

Libraries and Learning Services

University of Auckland Research
Repository, ResearchSpace

Version

This is the Accepted Manuscript version. This version is defined in the NISO
recommended practice RP-8-2008 http://www.niso.org/publications/rp/

Suggested Reference

Freeman, P., Watson, I., & Denny, P. (2016). Inferring Student Coding Goals
Using Abstract Syntax Trees. In A. Goel, M. B. DiazAgudo, & T. RothBerghofer
(Eds.), Lecture Notes in Computer Science : Case-Based Reasoning Research
and Development ICBR 2016 Proceedings Vol. 9969 (pp. 139-153). Atlanta, GA:
Springer Verlag. doi:10.1007/978-3-319-47096-2_10

Copyright

Items in ResearchSpace are protected by copyright, with all rights reserved,
unless otherwise indicated. Previously published items are made available in
accordance with the copyright policy of the publisher.

The final publication is available at Springer via http://dx.doi.org/10.1007/978-
3-319-47096-2_10

For more information, see General copyright, Publisher copyright,
SHERPA/RoMEO.

http://www.niso.org/publications/rp/
http://dx.doi.org/10.1007/978-3-319-47096-2_10
http://dx.doi.org/10.1007/978-3-319-47096-2_10
http://dx.doi.org/10.1007/978-3-319-47096-2_10
http://www.library.auckland.ac.nz/services/research-support/depositing-theses/copyright
http://www.springer.com/gp/open-access/authors-rights/self-archiving-policy/2124
http://www.sherpa.ac.uk/romeo/issn/0302-9743/

Inferring Student Coding Goals
Using Abstract Syntax Trees

Paul Freeman1, Ian Watson1, Paul Denny1

University of Auckland

Abstract. The rapidly growing demand for programming skills has
driven improvements in the technologies delivering programming educa-
tion to students. Intelligent tutoring systems will potentially contribute
to solving this problem, but development of effective systems has been
slow to take hold in this area. We present a novel alternative, Abstract
Syntax Tree Retrieval, which uses case-based reasoning to infer student
goals from previous solutions to coding problems. Without requiring pro-
grammed expert knowledge, our system demonstrates that accurate re-
trieval is possible for basic problems. We expect that additional research
will uncover more applications for this technology, including more effec-
tive intelligent tutoring systems.

1 Introduction

Across nearly all fields of study, students today are increasingly motivated to im-
prove their skills in computer science, software engineering and, more specifically,
computer programming [17]. As a result, programming education courses are be-
ing added to curricula at many universities [7]. Within the Science, Technology,
Engineering, and Mathematics (STEM) fields, most students are expected to
have skills in computer programming after completing their university stud-
ies [20], while many other faculties are also beginning to encourage education in
this area [19].

This increased demand for computer programmers has pressured academic
institutions to modify the delivery method of introductory computer science
materials. In addition to textbooks and lectures, computer science courses now
frequently include laboratory programming exercises. While programming exer-
cises are nothing new, the access methods being used by students today have
changed to keep up with improved technology.

Online services ease the delivery of educational materials to the students.
Such services increase access to more students, regardless of platform choice,
software configuration, or access to university computer labs. Additionally, this
cloud-based method of instruction provides a valuable record of all student ac-
tivities, making it easy for schools, universities, and education researchers to
access data on student learning trends [14].

Our research addresses the application of Case-Based Reasoning (CBR) into
the area of computer science education. Specifically, our work investigates the po-
tential for a system to intelligently infer the goal of a struggling student through

naive analysis of both the student’s current progress and existing solutions to
the problem. Through inference of the goal, it is then possible to generate hints
for the student.

This research targets students learning basic programming skills and com-
pleting short programming assignments. While some aspects of our research may
be applicable to advanced courses, this is not the direct intention of this research.

2 Problem Description

Laboratory exercises are frequently used in programming courses, during which
students develop solutions to simple programming problems. It is reasonable to
assume that the data collected by these online learning environments is of some
utility to future students solving the same problems. The data logs amount to
hundreds or even thousands of prior code submissions for each programming
problem. Could this data be used to generate hints for future students solving
the same problem?

