

Libraries and Learning Services

University of Auckland Research
Repository, ResearchSpace

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of
the Act and the following conditions of use:

• Any use you make of these documents or images must be for research or
private study purposes only, and you may not make them available to any
other person.

• Authors control the copyright of their thesis. You will recognize the
author's right to be identified as the author of this thesis, and due
acknowledgement will be made to the author where appropriate.

• You will obtain the author's permission before publishing any material
from their thesis.

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital
copy of their work to be used subject to the conditions specified on the Library
Thesis Consent Form and Deposit Licence.

http://www.library.auckland.ac.nz/sites/public/files/documents/thesisconsent.pdf
http://www.library.auckland.ac.nz/sites/public/files/documents/thesisconsent.pdf
http://www.library.auckland.ac.nz/services/research-support/depositing-theses/licence-summary

Parallel diagonally implicit

multistage integration methods

for stiff ordinary differential

equations

Anjana Devi Singh, BSc, GCEd, MSc (USP,Fiji).

A thesis submitted for the degree of

DOCTOR OF PHILOSOPHY

Department of Mathematics

The University of Auckland

1999

Abstract

From this large family of general linear methods, we look at a special class of meth-

ods known as the diagonally implicit multi-stage integration methods (DIMSIMs).

One of the four matrices characterizing a DIMSIM, the matrix A, corresponds to

the coefficient matrix in a Runge-Kutta method. Hence, the structure of A plays

a central role in the implementation costs of the method. We will refer to various

choices for the form of A as “types”. In particular, for type 4 methods, A = λI

and these are suitable for the parallel solution of stiff problems. A-stable type 4

methods in which the order of the method equals the number of stages, has been

derived by J. C. Butcher (1996). In this thesis we consider a variable stepsize,

variable order implementation of these methods as parallel solvers for stiff initial

value problems. Although these methods have shown potential for the solution of

stiff initial value problems they are not very efficient when compared to existing

sequential solvers RADAU5 and VODE. This is probably because of the large

error constants of these methods.

In order to have an efficient set of parallel methods, we derive a new set of A-stable

type 4 methods which have one more stage than the order of the method. For

these methods we can make the error constants very small and error estimates for

stepsize control are available within each step. Hence, these methods are much

simpler to implement and in a parallel implementation these methods will cost

no more than the methods in which the number of stages is equal to the order.

These methods have been successfully implemented in a variable stepsize, variable

order code and have been used to solve some well-known stiff problems. On a test

problem of dimension 400 these methods have shown speedup factors of up to 2.5.

Although the present implementation is slightly slower than the sequential codes

such as RADAU5 and VODE, they have shown potential as parallel solvers of stiff

initial value problems.

iii

Acknowledgements

This study has been completed in the Department of Mathematics at the Uni-

versity of Auckland. I am grateful to my supervisor Prof J. C. Butcher for his

guidance throughout the course of my study. His enthusiasm for the subject has

been an inspiration to me throughout the three years that I have spent here.

I would like to thank my advisors Dr. R. Chan and Dr. P. Sharp for their

assistance. I am grateful to Dr. A. Heard and my fellow students Dr. David Chen

and Dr Tina Chan, Miss Nicolette Goodwin, Ms Beth Jackson and Mr William

Wright for their help.

During my study I have met many visitors with whom I have had the opportunity

of discussing my work. In particular I would like to thank Dr. M. Diamantakis

for all his help.

I am grateful to the University of the South Pacific, Suva, Fiji, for providing

financial assistance and leave from my job to complete this study. I would like to

thank the Department of Mathematics at the University of Auckland for providing

some financial assistance in the form of a tutorship.

I would like to thank my husband Yogendra and children Arti and Yuvnit for their

patience and help during the course of this study.

v

Contents

TABLE OF CONTENTS vii

LIST OF FIGURES xiii

LIST OF TABLES xv

1 Introduction 1

1.1 Initial value problems . 1

1.2 Convergence of method and stability of the IVP 5

1.3 Stability of the numerical method 7

1.4 Numerical methods for the IVP . 10

1.4.1 General linear methods . 11

1.4.2 Runge-Kutta methods . 12

1.4.3 Linear multistep methods 16

1.5 An overview of this thesis . 19

2 Numerical methods for stiff problems 21

2.1 The phenomenon of stiffness . 21

2.2 Stability and stiffness . 26

vii

viii CONTENTS

2.3 BDF methods . 32

2.4 Implicit Runge-Kutta methods . 33

2.4.1 Gauss methods . 34

2.4.2 Radau methods . 35

2.4.3 Lobatto methods . 36

2.4.4 Solution of the implicit stage equations 37

2.4.5 Diagonally implicit Runge-Kutta methods 39

2.4.6 Use of transformations to reduce costs 41

2.4.7 Singly implicit methods . 43

2.5 Some parallel numerical methods for stiff problems 45

2.5.1 Motivation for parallel methods 45

2.5.2 Parallel block methods . 46

2.5.3 Parallel Runge-Kutta methods 48

2.5.3.1 Strictly block diagonal implicit Runge-Kutta meth-

ods . 48

2.5.3.2 Parallel DIRK methods 49

2.5.3.3 PIRK methods . 50

2.5.3.4 PDIRK methods 50

2.5.3.5 Triangularly implicit iteration methods 51

2.5.3.6 PILSRK methods 53

2.5.4 DIMSEMs . 54

3 DIMSIMs 57

3.1 Introduction to DIMSIMs . 58

CONTENTS ix

3.1.1 Order conditions . 60

3.1.2 Consistency, convergence and stability 65

3.2 Analysis of type 4 DIMSIMs . 67

3.2.1 Stability analysis . 69

3.2.2 Choice of λ for A-stability 75

3.2.3 Derivation of A-stable methods 78

3.2.4 Methods with rank 1 for V 82

3.2.5 Some rank 1 methods . 86

3.2.6 Methods with rank 2 for V 87

3.2.7 Some rank 2 methods . 92

3.2.8 Error constants . 94

4 An implementation of type 4 DIMSIMs with s = p 99

4.1 Fixed stepsize implementation . 99

4.1.1 Starting procedure . 100

4.1.2 The stage solver . 101

4.1.3 Verification of order . 102

4.2 Modification for variable stepsize and order 103

4.2.1 Defining Ũ . 103

4.2.2 Modification to rank 1 methods 105

4.2.2.1 Determination of Ṽ 105

4.2.2.2 Determination of B̃ 106

4.2.2.3 Some modified rank 1 methods 109

4.2.2.4 Error estimation for stepsize control 110

x CONTENTS

4.2.3 Modification to rank 2 methods 112

4.2.3.1 Determination of Ṽ 112

4.2.3.2 Determination of B̃ 114

4.2.3.3 Some modified rank 2 methods 115

4.2.3.4 Error estimation for stepsize control 116

4.2.4 Nordsieck vector update for change of order 119

4.2.5 Error estimates for variable order 120

4.2.6 Interpolation . 120

4.3 Variable stepsize/variable order implementation 121

4.3.1 Variable stepsize procedure 122

4.3.2 Variable order procedure . 124

4.3.3 Convergence control of the implicit equation solver 126

4.3.4 Evaluation of stage derivatives 130

4.3.5 Prediction of starting stage values 130

4.3.6 Stopping criteria . 132

4.4 Numerical experiments . 134

4.4.1 Problems tested . 135

4.4.2 Effect of initial stepsize . 138

4.4.3 Performance of error estimators 139

4.4.4 Performance of order control 141

4.4.5 Performance of type 4 DIMSIMs 142

5 New type 4 DIMSIMs 165

5.1 Motivation . 165

CONTENTS xi

5.2 Methods with different λ . 166

5.2.1 A second order method . 167

5.2.2 Nordsieck representation . 169

5.3 Type 4 DIMSIMs with s = p+ 1 170

5.3.1 A first-order method with 2 stages 170

5.3.2 Higher order methods . 173

5.3.3 Choice of abscissae and free parameters 174

5.3.4 Error estimation for stepsize control 175

5.3.5 Error estimates for order control 176

5.3.6 Numerical experiments . 179

5.3.6.1 Some programming details 180

5.3.6.2 Best choice of maximum order 182

5.3.6.3 Best choice of abscissae 182

5.3.7 Further discussion of results 184

5.3.8 Concluding remarks and future work 187

Appendices

A Method coefficients when s = p + 1 199

B RADAU5, VODE and PSIDE Results 211

Bibliography 216

List of Figures

2.1 Solution profile: Robertson problem. 25

2.2 Solution profile: van der Pol problem, y1 on left and y2 on right. . 26

3.1 Stability plots for p = 2, where scaled (W) means W/
√
1 + λ2y2. . 77

3.2 Stability plots for p = 3, where scaled (W) means W/
√
1 + λ2y2. . 78

3.3 Error constants as functions of λ for rank 2 methods with λ in the

A–stability interval. 98

4.1 Order control for Kaps problem. 142

4.2 Order control for Oregonator problem. 143

4.3 Errors (+ – est, ◦ – exact), Kaps problem, orders 1 and 2. 147

4.4 Errors (+ – est, ◦ – exact), Kaps problem, tol = 10−4, using DIM-

SIMs A and B. 148

4.5 Errors (+ – est, ◦ – exact), Kaps problem, tol = 10−4, using DIM-

SIMs C and D. 149

4.6 Errors (+ – est, ◦ – exact), Kaps problem, tol = 10−8 using DIM-

SIMs A and B. 150

4.7 Errors (+ – est, ◦ – exact), Kaps problem, tol = 10−8, using DIM-

SIMs C and D. 151

xiii

xiv LIST OF FIGURES

4.8 Errors (+ – est, ◦ – exact), Kaps problem, tol = 10−8, using DIM-

SIM C. 152

4.9 Errors (+ – est, ◦ – exact) for order control, Kaps problem, tol =

10−8, using DIMSIMs A and B. 153

4.10 Errors (+ – est, ◦ – exact) for order control, Kaps problem, tol =

10−8, using DIMSIMs C and D. 154

4.11 Function evaluations/final global errors: Kaps problem. 155

4.12 Function evaluations/final global errors: Robertson problem. 155

4.13 Function evaluations/final global errors: van der Pol problem. . . . 156

4.14 Function evaluations/final global errors: Oregonator problem. . . . 156

4.15 Function evaluations/final global errors: Ring Modulator problem. . 157

4.16 Solution profile: Oregonator problem. 157

4.17 Solution profile: Ring Modulator problem. 158

5.1 Results for Kaps problem with different maximum orders. 188

5.2 Results for Kaps problem using DIMSIMs with s = p+ 1. 189

5.3 Results for the Oregonator problem using DIMSIMs with s = p+ 1. 189

5.4 Results for the Robertson problem using DIMSIMs with s = p+ 1. . 190

5.5 Results for the van der Pol problem using DIMSIMs with s = p+ 1. 190

5.6 Results for the Ring Modulator problem using DIMSIMs with s =

p+ 1. 191

5.7 Results for the Medical Akzo Nobel problem using DIMSIMs with

s = p+ 1. 191

List of Tables

2.1 The angles α in A(α)-stability of BDF methods. 32

3.1 Types of DIMSIMs. 59

3.2 λ for A-stability of type 4 methods with p = s. 79

3.3 Intervals of λ for A-stability of rank 2 methods. 93

3.4 Error constants for methods with s = p and V of rank 1. 95

3.5 Error constants for methods with s = p, V of rank 2 and the small-

est λ in the stability interval. 97

4.1 Weightings for the order 3 error estimate. 113

4.2 Effect of h0, Kaps problem and DIMSIM A. 139

4.3 Effect of variable order, Kaps problem and DIMSIM A. 142

4.4 Results for Kaps problem using DIMSIMs with s = p. 159

4.5 Results for Oregonator problem using DIMSIMs with s = p. 160

4.6 Results for Robertson problem using DIMSIMs with s = p. 161

4.7 Results for van der Pol problem using DIMSIMs with s = p. 162

4.8 Results for Ring Modulator using DIMSIMs with s = p. 163

5.1 Intervals of λ for A-stability. 173

xv

xvi LIST OF TABLES

5.2 Error constants for methods in which s = p+ 1. 174

5.3 Average number of iterations for the order 5 method for the Medical

Akzo Nobel problem. 183

5.4 Speedups for DIMSIM E and the Medical Akzo Nobel problem. . . 186

5.5 Results for Kaps problem using DIMSIMs with s = p + 1 and

maximum order 6. 192

5.6 Results for Oregonator problem using DIMSIMs with s = p+ 1. . . 193

5.7 Results for Robertson problem using DIMSIMs with s = p+ 1. . . . 194

5.8 Results for van der Pol problem using DIMSIMs with s = p+ 1. . . 195

5.9 Results for the Ring Modulator problem using DIMSIMs with s =

p+ 1. 196

5.10 Results for the Medical Akzo Nobel problem using DIMSIMs with

s = p+ 1. 197

B.1 Results for Kaps problem using RADAU5 and VODE. 211

B.2 Results for Oregonator problem using RADAU5 and VODE. 212

B.3 Results for Robertson problem using RADAU5 and VODE. 212

B.4 Results for van der Pol problem using RADAU5 and VODE. 213

B.5 Results for Ring Modulator using RADAU5, VODE and PSIDE. . . 214

B.6 Results for the Medical Akzo Nobel problem using RADAU5, VODE

and PSIDE. 215

Chapter 1

Introduction

It is widely believed that, the only feasible means of solving computationally

intensive systems of differential equations arising in science and engineering, is to

use parallel computers effectively. As a result of this, the study of parallel methods

for the numerical solution of ordinary differential equations, has become an active

area of research. In this thesis, we look at methods which offer the potential for

small scale parallelism on computers with a few processors.

1.1 Initial value problems

We consider parallelism in the numerical methods for solving initial value problems

(IVPs) for ordinary differential equations (ODEs)

y′(x) = f(x, y(x)), x ∈ [x0, xN],

y(x0) = y0,
(1.1)

where y : R → Rm and f : R×Rm → Rm. Systems of ODEs arise very frequently in

mathematical modelling and in many practical cases where an exact mathematical

solution cannot be found, the need for numerical methods for solving such systems

arises.

The interest in parallel IVP solvers arises from the need to be able to solve prob-

lems more rapidly than is currently possible. For example, this may be because

1

2 Introduction

the solution is needed in real time, as is the case of flight simulations, or it may be

because the computation time required on sequential computers is so large that

it affects the productivity of scientists or engineers working on complex systems.

The other reason is the widespread availability of parallel computers, with massive

computational potential, which provides a challenge for computational scientists

to exploit this capability to solve problems more efficiently or to solve problems

that are not currently feasible on sequential computers.

As outlined in [60] the IVP (1.2) can be considered too time consuming to solve if

• f is expensive to evaluate,

• the number of equations, m, in the system is large, for example in the spatial

discretisation of partial differential equations,

• the interval of integration, [x0, xN], is large,

• the IVP must be solved repeatedly, for example, in parameter fitting prob-

lems.

Numerical methods for solving the initial value problem typically compute ap-

proximations to y(xn), n = 1, 2, . . . , N on a mesh x0 < x1 < · · · < xN , where

the approximation, y(xn), depends on one or more of the approximations at the

previous steps. Methods which use only one approximation from the past step to

calculate the present approximation are known as one-step methods, the most well

known of which are the Runge-Kutta methods, although two-step Runge-Kutta

methods also exist. Multistep methods use more than one past approximation in

calculating the present approximation. These methods are basically sequential in

nature, as approximations to the solution are calculated in a step-by-step manner

and as such they offer little scope for the use of parallel computers effectively.

However, several attempts have been made to adapt existing methods or to de-

velop new methods to exploit parallelism and these have been classified by Gear

[47] into two main categories:

• parallelism across the steps,

• parallelism across the method.

1.1 Initial value problems 3

Parallelism across steps, as defined in [3], denotes a process in which the solu-

tion at different points is calculated simultaneously. Methods which can handle

parallelism across steps are suited for parallel computers which have a very large

number of processors. Such methods can be used for solving very large problems

such as the spatial discretisation of mult-dimensional partial differential equations,

with the aim of solving the partial differential equations very accurately. These

problems can easily exceed the capacity of the largest supercomputers. At present

parallelism of this type is exploited in the spatial domain decomposition of partial

differential equations where portions of the spatial domain are assigned to the dif-

ferent processors and parallelism is obtained through the linear algebraic systems

associated with the implicit ODE techniques.

Parallelism across a method refers to the use of parallelism inherently available

within a method. For example, this could include the parallel evaluation of the

stages in a multistage method. This approach is effective for problems with com-

plex function evaluation and particularly for real-time applications for example

problems involving active control in which input must be evaluated in time to

adjust a strategy as in spacecraft course adjustment or in chemical processing.

Realistic chemical reactions and material processing problems involve intricate

rate equations and equations of state. Multi-disciplinary applications may involve

combined physical, chemical and biological interactions. Such problems may be

difficult even in low dimensional situations and parallelising the stages in a mul-

tistage method offers a good opportunity to reduce the computational cost. Par-

allelism of this sort is the main focus of this thesis and we refer to such methods

as the parallel methods.

Before we examine some of the parallel methods that have been so far developed

for the solution of the IVPs, we introduce some concepts which are necessary to

the study of numerical methods for the solution of ordinary differential equations.

In particular we look at the existence of unique solutions, the convergence and

stability of IVPs. Furthermore, we briefly outline the main numerical methods for

the solution of the initial value problems.

Many ODEs that occur naturally are of order greater than one while most of

4 Introduction

the numerical methods in existence are designed for solving first order problems

only. However, all higher order problems can easily be converted to first order

ones by increasing the dimension of the problem. The non-autonomous initial

value problem (1.1) can be converted to autonomous form, in which f is does not

depend on x explicitly,

y′(x) = f(y(x)), y(x0) = y0, f : Rm → R
m, (1.2)

by adding the differential equation, y′ = 1, and the corresponding initial condition,

y(x0) = x0, to the system. This increases the dimension of the problem by one.

The existence of a unique solution to the initial value problem is guaranteed by

the following theorem.

Theorem 1.1 Consider the initial value problem (1.1) and let f(x, y) be defined

and continuous for all (x, y) in the region D defined by a ≤ x ≤ b, −∞ < yq <∞,

q = 1, 2, . . . , m, where a and b are finite, y = [y1, y2, . . . , ym], and let there exist a

constant L, called the Lipschitz constant, such that

‖f(x, y)− f(x, y∗)‖ ≤ L‖y − y∗‖ (1.3)

holds for every (x, y), (x, y∗) ∈ D. Then for any y0 ∈ Rm, there exists a unique

solution y(x) of the problem (1.1), where y(x) is continuous and differentiable for

all (x, y) ∈ D.

When the conditions of this theorem are satisfied, the initial value problem (1.1)

is said to be well posed. We will assume that the initial value problems to be

solved by the numerical methods are well posed. If f(x, y) is differentiable with

respect to y, then using the mean value theorem we have

f(x, u)− f(x, v) =
∂̄f(x, ζ)

∂y
(u− v),

where the notation implies that each row of the Jacobian, ∂f
∂y
, is evaluated at

different mean values of the second argument, all of which are internal points on

the line segment in Rm+1 from (x, u) to (x, v). It follows that (1.3) can be satisfied

by choosing the Lipschitz constant to be

L = sup
(x,y)∈D

∥∥∥∥
∂f(x, y)

∂y

∥∥∥∥ .

1.2 Convergence of method and stability of the IVP 5

1.2 Convergence of method and stability of the

IVP

In order to obtain a numerical solution of (1.1), the interval [x0, xN] is subdivided

into a set of discrete points {xn}, n = 0, 1, . . . , N and approximations yn to the

exact solution y(xn) are calculated at each of these points. These approximations

are calculated sequentially by solving a set of finite difference equation at each step,

starting from x0 and moving towards xN , where xn = xn−1+hn−1, n = 1, 2, . . . , N .

The finite difference equations usually involve approximations to the exact solution

as well as approximations to the derivatives at these points and hn is the steplength

at step number n. If we hold the steplength constant and let hn = h, then

xn = x0 + nh. An obvious property required for any numerical method is that

as h becomes smaller the numerical approximations, yn, become more accurate.

Considering an arbitrary point x ∈ [x0, xN], where x = x0+nh, we expect that as

h → 0, which means that n → ∞, the approximate solution yn converges to the

exact solution y(xn). To use a numerical method, for example a k step method,

we need to somehow select starting points in the solution sequence

y0 ≈ y(x0),

y1 ≈ y(x0 + h) = y(x1),

...

yk−1 ≈ y(x0 + (k − 1)h) = y(xk−1),

where we are dealing with the initial value problem with y(x0) given, but where y0

does not denote this initial value. Assume that these are generated by algorithms

that guarantee that

‖yi − y(xi)‖ → 0 as h→ 0 for i = 0, 1, . . . , k − 1.

On this understanding we introduce the following definition of convergence.

Definition 1.2 A numerical method is said to be convergent if, for all initial value

6 Introduction

problems satisfying the hypothesis of Theorem 1.1, we have that

max
0≤n≤N

‖yn − y(xn)‖ → 0 as h→ 0.

In the computation of a numerical solution, discretization and roundoff errors can-

not be avoided. Consequently, when any numerical method is used, it is necessary

that any small errors that are introduced die out or remain bounded. It is possible

that the initial value problem is such that when small errors are introduced, these

errors do not die out. Here we are looking at a concept of stability of the initial

value problem called total stability. To define total stability we consider the initial

value problem

z′(x) = f(x, z) + δ(x), x0 ≤ x ≤ xN ,

z(x0) = y0 + δ,

which can be considered as a perturbation of the initial value problem

y′(x) = f(x, y), x0 ≤ x ≤ xN ,

y(x0) = y0.

Definition 1.3 Let (δ(x), δ) and (δ∗(x), δ∗) be any two perturbations of the initial

value problem (1.1) and let z(x) and z∗(x) be the resulting perturbed solutions.

Then, if there exists a positive constant S such that, for all x ∈ [x0, xN],

‖z(x)− z∗(x)‖ ≤ Sǫ,

for ǫ > 0, whenever

‖δ(x)− δ∗(x)‖ ≤ ǫ and ‖δ − δ∗‖ ≤ ǫ,

then the initial value problem (1.1) is said to be totally stable or well posed.

The value of S can be as large as necessary, as long as it is finite. It can be

shown that when the initial value problem satisfies the assumptions of Theorem

1.3 Stability of the numerical method 7

1.1 then it is totally stable. However, there are problems which are totally stable

but ill-conditioned with respect to the numerical computation. To illustrate this

consider the differential equation

y′ = 100y − 101e−x, y(0) = 1,

which has solution y(x) = e−x. The perturbed problem

ŷ′ = 100ŷ − 101e−x, ŷ(0) = 1 + δ,

has solution ŷ(x) = δe100x + e−x. Since,

|y(x)− ŷ(x)| = δe100x,

the error grows as e100x and it is quite clear that this will grow rapidly, no matter

how accurate the numerical method is, and the computed solution will very quickly

depart from the exact solution. Problems such as this are said to be ill-conditioned,

although they are rarely found in practice.

1.3 Stability of the numerical method

In addition to the stability of the initial value problem, we require a numerical

method used to solve it to be stable. Any numerical method applied to an initial

value problem will introduce errors due to discretization and round-off. If the

numerical method is to approximate the solution to the initial value problem then

it must not be over-sensitive to these errors and, in particular, these errors should

not increase. This requirement is known as zero-stability and we give the following

definition from Lambert [62].

Definition 1.4 Let {δn, n = 0, 1, . . . , N} and {δ∗n, n = 0, 1, . . . , N} be any two

perturbations of the difference method used for the numerical solution of (1.1),

and let {zn, n = 0, 1, . . . , N} and {z∗n, n = 0, 1, . . . , N} be the resulting perturbed

solutions. Then, if there exist constants S and h0 such that, for all h ∈ (0, h0],

‖zn − z∗n‖ ≤ Sǫ, 0 ≤ n ≤ N,

8 Introduction

given ǫ > 0, whenever

‖δn − δ∗n‖ ≤ ǫ, 0 ≤ n ≤ N,

we say that the difference method is zero-stable.

Since zero-stability requires the inequalities to hold for values of h ∈ (0, h0], it is

therefore concerned with the behaviour of the difference equations as h→ 0. In

solving an initial value problem using any numerical method, the most dominant

type of error is the discretization error. This is the error introduced by replac-

ing the infinite process of integration by the finite process of solving difference

equations. Zero-stability ensures that these errors will remain bounded.

In the use of numerical methods, the behaviour of the computed solutions when h is

held constant as N → ∞, is also important. This leads to the concepts of absolute

stability and the region of absolute stability. Absolute stability is referred to as

stability in short. The study of stability is dependent on the numerical method

and the problem. In order to examine the stability of a numerical method, we

usually use the scalar test equation

y′ = qy, q ∈ C, Re(q) < 0. (1.4)

A numerical method must be stable in a region of the product hq which should

be as extensive as possible.

Definition 1.5 The region of absolute stability of a method is the set of values of

hq for which a perturbation in a single value yn will produce a change in subsequent

values which does not increase from step to step.

For example, we consider the region of absolute stability of the explicit Euler

method,

yn+1 = yn + hf(xn, yn). (1.5)

When this is applied to the test equation (1.4) , we obtain

yn+1 = (1 + qh)yn = (1 + qh)n+1y(0). (1.6)

1.3 Stability of the numerical method 9

When Re(q) < 0, the exact solution of (1.4), y(x0)e
qx, decays monotonically.

It is clear that the numerical solution (1.6) will decay in a similar way only if

|1 + qh| < 1. This represents the interior of a circle centred at (−1, 0) on the

complex plane and this is the region of absolute stability of the explicit Euler

method. If qh lies inside this circle then the solution, yn, satisfies yn → 0 as

x → ∞, but not otherwise. When Re(q) ≪ 0, this requirement imposes severe

restrictions on the size of h that can be used to satisfactorily solve the problem.

Hence, the explicit Euler method is not suitable for solving such problems as it

has a bounded region of absolute stability.

Since we are examining the stability of numerical methods for solving an initial

value problem of dimension m, it is appropriate that we consider the linear test

equation, y′ = Ay, which is a linear homogeneous system with constant coeffi-

cients. However, this system can be easily decoupled and transformed to a system

of independent equations of the form (1.4). Hence, the stability of a numerical

method when applied to y′ = Ay can be examined by checking if the method is

stable for each of the equations of the transformed system for the chosen value

of h. Since the test equation (1.4) is linear this type of stability is referred to as

linear stability.

In the case of nonlinear initial value problems the concept of frozen Jacobian may

be used. If y′ = f(x, y) represents a nonlinear system and z(x) = y(x) + δ(y(x))

is a perturbed solution then

z′ = f(x, z) or y′ + (δy)′ = f(x, y + δy).

When perturbations are small, the above system can be approximated by

y′ + (δy)′ = f(x, y) +
∂f

∂y
δy.

If we assume that the Jacobian, ∂f
∂y
, is locally constant or frozen, then, small

perturbations of y approximately satisfy the linear system

(δy)′ = Aδy,

where A is the frozen Jacobian matrix. This implies that the linear scalar test

equation (1.4) can now be used to examine the stability of the original nonlinear

10 Introduction

equation. Although this idea of frozen Jacobians can give some insight into the

stability of nonlinear problems [70], it can give misleading results. It is possible

to find nonlinear systems in which the eigenvalues of the frozen Jacobian have

negative real parts but the solution is non-decaying. It is also possible to find

nonlinear problems in which the eigenvalues of the frozen Jacobian are positive

but the solution is decaying [62]. This implies that one cannot rely entirely on

the arguments from linear stability theory to generalise the behaviour of nonlinear

problems. Some concepts of nonlinear stability will be discussed in Chapter 2.

1.4 Numerical methods for the IVP

The development of numerical methods for the solution of initial value problems

is a very active area. Many new numerical methods are developed every year.

However, all of the methods can be placed in one of the existing classes, Runge-

Kutta methods, linear multistep methods, Rosenbrock methods, or general linear

methods. Runge-Kutta methods and linear multistep methods are amongst the

most successfully implemented numerical methods. General linear methods were

introduced by Butcher [12] to provide a unified framework for the analysis of all

numerical methods for ordinary differential equations. These methods combine the

essential multivalue nature of the linear multistep methods with the multistage

nature of Runge-Kutta methods. Hence, this formulation includes linear multi-

step methods, Runge-Kutta methods and various generalisations such as hybrid

methods. In the following sections we briefly outline these methods.

1.4 Numerical methods for the IVP 11

1.4.1 General linear methods

General linear methods are also known as multivalue methods. A general linear

method for solving the initial value problem (1.1) can be written as

Yi = h
s∑

j=1

aijf(xn + cjh, Yj) +
r∑

j=1

uijy
[n]
j , i = 1, . . . , s, (1.7)

y
[n+1]
i = h

s∑

j=1

bijf(xn + cjh, Yj) +

r∑

j=1

vijy
[n]
j , i = 1, . . . , r, (1.8)

and more compactly, using A = [aij], B = [bij], U = [uij] and V = [vij], in the

form
[

Y

y[n+1]

]
=

[
A⊗ Im U ⊗ Im

B ⊗ Im V ⊗ Im

][
hF (Y)

y[n]

]
, (1.9)

where

Y =




Y1

Y2
...

Ys



, y[n] =




y
[n]
1

y
[n]
2
...

y
[n]
r



, F (Y) =




f(xn + c1h, Y1)

f(xn + c2h, Y2)
...

f(xn + csh, Ys)



,

and ⊗ represents the Kronecker product which is defined by

P ⊗W =




p11W p12W · · · p1lW

p21W p22W · · · p2lW
...

...
...

pk1W pk2W · · · pklW



∈ R

kµ×lν

for any matrices P = [pij] ∈ Rk×l and W ∈ Rµ×ν . The vector c = [c1, c2, . . . , cs]
T

is frequently called the abscissae. The Yi are called the internal stages and y
[n]
i

the external stages. The external stages can consist of y-values, hy′-values or

arbitrary linear combinations of such quantities. The representation of general

linear methods by the coefficient matrices A, U , B and V is in some sense not

unique. Two different methods may be equivalent in that their external stage

vector, y[n], are related by a linear combination.

12 Introduction

The complexity of implementation of general linear methods depend on the struc-

ture of the matrix A, as for Runge-Kutta methods. When the abscissaes are

in increasing order, a general linear method as stated above, is explicit if the A

matrix is strictly lower triangular and implicit otherwise.

Example 1.1 A general linear method with r = s = 2 and order 4 was derived

by Dekker [39]

[
A U

B V

]
=




2
3

0 1 −7
6

2
3

2
3

1 1
6

1
2

1
2

1 1
6

0 1 0 0



.

This method is diagonally implicit and thus can be implemented efficiently. ✷

The Runge-Kutta and the linear multistep methods are important methods in their

own right and these methods have been usually studied separately. However, these

methods can be considered as special cases of general linear methods.

1.4.2 Runge-Kutta methods

The simplest and most well known of all numerical methods is perhaps the explicit

Euler method

yn+1 = yn + hf(xn, yn).

It is first-order only and so has very low accuracy. Runge-Kutta methods are

generalizations of the Euler method in which the one-step format is retained but

the linearity with respect to the function evaluations is sacrificed.

Although the derivation of Runge-Kutta methods can be traced back to about 100

years, its development into a major theory is due to Butcher and a comprehensive

account of this can be found in the book [18]. An s-stage Runge-Kutta method is

1.4 Numerical methods for the IVP 13

defined by

Yi = yn + h

s∑

j=1

aijf(xn + hcj , Yj), i = 1, 2, . . . , s, (1.10)

yn+1 = yn + h
s∑

i=1

bif(xn + hci, Yi), (1.11)

where the Yi are the internal stages and yn is the calculated approximation to the

solution y(xn). Alternatively, these equations can be written in a tableau form

c A

bT
=

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s
...

...
...

...

cs as1 as2 · · · ass

b1 b2 · · · bs

It is always assumed that the coefficients in (1.10) satisfy the row sum condition,

ci =
∑s

j=1 aij. A Runge-Kutta method satisfies the general linear format with

U = e, the vector of ones, B = bT , V = 1, y[n+1] = yn+1 and y[n] = yn. The

structure of matrix A of a Runge-Kutta method plays a very important role in the

computational cost of the method, and based on this, all Runge-Kutta methods

are classified as

• explicit when aij = 0 for all i ≤ j, which means that matrix A is strictly

lower triangular,

• semi-implicit when aij = 0 for all i < j and at least one aii 6= 0,

• implicit when aij 6= 0 for some i < j,

where it is assumed that the abscissaes are arranged in increasing order.

Example 1.2 The classical fourth order method is an example of an explicit

14 Introduction

method and can be written in general linear format as

[
A U

B V

]
=




0 0 0 0 1
1
2

0 0 0 1

0 1
2

0 0 1

0 0 1 0 1
1
6

1
3

1
3

1
6

1



.

✷

In the derivation of a Runge-Kutta method of a particular order, the matrix A

and vectors b and c are chosen to satisfy the order conditions. For low order

methods this can be done easily but for higher orders the derivations get quite

complicated. A systematic approach to their derivation is the Butcher theory in

which the order conditions are related to a structure called rooted trees. For a

method of a particular order, using the Butcher theory, one gets a set of nonlinear

equations that need to be solved in order to get the method coefficients. Implicit

Runge-Kutta methods are investigated in Chapter 2.

Definition 1.6 If y(xn) and y(xn+1) are the exact solutions of (1.1) at the points

xn and xn+1 respectively, then the local truncation error (LTE), denoted by Tn+1

for an s-stage Runge-Kutta method (1.10-1.11) is defined by

Tn+1 = y(xn+1)− y(xn)− h
s∑

i=1

bif(xn + hci, Yi). (1.12)

Definition 1.7 An s-stage Runge-Kutta method (1.10-1.11) is said to be consis-

tent, if for all initial value problems satisfying the hypothesis of Theorem 1.1, the

local truncation error Tn+1, defined by (1.12), satisfies

lim
h→0

Tn+1

h
= 0.

1.4 Numerical methods for the IVP 15

Using Taylor series expansion, we get

Tn+1 = y(xn+1)− y(xn)− h

s∑

i=1

bif(xn + hci, Yi)

= y(xn) + hy′(xn) +O(h2)− y(xn)− h
s∑

i=1

bif(xn, y(xn))

= hy′(xn)− h
s∑

i=1

biy
′(xn) +O(h2).

If the coefficients, bi, satisfy the condition

s∑

i=1

bi = 1, (1.13)

then we see that Tn+1 = O(h2) and the method is consistent, since,

lim
h→0

Tn+1

h
= lim

h→0
O(h) = 0.

The condition (1.13) is called the consistency condition. We can now state the

necessary conditions for convergence.

Theorem 1.8 A numerical method is convergent if and only if it is zero-stable

and consistent.

Theorem 1.8 is the fundamental theorem in this subject was first proved for the

linear multistep methods by Dahlquist [37]. In the next section we shall see that a

Runge-Kutta method is always zero-stable and consequently a consistent Runge-

Kutta method is always convergent. Runge-Kutta methods have local truncation

errors of the form

Tn+1 = C(y(xn))h
p+1 +O(hp+2),

where p is an integer greater than or equal to 1 and is called the order of accuracy

and C is a function that depends on the elementary differentials calculated at

(xn, y(xn)). The term C(y(xn))h
p+1 is called the principal local truncation error

(PLTE) of the method. It is noted that a consistent numerical method has order

at least one.

16 Introduction

1.4.3 Linear multistep methods

The general form of a linear multistep method with k steps is

yn =
k∑

j=1

αjyn−j + h
k∑

j=0

βjfn−j , (1.14)

where fn = f(xn, yn). To compute a solution at xn using a k step multistep method

requires the numerical solution calculated at the previous k points, xn−1, xn−2, . . . , xn−k.

The multistep method is explicit if β0 = 0 and implicit otherwise.

The linear multistep method (1.14) can be cast in the general linear format with

[
A U

B V

]
=




β0 α1 α2 · · · αk−1 αk β1 β2 · · · βk−1 βk

β0 α1 α2 · · · αk−1 αk β1 β2 · · · βk−1 βk

0 1 0 · · · 0 0 0 0 · · · 0 0

0 0 1 . . . 0 0 0 . . . 0 0
...

...
...

...
...

...
...

...
...

0 0 0 . . . 1 0 0 0 . . . 0 0

1 0 0 . . . 0 0 0 0 . . . 0 0

0 0 0 . . . 0 0 1 0 . . . 0 0

0 0 0 . . . 0 0 0 1 . . . 0 0
...

...
...

...
...

...
...

...
...

0 0 0 . . . 0 0 0 0 . . . 1 0




.

In this representation

Y
[n]
1 = y

[n]
1 = yn, y

[n]
2 = yn−1, · · · , y

[n]
k = yn−k+1,

y
[n]
k+1 = hfn, y

[n]
k+2 = hfn−1, · · · , y

[n]
2k = hfn−k+1.

Example 1.3 The Adams-Bashforth method,

yn = yn−1 + h

(
3

2
fn−1 −

1

2
fn−1

)
,

1.4 Numerical methods for the IVP 17

in the general linear formulation has,

[
A U

B V

]
=




0 1 3
2

−1
2

0 1 3
2

−1
2

1 0 0 0

0 0 1 0



,

where

Y
[n]
1 = y

[n]
1 = yn, y

[n]
2 = hfn, y

[n]
3 = hfn−2.

✷

The local truncation error of the linear multistep method, (1.14), is defined as

Tn+k = y(xn)−
k∑

j=1

αjy(xn − jh)− h

k∑

j=0

βjy
′(xn − jh), (1.15)

since we have y′(xn − jh) = f(xn − jh, y(xn − jh)). Assuming that y(x) is differ-

entiable sufficiently many times and expanding (1.15) by using a Taylor series, we

obtain

Tn+k = C0y(xn) + C1y
′(xn) + · · ·+ Cph

py(p)(xn) + Cp+1h
p+1y(p+1)(xn) + · · ·

where C0, C1, . . . are constants.

Definition 1.9 The linear multistep method (1.14) is said to be of order p if

C0 = C1 = · · · = Cp = 0, Cp+1 6= 0.

Therefore the local truncation error of a linear multistep method of order p is

Tn+k = Cp+1y
(p+1)(xn) +O(hp+2) = O(hp+1),

where the term, Cp+1y
(p+1)(xn), is the principal local truncation error and the

coefficient, Cp+1, is called the error constant of the method. An order p ≥ 1 linear

mutistep method is, by definition, consistent. For linear multistep methods the

following alternative definition of zero-stability can be given.

18 Introduction

Definition 1.10 The linear multistep method (1.14) is said to be zero-stable if

all the roots of the characteristic polynomial, ρ(θ) = 1−
∑k

j=1 αjθ
j, have modulus

less than or equal to 1 and every root with modulus equal to 1 is simple.

This alternative definition of zero-stability is equivalent to Definition 1.4 and is

widely known as the root condition. Runge-Kutta methods are a special case of

linear mutistep methods. Therefore, using the above definition of zero-stability we

see that a Runge-Kutta method will always be zero-stable since its characteristic

polynomial, ρ(θ) = 1− θ, has only a simple root whose modulus is 1.

Zero-stability is a severe restriction on linear mutistep methods and it restricts

their order for a given value of k. The following theorem has been proved by

Dahlquist [38] and is known as Dahlquist’s first barrier.

Theorem 1.11 No zero-stable linear k-step method can have order exceeding k+1

when k is odd and k + 2 when k is even.

Within the class of linear mutistep methods there are several sub-classes. One

important sub-class is the Adams methods. These have the form

yn = yn−1 + h
k∑

j=0

βjfn−j ,

with characteristic polynomial, ρ(θ) = θk − θk−1, and are clearly zero-stable.

Adams methods which are implicit are called the the Adams-Moulton methods

while the explicit methods are called Adams-Bashforth methods. These methods

are often used as predictor-corrector methods in which the explicit method is used

as the predictor and the implicit method is used as a corrector.

1.5 An overview of this thesis 19

Example 1.4 The following is an example of an Adams Bashforth, Adams

Moulton pair used as a predictor-corrector method,

P : y
[0]
n+1 = yn +

h

12
[23fn − 16fn−1 + 5fn−2] ,

E : f
[l]
n+1 = f(xn+1, y

[l]
n+1) l = 0, 1, . . . ,M − 1,

C : y
[l+1]
n+1 = yn +

h

24

[
9f

[l]
n+1 + 19fn − 5fn−1 + fn−2

]
, l = 0, 1, . . . ,M − 1,

E : f
[M]
n+1 = f(xn+1, y

[M−1]
n+1),

where the upper index M means that the corrector is iterated M times until

convergence. Implicit equations as in step C are solved either by fixed point iter-

ation or Newton iteration. The above scheme constitutes a P (EC)ME predictor-

corrector method. Sometimes the final function evaluation is omitted in which

case we have the P (EC)M mode. ✷

Although the explicit Runge-Kutta methods and the Adams predictor-corrector

methods are widely used for solving initial value problems, they are not suitable

for stiff problems since they have bounded regions of absolute stability.

1.5 An overview of this thesis

In Chapter 2 we study the phenomena of stiffness and examine numerical methods

which are suitable for the solution of stiff initial value problems. We also examine

some of the existing parallel numerical methods for stiff problems. In Chapter 3

we analyse DIMSIM methods in general and type 4 methods in which the order

is equal to the number of stages. In Chapter 4 we look at a modification of

these methods with a view to their implementation in a variable stepsize, variable

order code. We develop procedures for estimating the errors, controlling stepsize

and order. Some results are presented and some difficulties with the use of these

methods are outlined. In Chapter 5 we derive a second order type 4 method in

which the diagonal elements in the A matrix are allowed to vary as a result of

which the error constant of the method is reduced. We further derive a new set

20 Introduction

of type 4 methods which has one more stage than the order of the method and

smaller error constants. A–stable methods of orders 1 to 8, and ways of estimating

errors in these methods are proposed. Some numerical results for solving some

stiff problems are given and some difficulties with the use of these methods are

outlined.

Chapter 2

Numerical methods for stiff

problems

Since we are interested in parallel numerical methods for stiff initial value prob-

lems, we need to understand stiffness. In this chapter we make an attempt to

define the phenomenon of stiffness and to analyse the properties of stiff systems.

We further consider stability properties necessary for the solution of stiff problems

and investigate numerical methods that are suitable for solving stiff problems.

2.1 The phenomenon of stiffness

Broadly, initial value problems are of two types, stiff and nonstiff, although the

distinction between the two groups is not completely clearcut. Stiff problems

occur in many areas of mathematical modelling such as chemical kinetics, electric

circuits, fluid dynamics and robotics. As we shall see in the next few sections

some numerical methods encounter difficulties when they are used to solve stiff

problems, and consequently, such methods are not appropriate for solving such

problems.

Stiffness is a phenomenon which leads to some practical difficulties when numer-

ically solving some initial value problems. There is no one precise definition of

21

22 Numerical methods for stiff problems

stiffness. However, many qualitative statements such as the following can be made

in order to explain the notion of stiffness.

• Stiffness occurs when some components of the solution decay much more

rapidly than the others.

• If a numerical method with a bounded region of absolute stability, when

applied to a system with any initial condition, is forced to use an excessively

small stepsize in relation to the smoothness of the solution, then the system

is stiff. This means that stability rather than accuracy restricts the stepsize.

To illustrate these concepts, we consider some examples.

Example 2.1 Consider the system
y′1 = y1 − 2y2,

y′2 = 1001y1 − 1002y2.
(2.1)

This is a constant coefficient linear system with Jacobian eigenvalues λ1 = −1,

λ2 = −1000 and general solution,
[
y1(x)

y2(x)

]
= k1

[
1

1

]
e−x + k2

[
2

1001

1

]
e−1000x. (2.2)

With the initial conditions y1(0) = 1 and y2(0) = −1, the system has a particular

solution,
[
y1(x)

y2(x)

]
=

1003

999

[
1

1

]
e−x − 2002

999

[
2

1001

1

]
e−1000x.

