

Libraries and Learning Services

University of Auckland Research
Repository, ResearchSpace

Version

This is the Accepted Manuscript version. This version is defined in the NISO
recommended practice RP-8-2008 http://www.niso.org/publications/rp/

Suggested Reference

Liu, J., & Wei, Z. (2017). Agent-based computation of decomposition games with
application in software requirements decomposition. In Q. Bai, F. Ren, K. Fujita,
M. Zhang, & T. Ito (Eds.), Studies in Computational Intelligence: Multi-agent and
Complex Systems Vol. 670 (pp. 165-179). Singapore: Springer.
doi:10.1007/978-981-10-2564-8_12

Copyright

Items in ResearchSpace are protected by copyright, with all rights reserved,
unless otherwise indicated. Previously published items are made available in
accordance with the copyright policy of the publisher.

The final publication is available at Springer via http://dx.doi.org/10.1007/978-
981-10-2564-8_12

For more information, see General copyright, Publisher copyright,
SHERPA/RoMEO.

http://www.niso.org/publications/rp/
http://dx.doi.org/10.1007/978-981-10-2564-8_12
http://dx.doi.org/10.1007/978-981-10-2564-8_12
http://dx.doi.org/10.1007/978-981-10-2564-8_12
http://www.library.auckland.ac.nz/services/research-support/depositing-theses/copyright
http://www.springer.com/gp/open-access/authors-rights/self-archiving-policy/2124
http://www.sherpa.ac.uk/romeo/issn/1860-949X/

Chapter 1
Agent-Based Computation of Decomposition
Games with Application in Software
Requirements Decomposition

Jiamou Liu, Ziheng Wei

Abstract Coalition formation is a fundamental question in multiagent systems. The
question asks for an optimal way in which agents may form coalitions and cooperate
to accomplish a task. In this paper we investigate the use of coalition formation in
software architecture design. We investigate a multiagent framework for attribute-
driven software architecture design process. We design an agent for each require-
ment; the agents form coalitions that represent software components. The coalition
formation process is based on decomposition game, a variant of coalition game. We
extend previous work by adopting the propose-select-adjust framework for com-
puting solutions of decomposition games. The focus is on analysing efficiency and
utility of this agent-based approach. We also present three real-world case studies
demonstrating the use of this approach to support software architecture design.

Key words: Coalition formation, decomposition game, software architecture, soft-
ware requirements, PSA-framework

1.1 Introduction

Coalition formation is the problem of cooperation: In a multiagent environment, the
outcome of a task can often be improved if several agents join force to accomplish it
together. The problem is important in a wide range of application domains such as
task allocation [10] and electronic markets [13]. Therefore coalition formation has
been a major topic of interest in multiagent systems [11]. Coalition games are useful
tools to investigate coalition formation. Such games consist of a number of player-
s, any non-empty subset of which is called a possible coalition. For each possible
coalition, the game assigns a real number expressing its utility, which would then

Jiamou Liu1 · Ziheng Wei2

Department of Computer Science, The University of Auckland, Auckland, New Zealand
1e-mail: jiamou.liu@auckland.ac.nz 2e-mail: zwei891@aucklanduni.ac.nz

1

jiamou.liu@auckland.ac.nz
zwei891@aucklanduni.ac.nz

2 Jiamou Liu, Ziheng Wei

be used to derive payoffs of members of the coalition. The output of the game is a
partition of all players, called a coalition structure, which should satisfy certain sta-
bility criterion, such as core, kernel, and Shapley value; these stability concepts all
mean — to a degree — that the output coalition structure represents an equilibrium
where the payoff of all agents are well-balanced and fair [1].

In this paper we investigate coalition formation as applied to the problem of soft-
ware architecture design. Software architecture forms an important bridge between
requirement analysis and more concrete software designs in the software engineer-
ing process; it defines a high-level software composition which meets function and
quality requirements. The design and evaluation of software architectures typically
demands high-level expertise and amounts to a largely manual task [3].

