ai and set σ(ai) = m. The
correctness proof of this algorithm is an easy induction [7]. The algorithm runs
in O(n2) time. It is important to observe that this algorithm works in a static
context in the sense that the set of intervals I is given a priori and it is not
subject to change.

The second algorithm due to Gupta et al. [5], which we call Algorithm 2,
computes an optimal schedule in O(n log n) time. Gupta et al. also show that
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Dynamic Algorithms for Multimachine Interval Scheduling 3

Algorithm 2 is the best possible. In this algorithm, we work with endpoints
of the intervals in I. Let p1, p2, . . . , p2n be endpoints of intervals sorted in
increasing order. Scan the endpoints from left to right. For each pj , if pj is the
start of some interval a, find the first available machine and schedule a into
that machine. Otherwise, pj is the end of some interval b. Therefore, mark
the machine σ(b) as available. The correctness of the algorithm can be easily
verified. Just as above, this algorithm works in a static context.

The problem setup. Our goal is to design data structures that allow
us to solve the interval scheduling problem in a dynamic setting. In the dy-
namic context, the instance of the interval scheduling problem is changed by a
real-time events, and a previously optimal schedule may become sub-optimal.
Examples of real-time events include job cancellation, the arrival of an urgent
job, and changes in job processing times. To avoid the repetitive work of rerun-
ning the static algorithm every time when the problem instance has changed,
there is a demand for efficient dynamic algorithms for solving the partitioning
problem on the changed instances. In this dynamic context, the set of intervals
changes through a number of update operations, such as insertion or removal.
Thus, the dynamic interval scheduling problem is the problem of maintaining
an optimal scheduling function σ for a set I of closed intervals, subject to
update operations. The update operations are

– insert(a): insert an interval a into the set I,
– delete(a): delete an interval a from the set I (if it is already there).

Contribution of the paper. There are three main technical contributions
of the paper. The first contribution concerns the concept of idle intervals. An
interval (t0, t1) is idle in a given schedule σ if some machine σ(k) stays idle
during the time period from t0 to t1. Intuitively, an idle interval is a place in
the schedule where we can insert a new interval if its endpoints are between
t0 and t1. Now, call the collection of all idle intervals nested if any two idle
intervals either have no points in common or one interval is included in the
other. Firstly, we prove in Lemma 3 that nested schedules are always optimal.
Secondly, we prove in Theorem 1 that there are optimal schedules for which
the set of idle intervals is nested. This theorem allows us to represent idle
intervals of the schedule as a tree, and perform the update operations through
maintaining the idle intervals of the schedule. Here we note that Diedrich et al.
use idle intervals in [2], where they call them gaps, to approximate algorithms
for scheduling with fixed jobs. In [2] idle intervals are static and do not depend
on the schedule. On the contrary, we describe how to effectively maintain a
dynamic set of idle intervals.

Our second contribution is that we provide an optimal data structure that
represents nested schedules and supports insert and delete operations. The
data structure and its efficiency is based on Theorem 1. Namely, it maintains
the nestedness property of the schedules. Theorem 2 proves that all the update
operations run in O(d+ log(n)) in the worst-case. Note that if we naively make
Algorithm 1 or Algorithm 2 dynamic, the update operations of such algorithms
will be significantly slower.
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4 A. Gavruskin et al.

Finally, our third contribution is that we prove in Theorem 4 that the
bound O(d+ log(n)) is tight for any data structure representing nested sched-
ules.

Related work. There are many surveys on the interval scheduling problem
and its variants, also known as ”k-coloring of intervals”, ”channel assignment”,
”bandwidth allocation” and many others. For instance, the reader can consult
surveys [10,11]. Gertsbakh and Stern [4] studied the basic problem of schedul-
ing intervals on unlimited number of identical machines. Arkin and Silverber [1]
described and solved a weighted version of the interval scheduling problem. In
their work the number of machines is restricted and each job has a value. The
goal is to maximize the value of completed jobs. A further generalization of
the problem, motivated by maintenance of aircraft, was extensively studied by
Kroon, Salomon and Wassenhove [12,13] and by Kolen and Kroon [8,9]. In
this generalization, each job has a class, and each machine is of specific type.
The type of a machine specifies which classes of jobs it can process. Since it
was shown in [1] that the problem of scheduling classified jobs is NP-complete,
the authors study approximation algorithms. Later, Spieksma [17] studied the
question of approximating generalized interval scheduling problem.

2 Idle Intervals and Nested Scheduling

2.1 Idle Intervals

Recall that we have the order ≺ on interval by their starting time. Our next
definition introduces the notion of idle interval which is crucial for this paper.

Definition 3 Let J = {a1, a2, . . . , am} be a compatible set of closed intervals
such that ai ≺ ai+1 for each i ∈ {1, . . . ,m−1}. Define the set of idle intervals

of J as the following set

Idle(J) =

m−1
⋃

i=1

{ [f(ai), s(ai+1)] } ∪ { [−∞, s(a1)] } ∪ { [f(am),∞] }.

Note that an idle interval can start at −∞ or end at ∞. Naturally, such
intervals represent a period of time when a machine is continuously available
before or after some moment of time.