The component of the solution involving the term e−1000x decays very fast and is

called the fast transient, whereas the other component involving e−x, decays very

slowly, compared to the fast component, and is called the slow transient. It is the

presence of these two widely different decay scales which cause problems for some

numerical methods when used to solve such a problem. It can be easily seen that

the system (2.1) can be decoupled to two independent differential equations,

z′ = −z,

w′ = −1000w. (2.3)

2.1 The phenomenon of stiffness 23

In order to illustrate the difficulty experienced by explicit methods, we solve the

second differential equation using the explicit Euler method (1.5) and obtain

wn+1 = (1− 1000h)wn = (1− 1000h)n+1w(0)

The exact solution decays with increasing x, and we require the numerical solu-

tion to do the same. This is obviously only possible when |1 − 1000h| < 1 or

equivalently, 500h < 1. This means that the stepsize h will need to be extremely

small for otherwise the numerical solution will diverge. Since most other explicit

methods also have similar bounds on the stepsize, they impose severe restrictions

on stepsize. In the solution of stiff problems, it is often required to integrate the

problem until all the transients die out. The presence of a slow transient will force

the method to integrate for a long time using a very small stepsize. This results

in high computational costs and is usually unacceptable.

Stiffness is a property of a system of differential equations and its general solu-

tion, and not the particular solution. For example, the system (2.1) with initial

conditions, y1(0) = 1 and y2(0) = 1, has the exact solution

[
y1(x)

y2(x)

]
=

[
1

1

]
e−x.

In this situation even though the fast transient is not present in the exact solution,

the presence of the fast transient in the general solution (2.2) will still cause any

explicit numerical method to encounter stepsize restrictions. Hence, stiffness is a

property of the general solution and not a particular solution.

In contrast, the use of an implicit method such as the implicit Euler method,

yn+1 = yn + hf(xn+1, yn+1), (2.4)

to solve (2.3), leads to

wn+1 = wn + 1000hwn+1

=
1

1 + 1000h
wn

=

(
1

1 + 1000h

)n+1

w(0)

24 Numerical methods for stiff problems

and since 1
1+1000h

< 1 ∀ h > 0, stability considerations do not restrict the size of

h. This is true for many implicit methods. Hence, we see that implicit methods

are often more suited to solving stiff problems. ✷

The last example is a system of ordinary differential equations. However, stiffness

can occur for a single differential equation.

Example 2.2 The Prothero-Robinson problem,

y′(x) = m(y(x)− g(x)) + g′(x), Re(m) ≪ 0, (2.5)

where g(x) is a smooth function, has exact solution

y(x) = g(x) + k exp(m(x− x0)), k = y(x0)− g(x0).

Since Re(m) ≪ 0, the exponential term in the solution will decay rapidly and

become insignificant compared to the first term. The degree of stiffness in (2.5)

depends on how negative Re(m) is. This problem was used by Prothero and

Robinson to study a phenomenon called order reduction which will be discussed

later on. ✷

There are many other examples of stiff problems which are traditionally used for

testing new numerical methods. We consider two examples which will be used in

a later chapter to test some numerical methods.

Example 2.3 The Robertson problem [68] is a well known ODE system which

comes from chemical kinetics and contains fast and slow transients. This is a

mildly stiff, nonlinear three dimensional problem, described by




y′1(x) = −0.04y1(x) + 104y2(x)y3(x), y1(0) = 1,

y′2(x) = 0.04y1(x)− 104y2(x)y3(x)− 3× 107y22(x), y2(0) = 0,

y′3(x) = 3× 107y22(x), y3(0) = 0.

(2.6)

Since the problem is nonlinear we cannot decouple the individual equations but

we can get an idea of the stiffness of the system by examining its Jacobian matrix

∂f

∂y
=




−0.04 104y3 104y2

0.04 −104y3 − 6× 107y2 −104y2

0 6× 107y2 0


 . (2.7)

2.1 The phenomenon of stiffness 25

At x = 0 the eigenvalues of the Jacobian are, −0.04, 0 and 0 and the problem is

not stiff. Eventually this system tends to an equilibrium state, as shown in Figure

2.1, with y1 = y2 = 0 and y3 = 1 as x → ∞ and the Jacobian has eigenvalues 0,

0, −104 − 0.04. The problem becomes stiff immediately after x = 0.

Due to the physical nature of the problem, the three components have non-negative

values and since
∑3

i=1 y
′
i = 0, the total of the three components is one during the

integration. Although physically no solution component can be zero, it is diffi-

cult to avoid the numerical method producing negative solutions. It is extremely

difficult to deal with y2 becoming negative as the endpoint of integration, xend,

becomes large, for example, 1010. ✷

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

0

0.2

0.4

0.6

0.8

1

10000y
2

y
1

y
3

Figure 2.1: Solution profile: Robertson problem.

Example 2.4 Another well known stiff problem which many numerical methods

have difficulty solving is the van der Pol problem [49]

{
y′1(x) = y2(x), y1(0) = 2,

y′2(x) = ǫ(1− y21(x))y2(x)− y1(x), y2(0) = 0,
(2.8)

with Jacobian

∂f

∂y
=

[
0 1

−2ǫy1y2 − 1 ǫ(1− y21)

]
. (2.9)

An analysis of this problem for different magnitudes of ǫ is given in [70]. Basically,

the increase in the magnitude of ǫ increases the stiffness of the system. This system

is more interesting when ǫ≫ 1 because the non-linearity becomes important then.

Using ǫ = 106, it can be seen in Figure 2.2 that the periodic solution in one cycle is

26 Numerical methods for stiff problems

composed of a segment in which y1 changes slowly, and a short segment in which it

changes very quickly, another segment of slow change, and a final segment of rapid

change. The second component of the solution, y2, can be explained as follows.

Since ǫ is large, the derivative of y′2 with respect to y2 is very large and negative

when y′2 ≈ 0 and |y1| > 1. Hence, the solution will rapidly approach y′2 = 0,

which means that y2 = y1/ǫ(1− y21). Moreover, since y′1 depends on y2, y
′
1 → ∞

as y2 → ∞ when y1 ≈ ±1. Since the solution changes rapidly near some values

of x the difficulty due to stiffness is compounded by the need to adapt stepsize

rapidly to this change. ✷

0 1 2.2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 1 2.2
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

6

Figure 2.2: Solution profile: van der Pol problem, y1 on left and y2 on right.

2.2 Stability and stiffness

From the previous section it is apparent that the explicit methods have bounded

regions of absolute stability. The bigger this region is, the less severe the restriction

on h. Therefore, using an explicit method always leads to some restriction on the

values of h that can be used. For the solution to stiff problems we would ideally

like to use numerical methods in which there is no restriction at all on h. This

implies that the region of absolute stability of the numerical methods should be the

whole of the left half of the complex plane. This leads to the following definition

of A-stability by Dahlquist [38].

Definition 2.1 A numerical method is said to be A-stable if its region of absolute

stability includes the whole of the left half plane.

2.2 Stability and stiffness 27

Concerning the linear stability properties of linear mutistep methods Dahlquist

[38] proved the following theorem.

Theorem 2.2 (i) An explicit linear multistep method cannot be A-stable.

(ii) The order of an A-stable linear multistep method cannot exceed 2.

This theorem is often known as the second Dahlquist barrier. The most well

known first order A-stable method is the implicit Euler method (2.4). Dahlquist

[38] showed that the Trapezoidal rule is the second order A-stable linear multistep

method which has the smallest error constant.

In one sense A-stability is too demanding a requirement, particularly for linear

multistep methods, since these methods cannot be A-stable for orders greater than

two. However, linear multistep methods of higher orders have some computational

advantages and in order to be able to use some of these methods for the solution

of stiff problems we consider two properties weaker than A-stability, the concepts

of A(α)-stability and stiff-stability.

For many practical problems with eigenvalues not close to the imaginary axis,

a method having a stability region which is only part of the left half plane and

includes the negative real axis is sufficient to solve such problems. This motivates

the following definition of A(α)-stablility proposed by Widlund [73].

Definition 2.3 A method is said to be A(α)-stable, α ∈ (0, π/2) if

RA ⊇ {z ∈ C : −α < π − arg(z) < α},

where RA is the region of absolute stability of the method.

For many problems the eigenvalues which produce the fastest transients all lie

to the left of the line Re(z) = −a, where a > 0 and the remaining eigenvalues

clustered fairly close to the origin. In this case we are assuming that there are no

eigenvalues with small negative real part and large imaginary part. This motivates

the concept of stiff-stability which was introduced by Gear [45].

28 Numerical methods for stiff problems

Definition 2.4 A method is said to be stiffly-stable if RA ⊇ R1 ∪R2, where

R1 = {z ∈ C : Re(z) < −a}, R2 = {z ∈ C : −a ≤ Re(z) < 0,−c ≤ Im(z) ≤ c},
and a and c are positive real numbers and RA is the region of absolute stability.

Although A-stability ensures that there are no restrictions on h, it does not always

ensure that yn → 0 as x → ∞ rapidly, as in the case for the solution of the test

equation. For example, consider the Trapezoidal Rule

yn+1 = yn +
h

2
(f(xn, yn) + f(xn+1, yn+1)) , (2.10)

which, when applied to the test equation (1.4) gives

yn+1 = R(z)yn = (R(z))n+1 y(0),

where

R(z) =
1 + z

2

1− z
2

,

is called the stability function of the method and z = qh. The method is A-stable.

However, when |Re(q)| is large and h not very small, R(z) will be close to −1.

This means that the term (exp(z))n which tends to zero rapidly as n→ ∞ is being

approximated by (R(z))n which tends to zero very slowly, and with alternating

sign, as n→ ∞. We expect a slowly damped oscillating error when the Trapezoidal

rule is applied in such situations. This leads to the following definition of L-stability

by Ehle [41] and Axelsson [2].

Definition 2.5 A one-step method is said to be L-stable if it is A-stable and, in

addition, when applied to the scalar test equation (1.4), it yields yn+1 = R(z)yn,

and

lim
|z|→∞

R(z) = 0.

Thus, the Trapezoidal rule is not L-stable but the Implicit Euler method, with

R(z) = 1/(1− z), is L-stable. When the general linear method (1.9) is applied to

the scalar test equation (1.4), we obtain

Y = [I − zA]−1Uy[n],

y[n+1] = zB[I − zA]−1Uy[n] + V y[n],

2.2 Stability and stiffness 29

from which we get

y[n+1] =M(z)y[n],

where

M(z) = V + zB[I − zA]−1U, (2.11)

is called the stability matrix of the general linear method. The method (1.9) is

stable if M(z) is power bounded. For a Runge-Kutta method the stability matrix

(2.11) simplifies to the stability function

R(z) = 1 + zbT (I − zA)−1e. (2.12)

The following definition is due to Prothero and Robinson [67].

Definition 2.6 An implicit Runge-Kutta method with nonsingular A is said to be

stiffly-accurate if

lim
|z|→∞

R(z) = 0. (2.13)

This definition of stiff accuracy is exactly the same as the definition of L-stability

for A-stable methods. Hence, a stiffly-accurate A-stable method is an L-stable

method.

Theorem 2.7 If an s-stage implicit Runge-Kutta method with nonsingular A sat-

isfies the following conditions

(i) asj = bj , j = 1, 2, . . . , s,

(ii) cs = 1,

then the method is stiffly-accurate.

Proof This theorem can be easily proved by considering (2.12) and taking the

limit

lim
|z|→∞

R(z) = 1− bTA−1e.

30 Numerical methods for stiff problems

From condition (i) we have

b = [as1, as2, . . . , ass]
T = AT es,

where es = [0, . . . , 0, 1]T . Hence,

lim
|z|→∞

R(z) = 1− eTs AA
−1e = 1− 1 = 0.

Condition (ii) of the above theorem guarantees that the Runge-Kutta method is

consistent if condition (i) holds, since we have

s∑

j=1

asj = cs, row sum condition,

s∑

j=1

asj = 1, consistency condition.

✷

In one sense A-stability is too strong a requirement, while in another sense A-

stability is not sufficient since it does not ensure the rapid damping of errors, thus

the need for L-stability. Linear stability theory plays a very important role in

the selection of numerical methods suitable for solving stiff problems. However,

as stated in Chapter 1, we cannot always rely on linear stability theory for the

stability behaviour of nonlinear problems. Dahlquist proposed the study of of a

nonlinear test equation for linear mutistep methods and this lead to the concept

of G-stability. Butcher introduced an analogous property known as B-stability [14]

for Runge-Kutta methods.

Definition 2.8 Let {. . . , yn−1, yn, . . . } and {. . . , zn−1, zn, . . . } be two sequences of

approximate solutions of y′ = f(y(x)) calculated using a Runge-Kutta method with

fixed stepsize h. Let < ·, · > denote an inner product in Rm and let ‖ · ‖ be the

corresponding norm. The Runge-Kutta method is said to be B-stable if for any f

satisfying

〈f(u)− f(v), u− v〉 ≤ 0, for all u, v ∈ Rm, (2.14)

it follows that

‖yn − zn‖ ≤ ‖yn−1 − zn−1‖.

2.2 Stability and stiffness 31

The relation (2.14) is called the contractivity condition. B-stability is a stronger

condition than A-stability because of the requirement that the sequence ‖zn−yn‖
be non-increasing rather than only bounded. B-stability is related to a condition

called algebraic stability which was introduced by Burrage and Butcher [7] and also

by Crouzeix [34]. An algebraic condition for B-stability is given by the following

definition.

Definition 2.9 If the coefficients of a Runge-Kutta method satisfy

bi ≥ 0,

M = BA + ATB − bbT is non-negative definite,

where B = diag(b1, b2, . . . , bs), then the method is B-stable.

Therefore, Runge-Kutta methods which satisfy the two conditions listed in the

definition are said to be algebraically stable. Butcher and Burrage [7] extended

the concept of B-stability to the non-autonomous problem y′ = f(x, y(x)) and

introduced BN-stability. It has been shown that algebraic stability is sufficient for

B-stability as well as BN-stability. For nonconfluent Runge-Kutta methods the

concepts of algebraic stability, BN-stability and B-stability are equivalent.

Definition 2.10 A Runge-Kutta methods is said to be nonconfluent if all the

components of the abscissae vector, c, are distinct.

Since it is impossible for a linear multistep method to be of order greater than

2 and be A-stable, it seems that they would not be able to solve stiff problems

satisfactorily. However, there is a sub-class of linear multistep methods called the

backward differentiation formulae (BDF), which are considered to have stability

regions large enough to be able to solve stiff problems. They are A(α)-stable for

α close to 90o, and are also stiffly stable.

32 Numerical methods for stiff problems

2.3 BDF methods

The BDF methods were introduced by Curtiss and Hirschfelder [36]. The BDF

method of k steps and order k can be written in the backward difference form

k∑

j=1

1

j
∇jyn+1 = hfn+1, (2.15)

where the backward difference operator, ∇j , is defined by

∇jyn = ∇j−1yn −∇j−1yn−1, ∇0yn = yn.

These methods are A-stable for orders 1 and 2 and A(α)-stable for orders k =

3, 4, 5, 6. For methods with k ≥ 7 the methods do not satisfy the root condition

and are thus not zero-stable [35]. We note that (2.15) is the implicit Euler method

for k = 1.

Table 2.1: The angles α in A(α)-stability of BDF methods.

order k 1 2 3 4 5 6

angle α 90◦ 90◦ 88◦ 73◦ 52◦ 18◦

From Table 2.1 it can be seen that methods of orders 1 to 5 have stability regions

which include most of the left half plane. In the stability regions parts of the left

half plane are excluded and so higher order methods will be inefficient only for

problems with eigenvalues close to the imaginary axis. In such cases the BDF

methods of orders more than 2 are no better than the explicit methods. The

method of order 6 has a very small value of α and consequently is not used in

most software for solving initial value problems.

Some efficient implementations of the BDF methods, such as in LSODE [50] and

VODE [4], have established them as one of the most efficient methods for solving

stiff initial value problems on sequential computers. The success of the BDF

methods is due to the following reasons.

1. They are computationally cheap as only one function evaluation per step is

needed and usually the Newton iteration scheme has very fast convergence.

2.4 Implicit Runge-Kutta methods 33

2. Asymtotically correct error estimates for the local truncation error are de-

rived very easily. Since the local truncation error needs to be estimated and

monitored in every step for controlling the step size, this is a very important

consideration.

3. The ease of local truncation error estimation makes possible the implemen-

tation of the BDF methods in a variable stepsize, variable order mode. This

makes them very efficient since it allows the code to choose the appropriate

stepsize and method at every step.

4. These methods have been programmed for over 20 years and so there is a

lot of computational experience with their implementation and use.

However, the BDF methods have the following disadvantages.

1. Only methods of orders 1 and 2 are A-stable. Hence, in a variable order im-

plementation with say orders 1 to 5, it can be inefficient for solving problems

with eigenvalues close to the imaginary axis.

2. Even though it is easy to estimate the local truncation errors, stepsize chang-

ing requires a complicated procedure.

3. The error constants of BDF methods are relatively larger than those of the

implicit Runge-Kutta methods.

4. When solving problems with frequent discontinuities the BDF methods can

be quite inefficient as this involves a restart when a discontinuity is located.

Since they need to start with a first order method this can become compu-

tationally expensive.

2.4 Implicit Runge-Kutta methods

Since explicit Runge-Kutta methods have bounded regions of absolute stability

they are not suited for the efficient solution of stiff problems. Some implicit

methods on the other hand can be A-stable or L-stable and are well suited for

34 Numerical methods for stiff problems

the solution of stiff problems as far as stability is concerned. The fully implicit

methods are categorized by the class of quadrature formulae they revert to when

y′ = f(x). From the theory of the order conditions of the Runge-Kutta methods,

we have the simplifying assumptions [49]

B(p) :

s∑

j=1

bjc
q−1
j =

1

q
, q = 1, 2, . . . , p, (2.16)

C(η) :

s∑

j=1

aijc
q−1
j =

1

q
cqi , q = 1, 2, . . . , η, (2.17)

D(ζ) :
s∑

i=1

bic
q−1
i aij =

bj
q
(1− cqj), j = 1, 2, . . . , s, (2.18)

q = 1, 2, . . . , ζ,

which can be used in the derivation of the method coefficients. In the following

sections we examine the Gauss, Radau and Lobatto families of methods. An impor-

tant property of implicit Runge-Kutta methods which determines their suitability

for solving stiff problems is the stage order.

Definition 2.11 Consider a Runge-Kutta method of order p and q is the largest

number such that the C(q) condition

s∑

j=1

aijc
q−1
j =

1

q
cqi

holds. Then the stage order is defined as the minimum of (p, q) [49].

2.4.1 Gauss methods

These fully implicit methods are based on the Gauss-Legendre polynomials. These

methods which were introduced by Butcher [11], have the highest possible order

for a given number of stages. They revert to the Gaussian quadrature formulae

with ordinates xn + cjh and weights bj , when solving y′ = f(x). The following

theorem is due to Butcher [11].

2.4 Implicit Runge-Kutta methods 35

Theorem 2.12 The s−stage Gauss method has order 2s. Its stability function is

the (s, s)-Padé approximation and the method is A-stable.

The abscissaes of an s stage Gauss method are the roots of the s degree Legendre

polynomial, Ps(c) =
ds

dcs
(cs(c−1)s). The A matrix is defined by the C(s) condition

and the b vector is defined by the B(2s) condition. The B(2s) and the C(s)

conditions give linear systems of equations which can be easily solved to derive

the method coefficients. The one-stage Gauss method is the implicit Mid-point

Rule.

2.4.2 Radau methods

The Radau methods which were originally proposed by Butcher [11] are not A-

stable. Based on the ideas of Butcher, Ehle [41] constructed an A-stable family

of methods called Radau IA methods. As s-stage Radau IA method has order

2s− 1. The abscissae of an s-stage Radau IA method are the roots of the degree

s Radau left polynomial, Ps(c) = ds−1

dcs−1 (c
s(c − 1)s−1). As a result of this cs = 0

for all Radau IA methods. Matrix A is determined by the D(s) condition and

the b vector is determined by the B(2s − 1) condition. A second class of Radau

methods, called Radau IIA methods, were developed by Axelsson [2]. As s-stage

Radau IIA method has order 2s − 1. The abscissae are the roots of the degree

s Radau right polynomial, Ps(c) =
ds−1

dcs−1 (c
s−1(c − 1)s), as a result of which these

methods have cs = 1. The b vector is determined by the B(2s−1) condition, while

matrix A is determined by the C(s) condition. The one-stage Radau IIA method

is the implicit Euler method.

Theorem 2.13 The s-stage Radau IA and IIA methods have order 2s − 1 and

their stability function is the (s − 1, s) Padé approximation. These methods are

A-stable and L-stable [49].

36 Numerical methods for stiff problems

2.4.3 Lobatto methods

An s-stage Lobatto method has order 2s−2 and the abscissaes are the zeros of the

Lobatto polynomial Ps(c) =
ds−2

dcs−2 (c
s−1(c− 1)s−1). As a consequence c1 = 0 and

cs = 1 for all Lobatto methods. There are various possibilities for choosing matrix

A and the b vector. Among the most useful Lobatto methods are the Lobatto IIIA

and IIIB methods of Ehle [41] and the Lobatto IIIC methods of Chipman [33].

For the three Lobatto methods the b vector is determined by the B(2s − 2) con-

dition. The A matrix for the Lobatto IIIA methods is determined by the C(s)

condition while that for Lobatto IIIB methods is determined by the D(s) condi-

tion. For Lobatto IIIC methods, ai1 = b1 for i = 1, 2, . . . , s, and the rest of matrix

A is determined by the C(s− 1) condition. The 2−stage Lobatto IIIA method is

the Trapezoidal Rule.

Theorem 2.14 The s-stage Lobatto IIIA, IIIB and IIIC methods have order 2s− 2.

The stability function for the Lobatto IIIA and IIIB methods is the (s− 1, s− 1)

Padé approximation, while that for the Lobatto IIIC method is the (s− 2, s) Padé

approximations. All Lobatto III methods are A-stable and Lobatto IIIC methods

are L-stable [49].

In the study of stiffness, Prothero and Robinson [67] used problem (2.5) and

showed that the global errors not only depended on the local errors but also on

the errors contributed by the computations of the internal stage. If the method has

stage order much less than the overall order, the global errors will, for moderate

stepsizes, be dominated by the errors produced by the stages. Therefore, the

accuracy of the solutions appeared to be related to the stage order and not the

overall order of the method. They termed this phenomenon order reduction. They

further showed that methods which are stiffly-accurate do not suffer from order

reduction due to the cancellation of errors produced in the calculation of the

internal stages as |z| → ∞. We have seen earlier that A-stable stiffly-accurate

methods are just L-stable methods and that they satisfy, asj = bj , j = 1, 2, . . . , s.

The Gauss methods, which have stage order of only s compared to their overall

order of 2s, and are not L-stable suffer from order reduction. Hence, inspite of the

2.4 Implicit Runge-Kutta methods 37

fact that the Radau and Lobatto methods have lower overall order for the same

number of internal stages, compared to the Gauss methods, Theorems 2.13 and

2.14 and the study of Prothero and Robinson show that the Radau and Lobatto

methods have better stability and accuracy properties amongst the implicit Runge-

Kutta methods. The well known code, RADAU5 [49], is based on the 3−stage

fifth order Radau IIA method

4−6
√
6

10
88−7

√
6

360
296−169

√
6

1800
−2+3

√
6

225

4+6
√
6

10
296+169

√
6

1800
88+7

√
6

360
−2−3

√
6

225

1 16−
√
6

36
16+

√
6

36
1
9

16−
√
6

36
16+

√
6

36
1
9

(2.19)

The variable order RADAU code consists of Radau IIA methods of three, five

and seven stages of orders five, nine and thirteen respectively. The code PSIDE

[72] is a parallel implementation of the 4-stage Radau IIA method of order seven.

RADAU5 and PSIDE are used to solve some stiff problems later in this thesis.

2.4.4 Solution of the implicit stage equations

In this section we look at the solution of the implicit stage equations that arise

in the use of the implicit Runge-Kutta methods when solving the initial value

problem (1.1). The general form of an s-stage implicit Runge-Kutta method is

yn+1 = yn + h
n∑

i=1

bif(xn + hci, Yi),

where the stages Yi are determined by solving the set of implicit equations

Yi = yn + h

n∑

j=1

aijf(xn + hcj , Yj), i = 1, 2, . . . , s.

The stage equations can be written as

Y = e⊗ yn + h(A⊗ Im)F (Y), (2.20)

38 Numerical methods for stiff problems

where m is the dimension of the problem, and

e =




1

1
...

1



, Y =




Y1

Y2
...

Ys



, F (Y) =




f(xn + c1h, Y1)

f(xn + c2h, Y2)
...

f(xn + cs, Ys)



.

Since we are interested in solving stiff systems, fixed point iteration is not appro-

priate. So we use a modified Newton Raphson iteration to solve (2.20). This can

be defined as

M∆Y [k] = G(Y [k]), (2.21)

Y [k+1] = Y [k] +∆Y [k] k = 0, 1, . . . ,

where

M = Is ⊗ Im − h(A⊗ J), (2.22)

G(Y [k]) = −Y [k] + e⊗ yn + h(A⊗ Im)F (Y
[k]), (2.23)

and J is the Jacobian of f evaluated at some recent point. The total cost of

computations in this scheme include

1. the evaluation of F and G,

2. the evaluation of J,

3. the evaluation of M,

4. LU factorization of the iteration matrix, M, (or some variant of this),

5. back substitution to get the Newton update vector, ∆Y [k].

In any implementation of these methods the costs associated with the items 2 to

4 can be reduced by keeping the Jacobian and the iteration matrix constant over

several steps. The LU factorization of the the ms×ms iteration matrix, M , has

an operation count of s3m3/3 and the cost of backsubstitution is s2m2. Hence, the

total linear algebra cost is about s3m3/3 + s2m2. As the number of stages, s, of

the method, or size of the system, m, increases, the computational cost increases

considerably. Compared to the BDF cost, m3/3+m2, this is considered excessively

2.4 Implicit Runge-Kutta methods 39

high. This is is the main reason why the implicit Runge-Kutta methods are not

competitive with the BDF methods.

The main advantages of using implicit Runge-Kutta methods for solving stiff initial

value problems are

1. They can be A-stable or L-stable for high orders.

2. They are highly accurate since they have small error constants.

3. They are one-step methods so restarting can be done at any order when

there is a need, as in problems with discontinuities.

4. Stepsize can be changed easily if an estimate of the local truncation error

exists.

Their main disadvantages are

1. They have very high linear algebra operation costs and also have high func-

tion evaluation costs.

2. It is difficult to derive schemes for estimating local truncation errors.

3. It is difficult to derive schemes for estimating errors for the next higher order

method. Consequently, automatic order control is very difficult.

Fortunately some costs associated with the linear algebra can be reduced by im-

posing certain structures on the Runge-Kutta matrix. Butcher [15] proposed an

ingenious technique for reducing the computational costs in linear algebra and is

based on similarity transformations. We investigate the cost reduction techniques

in the following sections.

2.4.5 Diagonally implicit Runge-Kutta methods

As we have seen in the last section, fully implicit Runge-Kutta methods are com-

putationally expensive, as at every stage we need to factorise a matrix of size

ms×ms. By requiring that matrix A be lower triangular, we have methods which

are called diagonally implicit Runge-Kutta (DIRK) methods, for which compu-

tational costs are lower. DIRK methods which are A-stable or L-stable can be

derived for a range of orders. If the diagonal elements of matrix A are all equal

40 Numerical methods for stiff problems

then to emphasize this property the methods are called singly diagonally implicit

(SDIRK) methods. Consider a DIRK method of form

c1 µ1

c2 a21 µ2

...
...

...
. . .

cs as1 as2 · · · µs

b1 b2 · · · bs

(2.24)

The method is defined as

yn+1 = yn + h

n∑

i=1

bif(xn + hci, Yi),

Yi = yn + h

i−1∑

j=1

aijf(xn + hcj, Yj) + µif(xn + hci, Yi), (2.25)

i = 1, 2, . . . , s.

It can be seen that in contrast to the fully implicit methods, each stage, Yi,

depends on the previous stages and itself only. Since each stage is uncoupled it

can be solved individually, avoiding the need to factorise a large matrix. The

Newton iteration scheme for solving (2.25) is defined as

(Im − hµJ)∆Y
[k]
i = −Y [k]

i + yn +
i−1∑

j=1

aijf(xn + hcj, Yj) + µif(xn + hci, Y
[k]
i)

Y
[k+1]
i = Y

[k]
i +∆Y

[k]
i , k = 0, 1, . . . , i = 1, 2, . . . , s,

where J is the Jacobian of the system evaluated at some recent point. The matrix

Im − hµiJ , which is of size m×m needs to be factorised at every integration step

and thus the total linear algebra operation count for an s−stage DIRK method

is about sm3/3 + sm2. This is considerably less compared to the fully implicit

methods and is quite comparable to the BDF methods. For the case where the

diagonal elements of the A matrix are all equal to µ, the matrix factors of a single

matrix, Im − hµJ , can be used for all the stages. Thus, for the SDIRK case, the

cost is further reduced to m3/3 + sm2. The code SIMPLE is an implementation

of a three stage, third order SDIRK method by Nørsett and Thomson [65].

2.4 Implicit Runge-Kutta methods 41

However, the DIRK methods suffer from a low stage order. Since the DIRK

methods satisfy only the C(1) condition, they have a stage order of only one.

It has been observed by Prothero and Robinson [67] that when a Runge-Kutta

method is used to solve a very stiff problem the observed order is less than the

order of the method and can be as low as the stage order. That is, the DIRK

methods suffer from order reduction. Therefore, it seems that it is very important

for methods for use in solving stiff problems to have the order and stage order

as close as possible, preferably equal. Consequently, the DIRK methods are not

suited for the solution of stiff initial value problems.

2.4.6 Use of transformations to reduce costs

In order to reduce the computational cost of the fully implicit Runge-Kutta

methods, Butcher [15] introduced similarity transformations. In this approach

we use transformation of the iterates, in such a way that the iteration matrix,

M = Is ⊗ Im − h(A⊗ J), transforms to a lower triangular form which can be ex-

ploited to reduce the computational costs. Consider the modified Newton iteration

scheme (2.21) and the transformations from Y [k], G(Y [k]) to Ŷ [k], Ĝ(Y [k]) given by

Ŷ [k] = (Q−1 ⊗ Im)Y
[k], (2.26)

Ĝ(Y [k]) = (P ⊗ Im)G(Y
[k]), (2.27)

where P and Q are two nonsingular s× s matrices such that

Q−1A−1Q =




1/λ1 0 0 · · · 0

µ1 1/λ2 0 · · · 0

0 µ2 1/λ3 · · · 0
...

...
...

...

0 0 0 · · · 1/λs



, (2.28)

is the Jordan canonical form of A−1. Furthermore, µi, i = 1, 2, . . . , s− 1, is zero if

λi 6= λi+1 and either zero or an arbitrary non-zero number if λi = λi+1, and

PAQ = D = diag(λ1, λ2, . . . , λs), where λi, i = 1, 2, . . . , s, are the eigenvalues of

42 Numerical methods for stiff problems

matrix A. This means that

PQ = (DQ−1A−1)Q = D(Q−1A−1Q)

=




1 0 0 · · · 0

ǫ1 1 0 · · · 0

0 ǫ2 1 · · · 0
...

...
...

...

0 0 0 · · · 1




where each of the subdiagonal elements, ǫ1, ǫ2, . . . , is either 0 or 1. Then (2.21) is

transformed to

M̂∆Ŷ [k] = Ĝ(Y [k]), (2.29)

where

M̂ = (P ⊗ Im)M(Q⊗ Im)

= (PQ)⊗ Im − (PAQ)⊗ J.

The matrix M̂ now consists of diagonal blocks of the form Im − hλJ , together

with subdiagonals blocks of either the zero or the identity matrix. Hence, we

now require the LU factorisations of each of the diagonal blocks and the back

substitutions break into s separate blocks with the subdiagonal elements of PQ

contributing a further O(n) operations. The total linear algebra cost depends on

whether the eigenvalues of the A matrix are real or complex. Where all the eigen-

values are real and distinct, the total cost reduces to sm3/3+ sm2, a considerable

saving compared to the original number of operations. Where the eigenvalues are

complex smaller savings are realised. The cost of transformations is a further 2s2m

operations. As well as transforming the matrices related to the method, it is also

possible to transform a full Jacobian, J , to upper Hessenberg form as proposed

by Enright [44] and this can be especially beneficial if the same J is used over as

many steps as possible.

2.4 Implicit Runge-Kutta methods 43

2.4.7 Singly implicit methods

From the last section it is evident that for sequential computation, when matrix

A has a single eigenvalue, the linear algebra cost is reduced to about m3/3+ sm2,

which is the same as the cost in the SDIRK method and is very close to the BDF

cost. The methods where the A matrix has a single eigenvalue are called the

singly implicit Runge-Kutta (SIRK) methods. We briefly summarise some of the

properties of these methods. More details can be found in [16].

Let ξ1, ξ2, . . . , ξs be the distinct zeros of the degree s Laguerre polynomial, then

the transformation matrix T for the SIRK method is chosen to be

T =




L0(ξ1) L1(ξ1) · · · Ls−1(ξ1)

L0(ξ2) L1(ξ2) · · · Ls−1(ξ2)
...

...
...

L0(ξs) L1(ξs) · · · Ls−1(ξs)



,

and the matrix T has the property

T−1AT =




λ 0 0 · · · 0

−λ λ 0 · · · 0

0 −λ λ · · · 0
...

...
...

...

0 0 0 · · · λ



,

where λ is the single s-fold eigenvalue of the Runge-Kutta matrix A. The matrix

T−1 can be explicitly defined in terms of the roots of the Laguerre polynomials

[16]. For a method with s-stages, the value of λ will be chosen by requiring that

the characteristic polynomial of the A matrix be (z − λ)s. Having chosen λ, we

select c1 = λξ1, c2 = λξ2, . . . , cs = λξs. Then matrix A is chosen to satisfy the C(s)

condition (2.17) and b1, b2, . . . , bs are chosen to satisfy the B(s) condition (2.16).

Definition 2.15 The Laguerre polynomial of degree s is defined as

Ln(x) =

n∑

i=0

(
n

i

)
(−x)i
i!

, (2.30)

The following theorem on the order of SIRKs is due to Burrage [6].

44 Numerical methods for stiff problems

Theorem 2.16 An s-stage singly implicit method has order s or s + 1 and it is

either L-stable or A-stable respectively.

Since the s-stage method of order s satisfy the stage order condition C(s), they

have a stage order equal to s, therefore, order reduction is not expected when

these methods are used to solve stiff problems. The following is an example of a

second order, L-stable SIRK method.

3− 2
√
2 5−3

√
2

4
7−5

√
2

4

1 1+
√
2

4
3−

√
2

4

1+
√
2

4
3−

√
2

4

The SIRK methods have been implemented in a variable stepsize, variable or-

der code by Burrage, Butcher and Chipman [9]. Although the SIRK methods

have much lower computational costs compared to the fully implicit Runge-Kutta

methods, the cost of transformations remain high for lower dimensional problems.

The number of function evaluations also remain quite high. Another disadvantage

that results from the choice of λ is that the abscissae values lie far outside the

integration interval for methods of orders more than three. To overcome some of

the problems of SIRK methods, a recent generalisation is the diagonally extended

singly implicit (DESI) Runge-Kutta methods of Butcher, Cash and Diamantikis

[25], in which the SIRK methods are appended with a few extra diagonally implicit

stages. These additional stages provide extra freedom in the choice of method

parameters. An implementation of these methods [40] has shown them to be com-

petitive with the BDF methods for the stiff DETEST set of problems. Another

generalisation is the effective order singly implicit (ESIRK) methods of Butcher

and Chartier [28], in which the initial values are perturbed using effective order.

For these methods the extra freedom allows a free choice of abscissae. General-

ising effective order to DESI methods leads to diagonally extended singly implicit

Runge-Kutta methods with effective order (DESIRE) methods of Butcher and Dia-

mantakis [29]. Although these methods are promising to be good competitors to

the BDF methods the internal stages in these methods need to be calculated

sequentially and cannot take advantage of parallel processors.

Since the calculation of the implicit stages constitutes the most computationally

2.5 Some parallel numerical methods for stiff problems 45

expensive part, an obvious way of reducing computational costs is to use parallel

processors to calculate the stages. This means that we need to develop methods

in which the stages can be computed in parallel or to develop procedures in which

some of the existing methods can be implemented in parallel.

A family of Runge-Kutta methods have been developed to take advantage of the

use of parallel processors in the past decade and in the following sections we outline

some of these methods.

2.5 Some parallel numerical methods for stiff prob-

lems

In this section we examine a selection of the existing parallel numerical methods

for the solution of initial value problems. Some of these method are modified

versions of the methods as they were used on sequential computers, while others

are new methods especially designed for parallel implementation.

2.5.1 Motivation for parallel methods

Traditional methods used for the numerical solution of stiff ordinary differential

equations are either linear multistep methods or Runge-Kutta methods. The ad-

vantages and disadvantages of of these methods have been outlined in the previous

sections.

Among the main drawbacks for linear multistep methods is the their lack of A-

stability for orders greater than two. Compared to linear multistep methods, the

sequential costs of using implicit Runge-Kutta methods for solving stiff problems

is a lot higher. Although transformations have been used to reduce the compu-

tational costs, these methods are still not competitive in a sequential computing

environment. To reduce the costs associated with solving large problems one can

look beyond serial computation, as computers with parallel computing capabilities

become widespread.

46 Numerical methods for stiff problems

Very few existing methods can be adapted to take advantage of parallelism in the

method. There is almost no prospect of parallelism in the use of the multistep

methods. The explicit Runge-Kutta methods require the stages to be calculated

successively, while the fully implicit methods require the stages to be calculated

by solving a large non-linear system and obviously cannot take advantage of paral-

lelism without modifications or by the development of new methods in which some

of the stages can be evaluated in parallel. We examine some of these methods in

the following sections.

2.5.2 Parallel block methods

These methods were introduced by Sommeijer et. al. [71] and further generalised

by Chartier [32]. These methods are a direct generalisation of the implicit one-step

method

yn+1 = ayn + hbf(yn) + hdf(yn+1).

Define c = [c1, c2, . . . , ck]
T with c1 = 1 and assume that ci are pairwise distinct,

and let yn,i denote the numerical approximation to the solution y(xn + (ci − 1)h)

at step n. Let Yn denote the vector with components yn,i, i = 1, 2, . . . , k. The final

approximation to the solution is given by yn+1,1, which is the first component of

Yn+1. If I denotes the k × k identity matrix, then a k-dimensional parallel block

method is defined by the recursion

Yn+1 = (A⊗ I)Yn + h(B ⊗ I)F (Yn) + h(D ⊗ I)F (Yn+1), (2.31)

where A, B and D are k × k real matrices and D is assumed to be diagonal.

The diagonal structure of D decouples the the implicit system, thus allowing the

stages to be solved in parallel. This method can be formulated as a general linear

method

[
Y

y[n+1]

]
=

[
A⊗ I U ⊗ I

B ⊗ I V ⊗ I

][
hF (Y)

y[n]

]
,

2.5 Some parallel numerical methods for stiff problems 47

where

Y = Yn, A = D, U =
[
A B

]
,

y[n] =

[
Yn

hF (Yn)

]
, B =

[
D

I

]
, V =

[
A B

0 0

]
.

A special choice of method parameters is considered in [32]. Methods with

• B = 0, to ensure that ρ(M(∞)) = 0,

• c = [1, 2, . . . , k]T ,

• A = V U−1 −DWU−1, where

U = [e, (c− e), (c− e)2, . . . , (c− e)k−1],

V = [e, c, c2, . . . , ck−1],

W = [0, e, 2c, . . . , (k − 1)ck−1],

• D = (1/r)(I + diag(c)), where diag(c) is the k × k diagonal matrix with

diagonal elements ci, and r > 0,

are called M(k, r). The details concerning this choice of parameters can be found

in [32]. It has been shown that when r ≥ k−1
2
, the method M(k, r) for some choice

of r is of order at least k − 1, zero-stable and L-stable. Because of the choices

B = 0 and c = [1, 2, . . . , k]T , M(k, r) can be considered as a generalisation of the

BDF methods.

Example 2.5 Method M(4, 5)

A =




2
15

6
5

−2
5

1
15

− 1
10

3
5

7
10

−1
5

4
15

−6
5

12
5

− 7
15

5
6

−3 7
2

−1
3




✷

48 Numerical methods for stiff problems

An implementation of M(8, r) where r ≈ 7.25, showed that on a selected set of

stiff problems of dimensions 2 to 15, it is sometimes more efficient compared to

RADAU5 and LSODE, if the parallel CPU times were 1/8 the sequential CPU

times. Since only problems of small dimensions were used this may not be justified.

2.5.3 Parallel Runge-Kutta methods

In order to solve stiff problems we need to use implicit methods. Fully implicit

Runge-Kutta methods require the solution of a large system of equations in gen-

eral. In order to be able to solve some stages in parallel, we need to have methods

in which some of the stages can be solved independently. We look at some of the

methods in which we can have this type of implementation. Later we examine

some other types of of implementations which can take advantage of parallelism.

2.5.3.1 Strictly block diagonal implicit Runge-Kutta methods

These methods are among the ones that have been specifically designed to take

advantage of parallelism. The Amatrix of such methods consist of diagonal blocks.

An example of such a method that has been derived by Iserles and Nørsett [58] is

1
2
−

√
3
6

5
12

1
12

−
√
3
6

0 0

1
2
+

√
3
6

1
12

+
√
3
6

5
12

0 0

1
2
−

√
3
6

0 0 1
2

−
√
3
6

1
2
+

√
3
6

0 0
√
3
6

1
2

3
2

3
2

−1 −1

This method is L-stable but not algebraically stable. In this method the 2 × 2

blocks can be solved independently and so the blocks can be solved entirely in

parallel. This method belongs to a family of methods in which the diagonal

consists of 2×2 blocks. It has been shown in [58] that, independent of the number

of blocks, the maximal attainable order is 4. Thus, the advantage one can gain

from exploiting parallelism is limited in this family of methods.

2.5 Some parallel numerical methods for stiff problems 49

2.5.3.2 Parallel DIRK methods

By deriving DIRK methods in which the A matrix has a diagonal block structure,

the implicit stages in each block can be be solved in parallel. Such methods are

called parallel DIRK methods. Methods of this form have been derived by Iserles

and Nørsett [58]. Such a fourth order, 4 stage method is given by

1
2

1
2

0 0 0

2
3

0 2
3

0 0

1
2

−5
2

5
2

1
2

0

1
3

−5
3

4
3

0 2
3

−1 3
2

−1 3
2

This method is L-stable but not algebraically-stable. Since the first two stages

can be solved independently, they can be solved in parallel, and once these two

stage values have been calculated, the third and the fourth stages can similarly

be solved in parallel on two processors. Hence, this method can be implemented

in parallel on two processors. Moreover, since a11 = a33 and a22 = a44, only two

matrices need to be factorised to solve for all the stages by the Newton iteration

method.

In general for parallel implementation, matrix A of the parallel DIRK methods

can be written in block form as

A =




D1 0 0 · · · 0

A21 D2 0 · · · 0

A31 A32 D3 · · · 0
...

...
...

...

Ap1 Ap2 Ap3 · · · Dp




where each Dk is a (possibly different) diagonal matrix. The stages correspond-

ing D1 can be solved in parallel and the results are used to solve for the stages

corresponding to D2 in parallel, and so on.

As the order of the methods increase, more possibilities arise for the diagonal

block structure of the Runge-Kutta matrix. In particular, the location of the

50 Numerical methods for stiff problems

zero and non-zero terms in the lower triangular part of the Runge-Kutta matrix

determine the number of processors that can be used to solve the stages and also

the relationships between stages. This structure has been analysed to reveal the

capacity of parallelism using directed graphs [58].

As discussed earlier the DIRK methods suffer from low stage order and so are not

likely to form the basis for parallel IVP software for stiff problems.