In our previous work [9], we initiated a game-based study of software archi-
tectures, hence providing a formal basis that supports the design and evaluation of
software architectures. Our intuition is this: Software requirements exhibit conflicts
and it is not possible to fulfill all requirements to a perfect degree; take, for ex-
ample, security and performance, both are important quality feature of a software
system. However, to ensure security, layers of encryption mechanisms should be put
in place of a software system which harms performance. Therefore instead of find-
ing the “perfect” software architecture, one would usually aim to find a “reasonable”
software architecture that nicely balance all requirements. Abstractly, we may view
software architecture design as a game, where players are requirements that may
or may not be at odds of each other, and whose solutions are certain equilibrium
states which satisfy all requirement to the best degree; such solution corresponds to
a reasonable software architecture. Our approach blends two novel ideas:

(a) Firstly, we proposed a new game model, called a decomposition game, which
follows the general setup of coalition games, but with the following important
exceptions: Players are altruistic in the sense that they aim to maximise the
utility of their coalitions, rather than their individual payoffs; the utility of a
coalition depends solely on the interactions between its members which may
either be beneficial or detrimental. The associated solution concept is called
rational decomposition, and is computed using centralised algorithms.

(b) Secondly, we modeled the process of attribute-driven design — a method trans-
forming software requirements to a conceptual software architecture — using
decomposition games. Players of the game are software requirements and utility
of a software component of is captured by the set of requirements it meets. The
process of software architecture design is thus a process of coalition formation:
Starting from the coalition of all requirements, we recursively divide the current
collection into smaller coalitions, which are eventually mapped to meaningful
software components.

The work [9] leaves some important questions unanswered. The first question con-
cerns with the approach of finding a rational decomposition. A game entails that
players are “acting on their own wills”; hence it is natural to ask if a multiagent ap-
proach (instead of a centralised approach) can be used to simulate the formation of
coalitions. The second question concerns with the complexity of the computation.

1 Agent-Based Computation of Decomposition Games 3

The third questions concerns with how well the proposed approach may be adopted
in practice. In this paper we aim to answer these questions:

1. We develop a multiagent environment for computing rational decomposition-
s. Here we utilise the propose-select-adjust framework introduced in [7] and
subsequently developed in [8, 2]. The approach involves two types of agents,
coalitions and sub-coalitions, who autonomously decide on a coalition struc-
ture.

2. To achieve efficient computation, we pose a constraint T , which denotes the
total amount of queries an agent is allowed to make within an iteration. This
constraint helps to reduce the workload of a single agent in any iteration to
constant time, and hence improves computation time. We demonstrate through
experiments that under such constraints one can still identify reasonable decom-
positions.

3. We discuss the design of three real-world software systems: SplitPay system,
Wargame2000 system and Cafeteria ordering system. For each case study we
describe how our approach may help to identify a rational software architecture.
The case studies demonstrate our method as a viable approach for deriving and
evaluating software architectures, as well as trade-off analysis.

The rest of the paper is organised as follows: Section 1.2 presents decomposition
games as the theoretical basis of our mechanism for coalition formation. Section 1.3
introduces the PSA-framework for realising coalition formation in a distributed ap-
proach, where agents starts from singleton coalitions and perform merge and bind
operations to form larger coalitions. Section 1.4 discusses application of this coali-
tion formation process in software architecture design. Section 1.5 presents experi-
ments using synthetic games. Section 1.6 concludes the paper with a discussion on
future works.

1.2 Decomposition Games

Let N be a set of players. A coalition is a non-empty subset of N. A coalition struc-
ture on N is a collection of coalitions C = {C1,C2, . . . ,Ck} such that

⋃k
i≥1 Ci = N

and Ci∩C j =∅ for any i 6= j. A coalition game models the situation when a group
of agents form coalition based on individual payoffs; formally it is defined as a pair
(N,v) where v : 2N → R is a characteristic function assigning every coalition to a
utility. In the following, we consider a special type of coalition games, which have
the following significant characteristics:

1. Altruistic players: We assume that players follow altruistic principle that val-
ues the collective utility of its coalition over individual payoffs. Therefore for
any single player a ∈ N, the payoff of a equals to the utility of the coalition S
that a belongs to. This is different from classical coalition games which assumes
the sum of payoffs of members of a coalition S equals to the utility of S.

4 Jiamou Liu, Ziheng Wei

2. Influence among players: We assume that utility of a coalition is determined
by the interactions among its members. For player a, there could be three types
of influence to another player b: (1) a benefits b, i.e., a has a positive effect on
b; (2) a detriments b, i.e., a has a negative effect on b; (3) a is independent from
b, i.e., a has no effect on b. Furthermore, we assume asymmetric relation so that
the influence from a to b may be of different from the influence from b to a.

