
Automated storage network capacity management utilizing
simulation and optimization

Michael O’Sullivan and Cameron Walker

{michael.osullivan, cameron.walker@auckland.ac.nz}
Department of Engineering Science

University of Auckland
Auckland 1142, New Zealand

Abstract

There is a wealth of research on storage systems,
focusing on the storage system architecture, intel-
ligent use of storage resources, and mass storage
systems. However, very little research looks at a
key component of centralized storage systems, the
physical fabric of the network that holds the stor-
age system together. “Best practice” frameworks
for the management of storage systems exist, but
the design of the network fabric within storage sys-
tems has relied heavily on the knowledge and ex-
pertise of storage systems architects, administrators
and managers.

In this paper we present the Network Capacity
Management Cycle (NCMC), a new framework for
network capacity management. This framework
is unique because it was developed around well-
established Operations Research methods, namely
simulation and optimization. Applying these meth-
ods to the network fabric of storage systems allows
a majority of the framework to become automated,
significantly reducing the workload for storage sys-
tems architects, administrators and managers.

The NCMC utilizes cutting-edge network discovery
and monitoring tools, leading network simulation
software and new methods for network capacity de-
sign. We describe each of the steps of the NCMC
in detail and discuss how to automate almost all
of these steps. A case study is also presented that
demonstrates one iteration of the NCMC applied to
an existing storage system in the Department of En-
gineering Science at the University of Auckland.
In addition to illustrating the steps of the process,
this case study also outlines the numerous compli-
cations we have encountered in our initial use of the
NCMC.

1 Introduction

The exponential expansion in the quantity of in-
formation requiring storage has made the design
and management of storage systems and their asso-
ciated storage networks an increasingly important
component of the digital infrastructure that organi-
zations rely on to function effectively. As the scale
of the storage systems increase in response to grow-
ing data needs, the design of the storage network
fabric needed to support these systems is becoming
too complicated to deal with manually. In Alvarez
et al.’s [AKM+00] comprehensive tutorial on stor-
age systems management they recognize both the
importance and difficulty of storage network fab-
ric design – which they refer to as storage area net-
work (SAN) fabric design – and described the state
of the art at the time as “designs done by hand, us-
ing a few simple topologies”.

There is a wealth of innovative research on storage
systems, particularly into the design of the storage
architecture [GNA+98, GFS03, KW03], the allo-
cation of storage resources [ABG+01, ASS+05],
the simulation of SANs [MSSD00, WZZ+03,
CFDL08] and the design of mass storage systems
[GSK03, HM04]. However, there is a dearth of re-
search into the design of the actual network, also
known as the interconnect fabric, used with storage
systems. In many cases [GFS03, KW03, WZZ+03]
the interconnect fabric is represented as a “cloud”
or high-speed network without any further discus-
sion. In others, the fabric is not considered at
all [ABG+01, ASS+05], the fabric design is given
a priori [GNA+98, MSSD00, GSK03, CFDL08]
or a number of set fabric designs are considered
[HM04].

Due to the computational complexity of the prob-
lem, storage network fabric design tools that are
currently available run coarse heuristic algorithms

1

on rough estimates of data flow [WOSW02, Str02].
Even if these tools could include accurate profiles
of storage network traffic, this information is sel-
dom known by storage network administrators, and
difficult to come by.

Over the last five years the authors’ primary area of
research has been the automatic design and reprovi-
sioning of storage networks using integer program-
ming techniques [OW05, WOT07, WO08]. How-
ever, when trying to implement these techniques on
existing storage systems, the absence of a rigorous
strategic framework for managing the storage net-
work fabric within storage systems has been appar-
ent. The lack of fundamental mathematical mod-
eling procedures, incorporating accurate network
traffic profiles, to understand and predict the per-
formance of this essential fabric has lead the au-
thors to conceive the Network Capacity Manage-
ment Cycle (NCMC), a framework for utilising Op-
erations Research methods to automate the man-
agement of the storage network fabric. This frame-
work could be used within management frame-
works for the entire storage system (see, for exam-
ple, [AKM+00, Fuj, Inf]) or the NCMC could also
be employed as a management framework for entire
storage systems by incorporating system parame-
ters and decisions into the appropriate steps of the
NCMC. In this paper we describe the phases of the
NCMC and present a case study of its application.

The rest of this paper is structured as follows. In
section 2 we present the NCMC and outline the de-
tail in each of its steps. In sections 3 to 7 we dis-
cuss our experience applying each of the steps of
the NCMC to a storage system in the Department
of Engineering Science at the University of Auck-
land, New Zealand. In section 8 we conclude our
study and discuss future directions.

2 The Network Capacity Management
Cycle

The Network Capacity Management Cy-
cle (NCMC) is a framework to ensure that the
design, management, and ongoing reprovisioning
of a network infrastructure follows sound practice
and is based on quantifiable objectives. It is based
strongly on modeling practices in Engineering
Design, whereby accurate monitoring of a system
provides data that is used in an iterative cycle.
When applied to storage network fabric manage-
ment, the uniqueness of the NCMC derives from
the embedded Operations Research methods. The
NCMC framework includes the development,
calibration and validation of multiple simulation

models and the formulation and solution of an
optimization model.