Our research uses a CBR approach, which we call Abstract Syntax Tree
Retrieval (ASTR) to data mine prior solutions contained in a large dataset.
Through analysis of retrieved solutions for specific code states, we attempt to
answer the following questions:

– How can prior solutions be retained such that they are both readily accessible
and easily compared to future submissions?

– What method of similarity can accurately approximate the work required
by a student to move from the current state of a code string to the state of
a solution string?

– Can our system frequently use the similarity method developed to select an
appropriate existing solution that is not a drastically different approach to
solving the problem?

The accuracy of the system is evaluated in two ways. Expert analysis is used to
decide if the solution retrieved by ASTR is a reasonable solution to pursue, given
the current code state. The percentage of retrievals determined to be appropriate
provides the measure of success for this test. In a second test, we measure the
system’s success at retrieving a student’s final solution when all of their prior
attempts are submitted for ASTR. If the system selects the student’s solution,
this indicates that the system was able to exactly predict what the student would
eventually do.

2.1 Human Tutor Emulation

ASTR attempts to emulate a human tutor, who is assumed to be an expert at
solving the problem in question. The tutor observes the current failing state of
the student’s submission. If the student has used the correct approach, but has
used incorrect code, the tutor should provide hints that lead to the correction
of the code, but without changing the approach. Consider the following code
strings:

def max_of_two_values(a, b): def max_of_two_values(a, b):

def max_of_two_values(a, b): if (a <= b):

if (a <= b): return b

return b else:

else: return a

return a

The student solved the problem correctly (shown on the left), but they were
unaware that the system would add the function definition to the code they
submitted. This is an artefact of the online platform and we would expect a
tutor to guide the student toward an appropriate solution (shown on the right).

When the wrong approach has been taken by the student, the tutor should
suggest modifications that result in a solution that uses as many parts of the
current attempt as possible. The following submission and solution is considered
a misunderstanding of the problem.

def max_of_two_values(a, b): def max_of_two_values(a, b):

if (a < b): if (a > b):

return a return a

else: else:

return b return b

On the left, the student calculated the incorrect return value. The tutor could
help the student towards the solution on the right. Such a solution is certainly a
logical step from the current state of the student’s code, however, the tutor may
also guide the student to a solution that swaps the return values, a and b, into
the appropriate position, leaving the < operator alone. Both goals are considered
equally appropriate.

The tutor should try to find a solution that is similar to the code the student
has already created. In the previous example, it would be inappropriate for the
tutor to move the student towards a radically different solution, such as the
following:

def max_of_two_values(a, b):

return max(a, b)

Ideally, an expert human tutor is able to provide appropriate guidance be-
cause they are able to consider many different ways of solving the problem and
can accurately select a solution that seems most similar to what the student has
written. ASTR provides this solution, which could then be used to generate any
number of hints and guide the student in the appropriate direction.

2.2 A Case for Case-Based Reasoning

Online learning environments provide a tremendous opportunity to make use
of CBR. Specifically, computer programming exercises lend themselves to CBR
due to the fact that students are typically attempting to generate one of many
(possibly infinite) solutions.

During many programming exercises, it is desirable to allow the student to
explore the entire solution space rather than restricting them to finding one of
only a few solutions. The use of CBR gives us the opportunity to allow this open
exploration of solutions by using prior solutions to guide students back into the
area of the total search space known to contain solutions.

3 Related Work

Our research builds off prior work in a number of areas. The most important of
these areas include: Abstract Syntax Trees (ASTs), code clone detection, hint
generation, and CBR. Here, we briefly introduce the current state of research in
these topics as it relates to our work.

3.1 Abstract Syntax Tree

An AST is a hierarchical representation of a program into a branching sequence
of operators. Each tree represents the hierarchy of a program. The leaves of
the AST indicate which calculations are performed first. The results of these
calculations become the next level of leaves. The process moves up the tree until
the total program execution is calculated at the root of the trees. An example
of a simple Python AST is provided in Fig. 1.