We define a decomposition game as follows. Let E be the set of ordered pairs of
distinct players in N. Let Ep ⊆ E be a set of positive influence edges. Let En ⊆ E
be a set of negative influence edges. We require that Ep ∩En = ∅. The influence
matrix σ assigns every pair (a,b) ∈ N2 a value in {−1,0,1} such that σ(a,b) = 1
if (a,b) ∈ Ep, σ(a,b) = −1 if (a,b) ∈ En and σ(a,b) = 0 otherwise. A relevance
function is w : N×N→R which measures the relevance w(a,b) between two players
a,b; we require w(a,b) =w(b,a). The interaction function ρ : N2×2N→R denotes
the level of interactions from player a to a player b within a coalition S, taking into
account the influence from a to b:

ρ(a,b,S) =

σ(a,b)× ∑

a6=c∈S
w(a,c), if σ(a,b)≥ 0

−

∣∣∣∣∣ ∑
a6=c∈S

w(a,c)

∣∣∣∣∣ , otherwise

Intuitively, the sum ∑a6=c∈S w(a,c) denotes the relevance of a to the coalition S. If a
is independent from b, then the interaction from a to b is 0; if a benefits b, then this
sum is the level of interaction from a to b; if a detriments b, then the negative value
of this sum if the level of interaction.

Definition 1 (Decomposition game). A decomposition structure is D=(N,Ep,En,w)
as described above. A decomposition game of D is a coalition game G = (N,v)
where v(S) = ∑

a,b∈S
ρ(a,b,S)

In a decomposition game (N,v), players form a coalition structure based on their
payoffs. We view the formation of coalitions as a dynamic process that starts with all
players in singleton coalitions. In other words, if N = {a1, . . . ,an}, the starting coali-
tion structure is C0 = {{a1},{a2}, . . . ,{an}} where N = {a1, . . . ,an}. The players
then choose to form bigger coalitions if they can obtain higher payoff in this way.
Suppose at some point the players arrive at a coalition structure {C1,C2, . . . ,Ck}. We
assume that any individual player a’s knowledge is bounded within her own coali-
tion. This means, a ∈ N only have knowledge of subsets S ⊆Ci where a ∈Ci. Thus
the players and coalitions may perform two strategies:

• Merge: Several coalitions may choose to merge if they would obtain a higher
combined utility than their respective utilities.

• Bind: Several players within the same coalition may form a sub-coalition if they
would obtain a higher utility than the current coalition.

The outcome of the decomposition game (N,v) is a coalition structure in which
neither merge nor bind may take place:

1 Agent-Based Computation of Decomposition Games 5

Definition 2 (Rational decomposition). Let C be a coalition structure of N in de-
composition game (N,v).

1. C is merge-free if for all S ⊆ C , v(
⋃

S)≤max{v(C) |C ∈S }
2. C is bind-free if for all C ∈ C , any S⊆C, v(S)≤ v(C).

Call the coalition structure C a rational decomposition if it is both merge-free and
bind-free.

A rational decomposition always exists and may not be unique. From a computation
point of view, however, computing a rational decomposition is NP-hard [9]. Thus it
makes sense to find ways to approximate a rational decomposition.

1.3 A Multiagent Framework for Decomposition Games

The propose-select-adjust (PSA) framework is a decentralized framework for simu-
lating decision making among a network of agents [7, 8]. Generally speaking, each
agent in this framework can be considered a utility-based agent, which maintains
and updates its own state according its perception about the performance of pos-
sible future states. To carry out its computation, each agent repeatedly follows a
simple three-step action of propose, select, and adjust:

• propose: The agent derives a proposal based on environment
• select: The agent collects proposals from other agents and selects a proposal with

the highest performance
• adjust: The agent updates its own state according to the selected proposal

The above process is repeated by all agents in the network simultaneously and indef-
initely, and thus an agent in PSA can also be regarded as a cell in a graph dynamical
system [8]. At any time instance, the global state of the network (i.e., the collec-
tions of states of all agents) reveals the collective solution of all agents. In [7, 2],
PSA have been applied to the problems of community detection in social networks,
as well as market segmentation in consumer-commodity networks. It has been re-
vealed that PSA is a viable framework for simulating and monitoring evolutions in
dynamic networks. In this paper, we use PSA as the computation framework for ob-
taining coalition structures in decomposition games. Our PSA framework contains
two types of agents:

• Coalition agents: At any time instance, the decomposition game (N,v) is at
a particular coalition structure C = (C1, . . . ,Ck). Each coalition Ci is an agent
which we call a coalition agent.