Let σ : I → {1, . . . , k} be a scheduling function of size k of the set I of
intervals. Recall the sets S1, . . . , Sk with respect to σ: Si = {a ∈ I | σ(a) = i}.
The idea behind considering the set of idle intervals is this: when we insert a
new interval a into I, we would like to find a gap in some schedule Si that
fully covers a. Similarly, a deletion of an interval a from I creates a gap in
the schedule Sσ(a). Thus, intuitively the insertion and deletion operations are
intimately related to the set of idle intervals of the current schedules S1, . . .,
Sk. Therefore, we need to have a mechanism that efficiently maintains the idle
intervals of S1, . . ., Sk.
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Dynamic Algorithms for Multimachine Interval Scheduling 5

Definition 4 The set of idle intervals of σ is

Idle(σ) = {[−∞,∞]} ∪ Idle(S1) ∪ Idle(S2) ∪ . . . ∪ Idle(Sk).

Through the scheduling function σ, we can also enumerate the set of idle
intervals. Namely, the schedule number σ(b) of the idle interval b ∈ Idle(σ)
is i if b ∈ Idle(Si), and is k + 1 if b = [−∞,∞]. The next lemma state that
the depth of the idle interval set is greater than or equal to the depth of the
interval set.

Lemma 1 We have d(I) ≤ k ≤ d(Idle(σ)).

Proof For the first part, observe that for any sets of intervals I and J , the
following inequality holds true:

d(I) ≤ d(I ∪ J) ≤ d(I) + d(J).

Since the depth of each schedule Si is 1, we have

d(I) ≤ d(S1 ∪ · · · ∪ Sk) ≤
∑

1≤i≤k

d(Si) = k

For the second part, let ai be the �-least interval in the schedule Si. Then
for each i ∈ {1, . . . , k} an interval [−∞, s(ai)] belongs to Idle(σ). Now take a
real number x ∈ R that is smaller than all the starting times of the intervals
in I. In particular, x is smaller that the starting time of any ai. Thus x

intersects with k intervals in Idle(σ), i.e. k ≤ d(Idle(σ)). ⊓⊔

Definition 5 A set J of intervals is nested if [−∞,∞] ∈ J and for all b1, b2 ∈
J , it is either that b1 covers b2 or b2 covers b1 or b1, b2 are compatible.

Any nested set of intervals J defines a tree under set-theoretic inclusion ⊆.
Indeed, here the nodes in the tree are the intervals in J , and an interval b2
is a descendent of another interval b1 if b2 ⊂ b1. We call this tree the nested

tree of J and denote it by Nest(J). We order siblings in Nest(J) by the left
endpoints of the corresponding intervals. Recall that the height of a tree is the
maximum number of edges in a path that goes from the root to any leaf.

Lemma 2 For any nested set J of intervals, the depth of J equals to the height

of the nested tree Nest(J).

Proof Let J be a nested set of intervals and h be the height of the nested tree
Nest(J). To show that d(J) ≤ h, we take a maximal path b0, b1, . . . , bh in the
nested tree. In this path b0 = [−∞,∞], and bi+1 ⊂ bi for all i ∈ {0, . . . , h−1}.
The interval bh is fully covered by all other intervals. Therefore the starting
point s(bh) intersects with h intervals. Hence d(J) ≤ h

To show the reverse inequality, take any real number x ∈ R and let C be
the set of intervals in J that contain x. Since J is a nested set, C is a nested
set as well. Therefore C contains a sequence b1, b2, . . . , bℓ where bi ⊂ bi+1 for
all i ∈ {1, . . . , ℓ}. This sequence defines a single path in the tree Nest(J).
Thus h ≤ d(J). ⊓⊔

In the next subsection we connect idle interval sets with the nested trees.
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6 A. Gavruskin et al.

S2 :

S1 :

Fig. 1 Dotted lines define the idle interval set

2.2 Nested Scheduling

Definition 6 Let σ be a scheduling function of the set of intervals I. We say
that σ is nested schedule if the set Idle(σ) of idle intervals is nested.

The next lemma shows the usefulness of the notion of nested schedules. In
particular, nested schedules are optimal.

Lemma 3 If σ : I → {1, . . . , k} is a nested scheduling function, then the

depth of the idle intervals Idle(σ) coincides with the depth of I. In particular,

every nested schedule is optimal.

Proof Let σ : I → {1, . . . , k} be a nested scheduling function for I. By
Lemma 1, d(I) ≤ d(Idle(σ)). To show that d(Idle(σ)) ≤ d(I), by Lemma 2, it
is sufficient to prove that the height h of the nested tree Nest(Idle(σ)) is at
most d(I).

Take a maximal path b0, b1, . . . , bh in Nest(Idle(σ)) such that f(b1) 6= ∞.
For each i ∈ {1, . . . , h} let Si be a schedule such that bi ∈ Idle(Si). We show
that in every schedule Si there exists an interval ai ∈ Si such that f(b1)
intersects with ai.

For contradiction, assume that there exists a schedule Sj such that f(b1)
does not intersect with any interval in Sj . Then there exists an idle interval
c ∈ Idle(Sj) such that f(b1) ∈ c. Therefore s(c) < f(b1). On the other hand,
since bj ∈ Idle(Sj), we have s(b1) < f(bj) < s(c). These imply that the idle
intervals b1 and c overlap, which contradicts with the fact that Idle(σ) is a
nested schedule. Thus h is at most d(I). ⊓⊔

A natural question is whether the schedule constructed by either Algorithm
1 or Algorithm 2 is nested. The next simple example gives a negative answer
to this question. Indeed, consider the set I of intervals presented in Figure 1.
Both algorithms yield the same scheduling, which is not nested:

In the next section, however, we prove that every interval set I possesses
a nested scheduling.