Module body Assign

BinOp

Num n=2

Sub

BinOp

Num n=4

Add

Num n=1

targets Name

Store

id=x

Fig. 1. The Python AST for x = 1 + 4 - 2.

ASTs provide a method for comparing source code fragments that focuses on
the operations occurring within programs rather than the string labels used to
identify the parts. They have a wide range of application areas. A tool developed
by Falleri et al. [5] provides edit scripts (or diff files) for two versions of code
by analyzing the AST. Generating edit scripts through a text-based process,
while still correctly documenting the intended changes of the programmer, has
an algorithmic complexity of O(n3) at a minimum. Using an AST method, the
authors were able to develop an algorithm running, in worst case, in O(n2) time.

The use of ASTs in the educational domain has also been examined. Rivers
and Koedinger [16] investigated the potential of using ASTs as part of an Intel-
ligent Tutoring System (ITS). They highlight many of the advantages to using
ASTs to compare student code to existing solutions. Their work attempts to
establish a common framework upon which to build simple programming tutors
using AST comparisons. They also explore possible methods of quickly generat-
ing hints for students from this existing data.

3.2 Code Clone Detection

One of the more successful applications of Abstract Syntax Trees has been in
the areas of code clone detection, which is used to identify code segments that
perform the same function, in the same way. Code clones are created through
several processes and detecting these clones is useful. Many tools have been made
that detect these clones [2] and they are often used to identify areas within a
project for refactoring.

AST comparison methods cannot detect code clones in all situations. Inver-
sion of if-else statements was identified as a problem area for AST-based code
clone detection [4]. This clone generation process involves inverting the condi-
tion clause of an if statement and swapping the code contained within the if

and else blocks. Other techniques, such as loop unrolling or inserting dummy
methods, can also mask code clones from these detectors.

Tao et al. [18] researched methods by which ASTs can be adjusted to catch
additional code obfuscation techniques. Their process provided procedural anal-
ysis for many common changes in logical structure. However, if the system trans-
lates the code into an AST so as to account for this, many common logical syn-
tactic changes used to create code clones will be unable to mask their semantic
similarity to the original.

Detecting code clones is useful for identifying potentially unwanted duplica-
tion of code. However, code clone detection can also be used in a more positive
manner. In introductory programming courses, when students attempt to solve
a programming exercise, they are attempting to create a code clone of one of the
possible solutions. The measure to which a student’s code is a clone of a given
solution can be used as a measurement of their distance from that solution.

Leveraging this distance calculation allows the computation of a nearest so-
lution when many are available. This observation is an important component of
our ASTR system. Once a nearest solution is calculated, hint generation may be
performed.

3.3 Hint Generation

During a problem solving task, especially one in which a tutor is involved, the
ability to provide hints to the user is of interest.

Hints that have been preprogrammed into a system are known as authored
hints. Authored hints are commonly used to provide feedback [12], but can only

ever provide hints for a finite number of cases. It is therefore of interest to develop
methods of automatically generating hints.

Arguably, some of the most robust hint generation systems fall into a cat-
egory of systems known as goal-directed hint generators. Such systems possess
the domain knowledge necessary to compute a path from any current state to
the goal state. Goal-directed hint generation provides the greatest flexibility in
generating hints, but at the expense of requiring large amounts of expert domain
knowledge [14].

State-based hint generation is a broad category of hint generators that provide
hints based on a known or computed path to a goal state, but lack the ability
to provide hints for all possible states. State-based hint generators frequently
make use of authored hints [1], [13]. Because the system is waiting for specific
state-driven events, the variety of hints required is limited. It is easy to give
instructors the opportunity to improve the hint language used for a particular
state.

Some tutoring systems have made use of annotations within authored solu-
tions to improve the readability of generated hints [6]. Solutions are processed
and the system indicates with a placeholder when annotations are needed. This
allows the author to input custom annotations for hints, at the direction of the
system.

3.4 Case-Based Reasoning

The availability of solutions leads to potential application of CBR. CBR aims
to retrieve a prior solution, or case, with similarity to the current problem. The
retrieved prior solution and the current problem can be used in conjunction to
propose a solution to the current problem.