2.5.3.3 PIRK methods

In order to solve (2.20) van der Houwen and Sommeijer [52] proposed the scheme

Y [0] − h(B ⊗ Im)F (Y
[0]) = e⊗ yn + h(C ⊗ Im)F (Y

[0]), (2.32)

Y [j+1] − h(D ⊗ Im)F (Y
[j+1]) = e⊗ yn + h ((A−D)⊗ Im)F (Y

[j]), (2.33)

for j = 0, 1, . . . , where B and D are assumed to be diagonal matrices, while C

is an arbitrary full matrix. This form makes the iterative process (2.33) parallel,

since now, given Y [j], Y [j+1] can be computed using s processors, each one dealing

with one-stage. Explicit and implicit schemes based on the above formulation have

been derived by van der Houwen and Sommeijer in [52, 51, 54] and we examine the

main results of their work. In the following sections, the term predictor is used to

refer to the method used for obtaining values of Y [0], while corrector refers to the

method used to calculate Y [i], i = 1, 2, In this context (2.32) is the predictor

and (2.33) the corrector.

By setting B = 0 and D = 0, the resulting explicit methods are called parallel

iterated Runge-Kutta (PIRK) methods.

2.5.3.4 PDIRK methods

van der Houwen et. al. [54] considered parallel methods by considering a non-zero

choice of the matrix D in (2.33). Then the method (2.33) becomes an implicit

method, suitable for the solution of stiff problems. When D is chosen as a diagonal

matrix, the resulting methods are called parallel diagonally iterated Runge-Kutta

2.5 Some parallel numerical methods for stiff problems 51

or PDIRK methods. Since matrix D is of diagonal form, the s components of the

stage vector, Y , can now be computed in parallel on s processors, using some form

of Newton iterations.

Different ways of choosing matrix D and the number of iterations, M , has been

considered. Keeping the number of iterations fixed such that the orders of the

corrector and PDIRK are equal and by choosing the other iteration parameters

such that the stability regions in the left half plane is optimized, leads to a class

of DIRK methods. Using this approach and D = dI, van der Houwen et. al. [54],

have derived several A-stable and L-stable methods of orders up to 10. They have

shown that these methods have better performance on a parallel machine than

the basically sequential codes, LSODE and SIMPLE, for two stiff problems.

In the second approach the number of iterations, M , is allowed to vary and the

diagonal matrix D is chosen to minimize the spectral radius of the stability matrix

at infinity, Z(∞) = Im −D−1A. This ensures strong damping of the stiff compo-

nents of the iteration error. The performance of the methods derived in this way

depended on the type of methods used as the the predictor and corrector. For

example, it has been reported that the Gauss correctors when used with explicit

predictors did not perform satisfactorily. Some of the methods derived in this way

had better performance than the existing DIRK methods provided appropriate

correctors were chosen. One problem of the PDIRK methods is the poor conver-

gence and even divergence in the first few iterations which becomes worse as the

number of stages of the underlying Runge-Kutta method increases [56].

2.5.3.5 Triangularly implicit iteration methods

These methods have been proposed by van der Houwen and de Swart [56] in order

to improve the convergence of the PDIRK methods. The A matrix in (2.21) is

replaced by a more ‘convenient’ matrix B, which is required to be lower triangular,

that is B = L+D, and L is strictly lower triangular while D is a diagonal matrix

52 Numerical methods for stiff problems

with positive diagonal entries, dii. This leads to the iteration scheme

(I −D ⊗ hJ)∆Y [j] = (L⊗ hJ)∆Y [j] −G(Y [j]), (2.34)

Y [j+1] = Y [j] +∆Y [j], j = 0, 1, . . . ,

where I = Is⊗ Im = Ims. In the case where L = 0 and the underlying method is a

Runge-Kutta method, the resulting scheme is the PDIRK method discussed ear-

lier. The method (2.34) requires LU decompositions ofm×m matrices, Im−hdiiJ ,
i = 1, . . . , s, and in each iteration the evaluation G(Y [j]), s forward-backward sub-

stitutions and the matrix-vector multiplication (L ⊗ hJ)∆Y [j]. Since J is an

approximate Jacobian, this multiplication can be expressed in terms of F , and

this leads to the scheme

(I −D ⊗ hJ)∆Y [j] = h(L⊗ Im)
(
F (Y [j+1])− F (Y [j])

)
−G(Y [j]), (2.35)

Y [j+1] = Y [j] +∆Y [j], j = 0, 1, . . .

In the schemes (2.34) and (2.35) the s LU decompositions and the evaluation of

G(Y [j]) can be done in parallel. These schemes are called parallel, triangularly

implicit iterated methods and where the underlying method is a Runge-Kutta

method then they are called parallel triangularly implicit Runge-Kutta (PTIRK)

methods. A further degree of parallelism is introduced by using the Butcher sim-

ilarity transformation (2.26), which enables the elimination of the (L⊗ hJ)∆Y [j]

term in (2.34). This leads to the scheme

(I −D ⊗ hJ)∆Ŷ [j] = −(Q−1 ⊗ Im)G(Y
[j]), (2.36)

Y [j+1] = Y [j] + (Q⊗ Im)∆Ŷ
[j],

where BQ = QD. In each iteration of this scheme, the s forward-backward

substitution can now be done in parallel, in addition to the other components

that can be done in parallel. Apart from the case where L = 0, the scheme

(2.36), when implemented in parallel on s processors, has the lowest cost among

the schemes (2.34)-(2.36) [57].

In search of suitable B matrices Hoffmann and de Swart [57] applied the iteration

scheme to the test problem y′ = qy and defined the amplification matrix (stability

2.5 Some parallel numerical methods for stiff problems 53

matrix) as

Z(z) = z(Im − zB)−1(A− B), (2.37)

where z = qh, and the stiff and non-stiff amplification matrices respectively, as

Z∞(B) = lim
|z|→∞

Z(z) = Im − B−1A, (2.38)

Z0(B) = lim
|z|→∞

Z(z)

|z| = A−B. (2.39)

One choice that has been considered in [57] is for PTIRK methods with B = T

such that, A = TU , is the Crout decomposition of A. This means that U is unit

upper triangular. It follows that, the stiff amplification matrix Z∞(T) is strictly

upper triangular and that (Z∞(T))j = 0 for j > s. Furthermore, it has been

proved in [57] that the diagonal entries of T chosen using this criteria are always

positive.

Using the four stage Radau IIA corrector in a constant stepsize setting with a

Jacobian evaluation in every step, it is shown in [56], that the PTIRK methods

have faster convergence in the first few iterations than the PDIRK methods, on a

few representative stiff problems.

2.5.3.6 PILSRK methods

In these methods the modified Newton iteration scheme (2.21) is solved by an inner

linear iteration in which the matrices to be factorised are of the form I −B ⊗ hJ

where B is similar to a diagonal matrix with positive diagonal entries. This inner

iteration process is referred to as parallel iterative linear system solver for Runge-

Kutta (PILSRK) methods and is defined by

(I −B ⊗ hJ)(Y [j+1,µ+1] − Y [j+1,µ]) = −(I − A⊗ hJ)Y [j+1,µ] + C [j], (2.40)

C [j] = (I −A⊗ hJ)Y [j] −G(Y [j],

where Y [j+1,0] = Y [j,r] and Y [n,r] is accepted as the solution Y of (2.21). Since C [j]

does not depend on µ, the inner iteration requires only one evaluation of C. Using

54 Numerical methods for stiff problems

this in conjunction with the Newton iteration scheme as above, is termed the

Newton-PILSRK iteration scheme. The matrix B is assumed to be nondefective

and to have positive eigenvalues, and so satisfies B = QTQ−1, with Q an arbitrary

real, nonsingular matrix and T a lower triangular matrix with positive diagonal

entries. Hence, using the transformation Y [j,µ] = (Q⊗ Im)Ŷ
[j,µ] we obtain

(I − T ⊗ hJ)(Ŷ [j+1,µ+1] − Ŷ [j+1,µ]) =

−(I −Q−1AQ⊗ hJ)Ŷ [j+1,µ−1] + (Q−1 ⊗ Im)C
[j], (2.41)

for µ = 1, 2, . . . , r and Ŷ [j+1,0] = (Q−1⊗Im)Y [j]. If for a given j+1 the transformed

inner iterates, Ŷ [j+1,µ+1], converge to a vector Ŷ [j+1,∞], the Newton iterate defined

by (2.21) can be obtained from Y [j+1] = (Q ⊗ Im)Ŷ
[j+1,∞]. Given the matrix A,

the PILSIRK method (2.41) is completely defined by the matrix B or the matrix

pair (T,Q). The derivation of suitable matrix pairs (T,Q) is discussed in [55].

The code PSIDE [72] is an implementation of the four stage Radau IIA method

in which the stages are computed in parallel using the PILSRK iteration scheme.

2.5.4 DIMSEMs

A set of general linear methods called diagonally implicit single eigenvalue meth-

ods (DIMSEMs) has been derived by Enenkel and Jackson [42, 43]. As the name

implies the stability matrix of DIMSEMs has a single non-zero eigenvalue and

all other eigenvalues are equal to zero. The method is of the form given by

(1.9), where A is a diagonal matrix, to enable a parallel implementation for stiff

problems. It has been shown that if A = λI, the maximum order attainable

is 2. As a consequence the more general diagonally implicit methods in which

A = diag[λ1, λ2, . . . , λr], has been considered. Even with this form it has been

shown that it is not possible to derive A-stable methods in which r = s. Hence,

the methods considered satisfy s = r− 1 and have order and stage order equal to

r − 1.

By using the simplifying assumptions for general linear methods, the stability

matrix, M(z) = V + zB(I− zA)−1U , is transformed to a form in which the U and

V matrices have been eliminated. This transformed stability matrix is then used

2.5 Some parallel numerical methods for stiff problems 55

to satisfy the r − 1 zero eigenvalue conditions. This transformation left ci and

λi as free parameters. However, it seems there were too many parameters which

could not be handled in any reasonable way, so the authors decided an unusual

approach. They chose ci = 0, i = 1, 2, . . . , s. L-stable DIMSEMs of orders 2 to 6

have been derived using a symbolic manupulator. More details on the derivations

of these methods can be found in [42].

A fixed order implementation of DIMSEMs with starting values using LSODE,

performed better at more stringent tolerances than LSODE on a test problem of

dimension 100.

From this brief review it is evident that it is difficult to adapt the existing numerical

methods for parallel computation and that very few new numerical methods which

can take advantage of parallel processors have been developed.

Chapter 3

DIMSIMs

Although general linear methods were proposed about 30 years ago, they have

never been widely adopted as practical numerical methods. The main difficulty

has been identifying practical methods. From this large class, a sublcass which

has potential for efficient implementations, has been identified by Butcher [19] as

the diagonally implicit multistage integration (DIMSIMs). It is hoped that these

methods will have many of the advantages possessed by Runge-Kutta methods and

linear multistep methods but without their disadvantages. What makes DIMSIMs

more attractive is their potential for parallel methods.

In this chapter we analyse DIMSIMs in general and type 4 DIMSIMs in which

the order, the stage order, and the number of internal and external stages are all

equal.

Since we are investigating parallelism across methods and this applies to scalar

problems, for notational convenience we will use the scalar autonomous initial

value problem in the rest of this thesis, unless otherwise stated. However, the

formulae generalise easily using Kronecker products, to systems of ordinary differ-

ential equations and therefore to nonautonomous equations.

57

58 DIMSIMs

3.1 Introduction to DIMSIMs

DIMSIMs are a subclass of general linear methods and are characterised by four

integer parameters, p, q, r and s. The values of p and q are the order and the stage

order respectively, whereas r gives the number of approximations passed from one

step to the next, and s is the number of internal stages. The methods can be

represented by the equations

Y = AhF (Y) + Uy[n], (3.1)

y[n+1] = BhF (Y) + V y[n], (3.2)

or in a partitioned matrix form

[
Y

y[n+1]

]
=

[
A U

B V

][
hF (Y)

y[n]

]
, (3.3)

where

Y =




Y1

Y2
...

Ys



, y[n] =




y
[n]
1

y
[n]
2
...

y
[n]
p



, F (Y) =




f(Y1)

f(Y2)
...

f(Ys)



.

The Yi are called the internal stages and the y
[n]
i the external stages. Since DIM-

SIMs are general linear methods equations (3.1-3.2) are equivalent to (1.7-1.8).

The structure of matrix A, which corresponds to the coefficient matrix in a Runge-

Kutta method, plays a central role in the implementation costs of the method. In

order to be competitive for practical computation the A matrix is required to

be lower triangular and based on this structure, we have four ‘types’ of DIM-

SIMs, each of which is capable of solving stiff or nonstiff problems in a parallel or

sequential environment, as in Table 3.1.

In identifying these four types of DIMSIMs, methods in which the A matrix is

full has not been considered because such methods would then have very high

computational costs, similar to that of the fully implicit Runge-Kutta methods.

3.1 Introduction to DIMSIMs 59

Type Structure of A Problem Computer

1




0 0 0 · · · 0

a21 0 0 · · · 0

a31 a32 0 · · · 0
...

...
...

...

as1 as2 as3 · · · 0




nonstiff sequential

2




λ 0 0 · · · 0

a21 λ 0 · · · 0

a31 a32 λ · · · 0
...

...
...

...

as1 as2 as3 · · · λ




stiff sequential

3




0 0 0 · · · 0

0 0 0 · · · 0

0 0 0 · · · 0
...

...
...

...

0 0 0 · · · 0




nonstiff parallel

4




λ 0 0 · · · 0

0 λ 0 · · · 0

0 0 λ · · · 0
...

...
...

...

0 0 0 · · · λ




stiff parallel

Table 3.1: Types of DIMSIMs.

Furthermore, the stage order is required to be identical to the overall order or be

close to it. This property is necessary for stiff problems and will allow low cost

local error estimation and interpolatory output.

DIMSIMs of types 1 and 3 are explicit methods while types 2 and 4 are diagonally

implicit. The explicit DIMSIMs have an advantage over explicit Runge-Kutta

methods in that the order barriers do not apply to the explicit methods. Hence,

there exist explicit DIMSIMs in which p = s for high values of p. The diagonally

implicit DIMSIMs have computational complexity similar to the DIRK methods

60 DIMSIMs

but do not suffer from low stage orders. Some of the first references on DIMSIMs

considered methods in which the p = q = r = s, while a later paper of Butcher

and Jackiewicz [30] considered adjacent methods in which {r = q = s+1, p = q or

p = q+1}, {s = r+1 = q, p = q or p = q+1}, and {s = r = q, p = q+1}. Many

issues of implementation were outlined in another paper by Butcher and Jackiewicz

[31] and by Butcher [22]. Some techniques on error estimation, stepsize changing

and interpolation are outlined in these papers, and some of these ideas will be

used in an implementation of type 4 methods later in this thesis.

Jackiewicz, Vermiglio and Zenarro [59] proposed an alternative stepsize changing

strategy in which the method coefficients are varied and showed how the incorpo-

ration of additional external stages could provide a continuous method.

In a research report by Van Wieren [75], an alternative error estimation technique,

based on the use of a method with its companion method, is outlined for a type 2

DIMSIM. In this approach two methods which differ only in the B and V matrices

and error constants are used to get two solutions. Then a weighted difference of the

solutions provides an estimate of the error. This method is similar to the embedded

approach used for many Runge-Kutta methods. According to this report this new

estimator worked well for some selected problems.

Type 3 methods have been introduced in a paper by Butcher [21] and analysed

further in [20]. These methods can be used to solve nonstiff problems in a parallel

environment. Since for type 3 methods A = 0, the stages do not depend on

the stage derivatives. These methods have bounded stability regions, whose size

depend on the choice of the methods parameters.

In the next section we consider the DIMSIMs in a general way to determine the

order conditions and later focus on the analysis of the type 4 DIMSIMs.

3.1.1 Order conditions

We seek a method of order p, using starting values of the form

y
[0]
i =

p∑

k=0

αiky
(k)(x0)h

k +O
(
hp+1

)
, (3.4)

3.1 Introduction to DIMSIMs 61

where y
[n]
i denotes the approximation number i at the integration point n. αik

must be chosen so that, within the first step, with stepsize h, the stage values,

which are approximations to the solution at points x0 + hci, i = 1, 2, . . . , s, are

given by

Yi =

p∑

k=0

cki
k!
y(k)(x0)h

k +O
(
hp+1

)
, (3.5)

and the output values computed at the end of the step are given by

y
[1]
i =

p∑

k=0

αiky
(k)(x1)h

k +O
(
hp+1

)
, (3.6)

with x1 = x0 + h. Although the starting values are given in (3.4) by a weighted

Taylor series, there is no need in practice to evaluate the various derivatives.

Theorem 3.1 The numbers αik, i = 1, 2, . . . , r, k = 0, 1, 2, . . . , p, in (3.4) and the

matrices A, B, U and V satisfy (3.5) and (3.6) if and only if

exp(cz) = zA exp(cz) + Uw +O
(
zp+1

)
, (3.7)

exp(z)w = zB exp(cz) + V w +O
(
zp+1

)
, (3.8)

where exp(cz) denotes a vector with components given by exp(ciz), i = 1, 2, . . . , s,

and w denotes the vector with elements given by

wi =

p∑

k=0

αikz
k, i = 1, 2, . . . , r. (3.9)

This theorem is very important as it simplifies the order conditions which otherwise

need to be analysed using the concept of the B Series, the simplifying assumptions

and the appropriate choice of a function called the correct value function [10, 49].

Proof The proof of these order conditions is given in [19], but because of its

special relevance to this work, it is repeated here. Since Yi, given by (3.5), satisfies

Yi = y(x0 + hci) +O
(
hp+1

)
, (3.10)

62 DIMSIMs

it follows that

hf(Yi) = hy′(x0 + hci) +O
(
hp+2

)

=

p+1∑

k=1

ck−1
i

(k − 1)!
y(k)(x0)h

k +O
(
hp+2

)

=

p∑

k=1

ck−1
i

(k − 1)!
y(k)(x0)h

k +O
(
hp+1

)
.

Using Taylor expansions, (3.6) can be written as

y
[1]
i =

p∑

k=0

(
k∑

l=0

1

l!
αi,k−1

)
αiky

(k)(x0)h
k +O

(
hp+1

)
. (3.11)

Substituting the Taylor expansions for Yi, hf(Yi), and y
[1]
i in the equations

Yi = h

s∑

j=1

aijf(Yj) +

r∑

j=1

uijy
[0]
j ,

y
[1]
i = h

s∑

j=1

bijf(Yj) +
r∑

j=1

vijy
[0]
j ,

which define the computations performed in the first step, it is found that

p∑

k=0

(
cki −

s∑

j=1

kaijc
k−1
j −

r∑

j=1

uijαjkk!

)
hk

k!
y(k)(x0) = O

(
hp+1

)
,

p∑

k=0

(
k∑

l=0

k!

l!
αi,k−1 −

s∑

j=1

kbijc
k−1
j −

r∑

j=1

vijαjkk!

)
hk

k!
y(k)(x0) = O

(
hp+1

)
.

Equating the coefficients of hky(k)(x0)/k!, k = 0, 1, . . . , p, to zero and then multi-

plying these coefficients by zk/k! and adding from k = 0 to k = p, we obtain

exp(ciz)−
s∑

j=1

zaij exp(cjz)−
r∑

j=1

uijwj = O
(
zp+1

)
, i = 1, 2, . . . , s,

exp(z)wi −
s∑

j=1

zbij exp(cjz)−
r∑

j=1

vijwj = O
(
zp+1

)
, i = 1, 2, . . . , r,

3.1 Introduction to DIMSIMs 63

which are equivalent to (3.7) and (3.8) respectively. ✷

Another key result in [19] is the formula for the elements of matrix B when p =

r = s and the components of c are distinct.

Theorem 3.2 Let p = r = s and U = I then the DIMSIM (3.3) with V e = e is

of order p and of stage order p if and only if

B = B0 −AB1 − V B2 + V A, (3.12)

where the (i, j) elements of B0, B1 and B2 are given respectively by

∫ 1+ci
0

φj(x)dx

φj(cj)
,

φj(1 + ci)

φj(cj)
,

∫ ci
0
φj(x)

φj(cj)
dx,

and, for j = 1, 2, . . . , s,

φj(x) =
∏

k 6=j

(x− ck).

Proof A more detailed proof than the one given in [19] is given here.

From (3.7) the vector valued function w(x) satisfies

w(x) = (I − zA) exp(cz) +O
(
zp+1

)
,

where, here and elsewhere, u(z) = v(z)+O(zm), for u and v vector valued functions

of z, will mean that ‖u‖−‖v‖ = O(zm). Substituting this last result for w(x) into

(3.8), we get

(B − V A)z exp(cz) = exp(z) exp(cz)− Az exp(z) exp(cz)

− V exp(cz) +O
(
zp+1

)
. (3.13)

The condition V e = e, is found by substituting z = 0. Given this condition, we

operate on (3.13) by Φj(D), j = 1, 2, . . . , s, where

Φj(x) =

∫ x

0

φj(t)dt,

and D denotes differentiation with respect to z, and set z = 0. Since the set of

polynomials consisting of 1, together with Φj , for j = 1, 2, . . . , s, form a basis for

64 DIMSIMs

the set of polynomials of degree not exceeding p = s, the result of carrying out

these operation and the substituting z = 0 is equivalent to equating the coefficients

up to degree p in the Taylor series of (3.13) to zero. Since Φj(D)(O(zp+1)) = 0,

we get

(B − V A) (Φj(D)z exp(cz)) |z=0 = (Φj(D) exp(z) exp(cz)) |z=0

− A (Φj(D)z exp(z) exp(cz)) |z=0 − V (Φj(D) exp(cz)) |z=0 (3.14)

By writing φj(x) as

φj(x) =
∏

k 6=j

(x− ck) =
s∑

k=1

dk−1x
k−1

for some appropriate di, i = 0, 1, . . . , s− 1, we have

Φj(D) (z exp(cz)) |z=0 =
s∑

k=1

dk−1

k
Dk (z exp(cz)) |z=0

=
s∑

k=1

dk−1D
k−1 (exp(cz)) |z=0

= φj(D) (exp(cz)) |z=0

=
∏

k 6=j

(D − ck) exp(cz)|z=0

= φj(cj)ej,

where ej is a vector with a 1 in the jth position and zeros elsewhere. Furthermore,

we have

Φj(D) (exp(cz))|z=0 =
s∑

k=1

dk−1

k
Dk (exp(cz)) |z=0

=
s∑

k=1

dk−1
ck

k

=

∫ ci

0

φj(x)dx, i = 1, 2, . . . , s.

3.1 Introduction to DIMSIMs 65

Similarly

Φj(D) (exp(z) exp(cz)) |z=0 = Φj(D) (exp(e+ c)z) |z=0

=

∫ 1+ci

0

φj(x)dx, i = 1, 2, . . . , s.

We also have

Φj(D) (z exp(z) exp(cz)) |z=0 = Φj(D) (zexp(e+ c)z) |z=0

= φj(D) (exp(e+ c)z) |z=0

=
∏

k 6=j

(1 + ci − ck)

= φj(1 + ci), i = 1, 2, . . . , s.

Using the expressions derived above, (3.14) simplifies to

(B − V A−B0 −AB1 − V B2)ej = 0,

thus completing the proof. ✷

Theorems 3.1 and 3.2 greatly simplify the construction of DIMSIMs. Once the A

and V matrices and the abscissae vector are chosen, Theorem 3.2 then enables the

calculation of matrix B.

3.1.2 Consistency, convergence and stability

The starting values and the calculated values of DIMSIMs are more general quan-

tities as given by equations (3.4) and (3.6) respectively, while the internal stage

values satisfy (3.5). If we let υ = [α10, α20, . . . , αr0] for notational convenience,

then the starting values, the external stage values and the internal stage values

satisfy

y[0] = υy(x0) +O(h),

y[1] = υy(x1) +O(h) = υy(x0) +O(h),

Y = y(x0) +O(h).

66 DIMSIMs

Using these in the method given by equations (3.1-3.2), we get the relationships

Uυ = e and V υ = υ,

which are called the preconsistency conditions and a method which satisfies these

conditions is said to be preconsistent. Since the choice U = I is used for DIMSIMs,

these reduce to the condition V e = e.

Let the starting values, calculated values and the stage values satisfy

y[0] = υy(x0) + ωhy′(x0) +O(h2),

y[1] = υy(x1) + ωhy′(x1) +O(h2),

Y = y(x0) + cy′(x0) +O(h2),

where we have used ω = [α11, α21, . . . , αr1]. We also have

hF (Y) = hy′(x0 + ch) = hy′(x0) +O(h2).

Assuming that the method is preconsistent, then the use of (3.1-3.2) for one step

gives

Be + V ω = ω + e,

which is called the consistency condition. We also obtain

Ae+ Uυ = c,

which represents the relative spacing of the vectors Y1, Y2, . . . , Ys as approximations

to the values of the solution y(x). Hence, the consistency condition ensures that

the accuracy of the calculated solution is at least of first order and any useful

numerical method must be consistent.

The preconsistency and consistency conditions can also be viewed as the require-

ment that the methods can solve exactly the differential equations y′ = 0 and

y′ = 1, respectively.

Furthermore, when solving the differential equation y′ = 0, we have

y[n] = V y[n−1] = V ny[0].

3.2 Analysis of type 4 DIMSIMs 67

To ensure that the solution remains stable, it is necessary that matrix V be power

bounded, that is, ‖V n‖ ≤ K for some constant K and n = 1, 2, The eigen-

values of matrix V determine the power boundedness or the zero stability of the

method, and must all have magnitudes not greater than 1. A typical design choice

is to require all eigenvalues to be equal to zero except for the unit eigenvalue as-

sociated with eigenvector e, which results in V being of rank 1 and all rows equal.

As in [17], convergence can be defined informally as the condition that if

y[0] = υy(x0) +O(h),

then

y[n] = υy(x0 + nh) +O(h),

for all n, subject to bounded nh. This condition guarantees that, given accurate

enough initial approximations, we can obtain an arbitrarily accurate numerical

solution at any fixed point, by taking h sufficiently small.

The relationship concerning the concepts of consistency, stability and convergence

is that stability and consistency are necessary and sufficient for convergence and

this has been proved in [12] for general linear methods.

3.2 Analysis of type 4 DIMSIMs

Type 4 DIMSIMs are intended for the solution of stiff problems in a parallel

computing environment.

Stiffly accurate type 4 DIMSIMs are discussed in a paper by Butcher and Chartier

[26]. As for stiffly accurate Runge-Kutta methods, the following definition of stiffly

accurate type 4 DIMSIMs has been adopted.

Definition 3.3 An s-stage r-value type 4 DIMSIM characterised by the matrices

A, B, U and V , is said to be stiffly accurate iff

• A is non-singular,

68 DIMSIMs

• M(∞) = V − BA−1U = 0,

• B is of rank r.

The stiffly accurate methods considered in [26] have matrix A of the form, A =

diag{λi}. According to the authors the stronger condition,M(∞) = 0, is desirable

for methods which will be used for solving differential algebraic equations. Since

the requirement, M(∞) = 0, implies that B = V A, the derivation of methods

is simplified a great deal. In particular, there is no need to consider separately

cases for different ranks for the V matrix. However, it is shown that many of the

methods which satisfy M(∞) = 0 are not A-stable. In particular, it is shown that

when p = q = r = s = 3 the method is not A-stable. Methods which satisfy

r = s = p = q + 1 and p = q = r − 1 = s − 1 are A-stable. The construction of

methods with p = q = r− 1 = s− 1 is considered. For these methods the λi’s and

the abscissae are free parameters. Methods in which the λi’s and the abscissae

are chosen to be based on the roots of the shifted Chebyschev polynomial of the

second kind, are considered, in order to have small coefficients. However, it is

shown that even with this choice, where the abscissae lie in [0, 1], the size of the

coefficients grow dramatically as the order increases.

The example below is a third order type 4 method which satisfies M(∞) = 0 [26].

Example 3.1 An order 3 method with 4 stages, c = [0, 1
4
, 3
4
, 1]T and U = I has

A =




1
4

0 0 0

0 3
8

0 0

0 0 5
8

0

0 0 0 3
4




and V =




1
4

−2
3

2 − 7
12

13
12

−31
12

47
12

−17
12

21
4

−137
12

51
4

−67
12

109
12

−58
3

62
3

−113
12



,

while B is determined uniquely by the requirement, V −BA−1U = 0. ✷

Some low order methods performed well when used to solve selected stiff problems.

Further type 4 methods, in which matrix A has a constant diagonal, have been

derived by Butcher [24]. These methods satisfy ρ(M(∞)) = 0 and A-stable meth-

ods in which p = q = r = s have been derived for orders up to 10. This means

3.2 Analysis of type 4 DIMSIMs 69

that the matrices A, B, U and V which define the method are all square and of

size r×r. The A matrix takes the form A = λI, and since r = s the special choice,

U = I, is used. In the remaining part of this chapter we analyse these methods.

Since p = q = r = s, we will use p to represent q, r and s, for uniformity. An

implementation of these methods is discussed in Chapter 4.

3.2.1 Stability analysis

If we apply the DIMSIM method (3.3) to the standard test equation (1.4), the

stability matrix is given by

M(z) = V + zB(I − zA)−1U, (3.15)

and using A = λI and U = I, it simplifies to

M(z) = V +
z

1− λz
B. (3.16)

Stability is then determined by the polynomial

ϕ(w, z) = det(wI −M(z))

= (1− λz)−p det ((1− λz)wI − (V + z(B − λV))) (3.17)

or alternatively, by the polynomial

φ(w, z) = det ((1− λz)wI − (V + z(B − λV))) , (3.18)

and on substituting B = B0 − λB1 − V B2 + λV , from (3.12) this reduces to

φ(w, z) = det ((1− λz)wI − (V + z(B0 − λB1 − V B2))) . (3.19)

For the linear test equation considered, the stability region is determined by the

requirement that for z in this region, it is not possible that φ(w, z) = 0 if |w| > 1.

The simplest possibility for the V matrix is rank 1. Making the rank 1 assumption

V = evT , we examine the determinant of the matrix

P = (1− λz)wI − (V + z(B0 − λB1 − V B2))

= (1− λz)wI − z(B0 − λB1 − V B2)− V

= (1− λz)wI − zB̂ − V.

70 DIMSIMs

For any non-singular square matrix X , we have

det(X + V) = det(X + evT)

= det(X(I +X−1evT))

= det(X) det(I +X−1evT).

We also have

eig(X−1evT) = {vTX−1e, 0, 0, . . . , 0},

and

eig(I +X−1evT) = {1 + vTX−1e, 1, 1, . . . , 1}.

Since the determinant of any matrix is the product of its eigenvalues, we have

det(I +X−1evT) = 1 + vTX−1e,

using which, we get

det(X + evT) = det(X)
(
1 + vTX−1e

)
= det(X) + vTadj(X)e,

where we have used X−1 = adj(X)/ det(X), and adj(X) is the transposed matrix

of cofactors of X . Applying this result to det(P) we get

det(P) = det
(
(1− λz)wI − zB̂ − V

)

= det
(
(1− λz)wI − zB̂

)
− vTadj

(
(1− λz)wI − zB̂

)
e.

Now det
(
(1− λz)wI − zB̂

)
is a homogeneous polynomial in (1− λz)w and z of

degree p, while adj
(
(1− λz)wI − zB̂

)
is also a homogeneous polynomial in the

same variables but of degree p− 1. This implies that φ takes the form

φ1(w, z) = (1− λz)pwp − (α0 − β1z)(1− λz)p−1wp−1

−z(α1 − β2z)(1 − λz)p−2wp−2 − · · · − zp−1(αp−1 − βpz), (3.20)

where the notation φ1(w, z) represents the stability polynomial for rank 1 methods.

3.2 Analysis of type 4 DIMSIMs 71

Example 3.2 For a method with p = q = r = s = 2, A = λI, U = I and

B =


 b11 b12

b21 b22


 , V =


 1− v v

1− v v


 ,

it can be shown that the stability polynomial (3.18) satisfies

φ1(w, z) = (1− λz)2w2 − (α0 − β1z)(1− λz)w − z(α1 − β2z),

with

α0 = 1,

α1 = b12 − b22 + v(−b11 − b12 + b21 + b22),

β1 = b11 + b22 − λ,

β2 = b12b21 − b11b22 + λ(b22 − b12) + λv(b11 + b12 − b21 − b22).

✷

The main stability requirements for type 4 methods are that the stability region

includes all the points in the left half complex plane, with possibly some stronger

property at infinity.

Let t = (1− λz)w. Since φ1(exp(z), z) = O (zp+1), we get from (3.20)

tp − (α0 − β1z)t
p−1 − z(α1 − β2z)t

p−2 − · · · − zp−1(αp−1 − βpz) = O
(
zp+1

)

and upon rearrangement

tp + β1zt
p−1 + β2z

2tp−2 + · · ·+ βpz
p = α0t

p−1 + α1zt
p−2 + · · ·+ αp−1z

p−1 +O
(
zp+1

)
.

On factorising the term t on the left hand side and rearrangement, we get

t =
α0t

p−1 + α1zt
p−2 + · · ·+ αp−1z

p−1

tp−1 + β1ztp−2 + β2z2tp−3 + · · ·+ βpzp−1t−1
+ O

(
zp+1

)

=
α0 + α1

(
z
t

)
+ · · ·+ αp−1

(
z
t

)p−1

1 + β1
(
z
t

)
+ · · ·+ βp

(
z
t

)p + O
(
zp+1

)
.

72 DIMSIMs

Hence, we can write the relation between w and z given by (3.20) in the form

w(1− λz) =
α0 + α1

(
z

w(1−λz)

)
+ · · ·+ αp−1

(
z

w(1−λz)

)p−1

1 + β1

(
z

w(1−λz)

)
+ · · ·+ βp

(
z

w(1−λz)

)p + O
(
zp+1

)

= F̂

(
z

w(1− λz)

)
,

where F̂ is now an approximation, correct to within

O

((
z

w(1− λz)

)p+1
)
,

to the function F defined by

exp(z)(1 − λz) = F

(
z

exp(z)(1− λz)

)
.

The rational approximations to F are investigated in [24], and the next theorem

gives the first row, corresponding to β1 = β2 = · · · = βp = 0, and the first column,

corresponding to α1 = α2 = · · · = αp−1 = 0, of the Padé table for this function.

Here the notation Ln(x) denotes the Laguerre polynomial of degree n, defined by

(2.15), and L′
n(x) represents its derivative.

Theorem 3.4 Let λ denote a positive real number. Define F in the neighbourhood

of 0 by the series

F (Z) = 1 +

∞∑

n=1

(−1)n+1 λn

n + 1
L′
n+1

(
n+ 1

λ

)
Zn. (3.21)

Then F satisfies the functional equation

exp(z)(1 − λz) = F

(
z

exp(z)(1− λz)

)
, (3.22)

for sufficiently small |z|. Furthermore, the function G defined in a neighbourhood

of 0 by the series

G(Z) = 1 + (λ− 1)Z +
∞∑

n=2

(−1)n+1λ
n−1

n
L′
n

(
n− 1

λ

)
Zn, (3.23)

satisfies the equation

F (Z)G(Z) = 1,

for sufficiently small |z|.

3.2 Analysis of type 4 DIMSIMs 73

Proof Let Z = z/(exp(z)(1− λz)), so that F (Z) = z/Z, and let

ψ(z) = (1− λz) exp(z), so that we have

z = Zψ(z) = α0Z + α1Z
2 + α2Z

3 + . . . ,

for the case when β1 = β2 = · · · = βp = 0. We find the coefficients in the above

Taylor expansion using the Lagrange series. Consider the the power series [66]

w = a1z + a2z
2 + · · ·+ anz

n + . . .

where a1 6= 0 and which converges for z = 0. The relationship between z and w

can also be represented as

z = b1w + b2w
2 + · · ·+ bnw

n + . . .

where a1b1 = 1. To compute the second series from the first, we set

ϑ(z) =
1

a1 + a2z + · · ·+ anzn−1 + . . .
,

then the equation z = wϑ(z), where ϑ(z) is regular in a neighbourhood of z = 0

implies that

z = b1w + b2w
2 + · · ·+ bnw

n + . . .

bn = 1
n!

[
dn−1

dxn−1 [ϑ(x)]
n
]
x=0



 (3.24)

More generally, with f(z) regular in the neighbourhood of z = 0, we have

f(z) = b0 + b1w + b2w
2 + · · ·+ bnw

n + . . .

b0 = f(0)

bn = 1
n!

[
dn−1

dxn−1 f
′(x)[ϑ(x)]n

]
x=0

.





(3.25)

Applying (3.24) to

z = Zψ(z) = α0Z + α1Z
2 + α2Z

3 + . . .

74 DIMSIMs

gives

αn =
1

(n + 1)!

[
dn

dzn
[ψ(z)]n+1

]

z=0

=
1

(n + 1)!

[
dn

dzn
(1− λz)n+1 exp((n+ 1)z)

]

z=0

=
1

(n + 1)!

n∑

k=0

(
n

k

)
dn−k

dzn−k
(1− λz)n+1

∣∣∣∣
z=0

dk

dzk
(exp((n + 1)z))

∣∣∣∣
z=0

=
1

(n + 1)!

n∑

k=0

(
n

k

)
(n+ 1)!

(k + 1)!
(−λ)n−k(n+ 1)k

= (−1)nλn
n∑

k=0

(
n

k

)
(−1)k

(k + 1)!

(
n+ 1

λ

)k

= (−1)n+1 λn

n+ 1
L′
n+1

(
n + 1

λ

)
.

Consider G(Z) = Z/z = 1/(exp(z)(1 − λz)) = χ(z), then from the generalisation

(3.25) we have

χ(z) = β0 + β1Z + β2z
2 + · · · ,

where

β0 = χ(0) = 1, β1 = χ′(z)ψ(z)|z=0 = λ− 1,

and

βn =
1

n!

[
dn−k

dzn−k
χ′(z)[ψ(z)]n

]

z=0

=
1

n!

dn−k

dzn−k

[
− exp((n− 1)z)(1− λz)n−1 − λ exp((n− 1)z)(1− λz)n−2

]
z=0

= (−1)n
λn−1

n

[
Ln−1

(
n− 1

λ

)
− L′

n−1

(
n− 1

λ

)]
.

Using the identity

L′
n(x) = L′

n−1(x)− Ln−1(x),

3.2 Analysis of type 4 DIMSIMs 75

it follows that

βn = (−1)n
λn−1

n
L′
n

(
n− 1

λ

)
.

Therefore we obtain

G(Z) = 1 + (λ− 1)Z +

∞∑

n=2

(−1)n+1λ
n−1

n
L′
n

(
n− 1

λ

)
Zn,

as required. ✷

3.2.2 Choice of λ for A-stability

Using elements from the first row of the Padé table for the function F , the resulting

methods have the property that the stability function takes the form

φ1(w, z) = (1− λz)pwp − (1− λz)p−1wp−1

− α1z(1− λz)p−2wp−2 − · · · − αp−1z
p−1, (3.26)

since α0 = 1 and βi = 0, i = 1, 2, . . . , p. At z = ∞ the stability matrix has

characteristic polynomial wp, so that if a method within this class is A-stable,

then it will be L-stable. To obtain the stability function (3.26) the series for F

has been truncated one term too soon to obtain order p. Hence, if order p is to

be retained then it is necessary to make the next term in the series to be zero.

Thus, in search of methods with good order and stability, we choose λ to satisfy

the condition

L′
p+1

(
p+ 1

λ

)
= 0, (3.27)

and the values of α0, α1, . . . , αp−1, according to Theorem 3.4 are given by

αn = (−1)n+1 λn

(n+ 1)
L′
n+1

(
n + 1

λ

)
. (3.28)

To investigate the possible A-stability of methods defined in this way, a numerical

investigation as outlined in [24] can be carried out. By the maximum modulus

principle, it is necessary only to verify that for all y > 0, the zeros of φ1(w, iy) = 0

lie in the unit disc. Let iW = (1− λiy)w, then (3.26) with z = iy reduces to

φ1(W, iy) = −iW p +W p−1 + α1yW
p−2 + α2y

2W p−3 + · · ·+ αp−1y
p−1. (3.29)

76 DIMSIMs

Hence, it is equivalent to verify that for all y > 0, the zeros of φ1(W, iy), always

satisfy |W | ≤
√

1 + λ2y2. This can be checked by plotting W/
√
1 + λ2y2 for

y > 0, and checking that the solutions always lie in the unit disc.

Example 3.3 Consider a method with p = q = r = s = 2, then the stability

polynomial becomes

φ1(w, z) = (1− λz)2w2 − (1− λz)w − α1z

where we require L′
3(x) = 0, so that the method is of order 2 and

L3(x) = 1− 3x+
3

2
x2 − 1

6
x3.

Then we have

L′
3(x) = 0 =⇒ x = 3±

√
3,

L′
3

(
3

λ

)
= 0 =⇒ λ =

3±
√
3

2

and

α1 =
λ

2
L′
2

(
λ

2

)
= −λ+ 1 =

−1∓
√
3

2

Since we have two choices for λ, we can investigate which of these lead to A-stable

methods by using the numerical investigation outlined above. Thus, we need to

check the roots of

φ1(W, iy) = −iW 2 +W + α1y.

As stated earlier, we can check that |W | ≤
√

1 + λ2y2 by plotting W/
√
1 + λ2y2

for y > 0. For both values of λ, we find that W/
√
1 + λ2y2 lies inside the unit

disc as in Figure 3.1. Hence, both values of λ lead to A-stable methods. ✷

Example 3.4 For the method of order 3, we need to choose λ to satisfy L′
4(4/λ) =

0. This gives us three values of λ,

λ1 = 0.5155456021,

λ2 = 1.210138313,

λ3 = 4.274316085.

3.2 Analysis of type 4 DIMSIMs 77

−1 0 1
−1

0

1

 Re(scaled(W))

Im

(s
ca

le
d(

W
))

−1 0 1
−1

0

1

 Re(scaled(W))

Im

(s
ca

le
d(

W
))

λ = (
√
3− 3)/2 λ = (

√
3 + 3)/2

Figure 3.1: Stability plots for p = 2, where scaled (W) means W/
√
1 + λ2y2.

We then need to investigate the roots of

φ1(W, iy) = −iW 3 +W 2 + α1yW + α2y
2,

where

α1 = 1− λ,

α2 =
3

2
− 3λ+ λ2.

The three plots of W/
√
1 + λ2y2, corresponding to λ1, λ2 and λ3, are shown in

Figure 3.2. Using these three diagrams as well as by examining the maximum

numerical values of W/
√
1 + λ2y2, it is seen that λ1 does not lead to an A-stable

method. λ3 also does not lead to an A-stable method as one of its ‘branches’

actually goes slightly outside the unit circle, although this is not entirely obvious

from the diagram. The choice of λ2 leads to an A-stable method. ✷

Hence, it is seen that there are two A-stable methods of order two and a single

method of order three. Stability plots for orders 4 to 8 are shown in [24]. It is

found that there is a single method for each of orders 4 to 8 which is A-stable.

Although there is no A-stable method of order 9, there is an A-stable method of

order 10. Table 3.2 gives a list of values of λ for A-stable methods, where for each

positive integer p, ξ
(p)
1 , ξ

(p)
2 ,. . . ,ξ

(p)
p , are the zeros of L′

p+1, numbered in increasing

order.

78 DIMSIMs

−1 0 1
−1

0

1

 Re(scaled(W))

Im

(s
ca

le
d(

W
))

−1 0 1
−1

0

1

 Re(scaled(W))

Im

(s
ca

le
d(

W
))

λ1 λ2

−1 0 1
−1

0

1

 Re(scaled(W))

Im

(s
ca

le
d(

W
))

λ3

Figure 3.2: Stability plots for p = 3, where scaled (W) means W/
√
1 + λ2y2.

3.2.3 Derivation of A-stable methods

By making the use transformations we can derive formulas for the coefficients of the

method. This transformation removes the abscissae from the transformed matrices

completely. This convenience of being able to regard the choice of abscissae as a

separate question, is possible only for type 3 and 4 methods. The transformations

are given by the following theorem [24].