• Sub-coalition agents: For any coalition Ci, players in Ci also form a sub-
coalition structure Di = (D1, . . . ,D`) of Ci. Each sub-coalition Di is also an agent
which we call a sub-coalition agent.

The two types of agents perform different propose, select, adjust steps.

6 Jiamou Liu, Ziheng Wei

• For a coalition agent Ci, its proposal P(Ci) consists of a set of coalition agents
{C j1 , . . . ,C j`} such that v

(
Ci∪

⋃
1≤s≤`Cs

)
> v(Ci). A coalition agent would s-

elect the proposal with the highest utility made by other coalition agents that
include itself. Once it selects a proposal P(C j), the coalition merges itself with
the coalition agent C j to form a larger coalition.

• For a sub-coalition agent Di, its proposal P(Di) consists of a set of sub-coalition
agents {D j1 , . . . ,D j`} such that each D js and Di belong to the same coalition,
and v

(
Di∪

⋃
1≤s≤` Ds

)
> v(Di). A sub-coalition agent would select the proposal

with the highest utility made by other sub-coalition agents which include itself.
Once it selects a proposal P(D j), the sub-coalition merges itself with the sub-
coalition agent D j to form a larger sub-coalition. As soon as any sub-coalition’s
utility exceeds the utility of the coalition that contains them, this sub-coalition
“breaks away” from this coalition and lift itself into a coalition.

Figure 1.1 illustrates a possible scenario when two sub-coalitions bind to form a
bigger sub-coalition and separate from their original coalition.

Fig. 1.1 Two sub-coalitions form a bigger sub-coalition whose utility exceeds their coalition, and
thus breaks away to form a new coaltion.

Let C = {C1, . . . ,Ck} be a coalition structure. An optimal proposal of a coalition
Ci is a set Po(Ci) = {C j1 , . . . ,C jm} such that v

(
Ci∪

⋃
1≤s≤m C js

)
is maximal. For a

sub-coalition structure Di = {D1, . . . ,D`} of Di, an optimal proposal Po(D j) of a
sub-coalition D j can be defined in a similar way. The following theorem states that
optimal proposals lead to the desired solution.

Theorem 1. If the PSA-framework is implemented in such a way that all coalition
and sub-coalition agents only make optimal proposals, then the players eventually
stablise at a coalition structure Co. Furthermore, Co is a rational decomposition.

Searching for an optimal proposal for any agent may demand exhaustively looking
through the space of all subsets of agents and thus is time-consuming. To ensure
timely return of a proposal, we put a bound T ∈ N on the amount of information
an agent is allowed to query in order to obtain a proposal. Under this constraint, a
coalition agent Ci is not able to scan over arbitrary subsets of agents, but is restricted
to examining only subsets of a bounded size α , defined as the largest value that

1 Agent-Based Computation of Decomposition Games 7

satisfies kα ≤ T , where k = |C |, the number of coalitions in the current coalition
structure C . Thus we define the proposal PT (Ci) made by a coalition agent Ci as a
subset of C with |PT (Ci)| ≤ α and

∀P⊆ C : |P| ≤ α ⇒ v
(

Ci∪
⋃

PT (Ci)
)
≥ v
(

Ci∪
⋃

P
)

Similarly, a sub-coalition agent D within a sub-coalition structure Di is not able to
check arbitrary subsets of sub-coalitions in Di, but is restricted to examine subsets
of a bounded size α , defined as the largest such that `α ≤ T , where `= |Di|. We can
then define the proposal PT (D) made by a sub-coalition agent D similarly to PT (Ci).
The proposals PT (Ci) and PT (D) are referred to as T -bounded optimal proposals.
The following is easy to check.

Proposition 1. For a fixed T ∈N, computing a T -bounded optimal proposals for an
agent takes constant time.

Using T -bounded proposals to implement the PSA framework, the players would al-
so reach a stablising coalition structure, which we call T -bounded decompositions.
We will show using experiments in subsequent sections that T -bounded decompo-
sitions are very likely to be rational decompositions.