The steps of the NCMC are shown below in figure
1. The detail in these steps is explained in the rest
of this section.

Figure 1: The Network Capacity Management Cy-
cle

2.1 Monitor the Network

This “step” of the NCMC is really a continuous pro-
cess involving the monitoring of the storage net-
work infrastructure and traffic transmitting across
the network. Accurate profiles of network traffic
and component failure are maintained for use in
the subsequent steps of the NCMC. When starting
the NCMC, the monitoring step may also require
network discovery, whereby the physical layout of
the network components is determined. Thence-
forth the layout is documented in a network dia-
gram which can be updated as changes are made.

2.2 Evaluate the Network

In this step storage network administrators evalu-
ate the current network fabric (find bottlenecks, test
failures, etc). A diagram of the network layout to-
gether with current traffic profiles should be used to
build a simulation model of the network. Scenarios
of possible future usage patterns and network fail-
ures should then be tested on this model, to deter-
mine how the network will perform under possible
traffic loads. Another innovative approach that may
be employed in this step is the use of virtual ma-
chines and emulated networks [CFDL08] to model
the current system.

2

2.3 Design the Network

Here, storage network administrators use the in-
formation gained from step 2.1 (Monitor the Net-
work) and step 2.2 (Evaluate the Network) to de-
sign an optimal network. Optimal network design
is an NP-hard optimization problem, and has been
the main focus of our research to date. Currently
we use integer programming to perform this step
[WOT07, OW05], although some heuristic algo-
rithms do exist [WOSW02, Str02].

2.4 Compare the Networks

In this step storage network administrators compare
two network layouts in terms of performance, reli-
ability, etc. This can be achieved by using the same
methods in step 2.2, that is, simulation or emula-
tion, to model the new network design (from step
2.3) and running the current traffic profiles and the
future usage scenarios (also from step 2.2) across
this model. If the comparison is not favorable the
modeling in the design step should be investigated
and an improved design produced.

2.5 Implement the Network

If a decision is made to replace the current network
fabric with the new design, the new network fab-
ric is implemented, tested and deployed in place of
the existing network. Our expectation is that the
NCMC will produce a new fabric design that can re-
place the original network fabric without adversely
affecting the existing storage system architecture.
However, it may be that either a new storage ar-
chitecture has been suggested as one of the future
usage scenarios or the new fabric design requires
a new storage architecture to function. In both of
these cases the new architecture will have been in-
corporated into the comparisons from step 2.4 and
the storage network administrators will have ap-
proved the architectural change.

The NCMC is intended as a framework for the on-
going management of a storage network fabric. If
the network under consideration is monitored regu-
larly iterations of the cycle can be triggered by sig-
nificant changes, either in existing traffic profiles,
or in expected future usage patterns, or in the archi-
tecture of the enveloping storage system.

The NCMC can be embedded as a subproce-
dure within existing storage systems management
framework [AKM+00, Fuj, Inf]. For example, the
first step in Fujitsu’s Network Life Cycle Services
is “Plan” and within that step is the “Network de-

sign” task that involves “Design of network archi-
tecture and topologies, traffic, capabilities and per-
formance”. When performing this task storage sys-
tem architects could use the NCMC, but instead of
implementing the final network design they could
pass this design into the next task of the “Design”
step, “Interoperability testing”.

Storage systems architect could also use the NCMC
as their management framework, but incorporate
extra system parameters into steps 2.1, 2.2, 2.4 and
extra design decisions into step 2.3. For example, in
step 2.3 (Design the Network), the acquisition and
allocation of storage resources (using a tool such as
MINERVA [ABG +01]) could be the first task fol-
lowed by the design of a storage network fabric (us-
ing the methods discussed in section 5) to support
these storage resources. As another example, sim-
ulation products such as OPNET Modeler1 can ex-
plicitly model the protocols and applications within
a storage system, thus allowing for different storage
architectures to be deployed across the same stor-
age network fabric.

For the remainder of this paper we assume the
NCMC is only being used to for the management
of the storage network fabric and the storage ar-
chitecture, application servers and clients, storage
devices, etc have all been designed and deployed.
However, during our discussion of the implementa-
tion of a storage network fabric (see section 7) we
do refer to our experience deploying a storage ar-
chitecture.

In order to understand the practical complexities in-
herent in the steps of the NCMC framework we un-
dertook to perform one iteration of our framework
to redesign an existing network. As relative novices
in the fields of network engineering and storage sys-
tems, a hands-on implementation of our manage-
ment framework was essential to appreciate the via-
bility of our framework as standard best-practice for
storage network fabric management. It is our inten-
tion to automate the steps of the NCMC as much
as possible, an objective that has become a major
focus of our future research in the short term.

3 Monitoring a Network

The Department of Engineering Science is one of
five departments within the School of Engineering
at the University of Auckland, New Zealand. En-
gineering Science has approximately 30 permanent
staff and a student population of just under 200 stu-

1OPNET Modeler is a product of OPNET Technologies, Inc.,
see http://www.opnet.com/solutions/networkrd/modeler.html
for details.

3

dents. At the beginning of our prototype study we
knew that both staff and students had data storage
available as “floating” drives via the Windows XP
operating system on the departmental network. We
were also aware that some staff and students also
used data storage on the Linux operating system,
but we were unsure how this data was accessed.