Theorem 3.5 Consider a DIMSIM method such that p = q = r = s, A = λI,

3.2 Analysis of type 4 DIMSIMs 79

p λ

1 2

ξ
(1)
1

= 1

2 3

ξ
(2)
2

= 3−
√
3

2
≈ 0.63

2 3

ξ
(2)
1

= 3+
√
3

2
≈ 2.36

3 4

ξ
(3)
2

≈ 1.2101383127

4 5

ξ
(4)
2

≈ 1.9442883555

5 6

ξ
(5)
3

≈ 1.3012832613

6 7

ξ
(6)
3

≈ 1.8056866912

7 8

ξ
(7)
4

≈ 1.3521971029

8 9

ξ
(8)
4

≈ 1.7368002358

10 11

ξ
(10)
5

≈ 1.6956068006

Table 3.2: λ for A-stability of type 4 methods with p = s.

U = I, V e = e and abscissae vector c. Define the matrix T by

T =




P (p)(c1) P (p−1)(c1) P (p−2)(c1) . . . P ′(c1)

P (p)(c2) P (p−1)(c2) P (p−2)(c2) . . . P ′(c2)

P (p)(c3) P (p−1)(c3) P (p−2)(c3) . . . P ′(c3)
...

...
...

...

P (p)(cp) P (p−1)(cp) P (p−2)(cp) . . . P ′(cp)



, (3.30)

where the polynomial P is defined by

P (x) =
1

p!

p∏

i=1

(x− ci). (3.31)

Define

B = T−1BT, (3.32)

V = T−1V T, (3.33)

80 DIMSIMs

then

V e1 = e1, (3.34)

and

B = Ê − λE + V




λ 0 0 · · · 0

−1 λ 0 · · · 0

0 −1 λ · · · 0
...

...
...

...

0 0 0 . . . λ



, (3.35)

where

Ê =




1 1
2!

1
3!

. . . 1
(p−1)!

1
p!

1 1 1
2!

. . . 1
(p−2)!

1
(p−1)!

0 1 1 . . . 1
(p−3)!

1
(p−2)!

...
...

...
...

...

0 0 0 . . . 1 1
2!

0 0 0 . . . 1 1




, E =




1 1 1
2!

. . . 1
(p−2)!

1
(p−1)!

0 1 1 . . . 1
(p−3)!

1
(p−2)!

0 0 1 . . . 1
(p−4)!

1
(p−3)!

...
...

...
...

...

0 0 0 . . . 1 1

0 0 0 . . . 0 1




.

Proof Since Te1 = e, (3.34) follows from V e = e. This implies that V is of the

form

V = [e1|V0]. (3.36)

Furthermore, if V̂ is defined by

V̂ = [V0|0], (3.37)

then the last term in (3.35) is equal to λV − V̂ .

Substituting U = I and A = λI into the order condition (3.7) and using the

resulting equation to eliminate w in (3.8), we get

exp(z)(1 − λz) exp(cz) = zB exp(cz) + V (1− λz) exp(cz) +O
(
zp+1

)
. (3.38)

Define the sequence of numbers γ1, γ2, . . . , γp and the function φ(z) by

P (x) =
zp

p!
+ γ1

zp−1

(r − 1)!
+ γ2

zp−2

(r − 2)!
+ · · ·+ γp,

φ(z) = 1 + γ1z + γ2z
2 + · · ·+ γpz

p.

3.2 Analysis of type 4 DIMSIMs 81

Define the matrices C and G and the vector Z by

C =




1 c1
1
2!
c21 · · · 1

p!
cp1

1 c2
1
2!
c22 · · · 1

p!
cp2

...
...

...
...

1 cp
1
2!
c2p · · · 1

p!
cpp



, G =




1 γ1 γ2 · · · γp

0 1 γ1 · · · γp−1

0 0 1 · · · γp−2

...
...

... γp−1

0 0 0 · · · 1



, Z =




1

z

z2

...

zp



,

then we have

GZ = φ(z)Z +O
(
zp+1

)
, (3.39)

CZ = exp(cz)Z +O
(
zp+1

)
. (3.40)

Multiply (3.38) by φ(z) and substitute for GZ and CZ from (3.39) and (3.40) to

obtain the equivalent condition

(exp(z)(1− λz)− zB − V (1− λz))CGZ +O
(
zp+1

)
. (3.41)

We have

CG =
[
P (p)(c), P (r−1)(c), P (r−2)(c), . . . , P ′(c), P (c)

]
,

where the columns consisting of polynomials with argument c are evaluated com-

ponentwise. Since the zeros of P are components of c, P (c) = 0. Hence, (3.41)

can be written in the form

(exp(z)(1− λz)− zB − V (1− λz)) T Ẑ = O
(
zp+1

)
,

where Ẑ is a vector which contains the first p components of Z. Premultiplying

this simplified order condition by T−1 and using (3.32) and (3.33), we get

exp(z)(1 − λz)Ẑ = zBẐ + V (1− λz)Ẑ +O
(
zp+1

)
,

which can be written as

exp(z)




1− λz

z − λz2

z2 − λz3

...

zp−1 − λzp−1



= zB




1

z

z2

...

zp−1



+ V




1− λz

z − λz2

z2 − λz3

...

zp−1 − λzp−1



+O

(
zp+1

)
. (3.42)

82 DIMSIMs

Since V is of the form given by (3.36), we have

V Ẑ = e1e
T
1 + zV̂ Ẑ.

We also have

exp(z)Ẑ − e1e
T
1 = zÊẐ.

Hence, subtracting e1e
T
1 from both sides of (3.42) and dividing by z gives

ÊẐ − λEẐ = BẐ + V̂ Ẑ − λV Ẑ +O(zp),

from which we obtain

B = Ê − λE − V̂ + λV . (3.43)

This is equivalent to (3.35). ✷

3.2.4 Methods with rank 1 for V

Here we consider how λ and V should be chosen to ensure that the stability

matrix of the method, represented by (3.16), has zero spectral radius at infinity.

We consider the rank 1 case so that V = e1[1, v2, v3, . . . , vp]. The stability matrix

then takes the form M(z) = V + (z/(1 − λz))B, and using the known form of B

and V , we get

M̂ = −λM(∞)

= −λ
(
V − 1

λ
B

)

= Ê − λE − e1[v2, v3, . . . , vp, 0].

Theorem 3.6 The matrix M̂ has spectral radius equal to zero if and only if

vi =
(−1)p+1(p− i+ 2)

p+ 1
λi−1Lp−i+2

p+1

(
p+ 1

λ

)
, i = 2, 3, . . . , p,

and λ satisfies the equation (3.27) [24].

3.2 Analysis of type 4 DIMSIMs 83

Proof We compute sequence of vectors given by

ûT1 = eTp ,

ûTn = ûTn−1M̂, n = 2, 3, . . . , p+ 1.

Because of the form of the component matrices, the matrix M̂ has all terms zero

below the leading subdiagonal, that is, the Hessenberg form. This means that

the members of the sequence û1, û2, . . . , ûp have p − 1, p − 2, . . . , 0 initial zero

components respectively. The leading subdiagonal elements of M̂ are equal to 1

so the first elements in ûn, n = 1, 2, . . . , p, after the initial zeros are equal to 1.

Denote by un the final n-element subvector of ûn, n = 1, 2, . . . , p. Since the values

of the elements of V do not enter into the values of these vectors, we can evaluate

them recursively as functions of λ. They are given by the formula

uTn =
(−1)n

n

[
nL(n)

n

(n
λ

)
, (n− 1)λL(n−1)

n

(n
λ

)
,

(n− 2)λ2L(n−2)
n

(n
λ

)
, . . . , λn−1L(1)

n

(n
λ

)]
,

where L
(m)
n denotes the mth derivative of the Laguerre polynomial of degree n.

This formulae can be proved by mathematical induction. The formulae for uTn+1

can be proved using the relation

uTn+1 = uTn







1 1 1
2!

. . . 1
(p−2)!

1
(p−1)!

0 1 1 . . . 1
(p−3)!

1
(p−2)!

...
...

...
...

...

0 0 0 . . . 1 1
2!

0 0 0 . . . 1 1



− λ




0 1 1 . . . 1
(p−3)!

1
(p−2)!

0 0 1 . . . 1
(p−4)!

1
(p−3)!

...
...

...
...

...

0 0 0 . . . 1 1

0 0 0 . . . 0 1






,

where we note that the matrices in this equation are the Ê and the E matrices

respectively, with their first row removed. The first row of these matrices will be

treated separately since the V matrix has non zero elements in the first row.

84 DIMSIMs

Performing the vector and matrix multiplication on the right-hand-side we find

that the ith component of the resultant vector can be written as

(−1)n

n

i−1∑

j=1

λi−j−1

(j−1)!
L
(n−i+j+1)
n

(
n
λ

)
+ (−1)n(n−i+1)

n

i−1∑

j=0

λi−j−1

j!
L
(n−i+j+1)
n

(
n
λ

)

− (−1)nλ
n

i−2∑

j=1

λi−j−2

(j−1)!
L
(n−i+j+2)
n

(
n
λ

)
− (−1)nλ(n−i+1)

n

i−2∑

j=0

λi−j−2

j!
L
(n−i+j+2)
n

(
n
λ

)
.

We can simplify this further because of the Taylor series embedded in each sum-

mation, for example, the first term can be simplified as follows

(−1)n

n

i−1∑

j=1

λi−j−1

(j−1)!
L
(n−i+j+1)
n

(
n
λ

)
= (−1)n

n
λi−2

i−1∑

j=1

L
(n−i+j+1)
n (n

λ)
λj−1(j−1)!

= (−1)n

n
λi−2L

(n−i+2)
n

(
n+1
λ

)
.

In a similar way the summations of the other three series can be simplified to give

the following equivalent form

(−1)n

n
λi−2L

(n−i+2)
n

(
n+1
λ

)
+ (−1)n(n−i+1)

n
λi−1L

(n−i+1)
n

(
n+1
λ

)

− (−1)n

n
λi−2L

(n−i+3)
n

(
n+1
λ

)
− (−1)n(n−i+2)

n
λi−1L

(n−i+2)
n

(
n+1
λ

)
.

It is necessary to verify that this is equivalent to

(−1)n+1(n− i+ 2)

n + 1
λi−1L

(n−i+2)
n+1

(
n+ 1

λ

)
.

This follows by differentiating n − i + 1 times, the differential equation for the

Laguerre polynomials

xL′′
n(x) + (1− x)L′

n(x) + nLn(x) = 0

and combining this with the result of differentiating n− i+ 1 times, the identity

L′
n+1(x) = L′

n(x)− Ln(x).

3.2 Analysis of type 4 DIMSIMs 85

Since eTp M̂
p−1 is not a zero vector, it is necessary and sufficient for ρ(M(∞)) = 0

that eTp M̂
p is zero. This is equivalent to ûTp+1 = 0. Hence, we have

ûTp+1 = ûTp M̂ = uTp M̂

= uTp (Ê − λE)− uTp V

= uTp+1 − [v2, v3, . . . , vp, 0].

The last result implies that vi equals the i
th component of the vector uTp+1 and is

given by

(−1)p+1(p− i+ 2)

p+ 1
λi−1L

(p−i+2)
n+1

(
p+ 1

λ

)
,

as required. ✷

It is possible to find methods for any choice of the abscissae as long as the ab-

scissae are distinct. In [24] two different choices of abscissae are considered.

The first choice is motivated by the abscissae for explicit Runge-Kutta meth-

ods, where these are uniformly spaced in the current integration step, that is,

c = [0, 1/(p− 1), 1/(p− 2), . . . , 1]T . The second choice considered is, c =

[−p + 2,−p + 3, . . . , 0, 1]T , which corresponds to the same spread of abscissae

as for the BDF methods. Some rank 1 methods are listed below. It is seen that

as the order increases, the magnitudes of the coefficients in the B and V matrices

increase. It is further seen that of the two choices of abscissae considered, the case

with the equally spaced values inside the integration step, has larger magnitudes

in the B and V matrices for a given order. This has also been observed to be

the case for the type 3 methods [20] and for the stiffly accurate A-stable type 4

methods [26]. Theoretically, any distinct set of abscissae can be used. However,

computational efficiency of the method is likely to depend on the this choice as

it affects the magnitude of the method coefficients and will have an influence on

round-off errors. Thus very high order methods are not likely to perform well.

86 DIMSIMs

3.2.5 Some rank 1 methods

• p = 2, λ = 3−
√
3

2
, c = [0 1]T ,

B =

[
18−11

√
3

4
−12+7

√
3

4
22−13

√
3

4
−12+9

√
3

4

]
, V =

[
3−2

√
3

2
−1+2

√
3

4
3−2

√
3

2
−1+2

√
3

4

]
.

• p = 3, λ = 1.21013831273, c = [0 1
2

1]T ,

B =




−6.4518297302 14.0277199958 −6.4454753274

−7.4536347096 16.9914682673 −7.9074186195

−8.9155780017 20.3754931643 −9.3295002244


 ,

V =




−4.3541275713 10.9690850189 −5.6149574476

−4.3541275713 10.9690850189 −5.6149574476

−4.3541275713 10.9690850189 −5.6149574476


 .

• p = 3, λ = 1.21013831273, c = [−1 0 1]T ,

B =

[
−1.4307831989 3.1337349783 −1.0725368412

−1.5141165323 5.0105399577 −1.8660084873

−2.3075881783 7.3076215626 −2.3696184461

]
,

V =

[
−0.8059281583 3.2422712547 −1.4363430965

−0.8059281583 3.2422712547 −1.4363430965

−0.8059281583 3.2422712547 −1.4363430965

]
.

• p = 4, λ = 1.94428836, c = [0 1
3

2
3

1]T ,

B =




−324.7473606870 967.1475438327 −925.9431184761 287.8200887525

−322.9280723315 959.8842792995 −915.0968327875 282.7511125749

−317.8590961538 941.4276629444 −891.9462402547 273.3214935529

−308.4294771319 908.7781630341 −853.8251424780 258.7536099978


 ,

V =




−153.6462411729 482.0084784307 −490.2467730766 162.8845358188

−153.6462411729 482.0084784307 −490.2467730766 162.8845358188

−153.6462411729 482.0084784307 −490.2467730766 162.8845358188

−153.6462411729 482.0084784307 −490.2467730766 162.8845358188


 .

3.2 Analysis of type 4 DIMSIMs 87

• p = 4, λ = 1.94428836, c = [−2 −1 0 1]T ,

B =




−11.8430964150 41.2047385552 −34.4921752375 8.4076865194

−11.8847630817 43.6906935774 −35.8947969264 8.3660198528

−11.8430964150 43.4823602441 −33.1588419042 6.7967314972

−10.2738080595 37.2468734887 −23.9514451044 3.2555330974


 ,

V =




−4.7518271422 19.6331861055 −19.7337373625 5.8523783991

−4.7518271422 19.6331861055 −19.7337373625 5.8523783991

−4.7518271422 19.6331861055 −19.7337373625 5.8523783991

−4.7518271422 19.6331861055 −19.7337373625 5.8523783991


 .

• p = 5, λ = 1.3012832613, c = [0 1
4

1
2

3
4

1]T ,

B =




968.5096071975 −3924.2586814438 5885.2161044676 −3866.8652650014 939.4046510865

967.2954767140 −3918.1946262485 5873.1116051880 −3854.8156268329 934.8595874858

962.7504131133 −3896.6834387285 5833.7250243764 −3821.4694901055 924.1839076507

952.0747332782 −3847.8501031538 5748.4794135456 −3754.0992725664 904.1516452028

932.0424708303 −3758.3644707492 5596.9901246409 −3639.0222589178 871.3605505022


 ,

V =




677.0206293684 −2862.4070325364 4498.6271470802 −3110.0900487990 797.8493048868

677.0206293684 −2862.4070325364 4498.6271470802 −3110.0900487990 797.8493048868

677.0206293684 −2862.4070325364 4498.6271470802 −3110.0900487990 797.8493048868

677.0206293684 −2862.4070325364 4498.6271470802 −3110.0900487990 797.8493048868

677.0206293684 −2862.4070325364 4498.6271470802 −3110.0900487990 797.8493048868


 .

• p = 5, λ = 1.3012832613, c = [−3 −2 −1 0 1]T ,

B =




3.2136104048 −18.3608115765 28.4737820086 −15.5951642413 2.7749997108

3.1872215159 −16.5789727596 27.8058320806 −15.6979420191 2.7902774885

3.2024992937 −16.6817505374 29.7404486753 −16.5186697248 2.7638885996

3.1761104048 −16.5345283152 29.3737820086 −14.3201642413 1.8112164495

2.2234382547 −11.7975564532 19.9942827291 −5.1601094062 −0.7536388179


 ,

V =




1.6448050733 −9.6436884308 20.2744423025 −14.6906232993 3.4150643543

1.6448050733 −9.6436884308 20.2744423025 −14.6906232993 3.4150643543

1.6448050733 −9.6436884308 20.2744423025 −14.6906232993 3.4150643543

1.6448050733 −9.6436884308 20.2744423025 −14.6906232993 3.4150643543

1.6448050733 −9.6436884308 20.2744423025 −14.6906232993 3.4150643543


 .

3.2.6 Methods with rank 2 for V

If V is generalised from the rank 1 form to

V =




1 ṽ2 . . . ṽp−1 ṽp
0 0 . . . 0 ṽ0
...

...
...

...
0 0 . . . 0 0


 (3.44)

88 DIMSIMs

we find that the freedom due to the additional non-zero term, ṽ0, of this matrix

will allow the value of λ to vary and still retain the desirable property of perfect

damping at infinity and A-stability. It is found that the stability polynomial of an

order p method with this generalised V matrix changes in a simple way as stated

in the following theorem.

Theorem 3.7 Consider a DIMSIM method with p = q = r = s such that

A = λI, U = I, and V = TV T−1, with T given by (3.30) and V given by (3.44).

Then the stability polynomial has the form

φ2(w, z) = (1− λz)pwp − (α̃0 − β̃1z)(1− λz)p−1wp−1

− z(α̃1 − β̃2z)(1− λz)p−2wp−2 − · · · − zp−1(α̃p−1 − β̃pz) + zp−2γ.

Proof To show that the only new term is of the form γzp−1, we consider the

characteristic polynomial of the transformed stability matrix, since this is equiva-

lent to the characteristic polynomial of the original stability matrix. This is given

by

φ2(w, z) = det(Q) = det
(
(1− λz)wI − (zB + (1− λz)V

)
,

with B = Ê−λE− V̂ +λV as given by (3.43). The matrix Ê is upper Hessenberg

while the matrix E is upper triangular. Simplifying matrix Q we have

Q = (1− λz)wI − z(Ê − λE − V̂)− V ,

which inherits the upper Hessenberg form, with −z on the leading subdiagonal.

The additional term ṽ0 in (3.44) causes the additional terms zṽ0 and −ṽ0 in the

last two elements of the second row of the matrix Q. We note here that with ṽ0 = 0

the transformed stability matrix is equivalent to the stability matrix of the rank

1 methods discussed earlier. We are interested in the form of the additional term

in det(Q) which is not present in the stability polynomial of the rank 1 methods.

In order to get this additional term we use the following reasoning. Consider the

matrix Q′ which is exactly the same as Q except that we take ṽ0 = 0. Since we

are interested in the additional term in det(Q) that is not present in det(Q′), we

require det(Q) − det(Q′). Since determinants are linear functions of the rows in

3.2 Analysis of type 4 DIMSIMs 89

the underlying matrix, the only elements in Q which contribute a non-zero term

to this difference are those shown as non-zero in the matrix



(1− λz)w − 1− z + λz + zṽ2 0 0 0 · · · 0 0
0 0 0 0 · · · zṽ0 −ṽ0
0 −z 0 0 · · · 0 0
0 0 −z 0 · · · 0 0
...

...
...

...
...

...
0 0 0 0 · · · −z (1− λz)w − z + λz




and the determinant of this is

((1− λz)w − 1− z + λz + zṽ2) ((1− λz)w − 1− z + λz) zp−2ṽ0,

of which only the term, ṽoz
p−2, is of a different form than the terms already in

(3.20). ✷

Since we wish to retain the property of perfect stability at infinity, that is ρ(M(∞)) =

0, we need to specialise the choice of the matrix V , on which the method is built,

so that each of the β̃1, β̃2, . . . , β̃p is zero. The next theorem shows that the rank

2 choice of the V matrix affects the formulae for φ2(w, z) only for the last two of

the α̃ coefficients. Furthermore, the formulae for the first row of the V matrix is

changed in only its last three elements.

Theorem 3.8 Under the assumptions of Theorem 3.7, the stability function of a

method with β̃1 = β̃2 = · · · = β̃p = 0 is given by

φ2(w, z) = (1− λz)pwp − α̃0(1− λz)p−1wp−1

− α̃1z(1− λz)p−2wp−2 − · · · − α̃p−1z
p−1 + zp−2γ, (3.45)

where

α̃i =





αi, i ≤ p− 3,

αp−2 − αp

λ− 1
2

, i = p− 2,

αp−1 − (λ−1)αp

λ− 1
2

, i = p− 1,

γ = − αp

λ− 1
2

,

90 DIMSIMs

and αi, i = 1, 2, . . . , p are the rank 1 coefficients given by (3.28). Furthermore,

the values of ṽ2, ṽ3, . . . , ṽp and ṽ0 in (3.44) required to produce the method of this

type, are given by

ṽi =





vi, 2 ≤ i ≤ −2,

vp−1 +
vp+1

λ− 1
2

, i = p− 1,

v3 − 3(λ−1)v4
λ− 1

2

+
(

v4
λ−1

)2
, i = p = 3,

vp − p(λ−1)vp+1

λ− 1
2

, i = p > 3,

ṽ0 = − vp+1

λ− 1
2

,

where vi, i = 2, 3, . . . , p + 1, are the coefficients for the rank 1 case given by

Theorem 3.6.

Proof The first part of the theorem involving α̃i, can be proved by comparing

the formulae

(1− λz) exp(pz)−
p∑

k=0

αkz
k(1− λz)p−k−1exp ((p− k − 1)z) = O

(
zp+1

)
,

which results from Theorem 3.4, and

(1− λz) exp(pz)−
p−1∑

k=0

α̃kz
k(1− λz)p−k−1exp ((p− k − 1)z) + zp−1γ = O

(
zp+1

)
,

which is the equivalent of φ2(exp(z), z) = O (zp+1). Equating successive coeffi-

cients of powers of z as far as p− 3, leads to the values given for α̃k for k ≤ p− 3.

The remaining values of α̃p−2, α̃p−1 and γ are obtained by comparing the rest of

the powers up to zp.

The second part of the theorem can be proved by modifying the proof for the rank

1 methods. This is done by considering the effect of the additional term, ṽ0, in

the V matrix. Since this additional term occurs in the second row, we only need

to consider separately ûTp and ûTp+1.

3.2 Analysis of type 4 DIMSIMs 91

Since ûTp−1 has initial terms 0 and 1, we have

ûTp = ûTp−1M̂

= ûTp−1(Ê − λE)− ûTp−1V

= uTp − ṽ0e
T
p−1.

Using this result, we further consider

ûTp+1 = ûTp M̂

= (uTp − ṽ0e
T
p−1)(Ê − λE − V)

= uTp (Ê − λE)− ṽ0e
T
p−1(Ê − λE)− uTp V + ṽ0e

T
p−1V . (3.46)

The individual terms in the last expression can be simplified as follows.

uTp V = [1, t, 0, . . . , 0]V = [ṽ2, ṽ3, . . . , ṽp, 0] + [0, 0, . . . , 0, tṽ0, 0],

ṽ0u
T
p (Ê − λE) = [0, 0, . . . , 0, tṽ0, 0](Ê − λE) = ṽ0[0, 0, . . . , 0, 1, 1− λ,

1

2
− λ].

We note that, ṽ0e
T
p−1V = 0, except when p = 3, which we analyse later. We

also note that the vector uTp has the first component equal to one and the second

component

t =
(−1)p(p− 1)

p
λL(p−1)

p

(p
λ

)
= (p− 1)(1− λ).

We also have

uTp (Ê − λE) = uTp+1 = [v2, v3, . . . , vp+1].

Substituting these simplified expressions into (3.46), we get

ûTp+1 = [v2, v3, . . . , vp+1]− [ṽ2, ṽ3, . . . , ṽp, 0]

− ṽ0[0, 0, . . . , 0, 1, 1− λ,
1

2
− λ]− [0, 0, . . . , 0, tṽ0, 0].

As for rank 1 methods, we require that ûTp+1 = 0, in order to satisfy ρ(M(∞)) = 0.

Thus, equating the final term in the resulting vector to zero, we get

ṽ0 = − vp+1

λ− 1
2

.

92 DIMSIMs

By equating each of the other terms to zero, and substituting the expression for

ṽ0, we get the expressions for ṽi, as in the theorem. For the case when r = 3, we

have

ṽ0e
T
2 V = [0, ṽ20, 0],

and

ûT4 = uT3 (Ê − λE)− ṽ0e
T
2 (Ê − λE)− uT3 V + ṽ0e

T
2 V = 0,

which simplifies to

[v2, v3, v4]− [ṽ2, ṽ3, 0]− [0, tṽ0, 0]− ṽ0[1, 1− λ,
1

2
− λ] + [0, ṽ20, 0] = 0,

where t = 2− 2λ. From the third term we get

v0 = − v4
λ− 1

2

and using this we get

ṽ3 = v3 −
3(λ− 1)v4
λ− 1

2

+

(
v4

λ− 1

)2

,

as required. ✷

The generalisation made possible by Theorems 3.8 and 3.7 allows some freedom

in the values of λ, for which A-stability is possible. This has been investigated in

[24] by using the numerical technique discussed in Section 3.2.1. The only change

is that (3.29) is replaced by

φ2(W, iy) = −iW p +W p−1 + α̃1yW
p−2 + α̃2y

2W p−3 + · · ·+ α̃p−1y
p−1 + iγyp−2.

It is found that λ now falls in an interval for an A-stable method, as given in Table

3.3.

3.2.7 Some rank 2 methods

Some rank 2 methods for the smallest values of λ are listed below. It is seen that,

compared to the rank 1 methods with the same abscissae, the rank 2 methods

have smaller method coefficients. Of the two types of abscissae considered, the

3.2 Analysis of type 4 DIMSIMs 93

p λ interval (3 dp)

3 0.810 ≤ λ ≤ 2.137

4 1.081 ≤ λ ≤ 3.354

5 0.977 ≤ λ ≤ 1.867

6 1.280 ≤ λ ≤ 2.529

7 1.150 ≤ λ ≤ 1.766

8 1.415 ≤ λ ≤ 2.225

Table 3.3: Intervals of λ for A-stability of rank 2 methods.

methods with the abscissae which lie in [0, 1] have larger coefficients. This was

also observed to be the case with rank 1 methods.

• p = 3, λ = 0.81, c = [0 1
2

1]T ,

B =

[
0.0718823104 2.5821330578 −1.4073239704

2.2616014072 0.0793862621 −0.5942962715

4.3913205040 −2.8033605336 0.6587314275

]
,

V =

[
0.1658238304 2.1617351349 −1.3275589653

2.7992066261 −3.1050304565 1.3058238304

5.4325894218 −8.3717960479 3.9392066261

]
.

• p = 3, λ = 0.81, c = [−1 0 1]T ,

B =

[
−0.4620584115 1.5970656623 −0.3883158530

1.1794739864 0.9406922645 −0.3734748530

2.5110063842 −0.0956811334 0.3313661470

]
,

V =

[
−0.3052168919 2.3571251816 −1.0519082897

1.0114745060 −0.2762576141 0.2647831081

2.3281659038 −2.9096404098 1.5814745060

]
.

• p = 4, λ = 1.081, c = [0 1
3

2
3

1]T ,

B =




3.0648114293 −13.4012626618 19.3782582549 −8.2178070224

16.2918355854 −50.7460534664 55.3011007291 −19.6895495148

31.0419708527 −93.2411776044 96.6219432034 −32.9320697850

47.5628838976 −141.2963017423 143.4171190110 −47.8597011663


 ,

V =




2.3411483016 −10.9656392470 17.3798335892 −7.7553426438

12.1763266260 −40.4711742203 46.8853685625 −17.5905209682

22.0115049504 −69.9767091935 76.3909035358 −27.4256992927

31.8466832748 −99.4822441668 105.8964385090 −37.2608776171


 .

94 DIMSIMs

• p = 4, λ = 1.081, c = [−2 −1 0 1]T ,

B =




−1.7219214320 2.9466155264 −1.7092258319 0.3085317375

−0.0358751063 0.4789408077 0.7489846286 −0.3680503299

1.7335045526 −3.8197339110 5.6191950890 −1.7089657306

4.1672175450 −10.6924086297 12.6444055494 −3.2952144647


 ,

V =




−1.1215770746 3.6612281487 −2.1337250736 0.5940739995

−0.0287794830 0.3828353739 1.1446677012 −0.4987235921

1.0640181086 −2.8955574009 4.4230604760 −1.5915211837

2.1568157002 −6.1739501757 7.7014532508 −2.6843187753


 .

• p = 5, λ = 0.977, c = [0 1
4

1
2

3
4

1]T ,

B =




489.1575241628 −1913.2374040021 2756.3775649325 −1735.4467745097 403.5340894165

374.1462055737 −1478.1985056367 2140.4559480370 −1347.8229614589 312.0543134848

256.7768036514 −1032.2524406046 1505.3593311415 −945.3883150747 216.3896208865

135.2224850624 −567.7398755725 839.3207142460 −520.2795020239 114.6111782881

7.5544164733 −76.8434772070 130.7110973505 −64.9751889731 4.9381523564


 ,

V =




443.0067808965 −1833.7309477621 2813.2687979070 −1895.8318761140 474.2872450725

339.4482769339 −1419.4969319116 2191.9177741313 −1481.5978602635 370.7287411099

235.8897729713 −1005.2629160612 1570.5667503557 −1067.3638444131 267.1702371473

132.3312690087 −591.0289002107 949.2157265800 −653.1298285626 163.6117331846

28.7727650461 −176.7948843603 327.8647028043 −238.8958127122 60.0532292220


 .

• p = 5, λ = 0.977, c = [−3 −2 −1 0 1]T ,

B =




5.5740198561 −23.0810409509 27.0341335850 −12.5932887418 1.9511762515

3.1576948679 −13.6818426227 17.2051551960 −7.9906269958 1.1946195545

0.7830365464 −5.8429776278 9.3301768070 −3.7816319164 0.3963961907

−1.6332884417 2.2458873670 −0.5218015820 2.7980298296 −1.0038271730

−4.6516134299 13.3030856952 −16.1437799709 13.4206915756 −3.0433838701


 ,

V =




3.6808738610 −16.9314470716 27.8838880491 −17.8119303271 4.1786154887

2.0627722366 −10.4590405740 18.1752783026 −11.3395238295 2.5605138643

0.4446706121 −3.9866340763 8.4666685561 −4.8671173318 0.9424122399

−1.1734310123 2.4857724214 −1.2419411904 1.6052891659 −0.6756893845

−2.7915326367 8.9581789190 −10.9505509369 8.0776956635 −2.2937910089


 .

3.2.8 Error constants

An important property of any numerical method, that has an effect on the ef-

ficiency, is the magnitude of the error constant. For type 4 DIMSIMs with

3.2 Analysis of type 4 DIMSIMs 95

p = q = r = s, U = I and A = λI, analysed in this chapter, the error con-

stants are independent of the abscissae and depend on the rank of the V matrix.

The values of these error constants, Cp+1, can be derived by considering the rela-

tionship

φ1(exp(z), z) = Cp+1z
p+1 +O(zp+2).

For the rank 1 methods, using (3.26), and considering the terms of O (zp+1) from

(3.21) of Theorem 3.4, we have on rearrangement,

(1− λz)p exp(pz)− (1− λz)p−1 exp((p− 1)z)

− α1z(1− λz)p−2 exp((p− 2)z)− · · · − αp−1z
p−1

=
αpz

p

(1− λz) exp(z)
+

αp+1z
p+1

(1− λz)2 exp(2z)
+O(zp+2)

= αp(1 + λz − z)zp + αp+1z
p+1 +O(zp+2)

= αp+1z
p+1 +O(zp+2).

For rank 1 methods since λ is chosen to satisfy (3.27), we have αp = 0. Thus, the

error constant for a rank 1 method of order p, is given by

Cp+1 = αp+1 = (−1)p+2 λ
p+1

p+ 2
L′
p+2

(
p+ 2

λ

)
. (3.47)

The numerical values of these error constants for the A-stable methods are given

in Table 3.4. There are two methods of order 2 and one of them has a much

smaller error constant. Since the value of λ is fixed for the rank 1 methods, the

error constants are also fixed.

p 1 2 2 3 4 5 6 7 8 10

|Cp+1| 0.5 0.25 4.08 1.03 8.39 2.78 22.98 8.56 71.55 240.06

Table 3.4: Error constants for methods with s = p and V of rank 1.

For methods where the V matrix has rank 2, the derivation of the error constants

is slightly more complicated and can be considered by examining the stability

96 DIMSIMs

polynomial for the rank 2 methods and considering

φ2(exp(z), z) = Cp+1z
p+1 +O

(
zp+2

)
,

where Cp+1 is the error constant for the rank 2 method. By considering the

relationship between α̃i and αi, we obtain

Cp+1 = αp

(
1
6
− λ

2

λ− 1
2

+ λ− 1

)
+ αp+1.

Since the αi are polynomials in λ, these error constants are also polynomials in λ.

For rank 2 methods, since λ can be varied, the size of these error constants can

be varied. This relationship can be examined by plotting λ against Cp+1 for λ in

the A-stability interval, as in Figure 3.3.

For methods where the V matrix has rank 2, the numerical values of these con-

stants for the smallest allowed value of λ, are given in Table 3.5. It can be seen

from Figure 3.3 that it is possible to reduce the error constants for methods of

orders 4 and 6 by choosing slightly larger values of λ. For a method with order 4,

if we choose λ = 1.2255, then we get |C5| = 0.0095 and for a method with order

6, with λ = 1.3125, we get |C7| = 0.0032. The alternative method of order 4 is

given below.

• p = 4, λ = 1.2255, c = [0 1
3

2
3

1]T ,

B =




6.7251687979 −19.0227304118 23.6475693020 −9.9480076881

26.3689651403 −74.6008176224 76.9311880295 −26.9640022140

47.8248725938 −136.3407381665 136.7688067569 −46.1842745176

71.4850578251 −205.0856587105 203.6702588177 −67.6676579323


 ,

V =




4.7841007690 −14.5858166906 19.0253310743 −8.2236151526

18.1038395520 −54.5450330396 58.9845474233 −21.5433539357

31.4235783350 −94.5042493887 98.9437637723 −34.8630927187

44.7433171180 −134.4634657377 138.9029801214 −48.1828315017


 .

• p = 4, λ = 1.2255, c = [−2 −1 0 1]T ,

B =




−2.1643510397 5.3620827796 −3.4435556307 0.6478238909

0.3476722125 0.9481506654 0.5737388409 −0.4675617188

2.9430287981 −5.4412814487 7.2920333125 −2.3917806618

6.3472187170 −14.9827135628 16.8878277840 −4.8503329382


 ,

V =




−1.2595048135 4.8724202496 −3.5643260589 0.9514106227

0.2204661624 0.4325073220 0.8755868688 −0.5285603532

1.7004371383 −4.0074056057 5.3154997965 −2.0085313291

3.1804081142 −8.4473185334 9.7554127242 −3.4885023050


 .

3.2 Analysis of type 4 DIMSIMs 97

The magnitude of the coefficients of this method is slightly larger than is the

case for λ = 1.081 but they are unlikely to cause any serious difficulties during

computations. For methods of orders 3, 5, 7 and 8 it is possible to reduce the error

constants but the values of λ required will be towards the top end of the interval,

as in Table 3.3. Choosing larger values of λ is not such a good idea as this leads to

large values of the method coefficients. In our investigations with these methods

it has been observed that the product, λh, has some effect on Newton iterations

as the stepsize, h, increases. This is another reason for choosing smaller values of

λ.

p 3 4 5 6 7 8

|Cp+1| 0.24 0.45 0.33 0.53 2.21 5.01

Table 3.5: Error constants for methods with s = p, V of rank 2 and the smallest

λ in the stability interval.

The magnitude of the error constant for the Radau IIA method (2.19) is 1
7200

while

those for the BDF methods of orders 1 to 5 are 1
2
, 2

9
, 3

22
, 12

125
, 10

137
, respectively [62].

Thus, the magitudes of the error constants for the type 4 DIMSIMs discussed in

this chapter are quite large. It is likely that these large error constants will have

an effect on the efficiency of the methods.

In Chapter 4 we develop a variable stepsize, variable order implementation of the

type 4 methods discussed in this chapter, as solvers of stiff ordinary differential

equations.

98 DIMSIMs

0 2 4
−4

−2

0

2

er
ro

r c
on

sta
nt

0 2 4
−30

−20

−10

0

10

er
ro

r c
on

sta
nt

1 1.5 2
−4

−2

0

2

er
ro

r c
on

sta
nt

λλλ

p = 3 p = 4 p = 5

1 2 3
−20

0

20

40

60

er
ro

r c
on

sta
nt

1 1.5 2
−5

0

5

10

15

er
ro

r c
on

sta
nt

1 2 3
−150

−100

−50

0

50

er
ro

r c
on

sta
nt

λλλ

p = 6 p = 7 p = 8

Figure 3.3: Error constants as functions of λ for rank 2 methods with λ in the

A–stability interval.

Chapter 4

An implementation of type 4

DIMSIMs with s = p

In this chapter we consider an implementation of type 4 DIMSIMs in which the

number of stages is the same as the order of the method. In this implementation,

the methods which have been analysed in the last chapter are modified to give

the Nordsieck vector as the output vector. This modification gives a convenient

procedure for changing stepsize. In order to implement these methods in a variable

stepsize, variable order code, we derive procedures for the estimation of errors and

for controlling stepsize and order. We further discuss the prediction of starting

values, convergence control and the stopping criteria. Finally, we discuss the

performance of these methods in solving some well known stiff problems.

Since for these methods p = q = r = s, we will use p to denote all these quantities,

for uniformity.

4.1 Fixed stepsize implementation

In order to understand some of the complications in using DIMSIMs to solve

ODEs, we initially used fixed stepsize; this enabled us to carry out preliminary

numerical testing in order to verify the accuracy and order of the methods. The

99

100 An implementation of type 4 DIMSIMs with s = p

parameters and procedures followed in carrying these out are outlined below.

4.1.1 Starting procedure

Similar to a linear multistep method, a DIMSIM method of order p requires a

starting procedure to obtain the starting values y[0]. Consider the method given

by (3.1-3.2), then from (3.1), the starting values satisfy

y
[0]
i = Yi − λhf(Yi) +O

(
hp+1

)

= y(x0 + cih)− λhy′(x0 + cih) +O
(
hp+1

)

= y(x0) + (ci − λ)hy′(x0) +

(
c2i
2!

− λci

)
h2y′′(x0)

+ · · ·+
(
cpi
p!

− λ
cp−1
i

(p− 1)!

)
hpy(p)(x0) +O

(
hp+1

)
,

where the ci are the abscissae for the DIMSIM method. These last equations hold

for i = 1, . . . , s, and together we get

y[0] = y(x0)e+ (C − λD)ȳ(x0), (4.1)

where

C =




c1
1
2!
c21 · · · 1

p!
cp1

c2
1
2!
c22 · · · 1

p!
cp2

...
...

...

cp
1
2!
c2p · · · 1

p!
cpp



, (4.2)

D =




1 c1
1
2!
c21 · · · 1

(p−1)!
cp−1
1

1 c2
1
2!
c22 · · · 1

(p−1)!
cp−1
2

...
...

...
...

1 cp
1
2!
c2p · · · 1

(p−1)!
cp−1
p



, (4.3)

and ȳ(x0) = [hy′(x0), . . . , h
py(p)(x0)]

T . The unknown vector, y[0], can be calcu-

lated using a suitable method such as a Runge-Kutta method of order and stage

4.1 Fixed stepsize implementation 101

order equal to p, from which we can obtain the vector ȳ(x0). We used the SIRK

methods of the same order. Consider a SIRK method of order p with abscissae,

g = [g1, g2, . . . , gp]
T , then we have

hf(Yi) = hy′(x0 + gih) +O
(
hp+1

)

= hy′(x0) + h2giy
′′(x0) + h3

g2i
2!
y′′′(x0)

+ · · ·+ hp
gp−1
i

(p− 1)!
y(p)(x0) +O

(
hp+1

)
,

for i = 1, . . . , s, and if we let F (Y) = [f(Y1), f(Y2), . . . , f(Yp)]
T then we have

hF (Y) = Gȳ(x0),

where matrix G has the same structure as matrix D but ci is replaced by gi.

Hence, we have

ȳ(x0) = G−1hF (Y),

and using this and (4.1) we obtain

y[0] = y(x0)e+ (C − λD)G−1hF (Y). (4.4)

This involves the use of the appropriate SIRK method as a first step, in order to

obtain an estimate of hF (Y), which is the vector of weighted stage values of the

SIRK method. This is the starting procedure we used in our experiments involving

fixed stepsizes.

4.1.2 The stage solver

From (3.1) we have

Yi = λhf(Yi) + y
[n]
i , i = 1, 2, . . . , p.

Let

G(Yi) = −Yi + λhf(Yi) + y
[n]
i , i = 1, 2, . . . , p,

102 An implementation of type 4 DIMSIMs with s = p

then, to solve G(Yi) = 0, we use the Newton iteration scheme which can be stated

as follows

[I − λhJ(Y
[K]
i)]∆Y

[k]
i = G(Y

[k]
i),

Y
[k+1]
i = Y

[k]
i +∆Y

[k]
i , k = 0, 1, . . . ,

where Y
[k]
i refers to the kth iterate of Yi. Since the stage values, Yi, of these

DIMSIM methods satisfy

Yi = y(xn + hci) +O
(
hp+1

)
= y(xn) +O(h),

we have used Y
[0]
i = y(xn), i = 1, 2, . . . , s. Since the aim of the fixed stepsize

implementation is to verify the orders attained, we used the full Newton iteration

scheme.

4.1.3 Verification of order

Using the fixed stepsize implementation, we solved the Prothero and Robinson

problem

y′(x) = g′(x) +m(y(x)− g(x)), y(0) = g(0), (4.5)

with the exact solution y(x) = g(x), g(x) = sin(x) and m = −106, which makes

the problem stiff but non-dissipative. This problem was used to investigate the

phenomenon of order reduction which occurs when some Runge-Kutta methods

are used to solve such problems. Using the exact solution, the global errors were

calculated at the final point. The problem was integrated several times, halving

the stepsize each time. A log-log plot of global errors versus the stepsize was

obtained and we examined the slopes of the these plots. For methods of orders

2 to 5 the plots were linear and slopes obtained were very close to the expected

order. This confirms the belief that there is no order reduction when these methods

are used to solve stiff problems because these are multivalue methods and have

stage order equal to the overall order of the method. For methods of orders more

than five the plots obtained were not linear. For these methods the global errors

4.2 Modification for variable stepsize and order 103

were seen to be sometimes larger for smaller stepsizes. This is possibly related to

the rounding errors introduced by the large coefficients of the method. We used

double precision data representation for these calculations but the results were

still disappointing.

4.2 Modification for variable stepsize and order

An efficient implementation of any numerical method for for solving ODEs requires

variable stepsize and possibly variable order. This enables the solver to choose the

most appropriate stepsize/order to solve a given problem at a particular point.

One way of implementing type 4 DIMSIMs in a variable stepsize mode is to modify

the external stages vector y[n], which has p components, to the Nordsieck vector,

ỹ[n] = [y(xn), hy
′(xn), h

2y′′(xn), . . . , h
py(p)(xn)], with p + 1 components. This is

achieved by modifying the DIMSIM characterised by the matrices A, U , B and

V , which are all p×p matrices, to one characterised by A, Ũ , B̃ and Ṽ , which are

of sizes p × p, p × (p + 1), (p + 1) × p and (p + 1) × (p + 1), respectively. Then

changing stepsize from say h to rh, involves rescaling the the Nordsieck vector to

ỹ[n] = [y(xn), rhy
′(xn), r

2h2y′′(xn), . . . , r
phpy(p)(xn)].