1.4 Game-Based Software Architecture Design

Decomposition game is introduced to formally capture the attributed-driven de-
sign (ADD) methodology. ADD amounts to a thorough and standardised paradigm
for software architectures design after extensive development in the last 15 years
[5][15]. Inputs to ADD are software requirements and their relations, which are
assumed to be derived from requirement analysis. There are two types of require-
ments: Functional requirements, which specify tasks the system performs, and non-
functional requirements, which refer to quality attributes such as performance, se-
curity, availability, modifiability, usability, testability, and portability. We describe
these quality attributes using general scenarios. The actual non-functional require-
ments are instances of general scenarios, simply called scenarios, which are real-
world situations that refer to specific general scenarios. For example, “If a failure
occurs, the banking system notifies the user; the system continues to perform with
half the efficiency” is a scenario that refers to the availability requirement.

Requirements exhibit complicated relations. For example, “the system finalises a
payment transaction” should be preceded by “correct user credentials are checked”
(this is a form of dependency between functional requirements), and quality at-
tributes such as ensuring security of the system typically harm its usability. Re-
quirement analysis has identified influences between common quality attributes; see
[14] for full description of the influence matrix σ . We note that the influence matrix
is not symmetric: e.g., An improvement in performance may not affect security, but
increasing security will almost always adversely impact performance.

8 Jiamou Liu, Ziheng Wei

An attribute primitive is a software component that meets several functional and
non-functional requirements. Examples of attribute primitives include data router,
firewall, virtual machine, interpreter and so on. In particular the entire software can
be regarded as an attribute primitive that meets all requirements. The ADD method-
ology specifies a list of common attribute primitive along with their properties and
side effects; see for example in [4]. We use F to denote the set of functional re-
quirements and S to denote the set of scenarios (non-functional requirements). Let
R= F∪S. A design element is a subset C⊆R. A decomposition of an attribute prim-
itive is a set of design elements {C1,C2, . . . ,Ck} which form a coalition structure of
all requirements met by the attribute primitive.

The ADD process can be viewed as a process of requirement decomposition:
The process starts with the whole software as an attribute primitive, and derives a
decomposition {C1,C2, . . . ,Ck} of R. The process then assigns an attribute primitive
Ai that meets each design element Ci. If Ai in turn requires further decomposition,
the ADD process will then be recursively applied to Ai. Therefore, the ADD process
is the problem of deriving a suitable decomposition given the set of requirements
R and their relations. We describe the ADD procedure as applied to an attribute
primitive A recursively as follows:

Procedure 1 ADD(A) (General Plan)
1: (C1,C2, . . . ,Ck)←Decompose(A) // compute a rational decomposition of A
2: for 1≤ i≤ k do
3: Ai← an primitive attribute consistent with Di
4: if Ai needs further decomposition then
5: ADD(Ai)

To realise the Decompose(A) step in the ADD procedure, we apply our mul-
tiagent framework by letting each requirement a ∈ R act as a player and relevance
w(a,b) between to players a,b are determined by the relation between the corre-
sponding requirements. A rational decomposition of the game is then the desired
output of the process. For a thorough and more formal description of this agent-
based model, the reader is referred to [9].

To demonstrate how our approach may be helpful to support software architec-
ture design in real life, we provide three case studies below.

1.4.1 Case Study 1: SplitPay System

SplitPay is a mobile application based on Android platform. The purpose of this ap-
plication is to manage shared expenses. Users in a group will post bills that they have
paid for the group. Then, debts will be allocated to group users. The requirements of
SplitPay are well documented in [12]. We elicit design elements from the documen-

1 Agent-Based Computation of Decomposition Games 9

tation and organize them as three kinds of design driver: functional requirement,
non-functional requirement and design constraints. Non-functional requirements in
SplitPay’s documentation are quite informal. We have to further analyze these non-
functional requirements in order to correlate them with other design drivers. We use
these elicited design drivers and their relationships as input to construct a decompo-
sition game. Each design driver is a player in a decomposition game. Relationships
between design drivers are weighted so that we are able to compose a evaluation
function for every pair of design drivers. There are 18 functional requirements and
6 non-functional requirements. We compute a 10000-rational decomposition using
PSA which converges in 6 iterations. The PSA-system has stablised on 5 coalitions.
We show the results in Table 1.1. We only show the names of design drivers, where
their exact meaning can be found in [12].