The monitoring step of the Network Capacity Man-
agement Cycle involves measuring how the storage
network is performing. In later iterations of the cy-
cle this should involve measuring data traffic in the
storage network. However, in the initial iteration
of the NCMC, the storage network itself must be
discovered. During our prototyping within Engi-
neering Science, we discovered a “disconnection”
between the people who use the network (the IT
staff within Engineering Science) and the people
who maintain the network, in this case Information
Technology Services (ITS), the central IT admin-
istrators at the University of Auckland. The Engi-
neering Science IT staff knew which machines were
connected to the network, but only had a vague idea
what the internal network topology was. ITS had a
good idea of the internal network topology (though
no network diagram), but had only a vague idea
about the machines connected to the network and
the applications and protocols running across the
network. This disconnection between the network
administrators and network users is not uncommon.
For this reasons we chose to utilize network discov-
ery tools to determine the overall topology of net-
work.

The use of network discovery tools for the moni-
toring step of the NCMC predominantly automates
this step. In our prototyping we had to request
permission for SNMP access to the switches on
the network but nothing more. We experimented
with two discovery tools: LANsurveyor2 and Lan-
Topolog3. LANsurveyor uses multiple protocols to
discover the network topology (for example ICMP
Ping, NetBIOS, SIP, etc) whereas LanTopolog au-
tomates the discovery of the physical network using
SNMP. During our prototyping, LANsurveyor dis-
covered the internal structure of the network, but,
on many switches, could not identify the machines
connected to the switch ports. LanTopolog success-
fully discovered the entire network, but it’s port la-
beling was rudimentary and it only supplied MAC
addresses for the machines connected to the net-
work. While neither of these tools was completely
satisfactory, since LanTopolog discovered the en-

2LANsurveyor is a product of SolarWinds, see
http://www.solarwinds.com/products/lansurveyor/ for details.

3LanTopolog is freeware from Yuriy Volokitin, see
http://lantopolog.googlepages.com/ for details.

tire network we could combine its layout map with
a mapping of MAC addresses to IP addresses4 to
complete our picture of the network topology.

The topology is shown in figure 2. The data storage
is supplied by 3 servers, all shown on the right:

1. Andromeda – the Windows server that stores
the Engineering Science staff data;

2. Leopard – the Windows server that stores the
Engineering Science student data;

3. Engsci-linux – the Linux server that stores
both staff and student data.

Figure 2: Engineering Science Network Topology

These servers have two “hot swappable” disks each
in a mirrored configuration to avoid data unavail-
ability in case of disk failure. However, if any of
these servers fails then all data of that server is un-
available until it is repaired or replaced.

Once the network topology has been successfully
determined during the monitoring step in the initial
iteration of the NCMC a network diagram can be
created. Any further changes to the network should
be added to the network diagram or else the network
topology will need to be rediscovered.

Given that the network topology is known, the main
function of the monitoring step is to capture the
usage of the network. There are many applica-
tions that capture traffic on a network including tcp-

4This mapping was provided by GFI LANguard Net-
work Security Scanner 8.0, a product of GFI Software, see
http://www.gfi.com/lannetscan/ for details.

4

dump5, Wireshark6 and ACE7. Using one of these
applications we can capture the way applications
use the storage network. In our prototyping re-
search we selected tcpdump after their were some
network congestion issues with the ACE capture
agents.

All three applications use WinPcap/LibPcap and
their capture files can be easily visualized with
ACE. Figure 3 shows aTier Pair Circle for a net-
work capture run on Engsci-linux on the Engineer-
ing Science network. The Tier Pair Circle shows
different conversations observed by Engsci-linux.
Also, once inside ACE the capture data can be de-
ployed within a network simulation (see section 4
for details).

Figure 3: Tier Pair screenshot from ACE (the loca-
tion of Engsci-linux is enlarged)

4 Evaluating a Network

There are 3 ways to evaluate a network: build the
network and test it; simulate the network; and em-
ulate the network. In the Network Capacity Man-
agement Cycle the network already exists, but is
in use, so testing is not desirable. Both simula-
tion and emulation can be time consuming, but with
the network topology and traffic already known
from the monitoring step (see section 3), it should
be relatively straightforward to build and validate
a (simulation or emulation) model of the exist-
ing network. In our prototyping research we ini-
tially experimented with generic simulation pack-
ages [WOE05, Son07] before turning to specialist

5tcpdump, and its Windows equivalent Windump, are
freeware often distributed with operating systems, see
http://www.tcpdump.org/ for details.

6Wireshark is freeware sponsored by CACE Technologies,
see http://www.wireshark.org/ for details.

7ACE Modeler is a product of OPNET Technolo-
gies, Inc., see http://www.opnet.com/solutions/ applica-
tion performance/acelive.html for details.

products such as ns-38 and OPNET Modeler. We
selected OPNET Modeler because of its ease of
use and the existence of the eXpress Data Import
(XDI) module that allowed switches in the network
to be automatically loaded into a simulation model.
New research into the emulation of TCP networks
[CFDL08] also shows promise as a largely auto-
mated evaluation tool, but we have not explored this
avenue at this time.