It is possible to derive these methods characterised by the the matrices A, Ũ , B̃ and

Ṽ directly using the order conditions. However, this will not lead to any practical

routine for deriving these coefficients accurately. The coefficients of the methods

characterised by the A, U , B and V matrices can be easily calculated using the

routines based on their derivation as outlined in the last chapter. Therefore,

assuming that U , B and V coefficients are already available, we will consider

deriving the matrices Ũ , B̃ and Ṽ .

4.2.1 Defining Ũ

We consider the DIMSIMs represented by (3.1-3.2) with U = I and A = λI for

the type 4 methods discussed in Chapter 3. From the first equation of (3.1), after

104 An implementation of type 4 DIMSIMs with s = p

rearrangement, we have

y
[n]
i = Yi − λhf(Yi) +O

(
hp+1

)

= y(xn + cih)− λhy′(xn + cih) +O
(
hp+1

)

= y(xn) + (ci − λ)hy′(xn) +

(
c2i
2!

− λci

)
h2y′′(xn)

+ · · ·+
(
cpi
p!

− λ
cp−1
i

(p− 1)!

)
hpy(p)(xn) +O

(
hp+1

)

for i = 1, 2, . . . , s. Putting these equations together gives

y[n] = Ũ ỹ[n], (4.6)

where ỹ[n] = [y(xn), hy
′(xn), . . . , h

py(p)(xn)]
T is the Nordsieck vector. The elements

of Ũ can be obtained from

Ũ = D − λE, (4.7)

where matrix D is redefined as

D =




1 c1
1
2!
c21 · · · 1

p!
cp1

1 c2
1
2!
c22 · · · 1

p!
cp2

...
...

...
...

1 cp
1
2!
c2p · · · 1

p!
cpp



, (4.8)

and matrix E is defined as

E =




0 1 c1
1
2!
c21 · · · 1

(p−1)!
cp−1
1

0 1 c2
1
2!
c22 · · · 1

(p−1)!
cp−1
2

...
...

...
...

...

0 1 cp
1
2!
c2p · · · 1

(p−1)!
cp−1
p



. (4.9)

The method (3.3) is then modified to

[
Y

ỹ[n+1]

]
=

[
A Ũ

B̃ Ṽ

][
hF (Y)

ỹ[n]

]
, (4.10)

4.2 Modification for variable stepsize and order 105

or

Y = AhF (Y) + Ũ ỹ[n], (4.11)

ỹ[n+1] = B̃hF (Y) + Ṽ ỹ[n]. (4.12)

Theorem 4.1 When the original DIMSIM method given by (3.3) is modified to

the form (4.10), where the output vector is the Nordsieck vector, ỹ[n], then

Ũ B̃ = B, (4.13)

Ũ Ṽ = V Ũ. (4.14)

Proof Premultiply (4.12) by Ũ to get

Ũ ỹ[n+1] = Ũ B̃hF (Y) + Ũ Ṽ ỹ[n] (4.15)

and using (4.6) in (3.2) we get

Ũ ỹ[n+1] = BhF (Y) + V Ũ ỹ[n]. (4.16)

By comparing equations (4.15) and (4.16) we obtain the result. ✷

We therefore need to determine the matrices B̃ and Ṽ to satisfy equations (4.13)

and (4.14). However, the choice of B̃ and Ṽ is not unique. Since the calculation of

matrices B̃ and Ṽ depend on the rank of the V matrix, we look at these separately

in the following sections.

4.2.2 Modification to rank 1 methods

4.2.2.1 Determination of Ṽ

Since V is a rank 1 matrix, we let V = e[v1, v2, . . . , vp]. B̃ and Ṽ are interrelated

as they need to satisfy (4.12). With the choice of B̃ given in the next section, the

106 An implementation of type 4 DIMSIMs with s = p

(p+ 1)× (p+ 1) matrix Ṽ takes the form

Ṽ =




ṽ1 ṽ2 . . . ṽp+1

0 0 · · · 0
...

...
...

0 0 · · · 0



.

We now have

Ũ Ṽ = e[ṽ1, ṽ2, · · · , ṽp+1],

and

V Ũ = e

[
p∑

i=1

vi,

p∑

i=1

viũi,2,

p∑

i=1

viũi,3, · · · ,
p∑

i=1

viũi,p+1

]
.

Since we have Ũ Ṽ = V Ũ , by equating terms, we get

ṽ1 =

p∑

i=1

vi = 1,

ṽj =

p∑

i=1

viũi,j, j = 2, 3, . . . , p+ 1.

Hence, the matrix Ṽ can be easily calculated since Ũ is known explicitly.

4.2.2.2 Determination of B̃

The structure of matrix B̃ depends on the abscissae and the rank of the V matrix.

Here we consider rank 1 choice of V and two different choices of the abscissae. For

the first case we have c = [0, . . . , 1]T , that is c1 = 0 and cp = 1. Consider equation

(3.2) for steps n and n− 1. This can be written as

y
[n]
i =

p∑

j=1

bi,jhf(Y
[n]
j) +

p∑

j=1

vi,jy
[n−1]
j , i = 1, 2, . . . , p,

from which, with i = 1, we have

y
[n]
1 =

p∑

j=1

b1,jhf(Y
[n]
j) +

p∑

j=1

v1,jy
[n−1]
j . (4.17)

4.2 Modification for variable stepsize and order 107

Here the notation Y
[n]
j refers to the stage value, Yj, at the n

th step. Similarly, we

can write (3.1) in the form

Y
[n+1]
i = y

[n]
i + λhf(Y

[n+1]
i), i = 1, 2, . . . , p,

from which, with i = 1, we have

Y
[n+1]
1 = y

[n]
1 + λhf(Y

[n+1]
1). (4.18)

Furthermore, we have Y
[n+1]
1 ≈ y(xn + c1h) = y(xn) since c1 = 0. Using this and

(4.17) and (4.18), we get

y(xn) = y
[n]
1 + λhf(Y

[n+1]
1)

=

p∑

j=1

b1,jhf(Y
[n]
j) +

p∑

j=1

v1,jy
[n−1]
j + λhf(Y

[n+1]
1).

Since c1 = 0 and cp = 1 we have Y
[n+1]
1 = Y

[n]
p and the last equation simplifies to

y(xn) =

p−1∑

j=1

b1,jhf(Y
[n]
j) + (b1,p + λ)hf(Y [n]

p) +

p∑

j=1

v1,jy
[n−1]
j .

Consequently, the first row of B̃ is [b11, b12, . . . , b1p+λ] and since hy′(xn + h) = hf(Y
[n]
p),

the second row is [0, 0, . . . , 0, 1]. Therefore, let B̃ have the form

B̃ =




b11 b12 · · · b1,p−1 b1,p + λ

0 0 · · · 0 1

b̃31 b̃32 · · · b̃3,p−1 b̃3,p
...

...
...

...

b̃p+1,1 b̃p+1,2 · · · b̃p+1,p−1 b̃p+1,p



, (4.19)

then, using (4.12), we require that

p∑

i=1

b̃k,ihy
′(xn−1 + hci) = hk−1y(k−1)(xn) +O

(
hp+1

)
, (4.20)

for k = 3, 4, . . . , p+ 1. By writing xn−1 + cih = xn + (ci − 1)h and expanding the

left-hand side of each of the above equations using a Taylor expansion about xn,

108 An implementation of type 4 DIMSIMs with s = p

and equating the coefficients, we get a system of linear equations which can be

written as,

p∑

i=1

b̃k,i(ci − 1)q

q!
=

{
0, q = 0, 1, . . . , p− 1, q 6= k − 2,

1, q = k − 2,

for k = 3, 4, . . . , p + 1. After simplifications, this system of equations can be

written as a matrix equation,




b̃31 b̃32 · · · b̃3,p

b̃41 b̃42 · · · b̃4,p
...

...
...

b̃p+1,1 b̃p+1,2 · · · b̃p+1,p







1 c1
1
2!
c21 · · · 1

(p−1)!
cp−1
1

1 c2
1
2!
c22 · · · 1

(p−1)!
cp−1
2

...
...

...
...

1 cp
1
2!
c2p · · · 1

(p−1)!
cp−1
p




=




0 1 1 1
2!

· · · 1
(p−3)!

1
(p−2)!

0 0 1 1 · · · 1
(p−4)!

1
(p−3)!

...
...

...
...

...
...

0 0 0 0 · · · 1 1

0 0 0 0 · · · 0 1



. (4.21)

This is a linear system which can be solved easily to get the matrix of unknowns

on the left. Thus, B̃ can be determined quite easily.

For the second case the abscissae is c = [−p + 2, . . . , 0, 1]T . In this case cp−1 = 0

and only the first row of the B̃ matrix is different. Using an argument as for the

case when c1 = 0, we get the first row of B̃ as [bp−1,1, bp−1,2, · · · , bp−1,p−1, bp−1,p + λ]

and the remaining elements of B̃ are determined in exactly the same way as for

the case c1 = 0 using (4.21). Using the procedure outlined above we give the

modified matrices for some methods below.

4.2 Modification for variable stepsize and order 109

4.2.2.3 Some modified rank 1 methods

• The implicit Euler method can be considered as a type 4 DIMSIM with

p = 1, λ = 1, c = 1,

B = [1], V = [1],

B̃ =

[
1

1

]
, Ũ = [1 0], Ṽ =

[
1 0

0 0

]
.

• p = 2, λ = 3−
√
3

2
, c = [0 1]T ,

B =

[
18−11

√
3

4
−12+7

√
3

4
22−13

√
3

4
−12+9

√
3

4

]
, V =

[
3−2

√
3

2
−1+2

√
3

4
3−2

√
3

2
−1+2

√
3

4

]
,

B̃ =




18−11
√
3

4
−6+5

√
3

4

0 1

−1 1


 , Ũ =

[
1 −3+

√
3

2
0

1 −1+
√
3

2
−2+

√
3

2

]
,

Ṽ =




1 −4+3
√
3

2
8−5

√
3

4

0 0 0

0 0 0


 .

• p = 3, λ = 1.21013831273, c = [0 1
2

1]T ,

B̃ =




−6.4518297302 14.0277199958 −5.2353370147

0 0 1

1 −4 3

4 −8 4


 ,

Ũ =




1 −1.2101383127 0 0

1 −0.7101383127 −0.4800691564 −0.1304339558

1 −0.2101383127 −0.7101383127 −0.4384024897


 ,

ṽ =




1 −1.3405532509 −1.2785229832 1.0308701745

0 0 0 0

0 0 0 0

0 0 0 0


 .

110 An implementation of type 4 DIMSIMs with s = p

4.2.2.4 Error estimation for stepsize control

In this section we look for procedures for estimating the local truncation error,

Cp+1h
p+1y(p+1)(xn), for methods of order p with the V matrix of rank 1. This error

estimate is used for controlling the stepsize in a variable stepsize implementation.

Details on how the error estimate is used to control stepsize will be explained in

a later section.

It is possible to take various linear combination of stage derivatives of two con-

secutive steps, in order to get an estimate of hp+1y(p+1)(xn). We can either take

all the past and present stage values or ignore some of these in getting these es-

timates. Since the components of the Nordsieck vector are calculated by a linear

combination of the stage derivatives in that step, it is also possible to use these

components. This is equivalent to using all the stage derivatives in each step.

Theorem 4.2 If we use a type 4 DIMSIM method of rank 1 and order p, and the

stepsize changes from h/r to h, then the local truncation error satisfies

hp+1y(p+1)(xn) =

(
rp

p+ (r − 1)
∑p

j=1 cj

)(
ỹ
[n]
p+1 − rpỹ

[n−1]
p+1

)
+O

(
hp+2

)
. (4.22)

Proof

ỹ
[n]
p+1 − rpỹ

[n−1]
p+1 =

p∑

i=1

b̃p+1,ihf(Y
[n]
i)− rp

p∑

i=1

b̃p+1,i
h

r
f(Y

[n−1]
i)

≈
p∑

i=1

b̃p+1,ihy
′(xn−1 + cih)− rp

p∑

i=1

b̃p+1,i
h

r
y′(xn−2 + ci

h

r
)

= hpy(p)(xn + θh)− rp(
h

r
)py(p)(xn−1 + θ

h

r
) +O

(
hp+2

)

= hp
[
y(p)(xn + θh)− y(p)(xn + h(−1 +

θ

r
))

]
+O

(
hp+2

)

=

(
θ

(
1− 1

r

)
+ 1

)
h(p+1)y(p+1)(xn) +O

(
hp+2

)
.

4.2 Modification for variable stepsize and order 111

Considering equation (4.20) when k = p + 1, it is seen that θ is the coefficient of

the next term in the Taylor series, that is,

θ =

p∑

i=1

b̃p+1,i(ci − 1)p

p!

=

p∑

i=1

b̃p+1,ic
p
i

p!
− 1, (4.23)

where the following relationships are satisfied

p∑

i=1

b̃p+1,ic
q
i = 0, q = 0, 1, . . . , p− 2, (4.24)

p∑

i=1

b̃p+1,ic
p−1
i

(p− 1)!
= 1. (4.25)

We can determine an alternate expression for θ, which does not involve b̃p+1,i, by

considering

p∑

i=1

b̃p+1,i

p∏

j=1

(ci − cj) = 0.

By expanding the left-hand side and using (4.24) we get

p∑

i=1

b̃p+1,ic
p
i −

p∑

j=1

cj

p∑

i=1

b̃p+1,ic
p−1
i = 0.

Therefore, we have

p∑

i=1

b̃p+1,ic
p
i =

p∑

j=1

cj

p∑

i=1

b̃p+1,ic
p−1
i ,

and using (4.25), we get

p∑

i=1

b̃p+1,ic
p
i

p!
=

p∑

j=1

cj

p∑

i=1

b̃p+1,ic
p−1
i

p!
=

∑p
j=1 cj

p
.

Substituting this into (4.23), we get

θ =

∑p
j=1 cj

s
− 1, (4.26)

112 An implementation of type 4 DIMSIMs with s = p

and

θ

(
1− 1

r

)
+ 1 =

1

r
+ (1− 1

r
)

∑p
j=1 cj

p
. (4.27)

Hence, we obtain

ỹ
[n]
p+1 − rpỹ

[n−1]
p+1 =

(
1

r
+ (1− 1

r
)

∑p
j=1 cj

p

)
hp+1y(p+1)(xn) +O

(
hp+2

)
.

from which the result of the theorem follows. ✷

Other linear combinations of the stage derivatives of two consecutive steps can

also be used to obtain estimates of hp+1y(p+1)(xn).

Example 4.1 Considering the third order method with c = [0, 1
2
, 1]T , we have

hp+1y(p+1)(xn) +O(h4) = b1hf(Y
[n−1]
1) + b2hf(Y

[n−1]
2) + b3hf(Y

[n−1]
3)

+b4hf(Y
[n]
1) + b5hf(Y

[n]
2) + b6hf(Y

[n]
3), (4.28)

where b1 to b6 are functions of the stepsize ratio, r, and can be chosen in various

ways as in Table 4.1. ✷

In our numerical experiments it was found that amongst all the estimators based

on the weightings from Table 4.1, the first one, which uses all the stage derivatives

in two consecutive steps, gave the smoothest error estimates. Using the first

set of values from Table 4.1 makes (4.28) equivalent to (4.22) with s = 3 and

c = [0, 1
2
, 1]T . Since the weightings of this estimator can be generated easily

for methods of any order using (4.22), this is the estimator that is used in our

experimental code.

4.2.3 Modification to rank 2 methods

4.2.3.1 Determination of Ṽ

For rank 2 methods the form of the B̃ matrix is the same as the case for rank 1

methods as given by (4.19). However, the contents of the B̃ matrix are chosen in

4.2 Modification for variable stepsize and order 113

b1 b2 b3 b4 b5 b6

−8r4

1+r
16r4

1+r
−8r4

1+r
8r
1+r

−16r
1+r

8r
1+r

−12r4

1+r
48r4

1+2r
−12r3 0 0 12r2

(1+r)(1+2r)

−12r4

(1+r)(2+r)
0 0 12r −48

2+r
12r
1+r

−24r4

(1+r)(2+r)
48r4

(1+r)(1+2r)
0 0 −48r2

2+3r+r2
24r2

1+3r+2r2

−24r4

2+r
48r4

1+r
−24r3 0 48r2

2+3r+r2
0

−12r4

(1+r)(2+r)
0 12r2 0 −48r

2+r
12r
1+r

Table 4.1: Weightings for the order 3 error estimate.

a more complicated way as detailed in the next section. With this form of matrix

B̃, if V has rank 2 then Ṽ has form

Ṽ =




ṽ1,1 ṽ1,2 . . . ṽ1,p−1 ṽ1,p ṽ1,p+1

0 0 · · · 0 0 0

0 0 · · · 0 ṽ3,p ṽ3,p+1

...
...

...
...

...

0 0 · · · 0 ṽp+1,p ṽp+1,p+1



.

Using equation (4.14), we need to satisfy Ũ Ṽ = V Ũ . By multiplying the relevant

matrices and equating terms we obtain the elements in the first row of the Ṽ

matrix as

ṽ1,1 =

p∑

i=1

v1,i = 1,

ṽ1,k =

p∑

i=1

v1,iũi,k, k = 2, 3, . . . , p− 1.

114 An implementation of type 4 DIMSIMs with s = p

The remaining elements of Ṽ can be determined by solving the equation Û V̂ = V U ,

where Û , V̂ and U are submatrices defined as

Û = Ũ with column 2 removed,

V̂ = Ṽ with columns 1,2 and row 2 removed,

U = Ũ with columns 1 and 2 removed.

4.2.3.2 Determination of B̃

For the cases c = [0, . . . , 1]T and c = [−p+2, . . . , 0, 1]T , the first two rows of the B̃

matrix are defined in exactly the same way as that of the rank 1 case. The other

elements are determined in a similar way. Since rows 3, 4, . . . , p+ 1, of Ṽ contain

some non-zero elements, using (4.12) we need to satisfy

p∑

i=1

b̃k,ihy
′(xn + h(ci − 1)) +

p+1∑

i=p

ṽk,ih
i−1y(i−1)(xn − h)

= hk−1y(k−1)(xn) +O
(
hp+1

)
, k = 3, 4, . . . , p+ 1. (4.29)

By equating the coefficients in the Taylor expansion for each of the equations,

we get systems of linear equations. For order p the systems of linear equations

resulting from (4.29) can be written for k = 3, 4, . . . , p+ 1, as

p∑

i=1

b̃k,i
(ci − 1)q

q!
=

{
0, q = 0, 1, . . . , p− 3, q 6= k − 2,

1, q = k − 2,

p∑

i=1

b̃k,i(ci − 1)p−2

(p− 2)!
+ ṽk,p =

{
0, k 6= p,

1, k = p,
(4.30)

p∑

i=1

b̃k,i(ci − 1)p−1

(p− 1)!
− ṽk,p + ṽk,p+1 =

{
0, k 6= p+ 1,

1, k = p+ 1.

4.2 Modification for variable stepsize and order 115

When these equations are simplified and put together, they satisfy the matrix

equation




b̃31 b̃32 · · · b̃3,p

b̃41 b̃42 · · · b̃4,p
...

...
...

b̃p+1,1 b̃p+1,2 · · · b̃p+1,p







1 c1
1
2!
c21 · · · 1

(p−1)!
cp−1
1

1 c2
1
2!
c22 · · · 1

(p−1)!
cp−1
2

...
...

...
...

1 cp
1
2!
c2p · · · 1

(p−1)!
cp−1
p




=




0 1 1 1
2!

· · · 1
(p−3)!

1
(p−2)!

0 0 1 1 · · · 1
(p−4)!

1
(p−3)!

...
...

...
...

...
...

0 0 0 0 · · · 1 1

0 0 0 0 · · · 0 1



−




0 · · · 0 v3,p v3,p+1

0 · · · 0 v4,p v4,p+1

...
...

...
...

0 · · · 0 vp,p vp,p+1

0 · · · 0 vp+1,p vp+1,p+1



. (4.31)

Comparing this with the corresponding matrix equation for the rank 1 case, (4.21),

we see that the matrix being subtracted here is the Ṽ matrix for the rank 2 case,

with its first two rows and the first column removed. Since the right hand side is

known, this matrix equation can be solved by a linear equation solver to get the

unknown elements in B̃.

4.2.3.3 Some modified rank 2 methods

• p = 3, λ = 0.81, c = [0 1
2

1]T ,

B̃ =




0.0718823104 2.5821330578 −0.5973239704

0 0 1

−4.1749003488 3.9088099671 0.2660903817

−12.6932269318 17.5122902165 −4.8190632847


 ,

Ũ =

[
1 −0.81 0 0

1 −0.31 −0.28 −0.0804166667

1 0.19 −0.31 −0.2383333333

]
,

Ṽ =

[
1 −1.0566913978 −0.1937425585 0.1425620196

0 0 0 0

0 0 −1.2204953653 0.3783535632

]
.

116 An implementation of type 4 DIMSIMs with s = p

• p = 4, λ = 1.081, c = [0 1
3

2
3

1]T ,

B̃ =




3.0648114293 −13.4012626618 19.3782582549 −7.1368070224

0 0 0 1

−35.4590194154 98.6708013894 −93.9645445325 30.7527625585

−36.4288776113 110.9585864510 −112.6305400681 38.1008312284

−74.2097721365 210.0164999157 −197.4036834218 61.5969556427


 ,

Ũ =




1 −1.0810000000 0 0 0

1 −0.7476666667 −0.3047777778 −0.0538827160 −0.0061584362

1 −0.4143333333 −0.4984444444 −0.1908395062 −0.0451522634

1 −0.0810000000 −0.5810000000 −0.3738333333 −0.1385000000


 ,

Ṽ =




1 −0.9050000000 −0.8149442602 0.1733051580 0.3569073224

0 0 0 0 0

0 0 0 1.0229174285 −0.5943150260

0 0 0 0.8142273759 −0.4730661054


 .

4.2.3.4 Error estimation for stepsize control

There are a few different ways in which error estimators can be chosen for methods

where the matrix V has rank 2. The following method is equivalent to (4.22) for

rank 1 methods.

Theorem 4.3 If we use a type 4 DIMSIM method of rank 2 and order p, and the

stepsize changes from h/r to h, then the local truncation error satisfies:

hp+1y(p+1)(xn) =
1

ξ
(ỹ

[n]
p+1 − rpỹ

[n−1]
p+1) +O

(
hp+2

)
, (4.32)

where

ξ =

(
1− 1

r

)((p∑

j=1

cj

)
(1− ṽp+1,p+1)

p
−
(

p−1∑

i=1

p∏

j=i+1

cicj

)
ṽp+1,p

p(p− 1)

)
+

1

r
.

Proof As for rank 1 methods, we have

ỹ
[n]
p+1 − rpỹ

[n−1]
p+1 =

(
θ

(
1− 1

r

)
+ 1

)
hp+1y(p+1)(xn) +O

(
hp+2

)
, (4.33)

4.2 Modification for variable stepsize and order 117

where the expression for θ can be obtained by considering (4.29) when k = p+ 1.

The coefficient of the next term in the Taylor expansion about xn, of the right

hand side of (4.29), is

θ =

p∑

i=1

b̃p+1,i(ci − 1)p

p!
+
ṽp+1,p

2
− ṽp+1,p+1, (4.34)

where, the coefficients satisfy the conditions

p∑

i=1

b̃p+1,ic
q
i = 0, q = 0, 1, . . . , p− 3, (4.35)

p∑

i=1

b̃p+1,ic
p−2
i

(p− 2)!
+ ṽp+1,p = 0, (4.36)

p∑

i=1

b̃p+1,ic
p−1
i

(p− 1)!
+ ṽp+1,p+1 = 1. (4.37)

By expanding the first term of (4.34), and simplifying it using (4.35)-(4.37), it can

be shown that

θ =

p∑

i=1

b̃p+1,ic
p
i

p!
− 1. (4.38)

As for rank 1 methods, we can look for an equivalent expression for θ, by consid-

ering

p∑

i=1

b̃p+1,i

p∏

j=1

(ci − cj) = 0.

Expand the left-hand side and use (4.35) to get

p∑

i=1

b̃p+1,ic
p
i −

(
p∑

j=1

cj

)
p∑

i=1

b̃p+1,ic
p−1
i +

(
p−1∑

i=1

p∏

j=i+1

cicj

)
p∑

i=1

b̃p+1,ic
p−2
i = 0.

On rearrangement of this last equation and using (4.36-4.37), we have

p∑

i=1

b̃p+1,ic
p
i =

(
p∑

j=1

cj

)
(1− ṽp+1,p+1)(p− 1)!−

(
p−1∑

i=1

p∏

j=i+1

cicj

)
ṽp+1,p(p− 2)!

118 An implementation of type 4 DIMSIMs with s = p

or

p∑

i=1

b̃p+1,ic
p
i

p!
=

(
p∑

j=1

cj

)
(1− ṽp+1,p+1)

p
−
(

p−1∑

i=1

p∏

j=i+1

cicj

)
ṽp+1,p

p(p− 1)
.

Substituting this expression into (4.38), we obtain

θ =

(
p∑

j=1

cj

)
(1− ṽp+1,p+1)

p
−
(

p−1∑

i=1

p∏

j=i+1

cicj

)
ṽp+1,p

p(p− 1)
− 1 (4.39)

and it follows that

ξ = θ

(
1− 1

r

)
+ 1

=

(
1− 1

r

)((p∑

j=1

cj

)
(1− ṽp+1,p+1)

p
−
(

p−1∑

i=1

p∏

j=i+1

cicj

)
ṽp+1,p

p(p− 1)

)
+

1

r
,

completing the proof. ✷

Other error estimators, which take linear combinations of the stage derivatives of

two consecutive steps, can also be used. It can be shown that one such estimator

is

hp+1y(p+1)(xn) = η

(
p∑

i=1

b̂ihf(Y
[n]
i)− rp

p∑

i=1

b̂i
h

r
f(Y

[n−1]
i)

)
+O

(
hp+2

)
, (4.40)

where

η =

(
rp

p+ (r − 1)
∑p

j=1 cj

)
.

hf(Y
(n)
i) and hf(Y

(n−1)
i), i = 1, 2, . . . , p, are the internal stages derivatives at step

n and n − 1 respectively, from the rank 2 method and b̂i, i = 1, 2, . . . , p, are the

weightings which are numerically equal to the last row of the B̃ matrix of the

corresponding rank 1 method, that is,

b̂i = b̃p+1,i of the corresponding rank 1 method.

The error estimators (4.32) and (4.40) were used in the implementation of the

rank 2 methods. It was found that (4.40) gave a smoother behaviour and this is

the one that is used in our experimentation of the rank 2 methods.

4.2 Modification for variable stepsize and order 119

4.2.4 Nordsieck vector update for change of order

When order is changed we need to modify the external stage vector. Decreasing

order is very straightforward since we simply need to remove the last component

of the Nordsieck vector, hp+1y(p+1)(xn).

When using a method of order p, we have

ỹ[n] = [y(xn), hy
′(xn), . . . , h

py(p)(xn)]
T .

In order to use a method of order p + 1, we need

ỹ[n] = [y(xn), hy
′(xn), . . . , h

py(p)(xn), h
p+1y(p+1)(xn)]

T .

The additional term, hp+1y(p+1)(xn), is readily available from the local error esti-

mate in the last step of the method of order p. The other terms can be directly

used but these terms are accurate to order p only. The accuracy of these terms

can be improved by considering the next term in the Taylor series expansion. Ex-

panding (4.20) and (4.29) using a Taylor series about xn and retaining the terms

containing hp+1, we get

ỹk = hkyk(xn) + φkh
p+1y(p+1) +O

(
hp+2

)
,

where

φk =

p∑

i=1

b̃k+1,i(ci − 1)p

p!
, for rank 1 methods,

φk =

p∑

i=1

b̃k+1,i(ci − 1)p

p!
+
ṽk+1,s

2
− ṽk+1,p+1, for rank 2 methods,

for k = 2, 3, . . . , p. It should be noted here that, φp = θ, where θ is defined by

(4.26) for rank 1 methods and by (4.39) for rank 2 methods.

The additional terms, which can be easily calculated using the local error estimate

and the method coefficients, can be subtracted from the respective components

to increase the accuracy of these terms in the Nordsieck vector to p + 1. We

investigated the effect of these corrections on the performance of the methods.

120 An implementation of type 4 DIMSIMs with s = p

These additional terms were very small and did not make any difference to the

overall performance of the method in terms of the number of accepted/rejected

steps and the global error in the final computed solution of the problems tested.

4.2.5 Error estimates for variable order

When using a method of order p, we need an estimate of the error, hp+2y(p+2)(xn),

in order to estimate the stepsize h, that will be used by the method of order p+1.

This error estimate can be calculated using a difference of error estimates which

are used for controlling stepsize. In order to do this, we need two such estimates,

hp+1y(p+1)(xn) and h
p+1y(p+1)(xn−1), which can be obtained by keeping the stepsize

constant for three steps. Thus, we have

hp+1y(p+1)(xn) ≈ ∇hpy(p)(xn),

hp+1y(p+1)(xn−1) ≈ ∇hpy(p)(xn−1)

and it follows that

hp+2y(p+2)(xn) ≈ ∇hp+1y(p+1)(xn)−∇hp+1y(p+1)(xn−1) = ∇2hp+1y(p+1)(xn).

4.2.6 Interpolation

Interpolation can be used to calculate the solution at a value of x in between

two points xn−1 and xn where the solutions y(xn−1) and y(xn) have already been

calulated using stepsizes hn−1 and hn, respectively. Let

σ =
x− xn−1

hn
and, if x is closer to xn−1 then it is to xn, we can use

y(x) = y(xn−1 + σhn)

= y(xn−1) + σhny
′(xn−1) +

σ2

2
h2ny

′′(xn−1) + · · ·

+
σp

p!
hpny

(p)(xn−1) +O(hp+1),

4.3 Variable stepsize/variable order implementation 121

where the scaled derivatives hny
′(xn−1), h

2
ny

′′(xn−1), . . . , h
p
ny

(p)(xn−1) are available

from the Nordsieck vector which has been calculated in preparation for the com-

putation of the solution at xn. If x is closer to xn, then, in order to reduce any

errors due to interpolation, it is better to use

y(x) = y(xn + (σ − 1)hn)

= y(xn) + (σ − 1)hny
′(xn) +

(σ − 1)2

2
h2ny

′′(xn) + · · ·

+
(σ − 1)p

p!
hpny

(p)(xn) +O(hp+1),

where the scaled derivatives are available from the Nordsieck vector ỹ[n]. Therefore,

interpolation can be used for dense output as well as for the calculation of the

solution at the endpoint of the integration interval, since the use of variable stepsize

usually takes the final computation past the endpoint.

4.3 Variable stepsize/variable order implemen-

tation

Using the modified methods as outlined in the previous sections, the type 4 DIM-

SIMS in which s = p can be implemented in a variable stepsize/variable order

code. Apart from the error estimation techniques that have been outlined, there

are a few more details which need to be specified. Among these are procedures

for controlling stepsize and order, criteria for convergence control of iterations,

prediction of starting values for iterations and the stopping criteria for iterations.

In developing these procedures, there are many parameters whose values need to

be determined. There are very few guidelines available in the literature. Many of

the parameters that are mentioned in literature seem to be ad hoc choices. We

have experimented with many of these parameters and these will be mentioned in

the appropriate sections.

122 An implementation of type 4 DIMSIMs with s = p

4.3.1 Variable stepsize procedure

Suppose that we are using a method of order p and that an estimate of the LTE,

E = [e1, e2, . . . , em], has been calculated using an appropriate procedure. Then

we set

ti = Atol +Rtol|yn,i|, (4.41)

wi = ei/ti, (4.42)

where yn,i refers to the ith component of the computed solution, yn, and Atol and

Rtol are the relative and absolute tolerances respectively, that are set by the user.

We require that the following test be satisfied

‖w‖ < 1. (4.43)

This error test controls an estimate of the local truncation error. If Rtol = 0, then

we have absolute error control in which case (4.43) reduces to

‖E‖ < Atol,

which means that the norm of the calculated error should be less than the tolerance

allowed. If Rtol 6= 0 and Atol = 0, then we have pure relative error control but

we need to be careful that no solution component goes through zero when using

such a control.

If the error control (4.43) is satisfied then the integrator accepts the calculated

solution and calculates the new stepsize for the next step. The new stepsize, if

chosen too large, will result in an excessive error which will not satisfy (4.43) at

the next step. If h is the current stepsize and h̄ the optimum stepsize for the same

step, then we have

ei = Chp+1y
(p+1)
i (xn),

ti = Ch̄p+1y
(p+1)
i (xn),

where y
(p+1)
i (xn) is the i

th component of the (p+1)th derivative of the exact solution

y(x) at xn. We can only hope to satisfy these using any norm, in which case we

4.3 Variable stepsize/variable order implementation 123

have

(
h

h̄

)p+1

= ‖w‖,

from which we get

h̄ = h
1

‖w‖1/p+1
.

In case of absolute error control, this reduces to the usual stepsize selection rule

h̄ = h

(
Atol

‖E‖

)1/p+1

.

In order to make the stepsize changing procedure safe, we include a safety factor

f , 0 < f < 1, upper and lower bounds, rmax and rmin respectively, to get

h̄ = h ∗min

(
rmin,max

(
rmax,

1

‖w‖1/p+1
f

))
. (4.44)

The selection of the parameters f , rmin and rmax is based on experimentation.

The choice of values affect the efficiency of the code as it determines the stepsizes

that are used by the code. Based on our experience with these methods we used

f = 0.8 after an accepted step, f = 0.7 after a rejected step and rmin = 0.5. Larger

values of f such as f = 0.8 after a rejected step and f = 0.9 after an accepted

step often resulted in the next step being rejected, even for smooth problems. It

is important to guard against large stepsize increases, so we choose rmax = 2.0.

Using rmax larger than 2 increases the chance of rejected steps due to either non-

convergence of iterations at the next calculation or large errors.

The error estimates for stepsize control are calculated using the information from

two steps. Hence, the first two steps of methods of any order need to be taken with

constant stepsize. As outlined in the next section, integration always starts with

a first order method. Therefore, the integration needs to start with a very small

stepsize. However, using the stepsize controller outlined above, the integrator

quickly adapts to an appropriate stepsize.

124 An implementation of type 4 DIMSIMs with s = p

4.3.2 Variable order procedure

The estimation of error for variable stepsize is done in every successful step. How-

ever, the estimation of error for variable order only needs to be done when we think

it will be advantageous to change the order. When this needs to be done is not so

obvious. It was observed that when using variable stepsize and constant order, the

stepsize eventually settles to an almost constant value for problems with smooth

solutions. When this stage of calculation is reached, the stepsize ratio becomes

close to 1. At this point we could test for order change. In our code we required

the stepsize ratio to be between 0.9 and 1.1 before we attempt this. When this

was satisfied we forced the calculation for two more steps using the last value of

h. This gives us three steps of calculated values using the same stepsize, h. Using

these calculated solutions we obtain an estimate of hp+2y(p+2)(xn) as outlined in

Section 4.2.5.

In addition, we required that at least 10 steps of calculation must be carried out

using the present method before an attempt is made to change the order. This

was done to ensure that the error estimates remained reliable. Furthermore, order

change is never contemplated after a rejected step.

Assuming that we are using a method of order p with a stepsize h, the principal

local truncation errors for methods of order p− 1, p and p+ 1 are

Ep−1 = Cp−1h
py(p)(xn),

Ep = Cph
p+1y(p+1)(xn),

Ep+1 = Cp+1h
p+2y(p+2)(xn),

where Cp−1, Cp and Cp+1 denote the error constants of methods of order p − 1,

p and p + 1 respectively. An estimate for hpy(p)(xn) is available from the last

component of the Nordsieck vector.

The optimal stepsizes hp−1, hp and hp+1, for orders p−1, p and p+1 are calculated

4.3 Variable stepsize/variable order implementation 125

in a way similar to that in Section 4.3.1, as

hp−1 = h
1

‖wp−1‖1/p
,

hp = h
1

‖wp‖1/p+1
,

hp+1 = h
1

‖wp+1‖1/p+2
,

where

wp−1,i = Ep−1,i/ti,

wp,i = Ep,i/ti,

wp+1,i = Ep+1,i/ti,

ti = Atol +Rtol‖yn,i‖,

and Ep,i = Cph
p+1y

(p+1)
i (xn), is the i

th component of Ep and wp,i refers to the ith

component of the vector wp, etc. In the calculation of these stepsizes the safety

factors 0.9, 0.8, 0.7 were used in the calculation of hp−1, hp and hp+1 respectively.

A few different values of maximum stepsize ratio in the range [1.0, 2.0] was exper-

imented with, in order to gauge its effect on the acceptance/rejection of the first

two steps of the calculated solution for the higher order method. It was found

that values near 2.0 resulted in the rejection of the first two steps of the higher

order method. There is a need to be conservative in increasing the stepsize when

order is increased, since the second difference used to determine this stepsize is

not very reliable. But it is better to increase the stepsize by a small amount then

not to change it at all. Hence, we used 1.2 as the maximum stepsize ratio after a

change of order. This was observed to be acceptable for the problems we tested

and for most of the order changes.

For parallel methods, such as the type 4 DIMSIMs that we are considering, the

stages can be computed in parallel. This means that no matter how many stages

126 An implementation of type 4 DIMSIMs with s = p

the method has, the cost of the methods will be exactly the same in parallel.

Therefore, the optimum order selected should be the method which corresponds

to

ĥ = max{hp−1, hp, hp+1}.

However, because of the overheads for changing orders, it is only beneficial to

change orders if the new stepsize is a reasonable increase. Hence, in our code

order is changed only if the stepsize ratio satisfies ĥ/hp > 1.1.

Since a DIMSIM method of order more than 1 requires a starting procedure, the

integration always needs to start with a method of order 1, which requires only

the initial value, and proceed through methods of consecutive higher orders. In

this way we avoid having to use a starting procedure. The first order method used

is the implicit Euler method. One drawback of using a first order method to start

the integration of stiff problems is that we need a very small initial stepsize.

4.3.3 Convergence control of the implicit equation solver

From the stage equations (4.11), we have

Yi = λhf(Yi) + ψi, i = 1, 2, . . . , p. (4.45)

where ψj =
∑p+1

j=1 ũij ỹ
[n]
j contains the calculations from the past step. Let

G(Yi) = −Yi + λhf(Yi) + ψi, i = 1, 2, . . . , p. (4.46)

then, in order to solve G(Yi) = 0, we use a modified Newton iteration scheme

which can be stated as

M∆Y
[k]
i = G(Y

[k]
i), (4.47)

Y
[k+1]
i = Y

[k]
i +∆Y

[k]
i , k = 0, 1, . . . ,

where, M = I − λhJ , is the iteration matrix and J is a recent approximation to

the Jacobian of f . The notation, Y
[k]
i , refers to the kth iterate of Yi. The most

important aspect of solving an IVP by the DIMSIM method involves the solution

4.3 Variable stepsize/variable order implementation 127

to the implicit equation (4.47). This is also computationally the most expensive

part and its supervision and control which determine the performance of the code,

constitute the convergence control.

Using (4.47), we need to solve for ∆Y
[k]
i in order to approximate the stages Yi,

i = 1, 2, . . . , s. The iteration matrix, M = I − λhJ , is of size m × m and J is

an approximation to the Jacobian. The right hand side of the system, G(Y
[k]
i),

depends on the stage values at the kth iteration and the external stages. This

system is solved by factorising the iteration matrix M into LU or PLU factors

and then performing a back substitution to get ∆Y
[k]
i . To increase efficiency, J

and M are not always updated at the beginning of each step but are kept fixed

for as many steps as possible as long as a satisfactory convergence rate is being

achieved. This strategy is adopted by many codes to reduce computational costs

and is based on the fact that the Jacobian evaluations and matrix factorisations are

computationally expensive, especially when the size of the system is large and the

Jacobian matrix is dense. By doing Jacobian evaluation/matrix factorisation as

infrequently as possible we can reduce the overall computational costs. However, if

this is too infrequent it can lead to slow convergence which can increase the overall

computational costs. To understand why the approximate Jacobian, J , which is

supposed to be an approximation to the solution, Y ∗, of the algebraic equation

(4.46), has an important effect on the convergence, we consider the following

analysis. Let

J ≈ ∂F

∂y
(Y ∗),

then, using (4.47), the iterates satisfy

Y
[k+1]
i = ψ + hλf(Y

[k]
i) + hλJY

[k+1]
i − hλJY

[k]
i .

The desired solution satisfies

Y ∗
i = ψ + hλf(Y ∗

i) + hλJY ∗
i − hλJY ∗

i .

Therefore, the iteration error satisfies

Y
[k+1]
i − Y ∗

i = hλJ(Y
[k]
i − Y ∗

i) + hλJ(Y
[k+1]
i − Y ∗

i)− hλJ(Y
[k]
i − Y ∗

i),

128 An implementation of type 4 DIMSIMs with s = p

where, a mean value has been used for f and the matrix J consists of the Jacobian

of f with its entries evaluated at different points between Y
[k]
i and Y ∗

i . It can be

further shown that

Y
[k+1]
i − Y ∗

i = (I − hλJ)−1hλ(J− J)(Y
[k]
i − Y ∗

i).

If there is a number ρ < 1 such that

‖(I − hλJ)−1hλ(J− J)‖ ≤ ρ,

then the error is decreased by a factor of ρ at each iteration. This expression for the

effect of an iteration shows what must be done to improve the rate of convergence.

The two possibilities are to reduce h or to make J a better approximation to the

local Jacobian. Both of these possibilities increase the computational cost which

we are trying to reduce for better efficiency. In order to improve the efficiency we

need to achieve some sort of a balance in trying to use the old Jacobian and the

convergence rate that results. Hence, we need to address the following questions

in order to have an effective convergence criteria:

1. When and how often should we evaluate a new Jacobian?

2. When and how often should we form and factorise the iteration matrix?

3. When should we stop the iterations?

4. What should the maximum number of iterations be?

5. How to deal with convergence failures?

Hence, there is a need for a strategy to determine how often one should do a

Jacobian evaluation/matrix factorisation in order to obtain the greatest efficiency.

These issues are are discussed in publications of Shampine [69] and Diamantakis

[40]. The following strategy concerning Jacobian evaluation/matrix factorisation

has been adopted:

• In some problems the Jacobian varies very slowly in time and remains almost

constant. In such cases, by using the old Jacobian the computational cost

can be reduced. So, at each step a previously computed Jacobian is used

unless:

4.3 Variable stepsize/variable order implementation 129

1. It is N steps since the last Jacobian evaluation/matrix factorisation.

This can be used as a safeguard specially when the convergence rate

is unavailable because the all stages in a step converge within one it-

eration, although this means that for a linear problem there will be

unnecessary Jacobian evaluations. In cases where the Jacobian is a

constant or varies very slowly we can set N to be a large number in

order to avoid unnecessary evaluations.

2. The convergence rate, which is defined in a later section, at the last

step is less than a preset convergence rate.

3. There has been a convergence failure at the last step.

• If a new Jacobian is evaluated then the iteration matrix is updated and

factorised.

• When the calculated stepsize change ratio satisfies ratiomin < hnew/hold <

ratiomax, the stepsize changes are small and the old stepsize is used. This

allows us to use the old Jacobian and matrix factors. This will reduce the

linear algebra costs. This however, has some effect on the overall costs, as

it has been noticed that the DIMSIM methods perform better, in terms of

less rejected steps, if the integrator allows gradual stepsize changes. As a

compromise we used ratiomin = 0.95 and ratiomax = 1.05. Using smaller

and larger values of ratiomin and ratiomax respectively, tends to increase

the number of rejected steps because this makes the stepsize changes less

smooth.

• If the stepsize changes, then a new iteration matrix M is formed and fac-

torised.

In our implementation the LAPACK routines DGETRF and DGETRS [76] were

used for the LU or the PLU factorisation and the solution to the linear system

respectively.

In using DIMSIM methods it has been noted that the performance of the code

deteriorates if the above criterion are modified in favour of evaluating Jacobians

130 An implementation of type 4 DIMSIMs with s = p

and matrix factorisations less often.