C1 Performance1.1, Performance1.3, Function16.1, Function12.1, Function10.1

C2
Function4.1,Function3.1,Function5.1,Performance1.2,Function15.1,
Function14.1,Function11.1

C3
Usability3.1,Function13.1,Function8.1,Function7.1,Function2.3,
Function2.1,Function6.1,Function2.2,Function9.1,Function1.1

C4 Performance1.4
C5 Safety2.2

Table 1.1 Coalitions in SplitPay system. The coalition C3 has the highest utility which highlights
the importance of usability.

Fig. 1.2 SplitPay system architecture. Rectangular boxes represent system components and arrows
represent their communications.

Based on this coalition structure, we derive a conceptual architecture as in Fig. 1.2.
The decomposition highlights usability. User operations which require extra pro-
cessing time will be handled in the daemon processes. Android systems can create

10 Jiamou Liu, Ziheng Wei

service component for an application so that some processes will not affect user in-
terface. C2 can be a service component which listens from server and wraps up user
requests to a formal HTTP request. C3 is also a service component which updates a
user’s debt. C1 is an application server which can install PHP and MySQL server.

1.4.2 Case Study 2: Wargame 2000

Wargame 2000 is a highly complex real-time ballistic missile defense simulation
system. Non-functional requirements of the systems are given in [6]; the focus in [6]
is to apply architecture tradeoff analysis method (ATAM) to identify sensitive points
and risks in the design phase. Therefore all functional requirements, design con-
straints are omitted except non-functional requirements, which are well described.
A scenario describes a non-functional requirement by stating the stimulus, the envi-
ronmental conditions, and the measurable or observable response to the stimulus.

Since we are only able to access non-functional requirements from [6], our focus
here is also on tradeoff analysis. Our decomposition game contains 12 refined s-
cenarios under 7 general scenarios that include availability, reliability, performance,
usability, modifiability, scalability and interoperability. We establish interactions be-
tween these scenarios. For example, consider the two scenarios:

• Availability: Simulation controller initiates execution (a game), starts subroutine
processes, loads parameter files, and simulation starts within 10 minutes.

• Performance: System must perform all initialization activities within 10 minutes

These two scenarios are correlated because they both discuss the initialization pro-
cedure. We identify 48 such correlations between scenarios and compute a 10000-
bounded decomposition, which is shown in Table 1.2.

C1 Perfo3.1,Perfo3.2,Perfo3.3,Usabi4.1,Avala1.1,Avala1.2,Scala6.1,Scala6.2
C2 Reliab2.1,Modif5.1,Modif5.2
C3 Interop7.1

Table 1.2 Coalitions in Wargame 2000 system.

Similar to [6], we identify a conceptual software architecture design in Fig. 1.3.
This decomposition reveals a high level architecture of Wargame2000, which is p-
resented in Fig 1.2. Although this is a very coarse-grained architecture, it never-
theless reveals reasonable tradeoff among quality attributes. C1 emphasises features
for a simulator which requires real-time simulation and “human-in-loop” simula-
tion. Some requierments (e.g. SCAL6.1) require a simulator to adapt new model. C2
demands high quality of configuration of Wargame2000 system. C3 builds a func-
tionality to connect Wargame 2000 to other systems.

1 Agent-Based Computation of Decomposition Games 11

Fig. 1.3 Wargame system architecture.

1.4.3 Case Study 3: Cafeteria Ordering System

The aim of this case study is to apply our game model to a business management
system. Cafeteria ordering system is a widely used case study for software design
(see [14] for detailed description). The project is well documented in the literature.
It consists of 11 non-functional requirements which belong to 6 types: availabili-
ty (AVL), performance (PER), security (SEC), Usability (USE), robustness (ROB),
safety (SAF). There are 49 functional requirements and a number of design con-
straints. We set bounds for a bounded decomposition to 5× 105. A PSA system
solves the game as shown in Table 1.3.