CBR has a range of applications in education. Kolodner et al. [10] wrote a
commentary on the use of many different CBR-inspired approaches to learning.
They concluded, “CBR-inspired educational approaches will be making their
way more into the e-learning mainstream.” Essentially, since CBR takes a similar
problem solving approach to that of students, CBR technologies can be used to
develop cognitive models of students.

Regan and Slater [15] developed a case-based hint generator for the vir-
tual world DollarBay. The tutoring system was designed to teach users how to
play the game effectively. An agent inside the virtual world would visit players
who were struggling with certain aspects of the basic strategy. The agent would
provide a message to the user, advising them how to improve their gameplay
strategy. Inaction by the agent is also considered a valid action, and was the
proposed “solution” to a subset of cases, as well. This event-driven approach is
not a true CBR system, but does demonstrate the effective use of a case-base in
an educational environment.

Although never explicitly referred to as a CBR system, the data mining hint
generator, developed by Jin et al. [8], performs as such. Previous solutions and
intermediate steps are mined by the system, with each solution being stored as

a linkage graph, indicating relationships between variables. When a student re-
quests a hint, the system transforms the code into a linkage graph and calculates
the most similar “case”. Since intermediate steps are saved by the system, the
next step along a path to the goal is used to provide a hint to the student.

4 Abstract Syntax Tree Retrieval

Our system uses a process we refer to as Abstract Syntax Tree Retrieval (ASTR).
It requires no prior knowledge of the problem being solved. It uses CBR and the
grammar of the programming language to retrieve a prior solution with high
similarity to a struggling student’s failing submission.

Like many programming education systems, ASTR does not classify solutions
as more or less correct. The system defers to the results of acceptance tests to
determine correctness of a submission. Every student attempt at solving any
programming problem is processed by the ASTR system. Attempts that pass
the acceptance tests of a programming problem, and have not already been
seen, are retained by the case-base as new solutions, while attempts that do not
are matched to the most similar solutions from the case-base. Ideally, ASTR
should perform in the same manner as the human tutor described in Section 2.1.
During the retrieval process, the goal of the system is to retrieve a solution from
the case-base that matches the intended solution of the student.

The case retrieved from the case-base is referred to as the goal of the student.
If an expert believes the goal would be appropriate for the student to work
towards, the case is referred to as an appropriate goal. The challenge of ASTR
is to correctly retrieve an appropriate goal from the case-base as frequently as
possible.

4.1 Student Goal Assumptions

In the field of computer science, edit distance is a well-known method for de-
termining the similarity of strings [11], trees [3], [21, 22], or graphs [9], [23]. An
underlying assumption is made that the student is attempting to reach the goal
that will require the fewest number of edits to the current state of their pro-
gram. By observing a student’s initial failing attempt, and comparing it to their
eventual solution, we can show this is frequently true.

In ASTR, edits are defined to be one of three possible modifications to the
current state of the student submission:

1. Adding to the code.
2. Removing from the code.
3. Modifying an existing part of the code.

Additionally, edits are assumed to be made directly to the AST, despite the
reality of students making edits to the source code text. However, since text
modifications resulting in the same syntax tree are of no interest to our research,
these types of modifications can be ignored.

It is also assumed that the case-base will always return one of the goals
retained by the case-base. Although the goal will not always be in the case-base,
assuming this would simply result in failing to return any case.

With these assumptions in place, we have reduced our problem to that for
which CBR is most appropriate. Given a student submission and a set of suc-
cessful cases, return the successful case that is the fewest number of edits from
the state of the student submission.

4.2 Preprocessing and AST Generation

When a submission is received by the system, the Python string is parsed into an
AST using the ast module. However, in addition to AST generation, a number
of preprocessing steps are used to improve similarity calculations.

Removing Unreachable Code. Novice programmers frequently include un-
reachable code in their programs. Commercial tutoring systems would probably
choose to notify the student about the unreachable code, but our research sys-
tem would benefit from removing unreachable code as a preprocessing step before
making any comparisons.