2.3 Extending Nestedness

One of the goals of this section is to prove that every interval set I possesses a
nested scheduling. The proof will also provide a method, explained in the next
section, that maintains the interval set I by keeping the nestedness property
invariant under the update operations.
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a

z a zrzℓ

Fig. 2 Rescheduling when a does not overlap with idle intervals

Suppose that σ : I → {1, . . . , k} is a nested scheduling function for the
interval set I. Recall that we use S1, . . . , Sk to denote the k schedules with
respect to σ. Let a be a new interval not in I. We introduce the following
notations and make several observations to give some intuition to the reader.

– Let L ⊂ Idle(σ) be the set of all the idle intervals that contain s(a), but
do not cover a. The set L, as Idle(σ) is nested, is a sequence of embedded
intervals x1 ⊃ · · · ⊃ xℓ, where ℓ ≥ 1. Note that L can be the empty set.

– Let R ⊂ Idle(σ) be the set of all the idle intervals that contain f(a), but
do not cover a. The set R, as above, is a sequence of embedded intervals
y1 ⊃ · · · ⊃ yr, where r ≥ 1. Again, R can be empty as well.

– Let z be the shortest interval in Idle(σ) that covers a. Such an interval exists
since [−∞,∞] ∈ Idle(σ). To simplify the presentation, we set x0 = y0 = z.
Note that x0 ⊃ x1 and y0 ⊃ y1.

Now our goal is to construct a new nested schedule based on σ and the
content of the sets L and R. For that we consider several cases.

Case 1: L and R are empty sets
In this case we can easily extend σ to the domain I ∪ {a} and preserve

the nestedness property. Indeed, as a ⊂ z, we simply extend σ by setting
σ(a) = σ(z). We show that the resulted schedule is nested.

After insertion of a, the idle interval z is split into two intervals zℓ =
[s(z), s(a)] and zr = [f(a), f(z)]. Consider an arbitrary idle interval u in
Idle(σ). If u and z are compatible then u is compatible with both zr and
zℓ. If z ⊂ u then the intervals zℓ and zr are now covered by u. If z ⊃ u then u

is either covered by zℓ or zr, or u does not intersect with the new idle intervals.
Thus the resulting set of idle intervals is nested. See an example in Figure 2.Case 2: L is not empty, but R = ∅

If we simply set σ(a) = σ(z) as in the previous case, some of the intervals
in the new idle set will be overlapping. For example, the new idle interval
[s(z), s(a)] will intersect with x1. Therefore we reorganize the schedule σ as
follows.

We schedule interval a for the machine σ(xℓ). We move all the jobs d of the
machine σ(xℓ) such that d ≻ xℓ to machine σ(xℓ−1). In the schedule Sσ(xℓ−1)

there are other jobs that start after xℓ−1. To avoid collisions, we move these
jobs to the machine σ(xℓ−2). We continue this on until we reach the jobs
scheduled for the machine σ(z). Finally, we move the jobs d from the machine
σ(z) such that d ≻ z to the machine σ(xℓ). Note that if f(z) = +∞ there is
simply no jobs on the machine σ(z) to reschedule. Example of this process is
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8 A. Gavruskin et al.

a

x2

x1

x0 = z

ax′

2

x′

1

z′

Fig. 3 Rescheduling when idle intervals overlapping a contains only s(a)

on Figure 3. Formally, we define the new scheduling function σ1 as follows and
claim that σ1 is nested:

σ1(d) =































σ(xℓ) if d = a, or

σ(d) = σ(z) and d ≻ z,

σ(xi−1) if σ(d) = σ(xi) and d ≻ xi,

where 0 < i ≤ ℓ,

σ(d) otherwise.

Claim A. The scheduling σ1 defined is nested.

Proof The set of idle intervals Idle(σ1) consists of the new interval [f(a), f(z)]
together with all the idle intervals of σ where the idle intervals xℓ, xℓ−1,
. . ., x1, and z are changed to the following new idle intervals [s(xℓ), s(a)],
[s(xℓ−1), f(xℓ)], . . ., [s(x1), f(x2)], and [s(z), f(x1)], respectively. We denote
the set of changed intervals by L′.

Let u and v be two idle intervals of σ1. We want to show that either u∩v = ∅
or one of these two intervals is contained in the other. If both u and v are old
or both u and v are new then we are done. So, say u is new, and v is old.
First, assume that u is [f(a), f(z)]. Because by assumption R = ∅, the interval
v either covers a or does not intersect with a. In the first case, u ⊂ v, because
we have chosen z such that z ⊂ v. In the second case, if f(v) < s(a) then v

and u does not intersect. If s(v) > f(a) then, because Idle(σ) was a nested set
of intervals, we have that either v ⊂ u or u ∩ v = ∅.