C1 SI1.1,SI1.2
C2 Pay.Method,Deliver.Location,Confirm.Response,Deliver.Select,Units.Multiple,Confirm.More
C3 Menu.Available,Deliver.Times,Place.Register
C4 USE1

C5

AVL1,PER1,PER2,ROB1,SEC1,SEC2,USE2,SI1.3,SI2.1,SI2.2,SI2.4,CI1,CI2,UI2,UI3,SI2.3,
SI2.5,Retrieve,Menu,Done.Patron,Deliver,Place,Done.Store,Pay,Done,Done.Cafeteria
Done.Failure,Done.Inventory,Done.Menu,Confirm,Done.Time,Units

C6 SEC4
C7 Place.Date
C8 Pay.Deliver,Pay.Deduct,Pay.Pickup
C9 Menu.Date
C10 SAF1
C11 Confirm.Display
C12 PER3,Place.Cutoff,Place.No,Deliver.Notimes,Units.TooMany,Pay.NG,Confirm.Prompt,Pay.OK

Table 1.3 Coalitions in COS.

A closer look reveals that it is reasonable to disregard some singleton coalitions.
For example, USE1 in C4 is from a business rule which only require the abidance
of certain development standard; SAF1 in C10 is set up for indicating users’ dietary
precaution. These requirements are irrelevant to software architecture design. By
removing these non-essential requirements, we have resolved a software architec-
ture design in Fig. 1.4. This design is more detailed than the others. To work in
an architectural level, requirements that we have elicited require more refinements.

12 Jiamou Liu, Ziheng Wei

For example, Coalition 11 is just singleton coalition and it can be combined into
Coalition 5; Coalition 9 and Coaltion 7 also can be combined into Coalition 12. As
we can see, decomposition game does not only provide architecture design but also
help designer to identify problems in requirements.

Fig. 1.4 COS architecture

1.5 Experiments

We conduct a number of experiments on synthetic games to evaluate the perfor-
mance of our approach. Firstly, we calculate how much probability a bounded so-
lution can be a core or a rational decomposition. Secondly, we measure the utilitar-
ian welfare (sum of utilities) and the egalitarian welfare (the lowest utility) of the
coalitions. Thirdly, we investigate the running times of our algorithm. We take the
following parameters: a bound T for decompositions, the number n of players and a
fixed value for α .

We fix a random model to generate decomposition games. The model firstly gen-
erates n players. Then, for each pair of players a and b, we randomly generate two
weights within the range [0,1]. One weight is for the direction from a to b and the
other is for the opposite direction. For each weight, we take a 50% probability to set
it negative. We generate two types of games: symmetric games where the weights of
the two directions (a,b) and (b,a) are the same, and asymmetric games where the
two weights are not necessarily the same.

1. Results of Experiment 1 are shown in Fig. 1.5; here we investigate probability
of a solution being in a core or a rational decomposition. In (a), we fix n = 10

1 Agent-Based Computation of Decomposition Games 13

players in the games while changing T from 200 to 2000. In (b), we also fix
n = 10 players while changing α from 2 to 5 (note that this is different from our
earlier description where α is determined by T , but rather is a fixed value). In
(c), we fix T = 2000 while changing the number of players. The results show
high probability of our approach finding a core or a rational decomposition. In
addition, increasing T or α can both improve this probability. In particular, we
notice in (c) that asymmetric games require much higher bounds for finding
stable solutions if the number of players increases in decomposition games.

2. For Experiment 2, we use the same parameter setting as Experiment 1; the focus
is to investigate utilitarian and egalitarian welfare obtained by decompositions
games. The results of this experiment is shown in Fig. 1.6. The results in (a) and
(b) change very little with varying parameters because a bounded solution has
high probability in a core or a rational decomposition.

3. For Experiment 3, we follow the parameter setting from the previous two ex-
periments; the focus here is to examine running times for finding a solution in
decomposition games. The results of this experiment is shown in Fig. 1.7. With
changing T in (a), the computation for each iteration is constance, and hence
the time reflect the number of iterations before stability is reached. The running
time shows a quadratic growth. With changing α in (b), the results are simi-
lar but running times increase exponentially. Thus we conclude that adopting
the bound T to determine the values of α will lead to much faster computation
while still achieving good accuracy.

Fig. 1.5 Experiment 1: Comparison between probabilities of being in core and rational decompo-
sition.

14 Jiamou Liu, Ziheng Wei

Fig. 1.6 Experiment 2: Achievements in utilitarian and egalitarian welfare.