Using OPNET Modeler we created a simulation
model of the Engineering Science network, a screen
shot of the model is shown in figure 2. We also
deployed the network captures (from tcpdump) as
traffic in the simulation model using ACE com-
bined with Modeler. Early results are promising,
although a full validation of the network simulation
still remains to be done.

Figure 4: A Single-edge Core-Edge Design

5 Designing a Network

The design step of the Network Capacity Manage-
ment Cycle has been the major focus of our re-
search to date. Our initial design have used a Core-
edge topology because of its inherent reliability
and scalability. The Core-edge topology consists
of two disjoint cores of high-bandwidth switches
connected to one or two layers of lower-bandwidth
edge switches.

The edge switches connect to the hosts and devices
in a Single-edge (see figure 4) or Double-edge de-
sign9 Under the Core-edge topology, no host-device

8ns-3 is freeware designed for internet systems, see
http://www.nsnam.org/index.html for details.

9In this paper we restrict our designs to the Single-edge
topology, but our design methods are easily extended to produce

5

pair is separated by more than three intermediate
connections (hops). Determining a design with
two disjoint paths between every host-device pair is
simplified by the disjoint nature of the cores. Fur-
thermore, with the addition of switches to the edges
or the core, an existing design can be scaled to ac-
commodate additional hosts or devices.

Previously we have modeled the Core-edge SAN
Design Problem (CESANDP) as a mixed-integer
program (MIP) [WOT07], including explicit con-
nection of servers and storage devices (unlike ex-
isting heuristic solutions for Core-edge design) and
an over-subscription ratio. Figure 5 depict the de-
cisions in our mixed-integer programming formula-
tion:

Figure 5: Decisions for a Single-edge Core-Edge
Design.

• The number of core switches;

• The type of switch used forall core switches,
i.e., every core switch will be of the same
switch type;

• The number of edge switches;

• The type of switch used forall edge switches;

Double-edge networks.

• The number of inter-switch links (ISLs) be-
tween each edge and core switch, i.e., there
are the same number of ISLs between every
core-edge pair;

• The type of link used forall ISLs;

• To which edge switch(es) each host/device
connects (usually,≥ 2 for reliability).

Our recent research has yielded improvements to
our MIP formulation [WO08]. We present here a
summary of that formulation.

5.1 Problem Description

First, we introduce our notation and present the
problem description for a Single-edge CESANDP.
In this problem, we need to design a network with
a single layer of switches at the edge and a layer
of switches as the core. The network provides
full pairwise connectivity between the application
servers and/or client machines, denoted as a set of
hostsH, and the data storage, denoted as a set of
devicesD.

Each hosth ∈ H (device d ∈ D) has a fixed
number of ports,η(h) (respectivelyη(d)), a port
bandwidth capacity,β(h) (respectivelyβ(d)), and
port costπ(h) (respectivelyπ(d)). The objective of
the CESANDP problem is to determine the design
of least cost network fabric that fully connects the
hosts and the devices.

The Core-edge topology requires a number of de-
sign restrictions:

1. There is a constant number of links, and a sin-
gle link type, between each edge switch and
each core switch;

2. All switches in the edge must be of a single
switch type and all core switches must be of a
single type;

3. To ensure performance, each edge switch port
has a greater bandwidth capacity than its inci-
dent link to a core link;

4. The bandwidth capacity of any edge link inci-
dent to a hosth (deviced) must be greater than
β(h) (β(d), respectively). The same is true for
the port bandwidth of the edge switch port that
link connects to;

5. The network is built to support a minimum
number, ζ, of disjoint paths between every
host-device pair.

We include an over-subscription ratio at the edge
switches in our design, as is standard in industry.

6

The over-subscription ratioκ is the ratio of the
instantaneous bandwidth capacity for data flowing
into the edge switch (from the hosts or devices) to
the instantaneous bandwidth capacity for data flow-
ing out of the edge switch (toward the core).

To build the network fabric we use sets of differ-
ent switch typesS and link typesL. Each switch
type t ∈ S has an associated costγ(t) and port
costπ(t). Similarly each link typeu ∈ L has cost
γ(u). The number of ports on a switch of typet can
be decided by the user, up to an upper boundη(t),
and each switch has a port bandwidth upper bound
of β(t). Each link typeu has a bandwidth upper
boundβ(u).

5.2 The CESANDP mixed-integer pro-
gramming formulation

In this section we summarize the mixed-integer
programming (MIP) formulation for solving the
(Single-edge) CESANDP.

5.2.1 Switch and Link Sets

We define three sets of switches:

• edge switchesSE ;

• core switchesSC ;

• the set of all switchesS = SE ∪ SC .

We also define the set of hosts, devices and switches
as the networknodes, N = S ∪ H ∪ D.

We define two sets of links:

• edge links,LE , from the hosts and devices to
the edge switches;

• core links,LC = ∪e∈SE ,c∈SC L(e,c), where
L(e,c) is the set of links between edge switch
e ∈ SE and core switchc ∈ SC .

Each linkl ∈ L has a sourceσ(l) ∈ N and a desti-
nationτ(l) ∈ N . The source and destination nodes
for each set are restricted:σ(l) ∈ H ∪ D, τ(l) ∈
SE for l ∈ LE ; σ(l) = e, τ(l) = c for l ∈ L(e,c).