4.3.4 Evaluation of stage derivatives

Suppose that the iterations converge at the kth iteration, then the calculated

stage value, Y
[k+1]
i , is accepted as an accurate enough approximation to Yi. The

derivative values are not available at the kth iteration. An obvious way of obtaining

the derivative value is to form the function evaluation, f(xn + hci, Y
[k+1]
i), i =

1, 2, . . . , p. This corresponds to the P (EC)ME mode for the predictor-corrector

methods.

Since these derivatives are used for error estimation, they are likely to amplify the

errors in stiff problems if they are calculated in this way, as explained by Shampine

[69]. So instead of a direct function evaluation the stage derivatives are obtained

using the stage equations G(Yi) = 0. Therefore we have

f(Yi) =
Yi − ψi

λh
,

where Yi = Y
[k+1]
i . This corresponds to the P (EC)M of the predictor-corrector

methods. According to the observations of Nørsett and Thomsen [65] this is more

efficient than performing function evaluations.

4.3.5 Prediction of starting stage values

The convergence of the Newton iterations (4.47) is sensitive to the choice of start-

ing values of the stages, Y . Starting values which are outside the basin of attraction

of Newton’s method will lead to divergence while starting values which are not

close enough may lead to very slow convergence. For best efficiency good staring

values play a very important role. We denote the starting value of the ith stage as

4.3 Variable stepsize/variable order implementation 131

Y
[0]
i . For type 4 DIMSIMs, the stage values satisfy

Yi = y(xn + cih) +O
(
hp+1

)

= y(xn) + cihy
′(xn) +

c2i
2
h2y′′(xn)

+ · · ·+ cpi
p!
hpy(p)(xn) +O

(
hp+1

)
.

Therefore, the best stage predictor without any additional computational cost is

Y
[0]
i = y(xn) + cihy

′(xn) +
c2i
2
h2y′′(xn) + · · ·+ cpi

p!
hpy(p)(xn),

where, the approximations to y(xn), y
′′(xn), . . . , y

(p)(xn), are available from the

external stage vector, ỹ[n]. In practice this predictor worked well in keeping the

number of iterations low and resulted in very few Newton failures.

A better estimator of starting values will reduce the number of iterations that are

required to obtain the stage values to the desired accuracies. It has been noticed

that the later stages usually require more iterations to converge than the first

stage. This has some effect on the load balance on the different processors when

these stages are calculated in parallel. Hence, a better estimator for predicting the

starting values is needed if we want all the stages to converge with approximately

the same number of iterations which we hope to keep as low as possible, preferably

one or two. However, with the stage predictor mentioned above the difference in

the number of iterations required by the different stages is usually only about one

and rarely two or more, for most of the problems we tested.

The use of previous stages in the calculation of starting values of latter stages is

a well accepted idea for serial computations but this is not feasible in a parallel

implementation.

132 An implementation of type 4 DIMSIMs with s = p

4.3.6 Stopping criteria

We would like to use some criteria to stop the iterations when we think that the

iterates we have obtained satisfy

‖Y [k+1]
i − Yi‖ < τ, (4.48)

where τ is the error tolerance of the stage solver and depends on the tolerance

used in the stepsize controller. Since Yi is unknown, the above test is impractical.

However, at the end of the kth iteration we have estimates Y
[k+1]
i , Y

[k]
i , Y

[k−1]
i

which can be used. The convergence rate for the ith stage at the kth iteration is

defined as

r
[k]
i =

‖Y [k+1]
i − Y

[k]
i ‖

‖Y [k]
i − Y

[k−1]
i ‖

. (4.49)

If we assume that, ri < 1, is an upper bound of the convergence rates, then after

a very large number of iterations N , Y
[k+N+l]
i , l = 1, 2, . . . is equal to Yi, then we

have

‖Y [k+1]
i − Yi‖ = ‖(Y [k+1]

i − Y
[k+2]
i) + (Y

[k+2]
i − Y

[k+3]
i) + · · ·+ (Y

[k+N]
i − Yi)‖

≤ ‖(Y [k+1]
i − Y

[k+2]
i)‖+ ‖Y [k+2]

i − Y
[k+3]
i ‖+ · · ·+ ‖Yi − Y

[k+N]
i ‖

≈ ri‖W [k]
i ‖+ r2i ‖W

[k]
i ‖+ · · ·+ rNi ‖W

[k]
i ‖

= ri(1 + ri + · · ·+ rN−1
i)‖W [k]

i ‖

= ri
1− rNi
1− ri

‖W [k]
i ‖

≈ ri
1− ri

‖W [k]
i ‖,

where W
[k]
i = Y

[k+1]
i − Y

[k]
i . Hence, if

ri
1− ri

‖W [k]
i ‖ < τ, (4.50)

then

‖Y [k+1]
i − Yi‖ < τ,

4.3 Variable stepsize/variable order implementation 133

is expected to hold. The upperbound, ri, is not known but as the number of

iterations increases we expect r
[k]
i to get closer to ri. Therefore, we can use

ri = r
[k]
i , (4.51)

where k = the number of the last iteration. Hence, we accept convergence at the

kth iterate if the test

max
1≤i≤p

(
r
[k]
i

1− r
[k]
i

‖W [k]
i ‖
)
< τ, k > 0, (4.52)

is satisfied. Obviously, this stopping criteria cannot be used at the first iteration

since we have no convergence rate available. In this case we can use

‖Y [1]
i − Y

[0]
i ‖ < τ. (4.53)

As mentioned in a previous section, we need a measure of the convergence rate in

order to have an effective convergence control. In cases where there are at least two

iterations than the convergence rate can be calculated and we take the convergence

rate of the last stage as the overall convergence rate of that step. If the last stage

converges within one iteration but one of the previous stages takes more than one

iteration than we can use this convergence rate as the overall convergence rate.

This situation is rare, as it has been noticed that the last stage usually takes more

iterations to converge than the previous ones and usually at least two. However,

the convergence rate cannot be defined by (4.49) when convergence is established

using (4.53) within the first iteration. When all the stages converge within the

first iteration the overall convergence rate of that step cannot be defined. So

the problem faced here is that of controlling convergence without a measure of

the convergence rate. There is no simple solution to this problem. If we insist on

having a measure of the convergence rate at every step then we need to have at least

two iterations at each step but this increases the overall cost. The other alternative

is to exclude the convergence rate in the convergence control whenever the overall

convergence rate of the last step is not defined. In this case we can depend on

the other criteria as mentioned in the last section to control the evaluation of

Jacobians and matrix factorisations.

134 An implementation of type 4 DIMSIMs with s = p

Another important factor for the stopping criteria is the choice of the tolerance for

iterations, τ , which depends on the tolerance of the stepsize controller, T = ‖t‖,
where t is defined by equation (4.41). Since the error estimates are calculated using

the calculated stage derivatives we need to carry out the iterations to a higher

degree of accuracy. Hence, τ needs to be chosen to be smaller than T . However,

choosing τ very much smaller than T increases the computational cost but does not

make the solution any more accurate. We experimented with τ = T/10, τ = T/20,

τ = T/50 and τ = T/100, and found that we obtained the best performance for

τ = T/50. Therefore, we have used τ = T/50 in our experimental code.

4.4 Numerical experiments

Theoretically, type 4 DIMSIMs can be constructed for any choice of the c vector

with distinct values. For the type 4 methods discussed earlier in this thesis we

have considered only two such possibilities, c = [0, 1/(p − 1), 2/(p − 2), . . . , 1]T

and c = [−p + 2,−p + 3, . . . , 0, 1]T . The first and second order methods we use

have c = 1 and c = [0, 1]T respectively. Hence, the different choices only affect

methods of order more than two. In order to compare the performance of the

methods based on different choices of the abscissae and rank 1 or 2 for V , we

have solved the problems listed below for various tolerances. We used the variable

stepsize/variable order implementation of the four sets of methods. The maximum

order of the methods was set to 5 as it has been observed that methods of order

6 and higher resulted in unreliable error estimates which resulted in unstable

behaviour of the solvers. In the tabulated results and discussions we refer to the

sets of methods as follows:

• DIMSIM A: V of rank 1 and c = [0, 1/(p− 1), 2/(p− 2), . . . , 1]T ,

• DIMSIM B: V of rank 1 and c = [−p + 2,−p+ 3, . . . , 0, 1]T ,

• DIMSIM C: V of rank 2 and c = [0, 1/(p− 1), 2/(p− 2), . . . , 1]T ,

• DIMSIM D: V of rank 2 and c = [−p+ 2,−p+ 3, . . . , 0, 1]T .

4.4 Numerical experiments 135

In order to compare numerical methods for the solution of initial value problems,

we need to get some measure of the cost of computation. The cost of computations

is directly related to the following:

• the total number of steps required to reach the endpoint of integration,

• the number of function evaluations in parallel,

• the number of Jacobian evaluations,

• the number of LU decompositions,

For parallel numerical methods, a good measure is the the total number of function

evaluations done in parallel. Since the stages are evaluated in parallel, the stages

with the maximum number of function evaluations in every step determine the

overall time taken. So instead of the total number of function evaluations which

is the usual criteria for serial methods, we can look at the total of the maximum

number of function evaluations.

When the analytic solution is known, the accuracy of the calculated solution can

be measured by the maximum global error produced in the integration interval.

If the analytic solution is not known, then the endpoint global error can usually

be calculated by having an accurate numerical solution. For the problems tested

these solutions were readily available.

4.4.1 Problems tested

The Robertson problem (2.6) was solved with Atol = tol and Rtol = 10−4tol,

where tol is the user set tolerance, Atol is the absolute tolerance and Rtol is the

relative tolerance, for x ∈ [0, 106]. The Van der Pol problem (2.8) was solved with

Atol = Rtol = tol, for x ∈ [0, 2]. The following additional problems were solved.

Kaps problem

Kaps problem [61] is a 2 dimensional stiff system described by the equations





y′1(x) = −1002y1(x) + 1000y22(x), y1(0) = 1,

y′2(x) = y1(x)− y2(x)(1 + y2(x)), y2(0) = 1,
(4.54)

136 An implementation of type 4 DIMSIMs with s = p

with the Jacobian matrix


 −1002 2000y2

1 −1 − 2y2


 .

The exact solution for the Kaps problem is

y1(x) = e−2x, and y2(x) = e−x.

We consider solution to this problem for x ∈ [0, 10] using Atol = Rtol = tol and

since we have an analytic solution for Kaps problem, we can report the maximum

global error for each of the two components. This problem was used to study the

error estimates and the order control behaviour of the solver.

Oregonator problem

This is a famous model with a periodic solution describing the Belusov-Zhabotinskii

reaction [49] and is given by





y′1(x) = 77.27(y2(x) + y1(x)(1− 8.375× 10−6y1(x)− y2(x))), y1(0) = 1,

y′2(x) =
1

77.27
(y3(x)− y2(x)(1 + y1(x))), y2(0) = 2,

y′3(x) = 0.161(y1(x)− y3(x)), y3(0) = 3,

(4.55)

with the Jacobian matrix




77.27− 1.294272× 10−3y1 − 77.27y2 77.27− 77.27y1 0

− y2
77.27

−1−y1
77.27

1
77.27

0.161 0 −0.161


 .

We have integrated this problem for x ∈ [0, 30] using Atol = 10−6tol, andRtol = tol.

Ring Modulator problem

This is an ODE system which models a circuit and is from the CWI testset [63].

4.4 Numerical experiments 137

It is a very stiff system of 15 differential equations which can be written as,





Cy′1 = y8 − 0.5y10 + 0.5y11 + y14 − y1/R,

Cy′2 = y9 − 0.5y12 + 0.5y13 + y15 − y2/R,

Csy
′
3 = y10 − g(z1) + g(z4),

Csy
′
4 = −y11 + g(z2)− g(z3),

Csy
′
5 = y12 + g(z1)− g(z3),

Csy
′
6 = −y13 − g(z2) + g(z4),

Cpy
′
7 = −y7/Ri + g(z1) + g(z2)− g(z3)− g(z4),

Lhy
′
8 = −y1,

Lhy
′
9 = −y2,

Ls2y
′
10 = 0.5y1 − y3 − Rg2y10,

Ls3y
′
11 = −0.5y1 + y4 − Rg3y11,

Ls2y
′
12 = 0.5y2 − y5 − Rg2y12,

Ls3y
′
13 = −0.5y1 + y6 − Rg3y13,

Ls1y
′
14 = −y1 + e1(x)− (R0 +Rg1)y14,

Ls1y
′
15 = −y2 − (Ra +Rg1)y15,

(4.56)

where

z1 = y3 − y5 − y7 − e2(x),

z2 = −y4 + y6 − y7 − e2(x),

z3 = y4 + y5 + y7 + e2(x),

z4 = −y3 − y6 + y7 + e2(x),

and the function g which modelizes the functioning of the diode, is given by

g(z) = 40.67286402× 10−9[exp(17.7493332z)− 1].

The technical parameters take the following values

C = 16× 10−9, Cp = 10−8, Lh = 4.45, Ls1 = 0.002, Ls2 = Ls3 = 0.0005,

Rg1 = 36.3, Rg2 = Rg3 = 17.3, R0 = Ri = 50, Ra = 600, R = 2500,

138 An implementation of type 4 DIMSIMs with s = p

and the signals are given by

e1(x) = 0.5sin(2π103x), e2(x) = 2sin(2π104x).

The initial conditions are given by

yi(0) = 0, i = 1, 2, . . . , 15.

The system behaves differently for different choices of Cs. Here we have integrated

the system for Cs = 10−9. This value is technically meaningful and makes the

system solvable in a reasonable amount of time, for x ∈ [0, 10−3]. We have used

Atol = Rtol = tol.

4.4.2 Effect of initial stepsize

The choice of the initial stepsize, h0, has some effect on the number of total

number of steps required for the integration to complete. The optimum initial

stepsize depends on the tolerance used to solve the problem. Since these methods

start with order one, the initial stepsize needs to be quite small. We investigated

the effect of h0 using the Kaps problem and DIMISIM A. Values of h0 between

10−2 and 10−8 were used to solve the problem for a few different tolerances, and a

set of results is presented in Table 4.2. For simplicity only the number of accepted

and rejected steps are shown. It is seen that when the tolerance is less stringent

the initial stepsize can be bigger without many rejected steps. In such cases, if

the initial stepsize is made very small then the total number of steps required

to complete the integration increases. However, for more stringent tolerances the

initial stepsize needs to be appropriately smaller. Larger initial stepsizes result in

many rejected steps at the start of the integration while the integrator tries to find

a suitable stepsize. The suitability of the initial stepsize is also problem dependent,

for example, it has been noticed that the van der Pol problem required much

smaller initial stepsize compared to the Kaps problem. However, the integrator is

able to quickly adapt the stepsize to suit the conditions of the problem. Hence,

we set h0 = 10−6 as the initial stepsize for all problems.

4.4 Numerical experiments 139

Table 4.2: Effect of h0, Kaps problem and DIMSIM A.

TOL h0 TOT ST REJ ST

10−2 28 0

10−2 10−4 31 0

10−6 38 0

10−8 45 0

10−2 216 10

10−6 10−4 208 2

10−6 219 2

10−8 220 0

10−2 578 20

10−10 10−4 567 8

10−6 555 0

10−8 563 0

4.4.3 Performance of error estimators

Kaps problem was used to study the error estimates, since we can calculate the

true errors using the exact solution. The error estimates for stepsize control were

calculated using (4.22) for DIMSIM A and B and using (4.40) for DIMSIM C and

D. In order to illustrate how well these estimates represent the errors they are

trying to approximate, we obtained the values of these errors for two tolerances,

10−4 and 10−8. These errors are plotted in Figures 4.3-4.10. for a selected set of

steps. On these diagrams error(1) and error(2) refer to the errors in components

1 and 2 respectively.

Since DIMSIMs A-D have the same methods of orders 1 and 2, we have plotted the

errors for orders 1 and 2 separately in Figure 4.3. Since we start the integration

with a small stepsize the error estimates at the beginning are very good for both

the components. The estimates for both the components behave in a similar

manner. When, tol = 10−4, the smoothness of the estimates is interrupted at

about x = 0.1 where the order changes to 2, and we see that this is also true for

the estimates of the second component. At this order change we see that the error

estimates are not very close to the true errors for component 1, however, they

improve after only a few steps. The error estimates for component 2 are always

140 An implementation of type 4 DIMSIMs with s = p

smaller in magnitude (as the solution has smaller magnitude) and these estimates

seem to be always close to the exact the errors even after an order change. Since we

use the maximum norm, the error estimates of component 1 control the stepsize.

The behaviour of the error estimates when tol = 10−8, is similar except that the

order change occurs much earlier at x ≈ 0.001.

Figures 4.4-4.7 show the errors for orders 3 and higher. Since these methods are

different for DIMSIM A-D we have plotted them separately. When tol = 10−4, we

see from Figure 4.1 that the methods use order 3 for the rest of the integration.

Hence, Figures 4.4 and 4.5 show the errors for the order 3 methods, which have

different abscissae and ranks of the V matrix. Again we see that at the order

change, the estimates and the exact errors are not close but as the integration

progresses the estimates get closer to the true errors. However, we also see that

towards the end of integration the estimates get further away from the true errors

and this is due to the larger stepsizes. The estimates for the second component

behave in a similar manner but it is seen that the error estimates for the first

component are usually over-estimates, while those for the second component are

under-estimates.

When tol = 10−8, methods of orders 2 to 5 are used, as can be seen from Figure

4.1. From Figure 4.6 we again see that, when order changes the error estimates

are affected but they improve as the integration progresses. The error estimates

for the remaining part of the integration interval for DIMSIMs A and B behave

in a similar way. From Figure 4.7 we see that the estimates in DIMSIMs C and

D seem to behave in a chaotic manner for the order 5 method which is used after

x ≈ 0.5. The estimates in DIMSIM D for the remainder of the interval improves

but the estimates from DIMSIM C which is given in Figure 4.8 does not improve

very much. Hence, we expect more rejected steps for DIMSIM C.

The higher order error estimates for order control are plotted in Figures 4.9 and

4.10. These figures show all the estimates that are calculated, irrespective of

whether order was changed or not, for tol = 10−8. It is fairly obvious that the

estimated errors are not close to the errors they are trying to estimate. However,

these errors are only used to determine whether order change will be beneficial

4.4 Numerical experiments 141

and by using other conservative criteria as discussed earlier, these estimates can

be used to control order.

4.4.4 Performance of order control

As stated earlier, the variable stepsize, variable order DIMSIM methods have been

implemented to begin with a method of order 1. For smooth problems, such as

the Kaps problem, the variable order strategy causes the orders of the methods

to increase progressively. While solving such problems with lower tolerances, the

lower orders are usually selected, as seen in Figure 4.1. It is also seen that for

more stringent tolerances the higher order methods are used and this is what

one would expect. Since Kaps problem has a smooth solution the orders do not

fluctuate. The Oregonator problem has a solution which is not so smooth, and

the way in which orders are varied to solve this problem are different from that of

the Kaps problem, as seen in Figures 4.1 and 4.2. For this problem it is seen that

the orders sometimes decrease and sometimes increase and again for the lower

tolerance, 10−2, only orders 1 to 2 are used but for a more stringent tolerance,

10−6, orders 1 to 5 are used. At x ≈ 23, there is a sudden change in the solution of

all three components, and this results in a change in the magnitudes of the higher

order derivatives which cause a reduction in stepsize. After x = 25, the solution

again becomes smooth and so the orders increase. The order change behaviour is

as one would expect for these types of problems. These observations are similar

to that of Shampine [70], where the behaviour of the variable order Adams and

BDF codes are illustrated.

Variable order codes solve problems more efficiently by selecting the order most

appropriate for the conditions during the integration. As mentioned earlier low

orders are usually selected at lax tolerances and high orders for more stringent

tolerances. To illustrate this we solved Kaps problem by restricting the maximum

order available for a few stringent tolerances. The results given in Table 4.3 are for

DIMSIM A. It is seen that the availability of the fourth and fifth order methods

have drastically reduced the number of steps that are taken when the maximum

142 An implementation of type 4 DIMSIMs with s = p

order is three. The other statistics, such as, the number of Jacobian evaluations,

the number of LU factorisations, and the number of function evaluations in parallel

are also markedly reduced and at the same time the global error has been slightly

reduced. Hence, we expect a variable order code to perform more efficiently than

a fixed order code.

Table 4.3: Effect of variable order, Kaps problem and DIMSIM A.

TOL MAX ORD TOT ST REJ ST J-EVAL LU F-EVAL MAX GL ER

3 627 3 72 142 1247 1.8× 10−7

10−8 4 527 2 59 120 915 5.7× 10−8

5 321 3 44 117 579 1.3× 10−7

3 1868 0 176 242 3730 6.0× 10−9

10−10 4 1252 0 121 191 2191 1.2× 10−9

5 555 0 59 134 983 5.5× 10−10

0 1 2 3 4 5 6 7 8 9 10
1

2

3

4

5
tol=10

−8

tol=10
−4

x

ord
er

us
ed

 at
 x

Figure 4.1: Order control for Kaps problem.

4.4.5 Performance of type 4 DIMSIMs

In order to compare the results obtained by these methods, the stiff problems were

also solved using two of the best available solvers, RADAU5 [49] and VODE [4].

RADAU5 is based on the Runge-Kutta Radau IIA method of 3-stages and order

5 (2.19), while VODE for stiff problems is based on the BDF methods of orders

1 to 5. These results are given in Appendix B. The importance of comparing

4.4 Numerical experiments 143

0 5 10 15 20 25 30 35
1

2

3

4

5

tol=10
−6

tol=10
−2

x

ord
er

us
ed

 at
 x

tol=10
−6

tol=10
−2

tol=10
−6

tol=10
−2

Figure 4.2: Order control for Oregonator problem.

parallel numerical methods with the state of the art sequential solvers is discussed

by Burrage [5].

Comparing the performance of numerical methods is not an easy task. There are

many factors which affect the performance of the methods and different methods

handle some of the important tasks such as error estimation and order control

differently. However, some of the statistics such as the number of function evalua-

tions needed to calculate the solution to a measured accuracy usually gives a good

measure of the performance of the method. In the following discussions we use the

functions counts to determine if the choice of abscissae or the rank of the V matrix

affects the performance of type 4 DIMSIMs, and to compare the performance of

these methods with RADAU5 and VODE.

For Kaps problem there was no significant difference in performance between the

four sets of methods, DIMSIMs A-D, as seen from the results in Table 4.4 and

Figure 4.11. However, it is seen that method A, which has V of rank 1 and the ab-

scissae is equally spaced within the integration interval, gives the a slightly better

performance. There are very few rejected steps due to excessive local truncation

errors. The larger number of rejected steps for DIMSIM C with smaller tolerances

is due to the behaviour of the error estimates as illustrated in Section 4.4.3. There

were no rejected steps due to the non convergence of Newton iterations.

The Robertson problem is much more difficult to solve and the problem certainly

144 An implementation of type 4 DIMSIMs with s = p

imposes a severe test on the stepsize and order selection algorithms. These meth-

ods are able to solve the problem using stepsizes in the range [10−6, 105]. These

methods had difficulty solving this problem for some tolerances when x > 106. In

such instances, it has been noticed that, the rounding errors make the second com-

ponent of the solution slightly negative and this leads to overflow in the solution.

To handle such situations, we need to make special efforts to reduce rounding off

errors which we have not done in this implementation. The number of rejected

steps are very low and these are always due to excessive local truncation errors.

DIMSIM D which has rank 2 for the V matrix performs a little bit better than

the other methods for small tolerances. This is most likely due to the fact that

these methods have a smaller error constants.

The van der Pol problem is a much more difficult problem to solve numerically, not

only because of stiffness but also because of the sudden change in the solution at

two points in the integration range, as in Figure 2.2. At these points the stepsize

needs to reduce very quickly to cope with the sudden change in the solution. All

the four sets of methods solve this problem adequately, although this results in a

number of rejected steps which are always due to excessive local truncation errors.

DIMSIM B has the least number of rejected steps.

The first component of the solution of the Oregonator problem has a sudden

change in solution at two places in the integration interval, as seen in Figure 4.16.

At these points the numerical methods need to be able to reduce stepsizes very

quickly and the four sets of methods cope with this well. The last plot in Figure

4.16 shows the variation of stepsizes used by DIMSIM A to solve this problem

with tol = 10−2. Most of the rejected steps are due to excessive local truncation

errors. DIMSIM C has a lot more rejected steps compared to the other methods.

Although there is no clear-cut performance difference between the four sets of

methods, method D performs a little bit better than the other methods for small

tolerances, as seen from Figure 4.14 .

The solution components of the ring modulator problem are highly oscillatory as

shown in Figure 4.17. As a consequence, there are many rejected steps, almost all

of which are due to excessive local truncation errors. The performance of method

4.4 Numerical experiments 145

D is slightly better than the others at small tolerances.

Overall there does not seem to be much difference in the performance of DIMSIMs

A-D when they are used to solve these problems. In particular, the choice of the

abscissae does not seem to be critical to the performance of the methods when

only orders 1 to 5 are used. The rank of the V matrix determines the size of

the error constants. As seen earlier, methods with rank 1 for the V matrix have

larger error constants than methods where the V matrix has rank 2. This is the

most likely reason for the slightly better performance of DIMSIM D in most of

the problems. However, this difference is not very marked. Rank 1 methods seem

to have better error estimators.

The performance of a differential equation solver depends very much on the error

estimation algorithm and the stepsize and order controllers. Since the stepsize

selection and order control depend on the error estimates, the single most impor-

tant factor determining the performance of the methods is the error estimation.

The error estimates for DIMSIMs A, B and D seem to be satisfactory while the

error estimates for DIMSIM C are not satisfactory as these result in many more

rejected steps.

The starting values used for the Newton iterations seem to be working quite well,

as there were very few step rejections due to non convergence of the iterations,

in any of the problems solved. The maximum number of iterations required to

solve the stages is usually less than 2 for most of the problems, although it is

sometimes more than 3 for some problems such as the van der Pol oscillator. This

is closely related to the stepsizes that are used during the integration. It is noted

here that the DIMSIMs A-D usually take many more steps compared to either

RADAU5 or VODE. The use of smaller stepsizes results in higher computational

costs in terms of higher number of function evaluations, Jacobian evaluations

and LU decompositions. Even with these larger number of steps the DIMSIMs

sometimes give lower accuracy than that requested compared to RADAU5 or

VODE. For the Robertson and the Oregonator problems the number of function

evaluations are quite comparable to that of VODE but VODE has much lower

Jacobian/LU factorisation costs. Thus, it is apparent that in order to make the

146 An implementation of type 4 DIMSIMs with s = p

DIMSIMs competitive we need to reduce the computational costs. This can only

be achieved by reducing the number of steps that are required to complete an

integration. However, this does not seem to be possible with these methods.

As noted in chapter 4 the error constants of the type 4 DIMSIMs tested in this

chapter are quite large. This is one of the reasons for the large number of steps.

Suppose that we have integrated at xn and now want to choose a stepsize, hn, for

the next step. From the stepsize selection algorithm the new stepsize is approxi-

mately given by

hn =

(
tol

|Cp+1|‖y(p+1)(xn)‖

) 1
p+1

,

from which we see that the new stepsize is proportional to (1
|Cp+1|)

1
p+1 . Larger error

constants will result in smaller stepsizes, so the methods will take many smaller

steps to complete the integration. On the other hand, smaller error constants will

result in larger stepsizes, which in turn will result in fewer steps to complete the

integration. This we hope will lead to lower computational costs. This motivates

the construction of type 4 methods which have smaller error constants and these

will be discussed in Chapter 5.

4.4 Numerical experiments 147

0 0.1 0.2 0.3 0.4
10

−15

10
−10

10
−5

10
0

x

er
ro

r(
1)

0 0.005 0.01
10

−12

10
−11

10
−10

10
−9

10
−8

10
−7

x

er
ro

r(
1)

tol = 10−8tol = 10−4

0 0.1 0.2 0.3 0.4
10

−15

10
−10

10
−5

10
0

x

er
ro

r(
2)

0 0.005 0.01
10

−13

10
−12

10
−11

10
−10

10
−9

10
−8

x

er
ro

r(
2)

tol = 10−8tol = 10−4

Figure 4.3: Errors (+ – est, ◦ – exact), Kaps problem, orders 1 and 2.

148 An implementation of type 4 DIMSIMs with s = p

0 5 10
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

x

er
ro

r(
1)

DIMSIM A

0 5 10
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

x
er

ro
r(

1)

DIMSIM B

0 5 10
10

−7

10
−6

10
−5

10
−4

10
−3

x

er
ro

r(
2)

DIMSIM A

0 5 10 15
10

−7

10
−6

10
−5

10
−4

x

er
ro

r(
2)

DIMSIM B

Figure 4.4: Errors (+ – est, ◦ – exact), Kaps problem, tol = 10−4, using DIMSIMs

A and B.

4.4 Numerical experiments 149

0 5 10
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

x

er
ro

r(
1)

DIMSIM C

0 5 10
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

x
er

ro
r(

1)

DIMSIM D

0 5 10
10

−7

10
−6

10
−5

10
−4

10
−3

x

er
ro

r(
2)

DIMSIM C

0 5 10
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

x

er
ro

r(
2)

DIMSIM D

Figure 4.5: Errors (+ – est, ◦ – exact), Kaps problem, tol = 10−4, using DIMSIMs

C and D.

150 An implementation of type 4 DIMSIMs with s = p

0 0.5 1 1.5
10

−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

x

er
ro

r(
1)

DIMSIM A

0 0.5 1 1.5
10

−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

x

er
ro

r(
1)

DIMSIM B

0 0.5 1 1.5
10

−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

x

er
ro

r(
2)

DIMSIM A

0 0.5 1 1.5
10

−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

x

er
ro

r(
2)

DIMSIM B

Figure 4.6: Errors (+ – est, ◦ – exact), Kaps problem, tol = 10−8 using DIMSIMs

A and B.

4.4 Numerical experiments 151

0 0.5 1 1.5
10

−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

x

er
ro

r(
1)

DIMSIM C

0 0.5 1 1.5
10

−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

x

er
ro

r(
1)

DIMSIM D

0 0.5 1 1.5
10

−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

x

er
ro

r(
2)

DIMSIM C

0 0.5 1 1.5
10

−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

x

er
ro

r(
2)

DIMSIM D

Figure 4.7: Errors (+ – est, ◦ – exact), Kaps problem, tol = 10−8, using DIMSIMs

C and D.

152 An implementation of type 4 DIMSIMs with s = p

2 3 4 5 6 7 8 9 10

10
−12

10
−10

10
−8

10
−6

x

er
ro

r(
1)

DIMSIM C

2 3 4 5 6 7 8 9 10

10
−12

10
−10

10
−8

10
−6

x

er
ro

r(
2)

DIMSIM C

Figure 4.8: Errors (+ – est, ◦ – exact), Kaps problem, tol = 10−8, using DIMSIM

C.

4.4 Numerical experiments 153

0 2 4 6 8
10

−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

x

er
ro

r(
1)

DIMSIM A

0 5 10
10

−15

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

x

er
ro

r(
1)

DIMSIM B

0 2 4 6 8
10

−13

10
−12

10
−11

10
−10

10
−9

10
−8

x

er
ro

r(
2)

DIMSIM A

0 5 10
10

−13

10
−12

10
−11

10
−10

10
−9

10
−8

x

er
ro

r(
2)

DIMSIM B

Figure 4.9: Errors (+ – est, ◦ – exact) for order control, Kaps problem, tol = 10−8,

using DIMSIMs A and B.

154 An implementation of type 4 DIMSIMs with s = p

0 2 4 6 8
10

−15

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

x

er
ro

r(
1)

DIMSIM C

0 5 10
10

−13

10
−12

10
−11

10
−10

10
−9

10
−8

x

er
ro

r(
1)

DIMSIM D

0 2 4 6 8
10

−15

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

x

er
ro

r(
2)

DIMSIM C

0 5 10
10

−13

10
−12

10
−11

10
−10

10
−9

10
−8

x

er
ro

r(
2)

DIMSIM D

Figure 4.10: Errors (+ – est, ◦ – exact) for order control, Kaps problem, tol = 10−8,

using DIMSIMs C and D.

4.4 Numerical experiments 155

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
1

10
2

10
3

10
4

fu
nc

tio
n

ev
al

ua
tio

ns

maximum global errors

* method A
+ method B

o method C
x method D

Figure 4.11: Function evaluations/final global errors: Kaps problem.

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
2

10
3

10
4

fu
nc

tio
n

ev
alu

at
ion

s

final global errors

DIMSIM A

DIMSIM B

DIMSIM C

DIMSIM D

RADAU5

VODE

Figure 4.12: Function evaluations/final global errors: Robertson problem.

156 An implementation of type 4 DIMSIMs with s = p

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
2

10
3

10
4

10
5

fu
nc

tio
n

ev
al

ua
tio

ns

final global errors

* method A
+ method B
o method C
x method D

Figure 4.13: Function evaluations/final global errors: van der Pol problem.

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
2

10
3

10
4

fu
nc

tio
n

ev
alu

at
ion

s

final global errors

DIMSIM A

DIMSIM B

DIMSIM C

DIMSIM D

RADAU5

VODE

Figure 4.14: Function evaluations/final global errors: Oregonator problem.

4.4 Numerical experiments 157

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
3

10
4

10
5

10
6

fu
nc

tio
n

ev
alu

at
ion

s

final global errors

DIMSIM A

DIMSIM B

DIMSIM C

DIMSIM D

RADAU5

VODE

Figure 4.15: Function evaluations/final global errors: Ring Modulator problem.

0 5 10 15 20 25 30
0

1

2
x 10

5

y1

x

0 5 10 15 20 25 30
0

1000

2000

y2

x

0 5 10 15 20 25 30
0

2

4
x 10

4

y3

x

0 5 10 15 20 25 30
0

2

4

h

x

Figure 4.16: Solution profile: Oregonator problem.

158 An implementation of type 4 DIMSIMs with s = p

0 0.0005 0.001
−1

0

1

y1

0 0.0005 0.001
−0.5

0

0.5

y2

0 0.0005 0.001
−1

0

1

y3

0 0.0005 0.001
−1

0

1

y4

0 0.0005 0.001
−1

0

1

y5

0 0.0005 0.001
−1

0

1

y6

0 0.0005 0.001
−1

0

1

y7

0 0.0005 0.001
−5

0

5
x 10

−5

y8

0 0.0005 0.001
−5

0

5
x 10

−6

y9

0 0.0005 0.001
−0.01

0

0.01

y1
0

0 0.0005 0.001
−0.01

0

0.01

y1
1

0 0.0005 0.001
−0.01

0

0.01

y1
2

0 0.0005 0.001
−0.01

0

0.01

y1
3

0 0.0005 0.001
−2

0

2
x 10

−3

y1
4

0 0.0005 0.001
−1

0

1
x 10

−3

y1
5

time

Figure 4.17: Solution profile: Ring Modulator problem.

4.4 Numerical experiments 159

Table 4.4: Results for Kaps problem using DIMSIMs with s = p.

METHOD TOL TOT ST REJ ST J-EVAL LU F-EVAL MAX GL ER

10−1 28 0 16 28 44 4.8× 10−2

10−2 38 0 16 35 71 1.4× 10−2

10−3 60 2 23 55 108 2.5× 10−3

10−4 89 4 21 71 167 2.9× 10−4

DIMSIM A 10−5 134 2 24 76 259 3.6× 10−5

10−6 219 2 33 94 431 7.3× 10−6

10−7 320 3 42 110 599 4.4× 10−7

10−8 321 3 44 117 579 1.3× 10−7

10−9 414 0 48 129 747 5.6× 10−9

10−10 555 0 59 134 983 5.5× 10−10

10−1 28 0 16 28 44 4.8× 10−2

10−2 38 0 16 35 71 1.4× 10−2

10−3 61 2 21 55 110 2.5× 10−3

10−4 91 4 22 68 171 2.9× 10−4

DIMSIM B 10−5 141 2 27 81 273 7.1× 10−5

10−6 221 2 34 92 435 7.3× 10−6

10−7 267 2 38 111 525 4.4× 10−7

10−8 323 2 45 114 637 1.6× 10−7

10−9 431 1 54 114 855 2.0× 10−8

10−10 593 1 68 136 1177 2.0× 10−9

10−1 28 0 16 28 44 4.8× 10−2

10−2 38 0 16 35 71 1.4× 10−2

10−3 60 1 19 52 108 2.5× 10−3

10−4 113 5 26 84 162 2.9× 10−4

DIMSIM C 10−5 159 10 26 109 308 3.6× 10−5

10−6 225 9 31 133 443 3.9× 10−6

10−7 367 3 47 126 728 9.7× 10−7

10−8 395 8 53 247 728 1.5× 10−7

10−9 502 21 57 336 952 5.6× 10−9

10−10 673 22 72 428 1284 5.5× 10−10

10−1 28 0 16 28 44 4.8× 10−2

10−2 38 0 16 35 71 1.4× 10−2

10−3 65 4 21 56 119 2.5× 10−3

10−4 91 4 21 70 171 2.9× 10−4

DIMSIM D 10−5 145 9 26 94 281 4.8× 10−5

10−6 216 2 31 87 425 3.9× 10−6

10−7 363 5 43 111 720 4.4× 10−7

10−8 348 7 44 182 648 5.7× 10−8

10−9 425 7 51 178 809 5.6× 10−9

10−10 582 4 64 160 1138 6.2× 10−10

160 An implementation of type 4 DIMSIMs with s = p

Table 4.5: Results for Oregonator problem using DIMSIMs with s = p.

METHOD TOL TOT ST REJ ST J-EVAL LU F-EVAL END GL ER

10−3 433 26 200 404 727 3.7× 101

10−4 823 24 276 724 1318 2.1× 100

10−5 1289 22 322 1079 1878 4.6× 10−1

DIMSIM A 10−6 1833 32 409 1497 2842 2.3× 10−3

10−7 1869 6 393 1511 2065 5.2× 10−3

10−8 2645 4 502 2095 2864 4.7× 10−4

10−9 3807 11 684 2999 4078 4.8× 10−5

10−10 5567 24 966 4364 6004 6.4× 10−6

10−3 432 41 206 416 764 4.8× 101

10−4 837 18 277 727 1329 1.2× 100

10−5 1158 8 337 973 1867 2.0× 10−1

10−6 1758 5 417 1423 2928 2.2× 10−2

DIMSIM B 10−7 1833 2 434 1483 2901 1.1× 10−2

10−8 2654 1 531 2112 4169 1.1× 10−3

10−9 3752 2 691 2954 5866 4.4× 10−5

10−10 5482 0 949 4262 8541 6.9× 10−6

10−3 463 35 209 434 784 5.2× 101

10−4 975 23 293 829 1468 4.6× 100

10−5 1412 43 332 1215 2061 1.2× 10−1

DIMSIM C 10−6 2042 45 419 1710 3065 2.0× 10−2

10−7 2147 57 418 1807 3105 2.6× 10−4

10−8 2886 59 534 2378 4101 3.5× 10−5

10−9 4054 76 724 3292 5850 6.2× 10−6

10−10 5872 65 1006 4715 8579 8.7× 10−7

10−3 512 46 224 496 844 2.4× 101

10−4 790 16 267 679 1285 6.6× 100

10−5 1249 23 317 1055 1898 1.1× 10−1

DIMSIM D 10−6 1730 5 381 1398 2733 1.9× 10−2

10−7 1896 23 415 1554 2587 3.1× 10−4

10−8 2718 33 516 2189 3663 3.7× 10−5

10−9 3791 10 682 2995 5126 5.9× 10−6

10−10 5523 9 951 4310 7500 7.8× 10−7

4.4 Numerical experiments 161

Table 4.6: Results for Robertson problem using DIMSIMs with s = p.

METHOD TOL TOT ST REJ ST J-EVAL LU F-EVAL END GL ER

10−2 105 0 65 101 158 3.0× 10−5

10−3 181 1 88 165 287 1.2× 10−5

10−4 347 3 132 259 505 1.9× 10−6

10−5 589 3 142 287 839 3.2× 10−7

DIMSIM A 10−6 998 3 174 381 1431 6.3× 10−8

10−7 951 1 166 414 953 1.4× 10−9

10−8 1361 1 235 475 1363 2.0× 10−10

10−9 1975 2 336 597 1978 3.2× 10−11

10−10 2837 3 482 761 2842 5.0× 10−12

10−2 105 0 65 101 158 3.0× 10−5

10−3 181 1 88 165 287 1.2× 10−5

10−4 352 3 127 253 535 1.8× 10−6

10−5 592 3 129 298 894 3.1× 10−7

DIMSIM B 10−6 1007 3 176 396 1531 6.2× 10−8

10−7 975 2 200 414 1107 1.4× 10−9

10−8 1391 2 256 534 1602 2.0× 10−10

10−9 2004 3 342 598 2317 3.2× 10−11

10−10 2867 5 487 827 3341 4.8× 10−12

10−2 105 0 65 101 158 3.0× 10−5

10−3 181 1 88 165 287 1.2× 10−5

10−4 362 10 127 263 547 8.3× 10−6

10−5 603 9 128 307 907 7.3× 10−7

DIMSIM C 10−6 997 3 174 379 1519 1.4× 10−8

10−7 1325 33 238 733 1388 1.6× 10−10

10−8 1874 51 332 1014 1970 2.4× 10−11

10−9 2500 59 435 1172 2636 3.7× 10−12

10−10 3747 83 649 1734 3993 1.8× 10−12

10−2 105 0 65 101 158 3.0× 10−5

10−3 181 1 88 165 287 1.2× 10−5

10−4 356 3 113 252 549 5.8× 10−7

10−5 592 3 113 304 917 7.1× 10−8

DIMSIM D 10−6 1008 6 177 402 1577 1.4× 10−9

10−7 997 3 174 445 1006 1.6× 10−10

10−8 1400 2 241 540 1436 2.3× 10−11

10−9 2024 5 345 621 2088 3.7× 10−12

10−10 2872 6 488 781 2990 5.6× 10−13

162 An implementation of type 4 DIMSIMs with s = p

Table 4.7: Results for van der Pol problem using DIMSIMs with s = p.

METHOD TOL TOT ST REJ ST J-EVAL LU F-EVAL END GL ER

10−1 359 114 292 347 1121 2.8× 10−1

10−2 480 106 362 450 1157 2.9× 10−2

10−3 808 59 590 732 1644 4.5× 10−3

10−4 1474 11 1048 1354 2816 1.2× 10−3

DIMSIM A 10−5 2349 9 1297 2049 4092 9.3× 10−5

10−6 3355 22 1622 2919 5509 9.1× 10−6

10−7 3775 46 1630 3229 5070 2.7× 10−7

10−8 6081 48 3038 5274 8511 1.2× 10−7

10−9 7472 63 3173 6530 9632 8.4× 10−9

10−10 10887 98 4591 9420 14245 1.9× 10−9

10−1 359 114 292 347 1121 2.8× 10−1

10−2 480 106 362 450 1157 2.9× 10−2

10−3 809 59 589 735 1649 4.6× 10−3

10−4 1399 4 1028 1310 2757 5.0× 10−4

DIMSIM B 10−5 2324 7 1390 2071 4616 8.3× 10−5

10−6 3154 11 1704 2744 6285 4.9× 10−6

10−7 3539 13 1809 3068 7037 4.9× 10−7

10−8 5757 17 3053 4941 11471 1.5× 10−7

10−9 7326 20 3243 6020 14605 9.2× 10−9

10−10 10616 22 4531 8796 21163 1.5× 10−9

10−1 359 114 292 347 1121 2.8× 10−1

10−2 480 106 362 450 1157 2.9× 10−2

10−3 798 54 570 723 1632 4.8× 10−3

10−4 1434 8 996 1264 2862 1.4× 10−3

DIMSIM C 10−5 3819 89 2268 3469 7353 1.5× 10−6

10−6 4826 95 2664 4239 9375 4.0× 10−7

10−7 5968 150 3185 5336 11627 4.2× 10−9

10−8 6862 146 3477 6043 13393 1.4× 10−9

10−9 9412 172 4171 8110 18451 8.9× 10−11

10−10 13495 260 5895 11667 26715 1.3× 10−11

10−1 359 114 292 347 1121 2.8× 10−1

10−2 480 106 362 450 1157 2.9× 10−2

10−3 803 59 576 731 1634 4.8× 10−3

10−4 1744 44 1162 1601 3329 6.2× 10−4

DIMSIM D 10−5 2510 56 1307 2245 4787 3.8× 10−6

10−6 3811 14 1837 3140 7188 2.3× 10−6

10−7 4827 24 2230 3926 9080 3.5× 10−7

10−8 5344 36 2282 4423 9931 5.6× 10−9

10−9 7620 57 3218 5972 14199 8.3× 10−10

10−10 12445 337 5313 10253 23370 9.0× 10−10

4.4 Numerical experiments 163

Table 4.8: Results for Ring Modulator using DIMSIMs with s = p.