Second, assume u is one of the changed intervals in L′ and v is an old idle
interval. If v contains s(a) then v must contain z since v is old. Hence u ⊂ v.
Otherwise, suppose that v contains a point r ∈ [s(xi), f(xi+1)] or r ∈ [s(xℓ), s(a)].
Then either r ∈ xi or r ∈ xi+1. Hence, v ⊂ xi or v ⊂ xi+1. If the first case
we have v ⊂ [s(xi), s(a)], and in the second case v ⊂ [s(a), f(xi+1)]. In either
case, v ⊂ [s(xi), f(xi+1)]. This proves the claim. ⊓⊔

Case 3: The set R is not empty, but L = ∅
This case is symmetric to the previous case: we need to reorganize the

intervals, but we reorganize the intervals with respect to the finishing time
of the new interval a. First, we set σ(a) equal to σ(z). The new idle interval
(f(a), f(z)) now intersects with idle intervals y1, . . . , yr. Therefore for every
1 ≤ i < r we move intervals from the machine σ(yi) that start after yi to
the next machine σ(yi+1). To avoid collision on the last machine σ(yr) we
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a

y2

y1

y0 = z a

y′
2

y′
1

z′

Fig. 4 Rescheduling when idle intervals overlapping a contains only f(a)

move intervals from this machine that start after yr to the machine σ(z). An
example with two intervals y1 and y2 is shown on Figure 4. Formally, we define
a new scheduling function σ2 as follows:

σ2(d) =































σ(yℓ) if d = a, or

σ(d) = σ(z) and d ≻ z,

σ(yi+1) if σ(d) = σ(yi) and d ≻ yi,

where 0 ≤ i < r,

σ(d) otherwise.

To see that σ2 is nested, consider two arbitrary idle intervals u and v in
the idle set Idle(σ). If these intervals has not been changed by the schedule
reorganization, then, by the nestedness of Idle(σ), these two intervals are
either compatible or nested. If both of the intervals has been changed, then by
construction of σ2 these intervals are nested. If one of the intervals has been
changed, say u, then either u ⊂ v or v ⊂ u or they are compatible. We leave
the details of this reasoning to the reader.

Case 4: Both sets L and R are non-empty.
We reorganize the schedule σ in two steps. In the first step, we proceed

exactly as in Case 2. Namely, we move all the intervals d of the machine σ(xℓ)
that start after xℓ to the machine σ(xℓ−1); we continue this on by moving all
the intervals of the machine σ(xi) that start after xi to the machine σ(xi−1).
When we reach the machine σ(x0), we move all the jobs d of the machine σ(x0)
such that d ≻ x0 to the machine k+1, that is, to the idle interval [−∞,+∞].
Denote the resulting schedule by σ1. Note there are no collisions between the
jobs in the resulted schedule, but it is not a nested schedule yet. A formal
definition of σ1 is as follows:

In the second step, starting from σ1(yi), where i = 1, . . . , r − 1, we move
all intervals of the machine σ1(yi) that start after yi to the machine σ(yi+1):

Lemma 4 The scheduling function σ2 is nested.

Proof Let K be the set of intervals in Idle(σ2) that begins at or after s(x0)
and ends at or before f(x0). In other words

K = {d ∈ Idle(σ2) | d ⊂ x0}.
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10 A. Gavruskin et al.

σ1(d) =































σ(xℓ) if d = a,

σ(xi−1) if σ(d) = σ(xi) and d ≻ xi,

where 0 < i ≤ ℓ,

k + 1, if σ(d) = σ(x0) and d ≻ x0,

σ(d) otherwise.

a

x2

x1

x0 = z = y0

y1

Fig. 5 The first step of rescheduling: defining σ1.

σ2(d) =































σ1(a) if σ1(d) = σ1(yr) and d ≻ yr,

σ1(yi+1) if σ1(d) = σ1(yi) and d ≻ yi,

where 0 < i < r,

σ1(y1) if σ1(d) = k + 1,

σ1(d) otherwise.

a

y1

Fig. 6 The second step of rescheduling: defining σ2.

By construction Idle(σ2) \ K = Idle(σ) \ K, and by nestedness of Idle(σ),
Idle(σ2) \K is also an nested set. Furthermore, it is clear that for any interval
p ∈ K and q ∈ Idle(σ) \ K, it is either that p, q are compatible or p ⊂ q.
Therefore it only remains to show that the set K is also a nested set. We show
that any two intervals p, q ∈ K are either compatible or one is covered by the
other.

Suppose p contains s(a). Then the start of p is s(xi) for some 0 ≤ i ≤ ℓ.
Moreover, the end of p is s(a), if i = ℓ, and f(xi+1), otherwise. Note that
p ⊂ xi. Consider two cases with respect to q:

– Case 1: q contains s(a). Then, similarly to p, the start of q is s(xj) for some
0 ≤ j ≤ ℓ. If xj ≺ xi then q covers p. Otherwise, p covers q.

– Case 2: q does not contain s(a). Let r be a real number such that r ∈
q ∩ p. If such r does not exists, then p and q are compatible. Otherwise
r ∈ [s(xi), s(a)) or r ∈ (s(a), f(xi+1)]. Since Idle(σ) is a nested set, we
have that either q ⊂ xi or q ⊂ xi+1. Hence q ⊂ p.

qxi+1

xi

xi−1

p

qyi+1

yi

yi−1

p

Fig. 7 Nestedness is preserved

Now suppose p contains f(a). Then the end of p is f(yi) for some 0 ≤ i ≤ r.
Moreover, the start of p is f(a), if i = r, and f(yi+1), otherwise. Similarly to
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the previous case, if q contains f(a) then, depending on the end of q, one of
the intervals covers the other. If q does not contain f(a), there are two cases:

– Case 1: q is covered by yr. If a ≺ q or yi ≺ yr then p covers q. Otherwise p
and q are compatible.