Fig. 1.7 Experiment 3: Time cost in changing T and α

1.6 Conclusion and Future Work

In this paper we simulate coalition formation based on decomposition games. The
main difference between this work and our previous work [9] is that 1) here we use
a multiagent framework that derive game solution in a distributed manner; 2) we
put a bound on the complexity of query which improves efficiency. The case studies
demonstrate that the approach can be used to support software architecture design
by treating each requirement as a player. The experiments focus on performance of
the solutions as well as time complexity and their results show that the multiagent
framework can help us to achieve rational decompositions.

There are two directions for future works. Firstly, one may enrich the decomposi-
tion model by removing the assumption of altruistic agents and consider inhomoge-
neous individual payoffs. It would be interesting to investigate if common coalition-

1 Agent-Based Computation of Decomposition Games 15

al game solution concepts such as Shapley value give rise to meaningful software
decompositions. Secondly, the current model assumes a waterfall model of software
engineering process where the design process does not start until requirement anal-
ysis is finished. In other software engineering paradigms, requirements come and go
in the software design phase and therefore we stipulate that the multiagent approach
would help to dynamically determine software architectures.

References

1. Airiau, S. (2013): Cooperative games and multiagent systems. The Knowledge Engineering
Review, 28(4), Cambridge University Press, 381–424.

2. Bai, Q., Liu, J., Wei, Z. (2015): Simulating and Modeling Dual Market Segmentation Using
PSA Framework. In Proc of 2nd International Workshop on Smart Simulation and Modelling
for Complex Systems.

3. Bass, L.(2007): Software architecture in practice. Pearson Education India.
4. Bass, L., Klein, M., Moreno, G. (2001): Applicability of general scenarios to the architecture

tradeoff analysis method (No. CMU/SEI-2001-TR-014). Carnegie-Melon Univ., Soft. Eng.
Inst.

5. Bass, L., Klein, M., and Bachmann, F.(2001): Quality attribute design primitives and the at-
tribute driven design method. In Proc of PFE-4, Revised Papers from the 4th International
Workshop on Software Product-Family Engineering. Springer, 169–186.

6. Jones, L., Lattanze, A. (2001): Using the architecture tradeoff analysis method to evaluate a
wargame simulation system: A case study (No. CMU/SEI-2001-TN-022). Cargenie-Mellon
Univ. Pittsburgh.

7. Liu, J., Wei, Z. (2014). From a Local to a Global Perspective of Community Detection in
Networks. In PRICAI 2014, Trends in Artificial Intelligence (pp. 1036-1049). Springer Inter-
national Publishing.

8. Liu, J., Wei, Z. (2014). Community Detection Based on Graph Dynamical Systems with Asyn-
chronous Runs. In Computing and Networking (CANDAR), 2014 Second International Sym-
posium on (pp. 463-469). IEEE.

9. Liu, J, Wei, Z. (2015): A game of attribute decomposition for software architecture design.
To appear in Proc of the 12th International Colloquium on Theoretical Aspects of Computing
(ICTAC 2015). Manuscript available at arxiv.org/abs/1508.02812

10. Shehory, O., Kraus, S. (1998): Methods for task allocation via agent coalition formation. Ar-
tificial Intelligence 101(1-2), 165–200.

11. Shoham, Y., Leyton-Brown, K. (2008): Multiagent systems: Algorithmic, game-theoretic, and
logical foundations. Cambridge University Press.

12. SplitPay SRS. https://www.cise.ufl.edu/class/cen3031sp13/SRS Example 1 2011.pdf
13. Tsvetovat, M., Sycara, K., Chen, Y., Ying, J. (2001): Customer coalitions in electronic mar-

kets, in: Agent-Mediated Electronic Commerce III, Springer, 121–138.
14. Wiegers, K., Beatty, J. (2013): Software requirements. Pearson Education.
15. Wojcik, R., Bachmann, F., Bass, L., Clements, P., Merson, P., Nord, R., Wood, B. (2006):

Attribute-Driven Design (ADD), Version 2.0 (No. CMU/SEI-2006-TR-023). Carnegie-Melon
Univ., Soft. Eng. Inst.

	Agent-Based Computation of Decomposition Games with Application in Software Requirements Decomposition
	Jiamou Liu, Ziheng Wei
	Introduction
	Decomposition Games
	A Multiagent Framework for Decomposition Games
	Game-Based Software Architecture Design
	Case Study 1: SplitPay System
	Case Study 2: Wargame 2000
	Case Study 3: Cafeteria Ordering System

	Experiments
	Conclusion and Future Work
	References