METHOD TOL TOT ST REJ ST J-EVAL LU F-EVAL END GL ER

10−2 1797 349 963 1776 5629 1.2× 10−1

10−3 4523 658 1788 3877 10631 8.1× 10−2

10−4 9160 703 3033 6167 19771 1.9× 10−2

10−5 16467 716 4250 8809 33761 1.5× 10−3

DIMSIM A 10−6 17955 236 5096 9616 27090 1.3× 10−4

10−7 24903 147 5471 10730 32409 2.3× 10−5

10−8 35950 105 6708 12734 42354 3.0× 10−6

10−9 53227 63 24672 46159 74502 4.6× 10−7

10−10 81109 48 35338 69835 137565 3.8× 10−8

10−2 1760 355 978 1740 5755 1.2× 10−1

10−3 4533 696 1813 3975 10761 8.1× 10−2

10−4 9091 762 2953 6244 19765 1.9× 10−2

10−5 16358 810 4209 8885 34117 1.4× 10−3

DIMSIM B 10−6 17153 151 4867 14289 34141 1.4× 10−4

10−7 24485 109 5716 19882 48884 2.2× 10−5

10−8 35819 102 7145 28685 71607 3.6× 10−6

10−9 52662 90 9503 41704 105268 5.3× 10−7

10−10 77345 92 18113 62060 154656 7.7× 10−8

10−2 1985 365 1020 1911 5862 5.9× 10−2

10−3 4907 675 1943 4177 11349 8.3× 10−2

10−4 9267 719 2860 6216 20010 5.0× 10−3

10−5 16453 666 3927 8546 33883 9.4× 10−4

DIMSIM C 10−6 37316 907 8943 31911 72820 1.3× 10−6

10−7 41494 743 9194 34983 80470 3.7× 10−7

10−8 49170 507 9596 40576 95828 9.6× 10−8

10−9 55927 92 27205 48949 110539 3.8× 10−8

10−10 85929 137 31014 72776 169919 2.9× 10−9

10−2 1909 354 958 1859 5692 4.9× 10−2

10−3 4915 742 1930 4266 11525 8.0× 10−2

10−4 9435 793 3015 6262 20471 4.8× 10−3

10−5 16436 851 3909 8767 34581 8.8× 10−4

DIMSIM D 10−6 17157 152 3653 7909 28413 1.4× 10−5

10−7 24482 93 4884 19707 38758 2.3× 10−6

10−8 35807 100 6566 28501 56948 3.6× 10−7

10−9 52642 91 9952 41829 84298 5.5× 10−8

10−10 77333 85 13862 60899 125252 7.9× 10−9

Chapter 5

New type 4 DIMSIMs

In this chapter we investigate type 4 DIMSIMs in which the diagonal elements of

the A matrix are allowed to be different, and methods in which A = λI but the

number of stages is more than the overall order.

5.1 Motivation

Theoretically, type 4 DIMSIMs in which s = p, seem very promising, since these

methods are A-stable, the abscissae can be chosen inside the integration interval,

the overall order of the method is equal to the stage order and the internal stages

in these methods can be implemented in parallel. As seen in the last chapter these

methods have been successfully implemented in a variable stepsize, variable order

code and can be used to solve stiff problems. However, these methods are not

efficient when compared to the well known codes RADAU5 and VODE. These

methods take many steps to complete the integration of problems tested in the

last chapter and this results in high computational costs even if the stages are

considered to be done in parallel. This is most likely due to the fact that these

methods have large error constants, as seen in Tables 3.4 and 3.5. It is seen that

as orders increase, the size of the error constants increase considerably. Since

we need to have computations from two steps with constant stepsize in order to

165

166 New type 4 DIMSIMs

obtain the error estimates, their implementation is quite complicated. This gives

us strong motivation for developing type 4 methods, where the error constants are

much smaller and where error estimators for controlling the stepsize are available

within a single step.

Here we consider two approaches. The first is to allow the diagonal elements

of matrix A to vary, and the second approach is to keep the diagonal elements

equal but to allow the methods to have more stages than the order. Using these

approaches the size of error constants can be reduced.

5.2 Methods with different λ

Type 4 methods are for parallel implementation. However, the diagonal elements

of matrix A do not need to be equal in order to take advantage of parallelism.

Making the assumption that they are all equal simplifies the derivation a great

deal, leading to a simple form of the stability polynomial and transformations

which are used to derive the method coefficients. We consider type 4 methods

with s = p and in which the matrix A has the generalised form

A =




λ1 0 · · · 0

0 λ2 · · · 0
...

...
...

0 0 · · · λs



.

The implementation of methods of this type will be slightly more complicated than

the methods where the A = λI. However, once the method coefficients have been

derived, the details of the Nordsieck implementation are very similar to the case

where A = λI, and will be given in some detail later. The parallel computational

cost for a method based on this choice of matrix A is not likely to be any higher

than the case where the λ are chosen to be equal. Although each of the stages

requires a different LU decomposition, these can be computed in parallel along

with the stage iterations. Thus the overall parallel cost remains the same. The

derivation and analysis of methods where matrix A takes this more general form

is much more difficult since the transformations considered earlier do not apply

5.2 Methods with different λ 167

anymore. By using the order conditions directly in the next section, we see that

it is possible to derive methods with smaller error constants.

5.2.1 A second order method

We use the order conditions directly to derive a method with p = q = r = s = 2,

abscissae c = [0, 1]T and

A =

[
λ1 0

0 λ2

]
, B =

[
b11 b12

b21 b22

]
, U =

[
1 0

0 1

]
, V =

[
1− v v

1− v v

]
.

We substitute the second order approximations

ez = 1 + z + z2/2 +O(z3),

ecz =

[
1

1 + z + z2/2

]
+O(z3),

in the order condition (3.7). Dropping the terms involving O(z3) we obtain

w = ecz − zAecz =

[
1− zλ1

1 + z(1− λ2) + z2(1
2
− λ2)

]
.

Using this expression of w in the second order condition (3.8), we get

ezw − zBecz − V w

=

[
(1− v − λ1v + λ2v − b11 − b12)z + (1

2
− λ1 − v

2
+ λ2v − b12)z

2

(2 + λ1 − λ2 − v − λ1v + λ2v − b21 − b22)z + (2− 2λ2 − v
2
+ λ2v − b22)z

2

]
.

Since this is a second order method, the coefficients of z and z2 should be zero.

This gives the expressions for the elements of matrix B in terms of λ1, λ2 and v.

For a second order method, the stability polynomial satisfies

φ(q, ez) = det(wI −M(z)) = O(z3),

where M(z) is given by (3.15). Using this in a Mathematica program it is found

that λ1 satisfies

λ1 =
−3 + 8λ2 − 5λ22

−2 + 3λ2
. (5.1)

168 New type 4 DIMSIMs

If we put λ1 = λ2 = λ and solve this last equation, we obtain λ = 3±
√
3

2
, which are

precisely the values obtained for the second order method with A = λI. Since we

require positive values of λ1 and λ2, the last equation requires that

0.6 < λ2 <
2

3
or λ2 > 1.

The A-stability of a method with stability polynomial, φ(w, z) , is equivalent to

the statement that there do not exist complex numbers w and z such that

(i) φ(w, z) = 0,

(ii) Re(z) ≤ 0,

(iii) |w| > 1.

By the maximum modulus principle, we can replace (ii) by z = iy. In order to

investigate the possible values of λ2 for A-stability, we can use a recursive argument

based on the Schur criterion for a polynomial having all its zeros in the closed unit

disc. We recall that a polynomial, all of whose zeros lie within the open unit disc

in the complex plane, is called a Schur polynomial [64]. By a well-known property

of Schur polynomials we can reduce these polynomials to lower order polynomials,

which are also Schur polynomials [64]. Thus, the value of λ2 needs to be chosen

to ensure that the reduced stability polynomial is always positive. In this case the

reduced polynomial is a quadratic whose coefficients a, b and c are polynomials

in λ2. For A-stability we need to ensure that this quadratic is always positive for

the chosen value of λ2. The simplest way of doing this is by choosing λ2 such that

a > 0, b > 0 and c > 0. This gives the following intervals of λ2 for an A-stable

method

0.5740 < λ2 <
2

3
or 0.6712 < λ2 < 3.03815.

Consequently, the values of λ2 which lead to A-stable methods fall in the interval

0.6 < λ2 <
2

3
or 1.0 < λ2 < 3.03815.

The error constant of the method is given by

C =
23

12
− 5λ2 +

5

2
λ22.

5.2 Methods with different λ 169

Values of λ2 near the zeros of this quadratic will give methods with small error

constants. The zero which falls in the A-stability interval is about 1.48. Choosing

λ2 = 1.5, we get the A-stable method with the following coefficient matrices.

A =

[
9
10

0

0 3
2

]
, B =

[
63
40

−21
40

103
40

−9
8

]
, V =

[
9
8

−1
8

9
8

−1
8

]
.

This method has an error constant of 1
24

= 0.04167, which is much smaller than

the error constants, 0.2484, 4.0817, of the two second order methods in which

A = λI.

5.2.2 Nordsieck representation

The Nordsieck representation of type 4 DIMSIMs outlined in Chapter 4 applies

to the methods with this generalised matrix A, with a few changes. The matrix

Ũ is now given by

Ũ = D −AE

where the matrices D and E are defined by (4.8) and (4.9) respectively. For the

case where c1 = 0 the first row of the matrix B̃ becomes

[b11, b12, . . . , b1,s−1, b1,s + λ1] while the other details concerning the B̃ matrix re-

main exactly the same. The error estimators also remain unchanged. The other

important change involves the stage equations and it is seen that (4.45) now be-

comes

Yi = λihf(Yi) + ψi, i = 1, 2, . . . , s, (5.2)

and (4.46) changes to

G(Yi) = −Yi + λihf(Yi) + ψi, i = 1, 2, . . . , s. (5.3)

The modified Newton iteration scheme for the solution of G(Yi) = 0, can now be

stated as

Mi∆Y
[k]
i = G(Y

[k]
i), (5.4)

Y
[k+1]
i = Y

[k]
i +∆Y

[k]
i , k = 0, 1, . . . ,

170 New type 4 DIMSIMs

where, Mi = I − λihJ , is the iteration matrix for stage i. It is now apparent that

each stage requires its own LU decomposition. However, these can be done in

parallel, so the overall cost will not increase.

As the second order method derived above illustrates, it is possible to derive type

4 methods with much smaller error constants, if we allow the diagonal elements of

matrix A to vary. However, the derivation of higher order methods of this type,

using the procedure used above, is much more difficult, especially the part involv-

ing the verification of A-stability, and unless we can find a systematic procedure

for this derivation it is not practical. Hence, we do not consider higher order

methods based on this approach in this thesis.

5.3 Type 4 DIMSIMs with s = p + 1

We consider the derivation of A-stable type 4 methods in which A = λI, but λ does

not satisfy (3.27). By not requiring this condition to hold the methods proposed

have order one less than the number of stages. The stage order of such methods

can still be equal to the order. We hope to be able to control the magnitude of

the error constants by the appropriate choice of λ.

5.3.1 A first-order method with 2 stages

Consider a method with coefficient matrices, A = λI, Ũ , B̃, Ṽ , and c = [0, 1]T .

Using the Nordsieck vector as the external stage vector, we have w = [1, z]T . Using

the order conditions given by (3.7) and (3.8) we have

ecz = zλecz + Ũw +O(z2),

ezw = zB̃ecz + Ṽ w +O(z2).

Using these we get

Ũ =

[
1 −λ
1 1− λ

]
, B̃ =

[
b1 b2

1− q q

]
, Ṽ =

[
1 v

0 0

]
,

5.3 Type 4 DIMSIMs with s = p+ 1 171

where

b1 + b2 + v = 1. (5.5)

Using the stability matrix for the method, M(z) = Ṽ + z
1−λz

B̃Ũ , we obtain

M(∞) = Ṽ − B̃Ũ

λ
.

For perfect damping at infinity, we require that the characteristic polynomial

p(w) = det(wI −M(∞))

=

(
1− b2

λ
+
b1q

λ2
+
b2q

λ2
− q

λ
+
v

λ

)

+

(
−2− b1

λ
+
b2
λ

+
q

λ

)
w + w2

satisfies p(w) → 0 as w → 0. Hence, we set the constant term and the coefficient

of w equal to zero. Solving these two equations for b1 and b2 gives

b1 = 2λ− λ2 − q − λq + q2 − λv,

b2 = λ2 + λq − q2 + λv,

and adding them together gives

b1 + b2 = 2λ− q.

Using this equation with (5.5) and solving for q gives

q = −1 + 2λ+ v.

Putting these together we have

B̃ =

[
2− 3λ+ λ2 − 3v + 2λv + v2 −1 + 3λ− λ2 + 2v − 2λv − v2

2− 2λ− v −1 + 2λ+ v

]
.

Using the Schur criterion we obtain the region of A-stability as

3−
√
3

2
≤ λ ≤ 3 +

√
3

2
. (5.6)

172 New type 4 DIMSIMs

When λ = 3±
√
3

2
the method has an error constant equal to zero and reduces to

the second order method which has previously been derived by Butcher [24] and

discussed in Chapter 3. The error constant of this new method is given by

C =
3

2
− 3λ+ λ2.

Since this is a positive quadratic with zeros at 3±
√
3

2
, it is clear that the error

constant can be kept small by selecting a value of λ near these zeros but inside

the interval (5.6). The free parameter, v, can be chosen in any way, as it does not

affect the size of the error constant. For example, by choosing λ = 3
4
, and v = 0,

we have A = λI and the following method

B̃ =

[
5
16

11
16

1
2

1
2

]
, Ũ =

[
1 −3

4

1 1
4

]
, Ṽ =

[
1 0

0 0

]
,

which has an error constant, C = − 3
16
. With the same value of λ but v = 1 − λ,

the method has the same error constant but the B̃ and Ṽ become

B̃ =

[
0 3

4
1
4

3
4

]
, Ṽ =

[
1 1

4

0 0

]
.

In this last method the final internal stage is calculated in exactly the same way

as the first external stage, in much the same way as stiffly accurate Runge-Kutta

methods in which the final stage is calculated using exactly the same coefficients

as the output solution.

Apart from arbitrary choices of v, as in the above examples, one can choose v to

minimise some norm of the B matrix. This was investigated using the Matlab

function fmins after having chosen λ. Using λ = 7
10

it was found that the value

of v near 0 which minimises the infinity norm of matrix B is close to − 1
20
. Using

these the we get

B̃ =

[
189
400

231
400

13
20

7
20

]
, Ṽ =

[
1 −1

20

0 0

]
.

This method has an error constant equal to 0.11, a value much smaller than the

error constant of the implicit Euler method. In practice it is expected to perform

better than the implicit Euler method, if the two stages are computed in parallel.

Of course, in serial computation this new method is more costly because of the

extra stage but we do not see this as a disadvantage in a parallel implementation.

5.3 Type 4 DIMSIMs with s = p+ 1 173

5.3.2 Higher order methods

Using the stability polynomial and the numerical investigation outlined in Sections

3.2.1-3.2.2, the intervals of λ required for A-Stability of the new methods have been

determined. These are shown in Table 5.1. For p = 8 and for p > 10 there are no

A-stable methods.

p Interval for λ λ for s = p

1 [3−
√
3

2
, 3+

√
3

2
] 3±

√
3

2

2 [0.576, 3.833] 1.2101383127

3 [0.875, 1.9449] 1.9442883555

4 [1.053, 2.665] 1.3012832613

5 [1.052, 1.8059] 1.8056866912

6 [1.265, 2.290] 1.3521971029

7 [1.211, 1.739] 1.7368002358

8 - -

9 [1.548, 1.703] 1.6956068006

Table 5.1: Intervals of λ for A-stability.

The intervals for λ have been obtained experimentally and there is some uncer-

tainty about the cut-off values. However, from the perspective of getting smaller

error constants, we need to choose values of λ that are close to the values of λ

for the methods where s = p, which are given in the final column in Table 5.1.

As the orders increase, the choice of λ becomes very sensitive to the size of the

error constants, since the error constants are polynomials in λ of increasing orders.

Table 5.2 shows a set of choices of λ and the corresponding error constants. Here

λ values have been chosen so that the error constants decrease in magnitude as

order increases.

174 New type 4 DIMSIMs

p λ Cp+1

1 0.7 1.1× 10−1

2 1.2 2.1× 10−2

3 1.944 2.2× 10−3

4 1.3012 5.5× 10−4

5 1.80568 2.1× 10−4

6 1.352193 9.9× 10−5

7 1.7368 3.1× 10−5

9 1.6956068 7.3× 10−6

Table 5.2: Error constants for methods in which s = p + 1.

5.3.3 Choice of abscissae and free parameters

For these new methods, the abscissae remains a free parameter just as they do for

the methods in which s = p. Therefore we can choose the abscissae as we like, as

long as they are distinct. We have investigated three choices in which the abscissae

are equally spaced in [0, 1], [−1, 1] and in [−s + 2, 1]. The choice of the abscissae

determines the magnitude of the coefficients. When the abscissae is chosen to be in

each of the three intervals mentioned, the coefficients have the largest magnitude

in the first case for any particular order. The smallest magnitude of coefficients

result in the last case. When these coefficients become very large their use in the

solution of an initial value problem will result in rounding errors. So although

it is preferable to keep the abscissae inside the integration interval, the resulting

methods have very large coefficients as the order increases. These high order

methods will be of no practical use due to the influence of rounding errors.

It is possible to choose abscissae to be unequally spaced in [0, 1], for example, they

can be based on the roots of the shifted Chebyschev polynomials of the second

kind, as in [26]. However, we have no reason to think that this choice will be in

any way superior to the equally spaced choice. Hence, we have not considered this

in this thesis.

The other remaining free parameters are ṽ2, ṽ3, . . . , ṽs, which come from the first

5.3 Type 4 DIMSIMs with s = p+ 1 175

row of matrix Ṽ . We chose these ṽi, i = 2, . . . , s, in such a way that we minimise

the maximum norm of the B matrix. We used the Matlab function fmins to do

this minimisation.

After having chosen the abscissae, c, we use the values of λ listed in Table 5.2

and the values of ṽ which minimises the coefficients of the B matrix, to derive the

methods which are listed in Appendix A. A Mathematica program was used for

this purpose.

In an implementation of these methods we need to have these coefficients calcu-

lated to the highest possible precision. We investigate the effect of the choice of

the abscissae on computations later in this chapter.

5.3.4 Error estimation for stepsize control

For these new methods, one can find an estimate of hp+1y(p+1)(xn) + O(hp+2)

within a single step by taking a linear combination of the stage derivatives in

much the same way as the calculation of the final component of the external stage

vector for methods in which s = p. For example, for the first order methods listed

in the previous section, we have

h2y(2)(xn) +O(h3) = −hf(Y1) + hf(Y2),

and for a second order method with three stages and c = [0, 1
2
, 1]T , the error

estimator is

h3y(3)(xn) +O(h4) = 4hf(Y1)− 8hf(Y2) + 4hf(Y3).

For p = 3 and c = [−1, 0, 1]T the error estimator becomes

h3y(3)(xn) +O(h4) = hf(Y1)− 2hf(Y2) + hf(Y3).

For a method of order p, with s = p+ 1 stages, the error estimator is given by

hp+1y(p+1)(xn) +O(hp+2) =
s∑

i=1

bihf(Yi), (5.7)

176 New type 4 DIMSIMs

where the weightings, bi, are numerically equal to the b̃s+1,i of the methods in which

s = p and the same c, and satisfy (4.21). The weightings for error estimation are

given with the method coefficients in Appendix A. This procedure for obtaining

error estimates is much simpler to implement, as this estimate is available within a

single step, unlike the methods with s = p in which one needs to calculate at least

two estimates of the solution before any error estimate can be obtained. Using

these error estimates these methods can be implemented in a variable stepsize code.

The other details concerning the variable stepsize implementation are exactly the

same as for methods in which p = s as discussed in the last chapter.

5.3.5 Error estimates for order control

In order to implement these methods in a variable order code we require an

estimate of the higher order error, hp+2y(p+2)(xn). To obtain this estimate we

consider the following modification to the methods which we assume has been

implemented using variable stepsize. Let us examine the output stage vector

ỹ[n] = [y(xn), hy
′(xn), . . . , h

py(p)(xn)]
T for its error terms. Since there are s stages

it is more convenient to use s instead of p. Each of the output stages, except the

first, can be expressed as:

ỹ
[n]
k = hk−1y(k−1)(xn) + φkh

sy(s)(xn) +O(hs+1), k = 2, 3, . . . , s, (5.8)

where φ2, φ3, . . . , φs depend on the abscissae and can be calculated by considering

(4.12) and leaving out the first equation resulting from this. Since the Ṽ matrix

has all rows of zeros except the first, we have

s∑

i=1

b̃kihf(Yi) = hk−1y(k−1)(xn) + φkh
sy(s)(xn) +O(hs+1), k = 2, 3, . . . , s. (5.9)

Substituting f(Yi) = y′(xn−1 + cih) in the last equation and using a Taylor series

expansion we obtain

φk =

s∑

i=1

b̃k,i
(ci − 1)s−1

(s− 1)!
, k = 2, 3, . . . , s,

5.3 Type 4 DIMSIMs with s = p+ 1 177

where the b̃k,i satisfy the following conditions for k = 2, 3, . . . , s:

s∑

i=1

b̃k,i(ci − 1)q

q!
=

{
0, q = 0, 1, . . . , s− 2, q 6= k − 2,

1, q = k − 2.

Then, if we change stepsize from h to rh, we want the components of the external

stages, (5.8), to be rescaled correctly not only for the first term, which is the usual

case, but also for the second term, φkh
sy(s)(xn), k = 2, 3, . . . , s. This can be done

using an estimate for ǫ[n] = hsy(s)(xn) + O(hs+1) and modifying the appropriate

components of the external stage vector to ŷ[n], where we want to obtain

ŷ
[n]
k = rk−1hk−1y(k−1)(xn) + φkr

shsy(s)(xn) +O(hs+1), k = 2, 3, . . . , s, (5.10)

using

ŷ
[n]
k = rk−1ỹ

[n]
k + θkǫ

[n] +O(hs+1), k = 2, 3, . . . , s. (5.11)

Substituting (5.8) into this last equation and comparing it with (5.10), we obtain

θk = φk(r
s − rk−1), k = 2, 3, . . . , s.

Substituting this expression for θk into (5.10), we obtain

ŷ
[n]
k = rk−1ỹ

[n]
k + φk(r

s − rk−1)ǫ[n] +O(hs+1), k = 2, 3, . . . , s.

In an implementation of these methods, the external stage vector can either be

directly modified as stated by this equation or the B̃ matrix can be modified as

outlined below. Using the last equation and

ỹ
[n]
k =

s∑

i=1

b̃k,ihf(Yi) +O(hs+1), k = 2, 3, . . . , s,

ǫ[n] = hsy(s)(xn) +O(hs+1) =
s∑

i=1

bihf(Yi),

where bi, i = 1, 2 . . . , s are the weights for error estimation, we obtain

ŷ
[n]
k =

s∑

i=1

[
rk−1b̃k,i + φk(r

s − rk−1)bi

]
hf(Yi) +O(hs+1).

178 New type 4 DIMSIMs

Hence, if we let the modified method be defined using B̂, then its elements are

defined as

b̂1,i = b̃1,i, i = 1, 2, . . . , s,

b̂k,i = rk−1b̃k,i + φk(r
s − rk−1)bi, i = 1, 2, . . . , s, k = 2, 3, . . . , s.

Example 5.1 p = 1, λ = 7
10
, c = [0 1]T ,

B̃ =

[
189
400

231
400

13
20

7
20

]
, Ũ =

[
1 − 7

10

1 3
10

]
,

Ṽ =

[
1 − 1

20

0 0

]
, b = [−1 1],

B̂ =

[
189
400

231
400

13
20
r2 r − 13

20
r2

]
.

✷

Example 5.2 p = 2, λ = 6
5
, c = [0 1

2
1]T ,

B̃ =




89
250

−314
125

739
250

− 8
25

16
25

17
25

21
5

−52
5

31
5


 , Ũ =




1 −6
5

0

1 − 7
10

−19
40

1 −1
5

− 7
10


 ,

Ṽ =




1 1
5

−6
5

0 0 0

0 0 0


 , b = [4 −8 4],

B̂ =




89
250

−314
125

739
250

−8r3

25
16r3

25
r(1− 8r2

25
)

r2
(
1 + 16r

5

)
r2
(
−4 − 32r

5

)
r2
(
3 + 16r

5

)


 .

✷

With this modification, we can obtain an estimate of hp+2y(p+2)(xn) by taking the

difference of hp+1y(p+1)(xn) and h
p+1y(p+1)(xn−1) which are obtained from the error

5.3 Type 4 DIMSIMs with s = p+ 1 179

estimates of two consecutive steps with constant stepsize, h. It has been observed

that this modification has a mild effect on the error estimates for stepsize control.

5.3.6 Numerical experiments

In order to compare the performance of these methods, some of the problems

outlined earlier in this thesis have been solved using an experimental solver based

on the DIMSIMs proposed in this chapter. A parallel solver is only useful on

sufficiently expensive problems as it is likely to suffer if too little time is spent

in the parallel section of the solver. Thus, we desired a larger test problem in

order to determine the speedup that can be achieved when the DIMSIMs are

used in a parallel. The Medical Akzo Nobel problem from the CWI Testset was

used for this purpose. This problem has a dimension of 400 and comes from

the semi-discretisation of two partial differential equations. This problem was

originally formulated by the Akzo Nobel Research Laboratory in the study of the

penetration of radio-labelled antibodies into tumourous tissue. The Jacobian of

this problem is a sparse matrix with a banded quin-diagonal structure. More

details about this problem can be found in [63]. We have solved this problem

using Atol = Rtol = tol and x ∈ [0, 20].

Some of the procedures such as stepsize control, order control and convergence

control are exactly the same as for the methods in which s = p. The main

difference is the way in which the solution and the error for stepsize and order

control are calculated. In the following sections we refer to the three sets of

methods based on different abscissae as:

• DIMSIM E: c = [0, 1/(s− 1), 2/(s− 2), . . . , 1]T , s > 2

• DIMSIM F: c = [−1,−1 + 2/(s− 1), . . . , 1]T , s > 2

• DIMSIM G: c = [−s+ 2,−s+ 3, . . . , 0, 1]T , s > 2.

For DIMSIM E the abscissae are equally spaced in [0, 1], for DIMSIM F they are

equally spaced in [−1, 1] except for the method of order 1, and for DIMSIM G

180 New type 4 DIMSIMs

they are equally spaced in [−s + 2, 1]. They all share the same method of order

one with two stages which has the abscissae c = [0, 1]. Apart from the abscissae

all the other details are same for these three sets of methods.

The aims of the numerical experimentation are to

1. determine the best choice of the maximum order,

2. determine the best choice of abscissae,

3. determine if these methods perform better than the methods in which s = p

that have been investigated in Chapters 3 and 4, and

4. compare the performance of these methods with RADAU5, and VODE.

Recently a parallel FORTRAN 77 code, PSIDE [72], based on the four stage

Radau IIA method has been released. The four stages in this implementation are

computed in parallel using the PILSRK iteration scheme that has been discussed

in Chapter 2. We have used PSIDE to solve the Ring Modulator and the Medical

Akzo Nobel problems.

5.3.6.1 Some programming details

In order to be able to solve problems in which the Jacobian is banded, we have

incorporated the LU factorisations and the solutions of linear systems in which the

coefficient matrices are stored in banded form. The LU factorisations are obtained

using the LAPACK subroutines DGBTRF (banded matrices) and DGETRF (full

matrices). The linear systems are solved using the subroutines DGBTRS (banded

matrices) and DGETRS (full matrices).

Numerical testing was carried out on a a high performance Silicon Graphics Power

Challenge GR computer which has 16, R10000 processors running IRIX 6.2. All

CPU times given in the results are obtained using this computer. The following

compilers were used:

MIPSpro FORTRAN 77 for RADAU5 and VODE,

MIPSpro Power FORTRAN 77 for PSIDE,

MIPSpro FORTRAN 90 and MIPSpro Power FORTRAN 90 for DIMSIMs.

5.3 Type 4 DIMSIMs with s = p+ 1 181

Ideally we should have used the same compiler for all the codes. However, it was

not possible to use the FORTRAN 90 compiler for all the codes. In particular,

VODE and PSIDE did not work under FORTRAN 90. The comparison of the

CPU times for RADAU5 using both the compilers showed almost no difference.

Therefore, the use of different compilers should not be an issue.

Since the level of optimisation that is used by the compilers affects the CPU times,

we have compiled all the codes with -O2 level of optimization.

In order to parallise the code we used the SGI parallel directive

!*$* ASSERT CONCURRENT CALL

This directive is only obeyed when the code is compiled with the MIPSpro Power

Fortran 90 flag -pfa, otherwise this line is treated as a comment and the stages

are computed in serial.

Although the primary source of parallelism for these methods is in the simultane-

ous Newton iterations of the stages, the smaller matrix-vector operations such as

the calculation of the external stage can also be effectively parallised.

The CPU time in seconds has been calculated by the subroutine DTIME. CPU

times have only been reported for the Ring Modulator and the Medical Akzo Nobel

problems. For the smaller problems the CPU times were too small to be of any

value in comparisons. On a timesharing system it has not been possible to ensure

exclusive access to the processors during performance testing. Thus the programs

have been run a number of times when the system load was low giving sufficiently

consistent results.

For RADAU5 and VODE we give the sequential times and for PSIDE we give the

parallel times. For DIMSIMs CPU(1) refers to the CPU time when the stages are

calculated using a single processor while CPU(s) are the times when the stages

are calculated in parallel by s processors which varies from 1 to 6 depending on

the order of method being used.

182 New type 4 DIMSIMs

5.3.6.2 Best choice of maximum order

As stated earlier, one of the problems with DIMSIMs is the magnitude of the

method coefficients as the order of the methods increase. The magnitude become

larger as the size of the interval in which the abscissae lie becomes smaller. Of

the three methods considered for p = 7 and s = 8, it can be seen from Appendix

A that DIMSIM E has some elements in the B matrix of the order of 108. The

largest element in the B matrix of DIMSIM F is of the order of 107 while that of

DIMSIM G is of the order of 103.

In a variable order code we need to decide on the maximum order of methods that

will be available. In order to select the most efficient set of methods in a variable

order code, we solved some of the problems for a range of stringent tolerances and

by setting the maximum order available as 5, 6 or 7. All the other parameters

were kept identical. The plots of the number of function evaluation in parallel

versus the endpoint global error is given in Figure 5.1. It is observed that for

Kaps problem the best performance is obtained by setting the maximum order to

6. The method of order 7 in DIMSIM E seems to have problems due to round off

error. The methods of order 7 in DIMSIMs F and G also produce results with

lower accuracies. For the other problems tested even the method of order 6 caused

difficulties such as unreliable error estimates. In most cases it has been observed

that when the integration was successful using the method of order 6, the accuracy

obtained was much lower than if only the order 5 method was used. Thus, for

the rest of the problems the maximum order available has been set to 5. Tables

5.6-5.10 show the statistics for the rest of the problems.

5.3.6.3 Best choice of abscissae

Comparing the results for solving the Kaps problem, the Robertson problem, the

Oregonator problem, the Ring Modulator problem and the Medical Akzo Nobel

problem we can draw some general conclusions about the performance of the type

4 DIMSIMs that we have implemented in this chapter. From the plots 5.2-5.7 it

can be generally concluded that there is no significant difference in performance

5.3 Type 4 DIMSIMs with s = p+ 1 183

between the methods. We recall that the major difference between the methods

is the abscissae. For DIMSIM E the abscissae is equally spaced in [0, 1], while

that for DIMSIM F is equally spaced in [−1, 1], and that for DIMSIM G is equally

spaced in [−s + 2, 1], where s is the number of stages. For every iteration these

methods require one function evaluation. To investigate effect of the abscissae on

the iterations required by the different stages, we have looked at the total number

of iterations for every stage of the method of order 5 when Atol = Rtol = 10−10

for the Medical Akzo Nobel problem. Table 5.3 shows the average number of

iterations for the three methods for each of the stages 1 to 6.

METHOD ABSCISSAE S1 S2 S3 S4 S5 S6

E [0, 1
5
, 2
5
, 3
5
, 4
5
, 1] 2.8 2.8 2.9 3.0 3.0 3.0

F [−1,−3
5
,−1

5
, 1
5
, 3
5
, 1] 2.5 2.5 2.6 2.7 2.7 2.9

G [−4,−3,−2,−1, 0, 1] 3.1 2.8 3.0 3.1 3.4 3.7

Table 5.3: Average number of iterations for the order 5 method for the Medical

Akzo Nobel problem.

Some general observations can be made about the iterations for the different ab-

scissae. The average number of iterations generally increase as the stage number

increases for any abscissae. The final stage generally takes the most number of

iterations to converge. This is to be expected since the abscissae represent the

points where the internal stages represent the solutions and the last stage repre-

sents the solution at the furthest point. As the abscissae gets more spread out the

difference between the average number of iterations amongst the stages increases.

From the point of view of trying to balance out the number of iterations in order

to have a good load balance amongst the processors, when the stages are solved

in parallel, the abscissae in the interval [0, 1] is probably a better choice. These

observations are dependent on the starting values that have been used for the it-

erations. The starting values that were used is probably better suited to DIMSIM

E.

184 New type 4 DIMSIMs

5.3.7 Further discussion of results

The order control strategy used in this implementation is based on the estimates

of hp+2y(p+2)(xn) +O(hp+3) which do not seem very reliable. Although the imple-

mentation seems to work reasonably well for most of the problems we tested, it is

not robust. For the van der Pol and the Oregonator problems when there is a sharp

change in the solution the order change strategy does not seem to work very well

in that the order of the methods do not decrease quickly enough and as a result

there are many rejected steps at higher orders. For the Ring Modulator problem

the oscillatory nature of the solution caused difficulties for DIMSIMs at smaller

tolerances. Although the step control seems to be working well, there are rejected

steps and reducing the number of rejected steps will improve the performance of

these methods. It has been noticed that the accuracy of the results obtained by

using DIMSIMs E, F and G is usually lower than that requested. This did not

seem to improve even when iterations were done more accurately. The accuracy

obtained is related to the scaled derivatives in the external stage vector and the

accuracy of these scaled derivatives could not be improved to get lower endpoint

global errors.

Another factor which affects the computational cost is the starting values for the

stage iterations. For sequential methods the converged values for one stage can

be used for the starting values of the next values. However, when the stages are

calculated in parallel, this is not possible. Thus, at the beginning of the step,

there is a need for the starting values of all the stages in that step. The present

implementation uses the Nordsieck vector of the past step for this purpose. The

performance of these methods is likely to improve with better stage predictors

than the current one.

The comparison of results obtained by using DIMSIMs A, B, C and D with those

obtained by using DIMSIMs E, F and G show that the performance of DIMSIMs

E, F and G is only slightly better. For a given tolerance DIMSIMs E, F and

G generally take fewer steps, however, the accuracy of the results obtained is

sometimes lower. Thus, the reduction in the magnitude of the error constants

has not given a big improvement in performance. There are other factors which

5.3 Type 4 DIMSIMs with s = p+ 1 185

affect the performance as discussed below. We notice that VODE takes many

shorter steps to integrate a problem compared to RADAU5 and the computational

experience with DIMSIMS suggests that DIMSIMs have inherited these smaller

steps. However, smaller steps for a multistage method means higher computational

cost. Thus the challenge will be an implementation in which the DIMSIMs take

larger steps to reduce the computational cost.

The implementation of DIMSIMs discussed in this chapter do not compare favour-

ably with the results for RADAU5 and VODE which are considered to be two of

the most efficient stiff solvers. The number of function evaluations in serial com-

putation for RADAU5 and VODE are less than the number of parallel function

evaluations in DIMSIMs for all the problems we tested. For the Ring Modulator

and the Medical Akzo Nobel problems we have tabulated the serial CPU times for

RADAU5 and VODE and the parallel CPU times for DIMSIMs and PSIDE. For

DIMSIMs we have tabulated the serial and parallel CPU times for the Ring Mod-

ulator and the Medical Akzo Nobel problem in Tables 5.9 and 5.10 respectively.

To isolate the effect of the quality of the programming and the utilisation of the

parallel machine, the code can be compared to itself using the speedup defined as

S =
the CPU time on one processor

the CPU time on n processors
.

The maximum such speedup that can be attained is n. However, for a variable

order code such as DIMSIMs with s = p + 1 and maximum order 5, the number

of processors varies from two to six depending on the requested tolerance. These

results show speedups in the range 1.8 − 2.5. The higher values are obtained

for more stringent tolerances. These speedups can be compared to the bounds

provided by Amdahl’s law which states that

S ≤ A =
P +Q

P/n+Q

where P is the time spent in the parallel section of the code when it runs on

a single processor, Q is the time spent in the sequential section and n is the

number of processors that can be applied in the parallel section. Table 5.4 shows

186 New type 4 DIMSIMs

these statistics for a set of tolerances for DIMSIM E. The bounds, A, have been

calculated using Amdahl’s law assuming that all the steps have been taken by the

method of maximum order attained for the given tolerance. This is justified as

the lower order startup methods take only a small percentage of the total number

of steps and take a much smaller percentage of the CPU times. The values of S

obtained are good estimates to the expected bounds.

TOL MAX ORD USED % STEPS - MAX ORD P Q A S

10−4 3 84 1.47 0.49 2.3 1.8

10−6 4 89 2.46 0.89 2.4 2.0

10−8 4 95 5.20 1.79 2.5 2.1

10−10 5 96 11.23 3.39 2.8 2.4

Table 5.4: Speedups for DIMSIM E and the Medical Akzo Nobel problem.

One of the factors contributing to the poor performance of the DIMSIMs is the

choice of problems. The standard stiff ODE test problems are not the best ones

for testing parallel methods. A better selection of problems may yet show that

the advantage of these parallel methods. Among the other contributing factors

for the not so good parallel performance is the relatively high communication

costs between processors on modern parallel computers with a small number of

processors. Latency associates with starting and ending a communication becomes

too difficult to absorb. The variable order strategy further complicates parallelism.

A reduction of order incurs a loss of parallelism. Any change of order would incur

a massive movement of data between processors. The order change strategy would

need to be more sophisticated so as to take this into account. To overcome some

of these problems would require a more sophisticated parallel coding compared

to the compiler detection of parallelism that has been used here. In the present

implementation speedups of only up to 2.5 have been observed but these are likely

to improve and may give DIMSIMS better performance relative to serial methods

as communication on parallel computers improve relative to computation.

5.3 Type 4 DIMSIMs with s = p+ 1 187

5.3.8 Concluding remarks and future work

The computational experience gained with these methods suggests that the serial

aspects of the methods are working well. For DIMSIMS that have been investi-

gated in this thesis, the important quantities that are used are the error estimates.

Some of the error estimation procedures are effective and the methods generally

converge at the anticipated rates. Although we now have an effective the order

control strategy, there is a need for a more sophisticated strategy which takes into

account the communication costs between processors when order is varied.

We have investigated methods in which the V matrix has rank 1 or 2 only. Since

we have observed a slight performance gain for rank 2 methods, there is a need

to investigate methods with higher ranks. Although the standard assumption has

been that the number of stages s is equal to the order p, we have also investigated

the case s = p + 1. There is no reason why s should not even be greater. The

generalisation that the diagonal elements of the A matrix are equal may not neces-

sarily be the best choice. As we have been able to derive a second order method of

two stages with different diagonal elements, we further need to investigate higher

order methods of this type. Thus, there is a long way to go before we can be really

sure which of these large class of methods give the best performance.

The development of efficient software for the solution of ODEs requires many

years of experience. Our methods are new and the computational experience

gained with them so far is very limited. It is hoped that further experience and

understanding of these methods, along with a deeper understanding of the issues

relating to parallel computation, will enable a more efficient implementation.

188 New type 4 DIMSIMs

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
2

10
3

10
4

DIMSIM E

fu
nc

tio
n

ev
al

ua
tio

ns
 in

 p
ar

al
le

l

maximum global errors

 max order=5

 max order=6

 max order=7

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
2

10
3

10
4

DIMSIM F

fu
nc

tio
n

ev
al

ua
tio

ns
 in

 p
ar

al
le

l

maximum global errors

 max order=5

 max order=6

 max order=7

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
2

10
3

10
4

DIMSIM G

fu
nc

tio
n

ev
al

ua
tio

ns
 in

 p
ar

al
le

l

maximum global errors

 max order=5

 max order=6

 max order=7

Figure 5.1: Results for Kaps problem with different maximum orders.

5.3 Type 4 DIMSIMs with s = p+ 1 189

maximum global errors
10-12 10-10 10-8 10-6 10-4 10-2

fu
n
ct

io
n
 e

va
lu

a
tio

n
s

101

102

103

104

DIMSIM E
DIMSIM F
DIMSIM G
RADAU5
VODE

Figure 5.2: Results for Kaps problem using DIMSIMs with s = p+ 1.

maximum global errors
10-10 10-8 10-6 10-4 10-2 100 102

fu
nc

tio
n

ev
al

ua
tio

ns

102

103

104

105

DIMSIM E
DIMSIM F
DIMSIM G
RADAU5
VODE

Figure 5.3: Results for the Oregonator problem using DIMSIMs with s = p + 1.

190 New type 4 DIMSIMs

maximum global errors
10-16 10-14 10-12 10-10 10-8 10-6 10-4 10-2

fu
n

ct
io

n
 e

va
lu

a
tio

n
s

102

103

104

105

DIMSIM E
DIMSIM F
DIMSIM G
RADAU5
VODE

Figure 5.4: Results for the Robertson problem using DIMSIMs with s = p+ 1.

maximum global errors
10-12 10-10 10-8 10-6 10-4 10-2 100

fu
n

ct
io

n
 e

va
lu

a
tio

n
s

102

103

104

105

DIMSIM E
DIMSIM F
DIMSIM G
RADAU5
VODE

Figure 5.5: Results for the van der Pol problem using DIMSIMs with s = p+ 1.

5.3 Type 4 DIMSIMs with s = p+ 1 191

endpoint global errors
10-14 10-12 10-10 10-8 10-6 10-4 10-2 100

C
P

U
 t

im
e

 (
s
e

c
)

10-1

100

101

102
CPU time vs endpoint global error

DIMSIM E
DIMSIM F
DIMSIM G
RADAU5
VODE
PSIDE

Figure 5.6: Results for the Ring Modulator problem using DIMSIMs with s = p+1.

endpoint global errors
10-14 10-12 10-10 10-8 10-6 10-4 10-2 100

C
P

U
 ti

m
e

(s
ec

)

10-1

100

101

102
CPU time vs endpoint global error

DIMSIM E
DIMSIM F
DIMSIM G
RADAU5
VODE
PSIDE

Figure 5.7: Results for the Medical Akzo Nobel problem using DIMSIMs with

s = p+ 1.

192 New type 4 DIMSIMs

Table 5.5: Results for Kaps problem using DIMSIMs with s = p+1 and maximum

order 6.