– Case 2: p is covered by yj for some 0 ≤ j < r but not covered by yj+1. If
yi+1 ≺ q or yi ≺ yj , then p coveres q. Otherwise, p and q are compatible.

Finally, suppose that neither p nor q contain s(a) or f(a). Then, by con-
struction of σ2, p and q are in Idle(σ). Therefore they are either compatible
or one covers the other. Thus the set K is nested and hence σ2 is a nested
scheduling function. ⊓⊔

Theorem 1 For any set of closed intervals I there is a scheduling function σ

such that Idle(σ) is a nested set.

Proof We prove by induction on the size |I| of I. When |I| = 1 it is clear that
Idle(I) is nested. The inductive step follows directly from the construction of
σ2 and Lemma 4. ⊓⊔

2.4 Restoring nestedness after deletion

In this section we show how to effectively restore nestedness of the schedule
after deletion of an interval. We will need the technique described here to
develop the delete operation of a dynamic algorithm.

We use the same notations as in the previous section: a denotes the deleted
interval, L and R are the sets of idle intervals that intersect with s(a) and f(a)
respectively, z is the shortest idle interval that covers a. Note that the sets
L and R always contain the idle intervals xℓ and yr, respectively, which are
adjacent to the deleted interval a.

Case 1: L and R are empty sets
In this case we can easily delete a from the domain of σ and preserve the

nestedness property. Indeed, after the deletion we have the new idle interval
b = [s(xℓ), f(yr)]. Let v be an old idle interval. Suppose, v and a are compatible
intervals. By the nestedness of σ, v is either covered by xℓ or yr or is compatible
with them. Therefore v is either covered by b or is compatible with it. Now
suppose that v and a are not compatible. If v ⊂ a then v ⊂ b. If a ⊂ v

then xℓ ⊂ v and yr ⊂ q, which implies that b ⊂ v. Thus, in either case the
nestedness is preserved.

Case 2: |L| ≥ 1, but |R| = 1
In this case, after deletion of the interval a, the idle interval [s(xℓ), f(yr)]

intersects with xℓ−1. Therefore we move all the jobs d of the machine σ(xℓ) such
that d ≻ xℓ to the machine σ(x1). Then we move all the jobs d of the machine
σ(xℓ−1) such that d ≻ xℓ−1 to the machine σ(xℓ). We repeat this process on
every machine σ(xi). We stop after we moved the jobs of the machine σ(x1)
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ax3

x2

x′

3

x′

2

x′

1

Fig. 8 Rotation of the schedules preserves the nestedness

to the machine σ(x2). Denote the new scheduling function by σ3. An example
of the rescheduling is shown in Figure 8.

Claim B. The scheduling σ3 defined is nested.

Proof Let u and v be two idle intervals in Idle(σ1). Similarly to the case in the
previous subsection, if u and v are both old or both new idle intervals, then
they are either compatible or one is contained in the other. So suppose u is a
new idle interval, and v is old. Let t be a real number such that t ∈ u ∩ v.

Suppose t ∈ yr. Then u = [s(xℓ), f(yr)]. Moreover, by the nestedness of
Idle(σ), it is either v ⊂ yr or yr ⊂ v. In the first case, we have that v ⊂ u. In
the second case, because v 6∈ R, v covers xℓ. Therefore v covers u.

Now suppose t 6∈ yr. Then u is one of the intervals x′
i = [s(xi), f(xi−1)] or

x′
1 = [s(x1), f(yr)]. We look at v and its relation to the interval xi ∈ Idle(σ):

– v ⊂ xi. Then v ⊂ u.
– v ⊃ xi. Since v is old, v ⊃ a. Since Idle(σ) is nested, v ⊃ yr. Therefore

v ⊃ u.
– f(v) < s(xi). Then v and u are compatible.
– s(v) > f(xi). If s(v) < f(xi−1), by nestedness of Idle(σ), v is covered by

xi−1. Therefore v ⊂ u. If s(v) > f(xi−1) then v and u are compatible. ⊓⊔

Case 3: |L| = 1, but |R| ≥ 1
This case is symmetric to the previous case. So, we leave the details to the

reader.

Case 4: |L| ≥ 1 and |R| ≥ 1
We reschedule the intervals in two passes. We start as in the Case 2.

Namely, for every machine σ(xi) we move the intervals d ≻ σ(xi) to the
machine σ(xi+1) if 1 ≤ i < ℓ, and to the machine σ(x1), if i = ℓ. Denote the
resulted schedule by σ1. Note that all the idle intervals in R except yr are
preserved. The interval yr is changed to y′r = [s(xℓ), f(yr)]. This interval now
intersects with all other intervals in R. To restore the nestedness, we move all
the intervals d ≻ yi of the machine σ1(yi) to the machine σ1(yi−1) if 1 < i ≤ r,
and to the machine σ(y′r) if i = 1. Denote the final schedule by σ4. We give
an example of the rescheduling in Figure 9, leaving the formal description of
σ4 to the reader.

Lemma 5 The scheduling σ4 is nested
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a
y3

y2

y1

y′
3

y2

y1

Fig. 9 Rescheduling after deletion of an interval a.