5.2.2 Decision Variables

The decision variables determine which links and
switches to include in the network fabric. The set

of switchesS is generic, so we must decide the type
of each switch:

xs,t =

{

1 if switch s is typet;

0 otherwise
, s ∈ S, t ∈ S

Note, not every switch must be assigned a type,
some switches may not be included in the fabric.
Also, the number of ports of switch typet ∈ S on
switchs ∈ S is given byns,t.

All edge switches that are used must be the same
type, likewise for core switches:

et = 1 if switch typet used for edges, 0 otherwise

ct = 1 if switch typet used for cores, 0 otherwise

Like the switches, the links are generic, but the
cardinality of the links is also unknown. We de-
fine two sets of variables for the links between the
hosts/devices and edge switches:

yl =

{

1 if l is used in the fabric

0 otherwise
, l ∈ LE

kl,u = the number of links of typeu alongl,

l ∈ L, u ∈ L

To determine the links between the edge switches
and core switches we define:

m = the number of links between each edge switch
and core switch

zu =







1
if we use link typeu between

the edge and core switches

0 otherwise

, u ∈ L

5.2.3 Objective Function

Our aim of the CESANDP is to minimize the cost
of the storage network fabric, that is the total cost of
switches, switch ports and links used in the design
fabric.

Z =
∑

s∈S,t∈S

(γ(t)xs,t + π(t)ns,t)
︸ ︷︷ ︸

switch and port cost

+

∑

l∈L,u∈L

γ(u)kl,u
︸ ︷︷ ︸

link cost

Note that using a host (device) port incurs a cost
π(h) (π(d)), but, as the design fabrics are fully con-
nected, these costs are omitted from the objective
function.

7

5.2.4 Ordering and Antisymmetry Constraints

One common problem for network design formu-
lations is symmetry amongst solutions. To remove
symmetry from the solution space we order both the
edges switches and the core switches, and impose a
hierarchy of utilization:

xs+1,t ≤ xs,t, s ∈ SE , t ∈ S, (1)

except the last edge switch

xs+1,t ≤ xs,t, s ∈ SC , t ∈ S, (2)

except the last edge switch

Note thats+1 denotes the switch afters in the same
set.

5.2.5 Link Constraints

Using the existence variables for the linksyl, l ∈
LE , we ensure the bandwidth of links between
hosts (devices) and edge switches is larger than the
port bandwidth of hosts (devices):

∑

u∈L

β(u)yl ≥ β(σ(l)), l ∈ LE

We also make sure that the existence variables
“control” to the link cardinality variables appropri-
ately, and vice versa:

∑

u∈L

kl,u ≤ Myl, l ∈ LE (3)

yl ≤
∑

u∈L

kl,u, l ∈ LE (4)

∑

l∈LE ,τ(l)=s

yl ≤ M
∑

t∈S

xs,t, s ∈ SE (5)

∑

t∈S

xs,t ≤
∑

l∈LE ,τ(l)=s

yl, s ∈ SE (6)

The big-M quantity in (3) is the minimum of the
maximum number of ports on a switch, and the
maximum number of ports on a host or device. The
big-M quantity in (5) is the minimum of the max-
imum number of ports on a switch, and the total
number of hosts and devices.

5.2.6 Switch Constraints

Similarly to (3)-(4), the switch existence variables
control the number of ports variables, and vice
versa:

ns,t ≤ η(t)xs,t, s ∈ S, t ∈ S (7)

ns,t ≥ xs,t, s ∈ S, t ∈ S (8)

The number of ports used on each an edge switch
is also bound by the edge switch type, similarly for
the core switches.

ns,t ≤ η(t)et, s ∈ SE , t ∈ S (9)

ns,t ≤ η(t)ct, s ∈ SC , t ∈ S (10)

Lastly, the number of ports on a switch is equal to
the number of links connected to it.

∑

u∈L

l∈LE ,τ(l)=s

kl,u +
∑

v∈L

j∈LC ,σ(l)=s

kj,v =
∑

t∈S

ns,t, s ∈ SE (11)

∑

u∈L

l∈LC ,τ(l)=s

kl,u =
∑

t∈S

ns,t, s ∈ SC (12)

Similar to (5.2.5), we ensure the ports of each
edge switch provide greater bandwidth than the port
bandwidth of any connected hosts or device:

β(σ(l))yl ≤
∑

t∈S

β(t)et, l ∈ LE (13)

Finally, we ensure that the hosts and devices are
fully connected:

∑

u∈L

l∈LE ,σ(l)=h

kl,u = η(h), h ∈ H (14)

∑

u∈L

l∈LE ,σ(l)=d

kl,u = η(d), d ∈ D (15)

5.2.7 Oversubscription Constraints

To accurately model the over-subscription we de-
fine a new set of variables for the edge switches:

fs = the total possible data flow out ofs, s ∈ SE

and use this to restrict the bandwidth of links to the
edge switch:

∑

u∈L

l∈LC ,τ(l)=s

β(u)kl,u ≤ κfs, s ∈ SE (16)

The data flow out of an edge switch is restricted by
the port bandwidth of the edge switch, the band-
width of the core-edge link and the port bandwidth

8

of the core switch:

fs ≤ β(t)
∑

u∈L

l∈L(e,c)

kl,u + M(1 − et),

e ∈ SE , t ∈ S

(17)

fs ≤
∑

u∈L

l∈L(e,c)

β(u)kl,u, e ∈ SE (18)

fs ≤ β(t)
∑

u∈L

l∈L(e,c)

kl,u + M(1 − ct),

e ∈ SE , t ∈ S

(19)

The big-M quantity we use in (17) and (19) is the
sum of the port bandwidths across all hosts and de-
vices.