The following Python keywords are identified as being markers for potentially
unreachable code: break, continue, and return. Code following any of these
keyword arguments, provided it’s at the same indentation level, will not execute.
Consider the following example, which is a passing submission:

def max_of_two_values(a, b):

if a > b:

return a

print a

if a < b:

return b

print b

The print statements in this code cannot execute. Functionally, this code
would be the same as a submission without the print lines, however, the system
would identify them each as a different solution, since the ASTs of the submis-
sions would be different. It is for this reason that the preprocessing step removes
any code following a return statement, or other block-terminating Python key-
word.

In addition to these removals, the system removes code following if/else
statements when one of these block-terminating keywords exists in both the if

and else blocks, as in the following example:

def is_odd(num):

if num % 2 == 0:

return False

else:

return True

is_odd(52)

These rules can be written into a tree pruning algorithm which traverses the
AST recursively, removing unreachable code, resulting in fewer unique solutions
for a given problem.

Variable Standardization. Online programming exercises rarely enforce nam-
ing conventions for the variables used in problem submissions. ASTs do not reach
a level of abstraction that removes variable names. Therefore, submissions with
different variable names will create different syntax trees.

A simple method for standardizing labels is to simply replace each variable
name as it occurs with algorithmically generated values. In our system, each
variable, as it is encountered, is replaced with an enumerated value. The as-
sociated variable names are stored in a table and future values are replaced
with the same value as was used prior. This method is effective for problems
with shorter length, but would need to be expanded to support problems with a
larger number of variables. Additionally, there may be rare instances where the
order of variable declaration makes the system unable to assign variables in a
syntactically consistent way between submissions; however, such instances were
not observed during our experimentation.

4.3 Case Retrieval

The preprocessed AST generated from the submission is now ready for ASTR.
All submissions, whether passing for failing, are of some interest to the system.
If a submission has successfully solved the problem, then solution retrieval is
not needed. However, the submission should be added to the case-base if it is
a new solution. The system does an equality check against existing solutions in
the case-base. If the submission is unique, it is added to the case-base. Duplicate
submissions are currently ignored, although retaining the duplication count for
each submission could have future application. If the submission has not solved
the problem (i.e. it is a failing submission), ASTR is used to calculate and return
the most similar existing solution.

Zhang Shasha tree edit distance. The similarity between ASTs is calculated
with the Zhang Shasha (ZSS) tree edit distance algorithm [22]. The algorithm
uses a dynamic programming approach to calculate the exact edit distance be-
tween the two input trees. The implementation used by the system is a Python
implementation provided in the zss module. The implemented algorithm allows
for customization of the cost weights for different edit operations. The algorithm
returns a total cost value based on the cost summation of all edit operations
necessary to transform one tree into the other.

For our experiments, we use two different weightings for the costs of edit
operations. The first weighting assigns the cost to each edit operation as 1. We

refer to this as the metric tree edit distance (TED) calculation in our results.
The second weighting places a weight of 3 on add node operations, a weight of 2
on change node operations, and leaves the remove node weight as 1. We refer to
this as the weighted TED calculation. The weighted calculation slightly favors
smaller ASTs and is shown to perform better in many of our tests.

The ZSS algorithm is used to calculate a similarity value for all ASTs stored
in the case-base. The AST with the smallest tree edit distance is the AST with
the highest similarity and is the result of ASTR.

5 Dataset

Our research uses a large dataset to test the effectiveness of ASTR. The data
consists of submissions created by students to solve a variety of programming
problems. The submissions are written in the Python programming language.
There are a total of 57,234 submissions, from 24 programming questions, in the
dataset. The level of the exercises is targeted to beginning programmers.

5.1 Programming Questions

ASTR was evaluated against three problems from the dataset, which were uniquely
identified as problems: 2593, 2594, and 2600.