Proof Let K be a set of idle intervals that are start afters(x1) and finish
before f(y1). Then the set of idle intervals Idle(σ4) \ K is exactly the set
Idle(σ) \K. Therefore Idle(σ4) \K is nested. We show that K is also a nested
set.

Let u and v be two idle intervals in K. If u, v are both old then, by the
nestedness of Idle(σ), they are compatible or one covers the other. If u, v are
both new then, by construction of σ4, they are compatible or one covers the
other. So suppose u is new and v is old.

– u = [s(x1), f(y1)]. In this case, u is the longest interval in K. Therefore u

covers v.
– u is one of the changed intervals in L. That is, u = [s(xi), f(xi1)] for

some 1 < i ≤ ℓ. For contradiction, assume that u and v intersect. Then
v contains either s(xi) or f(xi−1). Moreover, since v 6∈ L, s(a) 6∈ v. In
other words, v starts and finishes before or after the point s(a). Therefore,
v intersects with either xi or xi−1, which contradicts with the fact that
Idle(σ) is nested.

– u is one of the changed intervals in R. That is, u = [s(yi−1), f(yi)] for
some 1 < i ≤ r. Similarly, assume for contradiction that u and v intersect.
Then v contains s(fi) and the endpoint f(v) is between f(a) and s(yi), or
v contains f(yi−1) and the start point is between f(a) and f(yi−1). Either
case contradicts with the nestedness of Idle(σ).

This proves that K is a nested set. By construction of K, an interval from
K is either compatible with or covered by an interval in Idle(σ4) \K. Hence
Idle(σ4) is a nested set of idle intervals. ⊓⊔

3 Tight Complexity Bound for Nested Scheduling

While various data structures [6,3] can be used for maintaining a set of nested
intervals, they are not optimal in maintaining the nested schedule. Recall that
a nested schedule depends on the set of interval I. Therefore when we insert
or delete an interval from I, we need to update O(d) intervals in a nested
schedule.

This section contains three subsections. In the first subsection we show
that maintaining nested scheduling as a set of a self-balancing tree requires
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14 A. Gavruskin et al.

O(d · logn) time for update operations. In the second subsection we improve
the complexity of update operations to O(d + logn). Finally, in the third
subsection we show the O(d+ logn) bound to be tight for any data structure
representing nested schedules.

3.1 Straightforward Implementation

We maintain a nested schedule σ of a set of intervals by maintaining the
nested tree of σ. We assume that every endpoint is linked to two corresponding
intervals, real and idle. That is if a schedule contains intervals [3, 6] and [8, 9]
subsequently, we have a direct access from the potion 6 to the real interval
[3, 6] and to the idle interval [6, 8].

The straightforward implementation of a nested tree is denoted by T . The
nodes of T are idle intervals. The root of T is the interval [−∞,∞]. The
children of a node v is a set Sub(v) of intervals u that are directly covered by
v, i.e. there is no interval w such that v ⊃ w ⊃ u. The children are ordered
from left to right by the starting times. The set Sub(v) is represented as a
self-balancing binary search tree, that supports join and split operations. The
root of Sub(vi+1) keeps a pointer to its parent vi in T .

First we describe three auxiliary operations: intersect, shortenLeft and
shortenRight. The intersect operation returns a path in the tree T consist-
ing of idle intervals intersecting a given point q. The operation shortenLeft set
the starting time of a given idle interval i to the new value. We assume that a
new value is between s(i) and f(i). Thus the interval i becomes shorter at the
left end. The operation shortenRight is similar to shortenLeft operation, but
it changes the finishing time of an idle interval.

For the intersect operation, we start at the root and at every node vi we
perform a search in Sub(vi) for a child vi+1 that contains q. Since the children
are stored in a binary search tree, the search takes O(log n) time. Note that
by the nestedness property, there is at most one such child. If we found one,
we add it to the path and continue in the subtree of vi+1. Otherwise, we stop
and return the constructed path of intervals. Note that q defines a unique path
in T . As the height of T is at most d, the time complexity of the search is
O(d log n).

For the shortenLeft and shortenRight operations, after shortening an idle
interval, we need to update the children of the updated interval. Let v be an
idle interval and p be new value. We split the children of v into two sets A

and B. The set A contains idle intervals in Sub(v) whose finishing time is less
that p, and the set B contains idle intervals whose starting time is greater
that p. We assume that p does not intersect any of the children of v. Therefore
A∪B = Sub(v). If the interval has been shortened at the left, we add intervals
in A to the parent of v and set B as the children of the update intervals. If the
interval has been shortened to the right, A becomes the children of v and B

is merged with the children of v’s parent. Shortening operation takes O(log n)
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time. An example in Figure 10 shows the result of applying shortenRight to
the interval xi.

xi−1

xi

u0 u1 u2 u3

p

xi−1

x′

i

u0 u1

u1 u2

Fig. 10 Changes in the nested tree after applying shortenRight(xi, p).

Now we are ready to describe insertion and deletion of intervals. Let a

be the inserted interval. Let PL = {v0, . . . , vk = z, x1, . . . , xℓ} and PR =
{v0, . . . , vk = z, y1, . . . , yr} be the paths returned by intersect(s(a)) and intersect(f(a)),
respectively. Following the construction of σ2 in the previous section, we
shorten the interval xℓ at the right to the point s(a). Then, we shorten each
idle interval xi at the right to the point f(xi+1). Similarly, we shorten intervals
yr, yr−1, . . . , y1 at the left to the points f(a), s(yr), . . . , s(y2).