5.2.8 Architecture Constraints

The architecture constraints must enforce a single
edge switch type:

∑

s∈SE

xs,t ≤ Met, t ∈ S (20)

xs,t ≥ et − (1 −
∑

u∈S
xs,u),

t ∈ S, s ∈ SE

(21)

∑

t∈S

et = 1 (22)

a single core switch type:
∑

s∈SC

xs,t ≤ Mct, t ∈ S (23)

xs,t ≥ ct − (1 −
∑

u∈S
xs,u),

t ∈ S, s ∈ SC

(24)

∑

t∈S

ct = 1 (25)

and a single link type between each edge and core
switch:
∑

l∈LC

kl,u ≤ Mzu, u ∈ L (26)

kl,u ≥ zu − (2 −
∑

t∈S
(xe,t + xc,t)),

u ∈ L, l ∈ L(e,c)

(27)

∑

u∈L

zu = 1 (28)

and the same number of links between each edge
and core switch:

∑

u∈L

kl,u ≤ m, l ∈ L(e,c) (29)

∑

u∈L

kl,u ≥ m − M(2 −
∑

t∈S
(xe,t + xc,t)),

l ∈ L(e,c)

(30)

The big-M quantity in (20) is the cardinality ofSE

and in (23) it is the cardinality ofSC . Note, in (21)
and (24), if switchs is not used(1−

∑

u∈S
xs,u) is

equal to 1 and these constraints are void.

The big-M quantity in (26) is the maximum num-
ber of ports on any switch multiplied by ei-
ther the maximum number of edge switches or
core switches allowed – whichever quantity is the
smaller of the two. The big-M quantity in (30)
is simply the maximum number of ports on any
switch. Note, in constraints 27 and 30, if either
switche or c is not used(2−

∑

t∈S
(xe,t +xc,t)) is

greater than 0 and these constraints are void.

5.2.9 Minimum Path Constraints

When building the Core-edge fabric we must ensure
we provide (at least) the right number of pathsζ

through the network:
∑

s∈SE

t∈S

xs,t ≥ ζ (31)

∑

s∈SC

t∈S

xs,t ≥ ζ (32)

∑

l∈LE ,σ(l)=h

yl ≥ ζ, h ∈ H (33)

∑

l∈LE ,σ(l)=d

yl ≥ ζ, d ∈ D (34)

Here, we have also included some basic cuts to
speed up the solution process – the number of con-
nections from one host or device to any single edge
can be at most the number of ports on the host or
device, minusζ − 1.

∑

l∈LE ,σ(l)=h,τ(l)=s

u∈L

kl,u ≤ η(h) − (ζ − 1),

h ∈ H, s ∈ SE

(35)

∑

l∈LE ,σ(l)=d,τ(l)=s

u∈L

kl,u ≤ η(d) − (ζ − 1),

d ∈ D, s ∈ SE

(36)

5.2.10 Preprocessing and Cut Generation

In [WO08] we also experimented with an
optimization-based preprocessing step for selecting
the best switch or link for a given set of proper-
ties, for example, the maximum number of ports
and port bandwidth for switches. We also created
a number of problem specific cuts that speed up
the solution time of the MIP using properties of the

9

CESANDP, for example, the total number of host
and device ports. For more detail please refer to
[WO08].

5.3 Prototyping the Design step

During our prototyping research we designed a
Core-edge storage network as an alternative to the
direct attached storage currently being used (see
section 3). First, we added a backup server that
was in the process of being added to the exist-
ing network. Next, we added two servers to
act as clustered storage controllers. We removed
the disks from the original storage servers (An-
dromeda, Leopard and Engsci-linux respectively)
and combined their storage into 2 external storage
devices to allow mirroring.

We assumed there would be at most 10 edge
switches and 5 core switches (this would provide
a very overprovisioned network fabric). We wanted
to support the full bandwidth of the hosts and de-
vices so we used an over-subscription of 1 (that
is, no over-subscription) and we requested at least
2 paths between any host and any device. The
full model has 318 variables and 941 constraints.
The variables consist of 212 binary variables and
106 integer variables. We use the commercial MIP
solver software AMPL/CPLEX10 to solve our de-
sign problem.

We solved our model on a Dell Precision M4300
laptop with an Intel Core 2 Duo CPU T9500 with
two 2.6 GHz processors and 3.5 GB of RAM. The
LP relaxation was solved by CPLEX 9.1.0 in 0.03
seconds, with the full MIP formulation solving in
0.312 seconds. Our preprocessing and innovative
cuts combined with the cuts generated by CPLEX
to solve the MIP from the root node with branching.

The simulation model for the solution to the CE-
SANDP formulation is shown in figure 6.