Problem 2600 required students to determine the maximum value of two
inputs. It had the greatest ratio of total solutions (154) to unique solutions (20),
with an average of 7.7 repetitions of each solution. It was also the submission
with the largest average number of users submitting the same solution, which
was 6.35 users per solution. Almost half of the successful submissions, 74 out of
154, were reduced to the same unique solution. From a complexity standpoint,
solutions to this problem were short, relative to the other problems in the dataset,
and provided an acceptable baseline test for the system.

Problem 2593 required students to determine if an input was odd. Both
problems 2593 and 2600 had a similar number of unique solutions, but this
problem had a much greater number of unique failures. There could be many
explanations for the large number of failures, but it would seem that a larger
number of failures might correlate with a lower understanding of the problem by
the students. However, student anomalies in submission patterns can also cause
spikes in unique failures. For instance, some students will begin making arbitrary
changes to their failing code in an effort to stumble upon a solution. This is
especially likely when the student is given unlimited submissions and checking
each submission is almost instantaneous. A sample solution to the problem 2593
can be seen here:

def is_odd(num):

if ((num % 2) == 0):

return False

else:

return True

Problem 2594 was more complicated than the other problems in the exper-
iment. It required students to calculate the largest divisor of the input value.
Below is a sample solution to problem 2594:

def largest_divisor(num):

largest = 0

for i in range(1, num):

if ((num % i) == 0):

largest = i

return largest

Students created 82 unique solutions to this problem and over 300 unique
failing submissions. When examining the failing submissions, it was clear that
many students either did not understand the definition of largest divisor or did
not understand the algorithm used to calculate the largest divisor. This con-
trasted well with the other questions we used, as the definition of odd and max-
imum are typically well understood. Programming problem 2594 demonstrates
our system’s ability to handle submissions that correctly solve a problem, but
the wrong problem.

6 Experiments

The intent of the experiments was to determine the performance of the case-
base under ideal circumstances. To simulate ideal conditions, we would manually
insert every solution into the case-base. With the well developed case-base, the
experiment then presented each failing submission to the system. Identical failing
submissions were removed. For each failing case, the case-base returned the most
similar passing case. A log was created showing the source code of the failing case
and the source code of the most similar matching case selected by the case-base.
The log was reviewed by a human expert and marked for the appropriateness of
the case returned by the case-base.

In assessing appropriateness, the expert is attempting to infer the goal of the
student when the failing submission was written. Whether or not the retrieved
case indicates the actual goal of the student is highly subjective. Therefore, the
expert must decide if the goal proposed by the case-base is a natural progres-
sion from the current state of the failing code. Assessing the retrieved solutions
was straightforward, but time intensive, requiring a couple hours to review logs
containing the results of a couple hundred submissions.

The overall score of the case-base is the overall percentage of appropriate
retrievals compared to the total number of failing submissions processed.

By providing the case-base with all solutions, there is an increased chance
that the actual intended solution of a failed attempt will be contained. For
example, if a student made a submission that failed the acceptance tests but
then later made a second submission that passed the acceptance tests, it is
likely that the second submission represents the original goal (see Section 4)
of the student (although this is not always the case). By loading all solutions

into the case-base prior to performing case retrieval, it is possible to match a
student’s failing submission with any future passing submission. If the case-base
selects a student’s own future submission as the most similar solution, this may
be another indication that the ASTR system is performing accurately.

A separate experiment was performed to determine the frequency with which
the student’s own solution was retrieved as the goal solution by ASTR. For each
failing submission, any solutions to the same problem, by the same user, were
added to the case-base before any other cases were added. It was necessary to add
the user’s solutions first because the case-base only retains the first instance of
each unique solution. Adding them first ensured that the user’s solutions would
be available for ASTR. The test performed the experiment and recorded the
numbers of both accurate and inaccurate retrievals.

7 Results and Discussion

When ASTR was performed using a TED metric, the system was frequently able
to retrieve an appropriate goal solution. Performance using a weighted TED
calculation improved accuracy on problems 2594 and 2600 significantly while
reducing the accuracy of problem 2593 only marginally. The results are shown
in Table 1.