Finally, we split the interval z into two intervals z1 = [s(z), f(x1)] and
z2 = [s(y1), f(z)]. If x1 or y1 do not exist, we set z1 = [s(z), s(a)] and z2 =
[f(z), f(a)]. These two intervals will be new nodes in T . We split the children
of z as well. We set the children of z1 and z2 to be those intervals in Sub(z)
that finish before f(x1) and start after s(y1), respectively. We delete node z

from Sub(vk−1) and in its place we insert, preserving order, intervals z1, z2
and the intervals in Sub(z) not covered by z1 or z2.

Now we describe the deletion operation. Let a be a deleted interval, PL and
PR be the paths returned by intersect(s(a)) and intersect(f(a)), respectively.
Note that the xℓ ∈ PL and yr ∈ PR are idle intervals adjacent to a.

First, we delete idle intervals xℓ and yr from T . We move the children of
these intervals to the children of their parents. Then for every 1 ≤ i < ℓ we
shorten xi at the left to s(xi+1). Similarly, we shorten intervals yr−1, . . . , y1
at the right to f(yr), . . . , f(y2), respectively. We also add children of yr to the
children of yr−1.

Finally, we add the new idle interval b = [s(x1), f(y1)]. We add b as a child
of vk, the interval that covers both x1 and y1. We search for the intervals in
Sub(vk) that are covered by b. We remove these intervals from Sub(vk) and
set them to be children of b.

Theorem 2 The data structure described above maintains the optimal

scheduling and supports insertions and deletions in O(d · logn) worst-case

time.

Proof When we update or delete an interval, we change idle intervals that
intersect with at most two points. It takes O(d log n) time to find these idle
intervals. Once found, we change endpoints of every idle interval. To change
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endpoint of an idle interval in T takes O(log n) time, since we need to split
and join children of the interval and its parent. We change endpoints of at
most 2d intervals. Thus in total an update operation take O(d log n) time.
The correctness of the operations follows from Lemma 4 and Lemma 5 ⊓⊔

3.2 Optimal Data Structure

Our data structure stores idle intervals Idle(σ) that depends on the scheduling
function σ and the set of intervals I. We assume that every endpoint is linked
to two corresponding intervals, real and idle. That is if a schedule contains
intervals [3, 6] and [8, 9] subsequently, we store the idle interval [6, 8]. After
each update of I we restore the nestedness of the idle interval set. Therefore
when we insert or delete an interval a, we update all idle intervals that intersect
with the endpoints of a. Below we describe how maintain a nested schedule
and perform update operations in O(d+ logn) worst-case time.

We store idle intervals in an interval tree [14]. An interval tree is a leaf-
oriented binary search tree where leaves store endpoints of the intervals in
increasing order. Intervals themselves are stored in the internal nodes as fol-
lows. For each internal node v the set I(v) consists of intervals that contain
the split point of v and are covered by the range of v. The split point of v,
denoted by split(v), is a number such that the leaves of the left subtree of v
store endpoints smaller than split(v), and the leaves of the right subtree of v
store endpoints greater than split(v). The range of v, denoted by range(v), is
defined recursively as follows. The range of the root is (−∞,∞]. For a node
v, where range(v) = (l, r], the range of the left child of v is (l, split(v)], and
the range of the right child of v is (split(v), r]. An example of an interval tree
is shown in Figure 11.

[−∞,∞]

[5,∞]

[5, 11]

1 2 3 4 6 7 8 9 10 12 13 14 15 16 17 18

Fig. 11 Nested set of intervals represented by interval tree data structure.

We represent each set I(v) as a linked list. The intervals in I(v) are stored
in order of their left endpoints. Since the set is nested, every interval in a list
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covers all the subsequent intervals in the list. To search for all intervals inter-
secting a given point p do the following. Start at the root and visit the nodes
v0, . . . , vk, where vi+1 is the right child of vi if p > split(vi), and the left child
otherwise. At every node vi, scan I(vi) and report all intervals containing p.
Note that p intersects with at most d intervals and the length of the path is
O(log n). Thus the search takes O(d+ log n) time.

To allow updates of the interval tree, we represent it as a red-black tree.
In a red-black tree, insertion or deletion of a node takes O(log n) time plus
the time for at most 3 rotations to restore the balance. When performing a
rotation around an edge (v, p(v)) the sets I(v) and I(p(v)) change. Let the
range of p(v) be (ℓ, r]. If v is the left child, the range of p(v) after rotation
becomes [split(v), r]. If v is the right child, the range of p shortens at the other
end and becomes [ℓ, split(v)]. Therefore all intervals in I(p(v)) that intersects
with split(v) must be moved to I(v). Note that ranges of other nodes are not
affected. Since there are at most d intervals in each of the internal interval sets,
rotation takes O(d) time. Thus in total we need O(d+ logn) time to insert or
delete a node.

Now we describe the update operations. Let a be the inserted interval.
Recall that when we insert an interval a, we need to update idle intervals that
intersect with the endpoints of a. Let L be the set of idle intervals that contain
s(a), but not f(a). Let R be the set of idle intervals that contain f(a), but not
s(a). Let z be the shortest idle interval that contains both endpoints of a. We
show how to update intervals in L. The update of intervals in R is similar.