This solution provides at least two disjoint paths
between every host-device pair, but the formula-
tion does not model traffic profiles across the net-
work explicitly. Instead, the over-subscription rate
is included to ensure no component is too heav-
ily loaded. We do have MIP formulations that ex-
plicitly include traffic profiles in the design pro-
cess, and are currently developing specialized pro-
cedures (for example, column generation) proce-
dures to give solutions in a reasonable time-frame.

On last consideration, the cost of ILOG’s commer-

10AMPL/CPLEX is a product of ILOG, see
http://www.ilog.com/products/ for details.

Figure 6: Core-Edge Network Topology

cial licenses for AMPL/CPLEX may price them be-
yond the reach of storage network administrators,
so we are currently developing automatic design ca-
pabilities in COIN’s open source Branch Cut and
Price (BCP) package11. Furthermore, BCP will al-
low us more control in directing the solution pro-
cess.

6 Comparing Networks

Once a new storage network fabric design has been
produced (in the design step, see section 5) the Net-
work Capacity Management Cycle compares the
two designs to ensure the newly designed fabric
performs better than the existing storage network
fabric. This performance comparison may include
scenarios such as the current network traffic, fu-
ture usage predictions, component failures within
the fabric, etc. The current network has already
been either simulated or emulated in the evaluate
step (see section 4), so the network topology pro-
duced by the design methods (see section 5) must
also be either simulated or emulated. It is not com-
pulsory to use the same approach used in section 4,
but it simplifies comparisons.

In our prototyping research we built a simulation of
the new Core-edge storage network fabric in OP-
NET Modeler. Figure 6 shows a screenshot of this
model. With the two simulation models (of the ex-
isting network – figure 2 – and the new network
– figure 6) constructed, we initially deployed esti-
mated network usage on both networks. The results
showed that the new fabric design shared the load
amongst the servers and also load-balanced across

11BCP is part of the COIN-OR project, see http://www.coin-
or.org/projects/Bcp.xml for details.

10

the fabric. Moreover, the new design showed com-
parable performance to the existing network when
one of the components of the storage system had
failed.

At the time of writing we are continuing to monitor
the existing network and will use the actual traf-
fic scenarios to test both networks with real-world
usage. Analysis of these traffic captures may also
provide insight into “typical” usage and allow us to
forecast traffic patterns for the future. Using these
forecasts we can also compare how the two net-
works will perform in years to come.

7 Implementing Networks

Given the promising initial results from the com-
parison step (see section 6), and our intention to
complete one iteration of the NCMC, we have been
developing the storage network designed by our op-
timization (see section 5). Before we have done sig-
nificant testing, we will deploy this network into the
Engineering Science IT systems. To perform this
testing we purchased the two servers for the stor-
age controller cluster and built two servers to act as
the external disks with 2TB of disk space each. We
have also purchased 4 ethernet switches (two to act
as edge switches and 2 to act as core switches). The
total cost of the network was less than US$7000. In
comparison the cost to build a similar system us-
ing a Dell PowerVault MD3000 (with 2TB of disk
space) is over US$12000. Of course, there are ex-
tra costs involved with getting a “home-brew” sys-
tem into production, but the initial savings are very
promising.

To further prove our fabric design, we used open
source software to implement the storage architec-
ture. We built the storage controller cluster using
the Red Hat Cluster Suite and presented the disks
to the cluster over the network using Open-iSCSI
and iSCSI Enterprise Target and software RAID.
We have built a Red Hat Global File System sys-
tem on storage for use by servers connecting to the
storage controller cluster. Our next step is to test
the performance of this system using Iometer and
monitor the behavior of the cluster, GFS, iSCSI and
software RAID for incorporation into our network
simulation. We are very close to demonstrating that
a storage network created by the NCMC can be suc-
cessfully implemented.

8 Conclusions and Extensions

The NCMC is unique, not as a framework from
storage systems management, but because of its fo-
cus on the storage networking fabric and its embed-

ded Operations Research methods. In this paper
we have described the steps of the NCMC in de-
tail. Our research has shown us that the NCMC is a
promising framework for storage networking fabric
management. It produces low cost fabric designs
that are able to support a novel storage architec-
ture. Adding a little “glue” between the steps of the
NCMC will allow the entire framework to become a
largely automated process that will save storage ar-
chitects, administrators and managers a lot of time
and effort.

Using freely available network discovery and mon-
itoring tools, the monitoring step of the NCMC can
provide a detailed picture of the storage network be-
ing managed, and its performance, with very little
user effort. Then, in the evaluation a virtual model
of the existing network is quickly built in a state-
of-the-art simulation package and future use sce-
narios or rigorous testing may be done without af-
fecting the actual network. Next, the design step
automatically produces a new, optimized storage
network fabric. The comparison step also quickly
produces a virtual model of the new design and
the usage scenarios from the evaluation step can
be swiftly migrated into this new simulation model.
The implementation step of the NCMC requires the
most work from the storage architects, administra-
tors and managers. However, this step is probably
the easiest for experienced storage systems practi-
tioners and they will be confident in their new sys-
tem given the underlying Operations Research tools
utilized for strategic decisions. Further develop-
ment of effective storage architectures that can be
deployed over the designs produced by the NCMC
will speed up the implementation step. While users
of the NCMC will need to build their knowledge
of the tools being employed, once they gain ex-
perience the NCMC will be relatively straightfor-
ward and largely automated. The Network Capac-
ity Management Cycle represents an exciting new
evolution in storage networking capacity manage-
ment.