Table 1. ASTR appropriate retrieval performance

Metric Weighted
Question 2593 2594 2600 2593 2594 2600

Unique Solutions 25 81 21 25 81 21
Unique Failures 157 383 31 157 383 31
Correct Retrievals 113 247 20 107 309 30
Incorrect Retrievals 44 136 11 50 74 1
Accuracy 72% 64% 65% 68% 81% 97%

Question 2593 was the only programming problem that had a lowered accu-
racy using the weighted distance calculation. However, the number of inaccura-
cies only increased by 4%. The cause for this change is not readily apparent. In
any case, 2593 was the lowest performing test question.

Question 2594 contained the largest number of submissions, but still per-
formed well. The initial performance of 64% was the lowest recorded accuracy
for the metric retrieval test, but this question responded very well to the weighted
calculation, making 62 more correct retrievals than with metric calculation and
putting the accuracy for this test at 81%.

Question 2600 had the fewest examples of correct submissions and the fewest
examples of unique failures. ASTR returned reasonable solutions for 30 of 31 sub-
missions, or 97% accuracy, using the weighted distance calculation. The metric
calculation performed similarly to the other questions, with an accuracy of 65%.

Table 2. User’s solution identified as goal

Metric Weighted
Question 2593 2594 2600 2593 2594 2600

Success 111 66 30 76 64 34
Failure 142 415 22 177 417 18
Accuracy 44% 14% 58% 30% 13% 65%

ASTR accuracy rates were lower when we examined the rate at which a user’s
own solution was retrieved as the goal solution. Question 2600 performed the
best, with over half the failing submissions being matched up with the correct
solution. This could be a by-product of having many students submitting the
same solution, however, question 2593 also had a high accuracy rate on this
test (although the results dropped 14% for the weighted distance test). Question
2593 underperformed on this test, with similar scores of 13% and 14% for the
two similarity variations.

8 Conclusion

The results achieved by our system are encouraging. The ASTR system contains
no information about the programming problem prior to observing successful
submissions. Additionally, the system has no understanding of Python syntax.
Despite these limitations, the system is usually able to correctly identify a solu-
tion that appears to an expert to be the student’s intended goal.

The ASTR system is generally accurate for 2 out of 3 submissions at a mini-
mum, with favorable problems potentially performing much better. Weighted
TED calculations seem to result in improved retrieval accuracy over metric
TED calculations, as was hypothesized. Retrieval performance was not improved
enough to show this definitively, but the results are encouraging.

Student’s “own solution retrieval” test had less favorable results. When taken
together with the other results, this may indicate a need for more interaction with
students during programming exercises. We have shown that ASTR frequently
returns an appropriate goal, but this test shows that students may not have
discovered this appropriate goal on their own. Although the exact reason for
this is not known at this time, there is a potential application of ASTR to this
problem in the future.

Prior solutions to introductory programming problems contain valuable knowl-
edge for assisting students who are currently struggling. AST analysis seems to
provide a strong naive data structure from which similarity values can be calcu-
lated between current state and goal state. Solutions with similar ASTs are often
determined to be appropriate goals. Our ASTR system is able to leverage this
knowledge with minimal effort, providing potential for the development of ITSs,
hint generation systems, and working across a large of domain of problems.

References

1. Antonucci, P., Estler, C., Nikolic, D., Piccioni, M., Meyer, B.: An incremental
hint system for automated programming assignments. In: Proceedings of the 2015
ACM Conference on Innovation and Technology in Computer Science Education
(ITiCSE ’15). pp. 320–325 (2015)

2. Baxter, I.D., Yahin, A., Moura, L., Sant’Anna, M., Bier, L.: Clone detection using
abstract syntax trees. In: Proceedings of the International Conference on Software
Maintenance (ICSM ’98). vol. 98, pp. 368–377 (1998)

3. Bille, P.: A survey on tree edit distance and related problems. Theoretical Com-
puter Science 337(1-3), 217–239 (2005)

4. Cui, B., Li, J., Guo, T., Wang, J., Ma, D.: Code comparison system based on
abstract syntax tree. In: 2010 3rd IEEE International Conference on Broadband
Network and Multimedia Technology (IC-BNMT). pp. 668–673 (2010)