Let v0 be a node such that z ∈ I(v0). This node is our starting position.
To find intervals in L, we walk down a path v0, . . . , vk defined by s(a). When
visiting a node vi, we iterate through I(vi) and put intervals that contains
s(a) into L. We delete intervals from I(vi) that we put in L. We stop when we
reach a leaf node.

Let x1 ⊃ · · · ⊃ xℓ be intervals we have put in L. We iterate through L and
walk up the path we have traversed. We start iteration from the last interval
xℓ. For an interval xj , we set s(xj) = s(xj−1). Then we check if xj belongs to
I(vi), i.e. if split(vi) ∈ xj ⊂ range(vi). If xj satisfies these conditions, we put
xj at the beginning of I(vi) and remove it from L . Otherwise, we walk up the
path until we find a node with a satisfactory split point and range. Note that
no interval in I(vi) contains s(a), since on the way down we removed all such
intervals. Therefore, by the nestedness of idle intervals, xj covers all intervals
in I(vi).

Finally, we insert s(a) into the tree. Once inserted, we search for the lowest
common ancestor v of the leaves containing s(xℓ) and s(a). We add interval
[s(xℓ), s(a)] into I(v).

The deletion of an interval a is similar to insertion. First we delete the
intervals xℓ and yr and the endpoints s(a) and f(a) from the interval tree.
Then we traverse the path defined by s(a). Recall that xℓ−1, . . . , x1 are the
idle intervals that intersect with s(a). We change the starting time of all of
them. Suppose v is a node such that xi ∈ I(v). Clearly, xi+1 is in the range(v).
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For every interval xi we encountered we set s(xi) to be s(xi+1). We move the
changed intervals x′

i to the node v such that split(v) ∈ x′
i ⊂ range(v). Note

that v is on the path we are traversing. Similarly, we traverse the path defined
by f(a), update and move intervals yi. Finally, we add a new idle interval
[s(x1), f(y1)] into the interval tree.

Theorem 2 The data structure described above maintains the optimal schedul-

ing and supports insertions and deletions in O(d + logn) worst-case time.

Proof When we insert or delete an interval, we update only two sets L and R

of idle intervals. These two sets corresponds to two paths of length at most
O(log n). Furthermore, all intervals in each set share a common point. There-
fore the size of each set is at most d. Since the intervals in internal nodes
are ordered, it takes O(d) time to add intervals into L and R. When we put
updated intervals back, we add them at the beginning of the lists. Therefore it
takes O(d) time to add intervals from L and R into the internal nodes. Finally,
we insert or delete at most two leaves. Thus, an update takes O(d+logn) time.

The optimality of scheduling follows from Lemma 4 and Lemma 5. ⊓⊔

3.3 Lower Bound

In this subsection we show that complexity of any data structure that main-
tains a nested tree is at least Ω(logn+ d), where d is the height of the nested
tree. First we recall a lower bound for the static interval scheduling problem:

Theorem 3 (Shamos and Hoey [15]) Ω(n log n) is a lower bound on the

time required to determine if n intervals on a line are pairwise disjoint.

Lemma 6 Ω(logn) is a tight bound on the time required to update a data

structure that maintains a nested tree.

Proof For contradiction, assume that there is a data structure with a com-
plexity f(n) ∈ o(log n). We create a nested tree of n intervals using this data
structure. If the height of the tree is 1, then the intervals do not intersect.
However, the time taken is n ·f(n) ∈ o(n logn), which contradicts Theorem 3.

⊓⊔

Lemma 7 If σ and τ are nested scheduling functions then Idle(σ) = Idle(τ).

Proof For contradiction, assume that there exist two nested scheduling func-
tions σ and τ such that Idle(σ) 6= Idle(τ). Then there exist two idle intervals
a0 ∈ Idle(σ) and b0 ∈ Idle(τ) such that they have the same non-infinite starting
time, but different finishing times, i.e. s(a0) = s(b0) 6= −∞ and f(a0) 6= f(b0).
Without loss of generality, suppose that f(a0) < f(b0). Now we take an in-
terval b1 from Idle(τ) that finishes at f(a0). If its starting time is less than
s(b0) then intervals b0 and b1 overlap, which contradicts the nestedness of τ .
Otherwise, we continue to Idle(σ) and take an interval a1 that starts at s(b1).
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If f(a1) > f(a0) then a1 and a0 overlap and it is a contradiction. Otherwise,
we continue in the same manner to Idle(τ). Since I is finite, this process even-
tually stops and one of the scheduling functions appears to be not nested. ⊓⊔

Theorem 4 An update operation in a data structure representing a nested

tree takes at least Ω(logn+ d) time.

Proof Let I be an interval set and Nest(I) be the nested tree of I. By Lemma 7,
Nest(I) is unique. Let v0v1 . . . vd be longest path in Nest(I). Now consider an
interval a, which starts in the middle of vd and finishes after the end of v1.
Clearly, s(a) intersects with exactly d idle intervals. Therefore the trees Nest(I)
and Nest(I∪a) differ in Ω(d) nodes. Taking into account Lemma 6, an update
operation of a nested tree requires Ω(logn+ d) time. ⊓⊔
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