References

[ABG+01] Guillermo A. Alvarez, Elizabeth
Borowsky, Susie Go, Theodore H.
Romer, Ralph Becker-szendy,
Richard Golding, Arif Merchant,
Mirjana Spasojevic, Alistair Veitch,
and John Wilkes. Minerva: an
automated resource provisioning tool
for large-scale storage systems.ACM
Transactions on Computer Systems,
19, 2001.

11

[AKM +00] Guillermo Alvarez, Kim Keeton, Arif
Merchant, Erik Riedel, and John
Wilkes. Storage systems manage-
ment. SIGMETRICS ’00 Tutorial,
June 2000.

[ASS+05] Eric Anderson, Susan Spence, Ram
Swaminathan, Mahesh Kallahalla,
and Qian Wang. Quickly finding near-
optimal storage designs.ACM Trans.
Comput. Syst., 23(4):337–374, 2005.

[CFDL08] Carlo Caini, Rosario Firrincieli,
Renzo Davoli, and Daniele Lacamera.
Virtual integrated tcp testbed (vitt).
In TridentCom ’08: Proceedings of
the 4th International Conference on
Testbeds and research infrastructures
for the development of networks
& communities, pages 1–6, ICST,
Brussels, Belgium, 2008.

[Fuj] Fujitsu Computer Systems. Fu-
jitsu Network Life Cycle Services.
http://www.fujitsu.com/us/services/
telecom/services/.

[GFS03] J. S. Glider, C. F. Fuente, and W. J.
Scales. The software architecture of a
san storage control system.IBM Sys-
tems Journal, 42(2):232–249, 2003.

[GNA+98] Garth A. Gibson, David F. Nagle,
Khalil Amiri, Jeff Butler, Fay W.
Chang, Howard Gobioff, Charles
Hardin, Erik Riedel, David Rochberg,
and Jim Zelenka. A cost-effective,
high-bandwidth storage architecture.
SIGOPS Oper. Syst. Rev., 32(5):92–
103, 1998.

[GSK03] Gregory R. Ganger, John D. Strunk,
and Andrew J. Klosterman. Self-
*:storage : Brick-based storage with
automated administration. Technical
Report CMU–CS–03–178, Computer
Science Department, School of Com-
puter Science, Carnegie Mellon Uni-
versity, August 2003.

[HM04] Andy Hospodor and Ethan L. Miller.
Interconnection architectures for
high-performance file systems. In
Proceedings of the 21st IEEE /
12th NASA Goddard Conference on
Mass Storage Systems and Technolo-
gies (MSST 2004), pages 273–281,
College Park, MD, April 2004.

[Inf] Information Technology Infrastruc-
ture Library. The ITIL Core Frame-
work. http://www.itil.org/en/.

[KW03] Kimberly Keeton and John Wilkes.
Automatic design of dependable data
storage systems. InProceedings of
Workshop on Algorithms and Archi-
tectures for Self-managing Systems,
pages 7–12, San Diego, CA, June
2003.

[MSSD00] Xavier Molero, Federico Silla, Vi-
cente Santonja, and José Duato. Mod-
eling and simulation of storage area
networks. Modeling, Analysis and
Simulation of Computer and Telecom-
munication Systems, 2000. Proceed-
ings. 8th International Symposium on,
pages 307–314, 2000.

[OW05] Michael O’Sullivan and Cameron
Walker. A mixed-integer approach
to storage area network design using
generic network components. Tech-
nical report, Department of Engineer-
ing Science, University of Auckland,
New Zealand, 2005.

[Son07] D. Soni. Simplifying the simulation of
computer switches using regression.
Master’s thesis, University of Auck-
land, Auckland, NZ, 2007.

[Str02] S. Strand. Storage area networks and
santk. Master’s thesis, University of
Minnesota, Minnesota, USA, 2002.

[WO08] Cameron Walker and Michael
O’Sullivan. Core-edge design of
storage area networks – a single-edge
formulation with problem-specific
cuts. Submitted to Operations
Research, 2008.

[WOE05] Cameron Walker, Michael
O’Sullivan, and Mihiriyani Elan-
gasinghe. Evaluation of core-edge
storage area network designs us-
ing simulation. Technical report,
Department of Engineering Sci-
ence, University of Auckland, New
Zealand, 2005.

[WOSW02] Julie Ward, Michael O’Sullivan, Troy
Shahoumian, and John Wilkes. Ap-
pia: automatic storage area network
design. InConference on File and

12

Storage Technology (FAST’02), pages
203–217, January 2002.

[WOT07] Cameron Walker, Michael
O’Sullivan, and Timothy Thompson.
A mixed-integer approach to core-
edge design of storage area networks.
Computers and Operations Research,
34(10):2976–3000, 2007.

[WZZ+03] Chao-Yang Wang, Feng Zhou,
Yao-Long Zhu, Chong Tow Chong,
Bo Hou, and Wei-Ya Xi. Simulation
of Fibre Channel Storage Area Net-
work Using SANSim. InThe 11th
IEEE International Conference on
Networks (ICON 2003), September
2003.

13