5. Falleri, J.R., Morandat, F., Blanc, X., Martinez, M., Montperrus, M.: Fine-grained
and accurate source code differencing. In: Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering (ASE ’14). pp. 313–
324 (2014)

6. Gerdes, A., Heeren, B., Jeuring, J.: An interactive functional programming tutor.
In: Proceedings of the 17th ACM Annual Conference on Innovation and Technology
in Computer Science Education (ITiCSE ’12). pp. 250–255 (2012)

7. Guzdial, M.: A media computation course for non-majors. SIGCSE Bulletin 35(3),
104 (2003)

8. Jin, W., Barnes, T., Stamper, J., Eagle, M.J., Johnson, M.W., Lehmann, L.: Pro-
gram representation for automatic hint generation for a data-driven novice pro-
gramming tutor. In: Proceedings of the 11th International Conference on Intelligent
Tutoring Systems (ITS ’12). pp. 304–309 (2012)

9. Kammer, M.L.: Plagiarism detection in Haskell programs using call graph match-
ing. Master’s thesis, Utrecht University (2011)

10. Kolodner, J.L., Cox, M.T., González-Calero, P.A.: Case-based reasoning-inspired
approaches to education. Knowledge Engineering Review 00(1997), 1–4 (2005)

11. Lu, W., Du, X., Hadjieleftheriou, M., Ooi, C.: Efficiently supporting edit distance
based string similarity search using B+-trees. IEEE Transactions on Knowledge
and Data Engineering 26(12), 2983–2996 (2014)

12. Mckendree, J.: Effective feedback content for tutoring complex skills. Human-
Computer Interaction 5(4), 381–413 (1990)

13. Paquette, L., Lebeau, J.f., Beaulieu, G., Mayers, A.: Automating next-step hints
generation using ASTUS. In: 11th International Conference Intelligent Tutoring
Systems (ITS ’12). pp. 201–211 (2012)

14. Piech, C., Sahami, M., Huang, J., Guibas, L.: Autonomously generating hints by
inferring problem solving policies. In: Proceedings of the Second (2015) ACM Con-
ference on Learning @ Scale (L@S ’15). pp. 195–204 (2015)

15. Regan, P.M., Slator, B.M.: Case-based tutoring in virtual education environments.
In: Proceedings of the 4th International Conference on Collaborative Virtual En-
vironments (CVE ’02). pp. 2–9 (2002)

16. Rivers, K., Koedinger, K.: A canonicalizing model for building programming tu-
tors. In: Proceedings of the 11th International Conference on Intelligent Tutoring
Systems (ITS ’12). pp. 591–593 (2012)

17. Snyder, L.: Being fluent with information technology. National Academy of Sci-
ences (1999)

18. Tao, G., Guowei, D., Hu, Q., Baojiang, C.: Improved plagiarism detection algo-
rithm based on abstract syntax tree. In: 2013 Fourth International Conference on
Emerging Intelligent Data and Web Technologies (EIDWT). pp. 714–719 (2013)

19. Vaidyanathan, S.: Fostering creativity and innovation through technology. Learn-
ing & Leading with Technology pp. 24–28 (2012)

20. Wilson, C., Sudol, L.A., Stephenson, C., Stehlik, M.: Running on
empty: The failure to teach K-12 computer science in the digital
age. Tech. rep., Association for Computing Machinery (ACM) (2010),
http://runningonempty.acm.org/fullreport2.pdf

21. Yang, R., Kalnis, P., Tung, A.K.H.: Similarity evaluation on tree-structured data.
In: Proceedings of the 2005 ACM SIGMOD International Conference on Manage-
ment of Data (SIGMOD ’05). pp. 754–765 (2005)

22. Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between
trees and related problems. SIAM Journal on Computing 18(6), 1245–1262 (1989)

23. Zheng, W., Zou, L., Lian, X., Wang, D., Zhao, D.: Efficient graph similarity search
over large graph databases. IEEE Transactions on Knowledge and Data Engineer-
ing 27(4), 964–978 (2015)