METHOD TOL TOT ST REJ JAC LU F-PAR F-TOT GL ER

10−1 22 0 4 12 52 119 2.8× 10−3

10−2 31 2 7 19 78 206 2.6× 10−3

10−3 47 3 8 28 113 336 8.6× 10−4

10−4 60 3 8 35 154 560 2.1× 10−4

10−5 76 4 10 42 201 683 2.5× 10−5

DIMSIM E 10−6 99 6 13 55 258 963 1.5× 10−5

10−7 92 1 13 46 220 1036 2.7× 10−6

10−8 114 3 15 59 275 1383 1.3× 10−7

10−9 150 7 17 76 366 1932 4.3× 10−8

10−10 191 7 20 97 465 2589 7.7× 10−9

10−11 224 8 23 95 539 3244 8.8× 10−10

10−12 388 11 35 149 943 6034 8.4× 10−11

10−1 20 0 5 14 48 107 1.5× 10−3

10−2 28 1 6 18 73 181 1.7× 10−4

10−3 46 3 7 27 122 336 3.4× 10−4

10−4 58 4 8 36 143 496 9.6× 10−5

10−5 72 3 10 40 189 663 9.9× 10−6

DIMSIM F 10−6 92 5 12 54 240 949 2.6× 10−5

10−7 134 7 16 67 355 1406 2.6× 10−6

10−8 153 8 19 75 407 1805 8.8× 10−7

10−9 172 6 19 85 433 2068 5.1× 10−8

10−10 209 7 22 92 524 2637 5.5× 10−9

10−11 267 9 26 112 650 3486 7.7× 10−10

10−12 329 8 30 134 788 4347 8.2× 10−11

10−1 20 0 5 14 48 107 1.5× 10−3

10−2 28 1 6 18 73 181 1.7× 10−4

10−3 47 3 8 28 121 337 9.6× 10−4

10−4 58 4 11 36 149 476 7.0× 10−5

10−5 85 4 17 51 204 800 8.0× 10−6

DIMSIM G 10−6 115 7 20 73 305 1098 2.0× 10−6

10−7 136 4 24 76 342 1396 6.1× 10−7

10−8 176 4 29 106 427 1805 9.3× 10−7

10−9 227 5 38 132 566 2472 8.1× 10−9

10−10 250 9 24 126 648 3160 5.4× 10−9

10−11 248 8 24 111 587 3287 5.4× 10−10

10−12 385 14 34 185 949 5051 6.6× 10−11

5.3 Type 4 DIMSIMs with s = p+ 1 193

Table 5.6: Results for Oregonator problem using DIMSIMs with s = p+ 1.

METHOD TOL TOT ST REJ JAC LU F-PAR F-TOT GL ER

10−4 526 79 274 443 1215 4664 1.9× 101

10−5 476 67 249 390 1103 4268 1.2× 101

10−6 600 68 300 476 1254 5361 5.6× 10−1

10−7 648 35 291 467 1349 5951 4.9× 10−2

DIMSIM E 10−8 884 46 320 565 1774 8057 2.4× 10−3

10−9 1281 43 401 681 2434 11478 1.1× 10−4

10−10 1767 23 436 735 3302 16077 6.3× 10−5

10−11 2794 26 542 931 5184 25457 6.0× 10−6

10−12 4860 105 848 1601 9234 44289 5.7× 10−7

10−4 628 51 425 515 1584 5632 1.3× 101

10−5 584 29 409 488 1457 5356 1.2× 101

10−6 651 19 415 509 1539 5989 1.9× 100

10−7 758 17 455 576 1747 7068 2.0× 10−1

DIMSIM F 10−8 991 18 475 658 2254 9492 1.8× 10−2

10−9 1317 17 501 728 2937 12885 2.0× 10−3

10−10 1844 14 574 852 3980 18084 2.3× 10−4

10−11 2728 15 645 982 5723 26709 2.3× 10−5

10−12 4239 41 847 1246 8705 41293 2.8× 10−6

10−4 474 56 361 421 1606 5307 1.3× 10−1

10−5 482 40 362 427 1525 5361 9.8× 10−2

10−6 522 29 364 433 1568 5819 9.4× 10−1

10−7 647 24 380 494 1821 7137 1.7× 10−1

DIMSIM G 10−8 810 15 363 516 2216 9026 2.2× 10−2

10−9 1159 18 414 621 2924 12455 2.8× 10−3

10−10 1717 18 497 760 4043 17871 2.4× 10−4

10−11 2648 25 624 961 5836 26928 3.3× 10−5

10−12 4160 28 861 1248 8816 41638 3.1× 10−6

194 New type 4 DIMSIMs

Table 5.7: Results for Robertson problem using DIMSIMs with s = p+ 1.

METHOD TOL TOT ST REJ JAC LU F-PAR F-TOT GL ER

10−2 71 4 47 64 143 304 5.0× 10−4

10−3 83 1 52 69 139 373 6.2× 10−5

10−4 156 1 65 101 269 770 8.2× 10−6

10−5 311 4 72 150 558 1606 1.0× 10−6

10−6 348 2 99 176 699 2603 2.8× 10−6

DIMSIM E 10−7 421 3 120 226 860 3242 2.6× 10−7

10−8 562 3 149 239 1072 4682 3.4× 10−8

10−9 641 8 174 265 1196 5781 3.5× 10−9

10−10 959 8 175 277 1794 8745 3.8× 10−10

10−11 1473 7 239 346 2744 13535 3.9× 10−11

10−12 2284 4 357 472 4362 21388 4.9× 10−12

10−2 71 4 47 64 143 304 5.0× 10−4

10−3 92 1 66 85 173 477 4.6× 10−5

10−4 161 1 74 105 287 846 5.7× 10−6

10−5 296 4 83 169 582 1726 8.9× 10−7

10−6 344 4 96 178 719 2021 2.4× 10−6

DIMSIM F 10−7 426 4 122 224 880 3264 3.5× 10−7

10−8 532 4 150 234 1052 4396 2.1× 10−8

10−9 623 2 153 260 1252 5898 1.8× 10−9

10−10 948 4 164 274 1880 9067 2.8× 10−10

10−11 1465 4 233 330 2896 14138 2.1× 10−11

10−12 2283 2 358 467 4531 22250 3.0× 10−12

10−2 71 4 47 64 143 304 5.0× 10−4

10−3 92 1 66 85 173 477 4.6× 10−5

10−4 161 1 94 145 287 846 5.7× 10−6

10−5 316 4 83 149 582 1726 8.9× 10−7

10−6 352 3 132 177 715 2084 2.7× 10−6

DIMSIM G 10−7 424 3 162 233 909 3333 3.2× 10−7

10−8 437 4 157 225 1036 4370 2.1× 10−8

10−9 629 2 151 241 1386 6162 3.0× 10−9

10−10 960 3 176 269 1985 9355 2.8× 10−10

10−11 1474 5 233 331 2952 14413 2.7× 10−11

10−12 2290 1 357 464 4549 22579 1.5× 10−12

5.3 Type 4 DIMSIMs with s = p+ 1 195

Table 5.8: Results for van der Pol problem using DIMSIMs with s = p+ 1.

METHOD TOL TOT ST REJ JAC LU F-PAR F-TOT GL ER

10−1 286 71 196 254 836 1360 1.5× 10−1

10−2 383 74 290 354 1061 2071 9.6× 10−2

10−3 452 72 313 386 1438 3359 5.2× 10−2

10−4 586 74 363 487 2240 7383 2.9× 10−2

10−5 678 41 405 519 2380 7701 1.8× 10−2

DIMSIM E 10−6 811 24 451 630 2353 9222 4.8× 10−3

10−7 1133 17 540 793 3060 12499 5.0× 10−4

10−8 1513 20 589 909 3597 16296 3.6× 10−6

10−9 2280 17 732 1143 5080 23533 1.2× 10−6

10−10 2953 23 907 1347 7260 35368 1.6× 10−7

10−11 3673 29 960 1492 8856 43917 1.0× 10−6

10−12 4062 11 1161 1631 10498 57817 3.7× 10−7

10−1 286 71 196 254 836 1360 1.5× 10−1

10−2 388 70 291 354 1072 2077 9.6× 10−2

10−3 462 84 310 390 1579 3731 3.7× 10−2

10−4 606 85 388 515 2369 7691 2.8× 10−2

10−5 648 43 402 505 2339 7885 1.2× 10−2

DIMSIM F 10−6 759 42 429 564 2380 9970 8.8× 10−4

10−7 983 5 444 632 2804 12074 5.1× 10−4

10−8 1445 5 537 823 3870 17300 5.1× 10−5

10−9 2306 38 621 920 6780 23627 1.2× 10−5

10−10 2974 3 724 1033 8327 29602 3.6× 10−7

10−11 3793 50 959 1355 9217 42526 6.4× 10−7

10−12 4066 63 1213 1689 10283 56672 9.5× 10−8

10−1 286 71 196 254 836 1360 1.5× 10−1

10−2 380 64 289 350 1055 2067 9.6× 10−2

10−3 462 84 310 390 1579 3731 3.7× 10−2

10−4 604 77 437 526 1498 4722 8.3× 10−3

10−5 694 52 443 554 2858 8763 1.0× 10−3

DIMSIM G 10−6 800 42 461 597 3090 11778 7.5× 10−4

10−7 1022 32 487 704 3488 13978 2.4× 10−4

10−8 1485 33 584 864 4671 19123 3.5× 10−5

10−9 2237 41 785 1135 6487 27567 9.7× 10−6

10−10 2844 46 917 1286 8550 36848 3.2× 10−6

10−11 3019 63 1016 1460 9805 49831 1.8× 10−7

10−12 4305 83 1165 1801 13088 66938 6.3× 10−8

196 New type 4 DIMSIMs

Table 5.9: Results for the Ring Modulator problem using DIMSIMs with s = p+1.

METHOD TOL TOT ST REJ JAC LU F-PAR F-TOT GL ER CPU(1) CPU(s)

10−5 2245 263 1367 1943 11099 37867 4.9× 10−2 2.24 1.30

10−6 4484 269 1617 3201 20919 104395 6.2× 10−2 6.05 2.82

10−7 5272 238 1604 3342 22480 115836 5.5× 10−2 7.08 3.14

10−8 7880 313 1614 4351 26119 135024 1.3× 10−2 9.04 4.37

DIMSIM E 10−9 10781 302 1766 5175 35601 193283 1.4× 10−3 12.83 5.99

10−10 15111 370 1939 6302 46303 259917 8.7× 10−5 17.82 8.06

10−11 21926 410 2236 7579 63543 362003 4.5× 10−6 25.24 11.14

10−12 32532 388 2761 9981 95894 549595 3.1× 10−7 37.68 17.64

10−13 50694 397 3921 16138 147253 848098 2.8× 10−7 58.83 27.46

10−5 2256 273 1446 1999 12041 34781 5.6× 10−2 1.98 1.29

10−6 3930 340 1374 2771 14529 54664 6.6× 10−2 3.78 1.94

10−7 5475 283 1627 3362 24415 117541 5.6× 10−2 7.22 3.42

10−8 7499 284 1724 4001 28186 139883 1.4× 10−2 9.15 3.80

DIMSIM F 10−9 10406 235 1787 4593 34767 178122 1.5× 10−3 12.15 5.11

10−10 14574 272 1949 5467 44667 237681 1.0× 10−4 16.84 7.30

10−11 21161 315 2210 6624 58823 320215 5.5× 10−6 23.53 10.59

10−12 30355 239 2682 7717 78973 440172 1.1× 10−7 33.29 15.04

10−13 44505 218 3535 9253 111314 623058 2.8× 10−8 47.96 20.53

10−5 3067 499 1763 2866 17259 47664 6.0× 10−2 2.67 1.54

10−6 4863 529 1536 3587 20641 74423 6.6× 10−2 4.80 2.46

10−7 6883 456 1489 4259 22958 89888 1.2× 10−2 6.29 3.29

10−8 9573 436 1802 4856 42283 192333 1.5× 10−2 11.98 5.38

DIMSIM G 10−9 11919 351 1802 5179 46094 216646 1.6× 10−3 14.23 6.43

10−10 15301 287 1864 5495 51200 254073 1.2× 10−4 17.69 7.84

10−11 21643 352 2092 6483 62305 329440 8.9× 10−6 24.12 10.52

10−12 30600 267 2586 7673 79489 437845 4.0× 10−7 33.30 14.86

10−13 44390 288 3528 9411 106983 604864 2.5× 10−8 47.17 20.02

5.3 Type 4 DIMSIMs with s = p+ 1 197

Table 5.10: Results for the Medical Akzo Nobel problem using DIMSIMs with

s = p+ 1.

METHOD TOL TOT ST REJ JAC LU F-PAR F-TOT GL ER CPU(1) CPU(s)

10−1 117 15 54 105 325 537 7.5× 10−2 0.49 0.53

10−2 134 14 64 123 415 916 2.3× 10−2 0.73 0.66

10−3 178 9 68 149 432 1116 1.1× 10−2 0.90 0.81

10−4 233 13 78 191 884 2832 4.7× 10−3 1.96 1.07

10−5 300 12 93 189 1033 3526 7.1× 10−3 2.48 1.23

DIMSIM E 10−6 384 16 82 212 1066 4594 4.2× 10−4 3.35 1.67

10−7 560 15 81 221 1437 6520 2.4× 10−5 4.83 2.35

10−8 852 17 85 233 2059 9705 7.0× 10−6 6.99 3.26

10−9 851 19 108 287 2744 15361 2.3× 10−6 10.79 4.29

10−10 1211 21 121 327 3709 20925 1.5× 10−6 14.62 6.05

10−11 1747 22 141 351 4750 27363 9.7× 10−7 19.71 8.01

10−12 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
10−1 117 15 54 105 325 537 7.5× 10−2 0.49 0.53

10−2 152 19 70 134 475 1071 5.8× 10−3 0.84 0.73

10−3 176 9 68 143 470 1202 4.4× 10−3 0.93 0.78

10−4 240 11 73 189 907 2874 1.1× 10−3 2.06 1.21

10−5 300 10 97 185 1049 3619 8.8× 10−4 2.59 1.45

DIMSIM F 10−6 370 14 84 200 1150 4763 2.7× 10−4 3.44 1.80

10−7 542 15 81 214 1583 6964 6.5× 10−5 4.94 2.51

10−8 823 15 78 220 2271 10381 7.8× 10−6 7.35 3.59

10−9 868 21 114 281 2850 14966 8.8× 10−6 10.62 4.46

10−10 1187 19 116 290 3435 18433 1.3× 10−6 13.39 5.73

10−11 1723 23 143 329 4478 25008 1.4× 10−7 18.49 7.83

10−12 2504 25 193 390 6012 33859 1.7× 10−8 25.44 10.98

10−1 117 15 54 105 325 537 7.5× 10−2 0.49 0.53

10−2 152 19 70 134 475 1071 5.8× 10−3 0.84 0.73

10−3 176 9 68 143 470 1202 4.4× 10−3 0.94 0.77

10−4 253 14 81 191 1108 3324 3.4× 10−3 2.29 1.28

10−5 306 10 99 190 1220 3750 4.2× 10−3 2.61 1.45

DIMSIM G 10−6 410 18 94 220 1428 5460 1.2× 10−4 3.91 2.05

10−7 558 18 86 230 1740 7145 4.2× 10−5 5.12 2.60

10−8 849 22 89 250 2415 10460 8.1× 10−6 7.48 3.71

10−9 1188 27 112 310 4796 23502 1.3× 10−6 15.97 6.42

10−10 1372 28 126 335 4910 24765 1.0× 10−6 17.28 7.03

10−11 1798 32 147 368 5250 27993 9.2× 10−8 20.16 8.55

10−12 2568 32 203 423 6712 36622 1.1× 10−8 26.89 11.29

Appendix A

Method coefficients when s = p + 1

ṽ = the first row of Ṽ , since all the other elements are zeros and

b̂ = weighting for the error estimate.

• p = 2, λ =
6

5
, c = [0 1

2
1]T ,

B̃ =




89
250

−314
125

739
250

− 8
25

16
25

17
25

21
5

−52
5

31
5


 , Ũ =




1 −6
5

0

1 − 7
10

−19
40

1 −1
5

− 7
10


 ,

ṽ = [1 1
5

−6
5
], b̂ = [4 −8 4].

• p = 2, λ =
6

5
, c = [−1 0 1]T ,

B̃ =




− 939
31250

− 311
15625

30311
31250

907
1250

−907
625

2157
1250

59
50

−84
25

109
50


 , Ũ =




1 −11
5

17
10

1 −6
5

0

1 −1
5

− 7
10


 ,

ṽ = [1 2
25

−1
2
], b̂ = [1 −2 1].

199

200 Method coefficients when s = p+ 1

• p = 3, λ = 1.944, c = [0 1
3

2
3

1]T ,

B̃ =




77346972523
976562500

−120810497847
488281250

250790917569
976562500

−42711572199
488281250

144031464
1953125

−432094392
1953125

432094392
1953125

−142078339
1953125

1096081
31250

−1620684
15625

3100743
31250

−477728
15625

−13464
125

41517
125

−42642
125

14589
125



,

Ũ =




1 −243
125

0 0

1 −604
375

−1333
2250

− 1031
10125

1 −479
375

−1208
1125

− 3874
10125

1 −118
125

−361
250

−302
375



,

ṽ = [1 − 3
25

−19
25

29
50

], b̂ = [−27 81 −81 27].

• p = 3, λ = 1.944, c = [−1 −1
3

1
3

1]T ,

B̃ =




14404886177
1953125000

−45851377281
1953125000

49074033531
1953125000

−15283792427
1953125000

211012119
15625000

−633036357
15625000

633036357
15625000

−195387119
15625000

137419
62500

−182691
31250

224757
62500

1603
31250

−14319
1000

45207
1000

−47457
1000

16569
1000



,

Ũ =




1 −368
125

611
250

−427
375

1 −854
375

1583
2250

− 1156
10125

1 −604
375

−1333
2250

− 1031
10125

1 −118
125

−361
250

−302
375



,

ṽ = [1 −1
5

−1
2

3
10

], b̂ = [−27
8

81
8

−81
8

27
8

].

Method coefficients when s = p+ 1 201

• p = 3, λ = 1.944, c = [−2 −1 0 1]T ,

B̃ =




7612441963
11718750000

−25571700889
11718750000

33227950889
11718750000

− 3315566963
11718750000

256625893
46875000

−256625893
15625000

256625893
15625000

−209750893
46875000

132443
187500

−101193
62500

7443
62500

148807
187500

−1189
250

3817
250

−4067
250

1439
250



,

Ũ =




1 −493
125

736
125

−1958
375

1 −368
125

611
250

−427
375

1 −243
125

0 0

1 −118
125

−361
250

−302
375



,

ṽ = [1 − 1
50

− 1
10

1
10

], b̂ = [−1 3 −3 1].

• p = 4, λ = 1.3012, c = [0 1
4

1
2

3
4

1]T ,

B̃ =




22.7954048124 −27.4882859163 −49.9809044589 90.1650474170 −34.2912618543

36.9863136352 −147.9452545409 221.9178818114 −147.9452545409 37.9863136352

−319.0490246963 1274.8627654519 −1908.2941481779 1264.1960987853 −311.7156913630

421.3957802667 −1701.5831210667 2592.3746816000 −1765.5831210667 453.3957802667

430.3360000000 −1785.3440000000 2774.0160000000 −1913.3440000000 494.3360000000


 ,

Ũ =




1 −1.3012000000 0 0 0

1 −1.0512000000 −0.2940500000 −0.0380583333 −0.0032257812

1 −0.8012000000 −0.5256000000 −0.1418166667 −0.0245041667

1 −0.5512000000 −0.6946500000 −0.2956500000 −0.0783070312

1 −0.3012000000 −0.8012000000 −0.4839333333 −0.1752000000


 ,

ṽ = [1 −1
5

− 97
100

− 94
100

53
100], b̂ = [256 −1024 1536 −1024 256].

202 Method coefficients when s = p+ 1

• p = 4, λ = 1.3012, c = [−1 −1
2

0 1
2

1]T ,

B̃ =




−15.4604309760 63.7617239042 −100.2659191896 70.8283905709 −17.8937643094

−25.8236987215 103.2947948862 −154.9421923293 103.2947948862 −24.8236987215

−15.5434206515 61.5070159394 −90.2605239091 56.1736826061 −11.8767539849

30.0907562667 −124.3630250667 196.5445376000 −140.3630250667 38.0907562667

36.5760000000 −154.3040000000 243.4560000000 −170.3040000000 44.5760000000


 ,

Ũ =




1 −2.3012000000 1.8012000000 −0.8172666667 0.2585333333

1 −1.8012000000 0.7756000000 −0.1834833333 0.0297125000

1 −1.3012000000 0 0 0

1 −0.8012000000 −0.5256000000 −0.1418166667 −0.0245041667

1 −0.3012000000 −0.8012000000 −0.4839333333 −0.1752000000


 ,

ṽ = [1 0.03 −0.6 0.02 0.3], b̂ = [16 −64 96 −64 16].

• p = 4, λ = 1.3012, c = [−3 −2 −1 0 1]T ,

B̃ =




−0.8988303845 3.7669882045 −6.4413156401 5.2869882045 −0.8038303845

−2.6314081284 10.5256325137 −15.7884487705 10.5256325137 −1.6314081284

−1.0328237267 3.7979615735 −4.6969423603 1.1312949069 0.8005096066

2.7706122667 −12.0824490667 20.6236736000 −16.0824490667 4.7706122667

3.0960000000 −13.3840000000 21.5760000000 −15.3840000000 4.0960000000


 ,

Ũ =




1 −4.3012000000 8.4036000000 −10.3554000000 9.2304000000

1 −3.3012000000 4.6024000000 −3.9357333333 2.4016000000

1 −2.3012000000 1.8012000000 −0.8172666667 0.2585333333

1 −1.3012000000 0.0000000000 0.0000000000 0.0000000000

1 −0.3012000000 −0.8012000000 −0.4839333333 −0.1752000000


 ,

ṽ = [1 0.09 −0.3 0.3 0.08], b̂ = [1 −4 6 −4 1].

Method coefficients when s = p+ 1 203

• p = 5, λ = 1.80568, c = [−1 −3
5

−1
5

1
5

3
5

1]T ,

B̃ =




4.52777700 −59.41449263 215.76040887 −342.71787415 250.42360721 −67.27942630

−102.02936466 510.14682329 −1020.29364657 1020.29364657 −510.14682329 103.02936466

−100.16151919 501.43259597 −1004.94852527 1009.11519193 −510.80759597 105.36985253

449.12669448 −2239.90430576 4462.10027818 −4431.89194485 2191.46680576 −430.89752782

338.68944687 −1670.00973438 3277.51946875 −3199.39446875 1552.82223438 −299.62694687

−520.90625000 2643.59375000 −5365.31250000 5443.43750000 −2760.78125000 559.96875000




,

Ũ =




1 −2.80568000 2.30568000 −1.06950667 0.34261333 −0.08357000

1 −2.40568000 1.26340800 −0.36102240 0.07040448 −0.01039867

1 −2.00568000 0.38113600 −0.03744693 0.00247424 −0.00012305

1 −1.60568000 −0.34113600 −0.03478027 −0.00234091 −0.00011771

1 −1.20568000 −0.90340800 −0.28902240 −0.05960448 −0.00910267

1 −0.80568000 −1.30568000 −0.73617333 −0.25928000 −0.06690333




,

ṽ = [1 −0.3 −1.9 −0.3 1.6 1.6],

b̂ = [−97.65625 488.28125 −976.5625 976.5625 −488.28125 97.65625].

• p = 5, λ = 1.80568, c = [−4 −3 −2 −1 0 1]T ,

B̃ =




−5.04487343 24.95131161 −49.25484543 47.87206766 −22.26047827 4.83681788

−14.95109726 74.75548629 −149.51097257 149.51097257 −74.75548629 15.95109726

−2.95084183 15.00420915 −30.84175163 32.50841830 −18.75420915 5.03417516

9.49263096 −46.54648815 90.25964298 −85.42630964 38.79648815 −6.57596430

1.28499594 −4.92497968 5.84995936 −0.84995936 −2.57502032 1.21500406

−6.73408000 34.67040000 −71.34080000 73.34080000 −37.67040000 7.73408000




,

Ũ =




1 −5.80568000 15.22272000 −25.11210667 29.92725333 −27.79392000

1 −4.80568000 9.91704000 −12.62556000 11.50056000 −8.11917000

1 −3.80568000 5.61136000 −4.94469333 3.07424000 −1.47045333

1 −2.80568000 2.30568000 −1.06950667 0.34261333 −0.08357000

1 −1.80568000 0 0 0 0

1 −0.80568000 −1.30568000 −0.73617333 −0.25928000 −0.06690333




,

ṽ = [1 −0.1 −0.3 0.4 0.01 0.25], b̂ = [−1 5 −10 10 −5 1].

2
0
4

M
e
th
o
d

co
e
ffi

c
ie
n
ts

w
h
e
n
s
=
p
+
1

• p = 5, λ = 1.80568, c = [0 1
5

2
5

3
5

4
5

1]T ,

B̃ =




8888.93173782 −44815.13507806 90783.87293384 −92416.38404507 47286.93091140 −9726.04646004

5394.48356410 −26972.41782048 53944.83564097 −53944.83564095 26972.41782049 −5393.48356411

548.74439419 −2742.47197098 5480.77727529 −5472.44394195 2723.72197098 −538.32772753

4552.93853285 −22741.77599757 45412.71866182 −45291.88532848 22548.02599757 −4480.02186618

7941.96980000 −39522.34900000 78544.69800000 −77919.69800000 38584.84900000 −7629.46980000

−12700.25000000 64126.25000000 −129502.50000000 130752.50000000 −66001.25000000 13325.25000000




,

Ũ =




1 −1.80568 0 0 0 0

1 −1.60568 −0.341136 −0.0347802667 −0.0023409067 −0.0001177120

1 −1.40568 −0.642272 −0.1337877333 −0.0181939200 −0.0018407253

1 −1.20568 −0.903408 −0.2890224000 −0.0596044800 −0.0091026720

1 −1.00568 −1.124544 −0.4924842667 −0.1370180267 −0.0280862720

1 −0.80568 −1.30568 −0.7361733333 −0.25928 −0.0669033333




,

ṽ = [1 −1.17 −3.69 −0.086 4.28 3.43], b̂=[−3125 15625 −31250 31250 −15625 3125].

M
e
th
o
d

co
e
ffi

c
ie
n
ts

w
h
e
n
s
=
p
+
1

2
0
5

� p = 6; � = 1:352193; c = [

0

1
6

1
3

1
2

2
3

5
6

1

]

T

e

B =

2
6
6
6
6
6
6
6
6
6
6
6
4

97583:76083606 �589443:31901637 1482857:19254093 �1988693:35672124 1499594:85254093 �602828:69501637 100930:16483606

55419:25306466 �332515:51838794 831288:79596984 �1108385:06129312 831288:79596984 �332515:51838794 55420:25306466

193935:74925578 �1163615:69553467 2909043:73883668 �3878734:98511558 2909066:23883668 �1163644:49553467 193949:44925578

�144642:32612947 867823:95677684 �2169451:89194210 2892378:52258946 �2168992:89194209 867391:95677684 �144507:32612947

�212621:61023631 1275351:66141784 �3187110:15354460 4247140:20472614 �3182952:15354460 1271895:66141784 �211703:61023631

28967:92702125 �176399:56212751 448774:90531878 �610462:54042504 468214:90531878 �191951:56212751 32855:92702125

153125:81625600 �926530:89753600 2335767:24384000 �3140276:32512000 2374647:24384000 �957634:89753600 160901:81625600

3
7
7
7
7
7
7
7
7
7
7
7
5

;

e

U =

2
6
6
6
6
6
6
6
6
6
6
6
4

1 �1:35219300 0:00000000 0:00000000 0:00000000 0:00000000 0:00000000

1 �1:18552633 �0:21147661 �0:01800885 �0:00101121 �0:00004240 �0:00000142

1 �1:01885967 �0:39517544 �0:06894899 �0:00783247 �0:00066128 �0:00004447

1 �0:85219300 �0:55109650 �0:14819079 �0:02556652 �0:00326092 �0:00033043

1 �0:68552633 �0:67923978 �0:25110462 �0:05854451 �0:01003177 �0:00136196

1 �0:51885967 �0:77960528 �0:37306084 �0:11032597 �0:02382182 �0:00406333

1 �0:35219300 �0:85219300 �0:50942983 �0:18369883 �0:04800804 �0:00987939

3
7
7
7
7
7
7
7
7
7
7
7
5

;

~v = [

1:0 0:4 �0:82 �0:27 �0:03 0:46 �0:2

];

^

b = [

46656 �279936 699840 �933120 699840 �279936 46656

]:

2
0
6

M
e
th
o
d

co
e
ffi

c
ie
n
ts

w
h
e
n
s
=
p
+
1

� p = 6; � = 1:352193; c = [

�1 �

2
3

�

1
3

0

1
3

2
3

1

];

e

B =

2
6
6
6
6
6
6
6
6
6
6
6
4

1921:11485220 �11581:24536321 29068:63403302 �38880:28454403 29219:89028302 �11694:82536321 1947:61610220

2422:72670236 �14536:36021416 36340:90053540 �48454:53404720 36340:90053540 �14536:36021416 2423:72670236

1944:02361618 �11664:74169708 29164:10424269 �38890:47232359 29175:35424269 �11679:14169708 1950:87361618

�3111:05778356 18658:84670134 �46620:11675335 62104:15567114 �46505:36675335 18550:84670134 �3077:30778356

�3432:57225888 20548:18355328 �51211:83388320 67989:94517760 �50692:08388320 20116:18355328 �3317:82225888

1360:75112341 �8326:50674044 21302:26685111 �29159:02246814 22517:26685111 �9298:50674044 1603:75112341

2477:64087900 �15108:84527400 38379:61318500 �51982:81758000 39594:61318500 �16080:84527400 2720:64087900

3
7
7
7
7
7
7
7
7
7
7
7
5

;

e

U =

2
6
6
6
6
6
6
6
6
6
6
6
4

1 �2:35219300 1:85219300 �0:84276317 0:26703217 �0:06467471 0:01265716

1 �2:01885967 1:12368422 �0:34987005 0:07500542 �0:01222655 0:00160582

1 �1:68552633 0:50628656 �0:08129467 0:00886127 �0:00072987 0:00004828

1 �1:35219300 0 0 0 0 0

1 �1:01885967 �0:39517544 �0:06894899 �0:00783247 �0:00066128 �0:00004447

1 �0:68552633 �0:67923978 �0:25110462 �0:05854451 �0:01003177 �0:00136196

1 �0:35219300 �0:85219300 �0:50942983 �0:18369883 �0:04800804 �0:00987939

3
7
7
7
7
7
7
7
7
7
7
7
5

;

~v = [

1 0:1 �0:7 0:01 0:3 0:4 �0:1

];

^

b = [

729 �4374 10935 �14580 10935 �4374 729

]:

M
e
th
o
d

co
e
ffi

c
ie
n
ts

w
h
e
n
s
=
p
+
1

2
0
7

� p = 6; � = 1:352193; c = [

�5 �4 �3 �2 �1 0 1

];

e

B =

2
6
6
6
6
6
6
6
6
6
6
6
4

�0:94797652 6:77327577 �20:30645332 32:77758591 �30:44048110 16:59549800 �2:45144874

2:50804533 �15:04827197 37:62067993 �50:16090657 37:62067993 �15:04827197 3:50804533

�1:51416649 8:88499892 �21:46249730 26:94999640 �17:71249730 4:08499892 0:76916685

�5:68622382 33:28400956 �80:21002391 100:72447632 �67:46002391 21:28400956 �1:93622382

�0:24726918 �0:26638492 6:54096230 �19:55461641 25:79096230 �16:26638492 4:00273082

6:30700424 �39:84202543 105:60506359 �150:14008478 120:60506359 �51:84202543 9:30700424

3:96535100 �24:79210600 64:48026500 �89:30702000 69:48026500 �28:79210600 4:96535100

3
7
7
7
7
7
7
7
7
7
7
7
5

;

e

U =

2
6
6
6
6
6
6
6
6
6
6
6
4

1 �6:35219300 19:26096500 �37:73574583 54:21235417 �61:25502604 56:91474826

1 �5:35219300 13:40877200 �21:48421067 25:09005867 �22:95672533 17:22760249

1 �4:35219300 8:55657900 �10:58486850 9:45986850 �6:58865137 3:75069082

1 �3:35219300 4:70438600 �4:03771933 2:46959067 �1:16812867 0:44947369

1 �2:35219300 1:85219300 �0:84276317 0:26703217 �0:06467471 0:01265716

1 �1:35219300 0 0 0 0 0

1 �0:35219300 �0:85219300 �0:50942983 �0:18369883 �0:04800804 �0:00987939

3
7
7
7
7
7
7
7
7
7
7
7
5

;

~v = [

1 �1 �0:5 0:1 0:2 0:5 0:5

];

^

b = [

1 �6 15 �20 15 �6 1

]:

2
0
8

M
e
th
o
d

co
e
ffi

c
ie
n
ts

w
h
e
n
s
=
p
+
1

� p = 7; � = 1:7368; c = [0

1
7

2
7

3
7

4
7

5
7

6
7

1]

T

e

B =

2
6
6
6
6
6
6
6
6
6
6
6
6
6
4

10973701:30072700 �76756469:26956426 230102231:83833459 �383243964:28843307 383003285:84066832 �229669136:79473719 76516011:43223470 �10925659:46171152

8244588:27810253 �57712117:94673688 173136353:84015310 �288560589:73368442 288560589:73358852 �173136353:84021059 57712117:94671771 �8244587:27807922

16559807:54158936 �115918651:62454960 347755949:97353667 �579593237:70598793 579593217:28935242 �347755905:87359267 115918610:79117890 �16559790:39158935

�19820318:79498392 138742268:85930389 �416226959:29468119 693711966:32437515 �693712540:71322238 416228127:94462508 �138743084:16489840 19820539:83942325

�9452593:62934343 66168798:53040781 �198508925:21620700 330853939:65200651 �330862043:02701181 198524231:59122339 �66178102:40540235 9454694:50434446

3520414:50470776 �24636098:69962065 73883085:59886084 �123086054:16476510 123020826:99810439 �73764236:09886198 24568470:53295268 �3506408:67137435

8544756:62671829 �59771278:88702812 179170977:16108391 �298352184:43514049 298058061:93514049 �178641556:66108370 59477156:38702811 �8485932:12671829

�5536656:05920000 38874241:41440000 �116975671:24320000 195547697:07200000 �196135942:07200000 118034512:24320000 �39462486:41440000 5654305:05920000

3
7
7
7
7
7
7
7
7
7
7
7
7
7
5

;

e

U =

2
6
6
6
6
6
6
6
6
6
6
6
6
6
4

1 �1:73680000 0 0 0 0 0 0

1 �1:59394286 �0:23791020 �0:01723654 �0:00082657 �0:00002964 �0:00000085 �0:00000002

1 �1:45108571 �0:45541224 �0:06700253 �0:00647375 �0:00046638 �0:00002680 �0:00000128

1 �1:30822857 �0:65250612 �0:14638251 �0:02138034 �0:00232087 �0:00020065 �0:00001442

1 �1:16537143 �0:82919184 �0:25246103 �0:04956868 �0:00720817 �0:00083346 �0:00008004

1 �1:02251429 �0:98546939 �0:38232264 �0:09464459 �0:01728818 �0:00250663 �0:00030155

1 �0:87965714 �1:12133878 �0:53305190 �0:15979742 �0:03520619 �0:00614550 �0:00088917

1 �0:73680000 �1:23680000 �0:70173333 �0:24780000 �0:06403333 �0:01308444 �0:00221381

3
7
7
7
7
7
7
7
7
7
7
7
7
7
5

;

~v = [1 0:4 �1:4 �0:15 0:13 0:16 0:75 �0:05];

^

b = [�823543 5764801 �17294403 28824005 �28824005 17294403 �5764801 823543]:

M
e
th
o
d

co
e
ffi

c
ie
n
ts

w
h
e
n
s
=
p
+
1

2
0
9

� p = 7; � = 1:7368; c = [�1 �

5
7

�

3
7

�

1
7

1
7

3
7

5
7

1]

T

;

e

B =

2
6
6
6
6
6
6
6
6
6
6
6
6
6
4

83732:45718710 �585804:65646480 1756330:12971732 �2925244:89345827 2923148:07003235 �1752599:78881107 583782:51125068 �83342:84945331

95947:93737149 �671635:56160044 2014906:68480132 �3358177:80800220 3358177:80800220 �2014906:68480132 671635:56160044 �95946:93737149

51596:97530687 �361178:24381475 1083532:28144425 �1805881:01074042 1805870:80240709 �1083510:23144425 361157:82714808 �51588:40030687

�141328:58841360 989309:44250629 �2967966:50668554 4946702:71947590 �4946846:31669812 2968258:66918554 �989513:26889518 141383:84952471

�93503:70902614 654606:35380795 �1964135:26454884 3274275:14403973 �3275288:06591473 1966048:56142384 �655769:33818295 93766:31840114

62828:62363609 �439375:18836932 1316549:90885795 �2190973:48351325 2186896:78559658 �1309121:81510795 435148:42795265 �61953:25905276

48389:78247986 �337415:43048403 1007781:93207710 �1671320:58992016 1662129:26179516 �991237:54145210 328224:10235903 �46551:51685486

�43567:63061875 306811:67995625 �925949:83674375 1552441:05603125 �1561632:38415625 942494:22736875 �316003:00808125 45405:89624375

3
7
7
7
7
7
7
7
7
7
7
7
7
7
5

;

e

U =

2
6
6
6
6
6
6
6
6
6
6
6
6
6
4

1 �2:73680000 2:23680000 �1:03506667 0:33113333 �0:08070000 0:01586222 �0:00261063

1 �2:45108571 1:49567347 �0:50379981 0:11633694 �0:02038709 0:00287555 �0:00033919

1 �2:16537143 0:83617959 �0:17262157 0:02419167 �0:00256184 0:00021787 �0:00001547

1 �1:87965714 0:25831837 �0:01820836 0:00086128 �0:00003064 0:00000087 �0:00000002

1 �1:59394286 �0:23791020 �0:01723654 �0:00082657 �0:00002964 �0:00000085 �0:00000002

1 �1:30822857 �0:65250612 �0:14638251 �0:02138034 �0:00232087 �0:00020065 �0:00001442

1 �1:02251429 �0:98546939 �0:38232264 �0:09464459 �0:01728818 �0:00250663 �0:00030155

1 �0:73680000 �1:23680000 �0:70173333 �0:24780000 �0:06403333 �0:01308444 �0:00221381

3
7
7
7
7
7
7
7
7
7
7
7
7
7
5

;

~v = [1 0:02 �1:2 0:03 0:6 0:5 �0:05 �0:2];

^

b = [�6433:92968750 45037:50781250 �135112:52343750 225187:53906250 �225187:53906249 135112:52343749 �45037:507812499 6433:9296874998]:

2
1
0

M
e
th
o
d

co
e
ffi

c
ie
n
ts

w
h
e
n
s
=
p
+
1

� p = 7; � = 1:7368; c = [

�6 �5 �4 �3 �2 �1 0 1

]

T

e

B =

2
6
6
6
6
6
6
6
6
6
6
6
6
6
4

10:98583000 �77:11077362 231:90512841 �387:24447658 387:79637804 �233:39771770 78:62239730 �10:65676585

40:62765210 �284:39356471 853:18069413 �1421:96782355 1421:96782355 �853:18069413 284:39356471 �39:62765210

18:28738923 �127:84505792 382:83517376 �636:30862293 633:39195626 �376:53517376 122:01172459 �15:83738923

�30:17143724 211:96117180 �639:00018208 1072:50030347 �1084:22252569 662:85018208 �228:60006069 34:68254835

�23:08882044 163:49674307 �497:86522921 846:48371535 �870:10871535 542:49022921 �190:62174307 29:21382044

10:37934621 �69:82209011 198:96627033 �309:77711722 282:61045055 �149:46627033 41:65542344 �4:54601287

3:37565205 �21:12956437 54:88869312 �75:64782187 58:14782187 �23:38869312 3:62956437 0:12434795

�8:99440000 63:96080000 �194:88240000 329:80400000 �334:80400000 203:88240000 �68:96080000 9:99440000

3
7
7
7
7
7
7
7
7
7
7
7
7
7
5

;

e

U =

2
6
6
6
6
6
6
6
6
6
6
6
6
6
4

1 �7:73680000 28:42080000 �67:26240000 116:52480000 �158:58720000 177:34464000 �168:08749714

1 �6:73680000 21:18400000 �42:54333333 62:22500000 �71:27083333 66:93055556 �53:19196429

1 �5:73680000 14:94720000 �24:56106667 29:19253333 �27:05920000 20:50958222 �13:13125587

1 �4:73680000 9:71040000 �12:31560000 11:19060000 �7:88670000 4:52952000 �2:19243857

1 �3:73680000 5:47360000 �4:80693333 2:98240000 �1:42453333 0:55203556 �0:17977905

1 �2:73680000 2:23680000 �1:03506667 0:33113333 �0:08070000 0:01586222 �0:00261063

1 �1:73680000 0 0 0 0 0 0

1 �0:73680000 �1:23680000 �0:70173333 �0:24780000 �0:06403333 �0:01308444 �0:00221381

3
7
7
7
7
7
7
7
7
7
7
7
7
7
5

;

~v = [

1 0:1 �0:4 0:1 0:05 �0:2 0:1 0:2

];

^

b = [

�1 7 �21 35 �35 21 �7 1

]:

Appendix B

RADAU5, VODE and PSIDE

Results

. Table B.1: Results for Kaps problem using RADAU5 and VODE.

METHOD TOL TOT ST REJ ST J-EVAL LU F-EVAL END GL ER

10−1 27 0 16 27 135 2.7× 10−5

10−2 17 0 15 17 107 5.2× 10−6

10−3 20 0 17 20 131 5.7× 10−6

10−4 24 0 21 24 170 1.4× 10−6

10−5 28 0 24 27 210 2.3× 10−7

RADAU5 10−6 35 0 29 33 279 7.2× 10−8

10−7 45 0 34 40 369 1.2× 10−8

10−8 59 0 35 44 506 2.5× 10−9

10−9 77 0 43 48 674 4.5× 10−10

10−10 110 0 46 53 973 8.9× 10−11

10−11 155 0 47 55 1402 1.5× 10−11

10−12 224 0 51 61 2034 2.6× 10−12

10−1 16 0 1 5 23 4.9× 10−3

10−2 22 0 1 6 31 8.1× 10−4

10−3 42 1 1 9 59 3.4× 10−5

10−4 64 2 2 12 83 7.1× 10−6

10−5 79 4 2 17 110 3.3× 10−6

VODE 10−6 95 1 2 14 117 5.2× 10−7

10−7 123 7 3 26 157 3.9× 10−8

10−8 163 3 3 24 188 1.2× 10−8

10−9 236 4 5 30 264 1.2× 10−9

10−10 345 4 6 36 372 1.7× 10−10

10−11 453 5 8 42 485 2.4× 10−11

10−12 675 4 11 52 711 5.1× 10−12

211

212 RADAU5, VODE and PSIDE Results

Table B.2: Results for Oregonator problem using RADAU5 and VODE.

METHOD TOL TOT ST REJ ST J-EVAL LU F-EVAL END GL ER

10−2 98 1 67 98 903 1.9× 10−1

10−3 116 4 86 116 1052 2.1× 10−2

10−4 151 6 118 149 1368 6.1× 10−2

10−5 196 4 162 192 1726 1.4× 10−2

10−6 270 5 229 262 2369 2.9× 10−3

RADAU5 10−7 378 4 304 356 3266 5.0× 10−5

10−8 537 3 381 491 4537 1.1× 10−6

10−9 773 3 456 676 6375 1.4× 10−6

10−10 1124 2 551 935 9035 2.0× 10−7

10−11 1644 2 660 1321 12992 2.5× 10−8

10−12 2411 2 764 1857 18732 2.7× 10−9

10−3 464 39 18 92 746 1.7× 101

10−4 532 45 18 108 822 5.6× 100

10−5 693 50 20 120 1032 4.9× 10−1

10−6 993 68 23 152 1380 3.0× 10−2

VODE 10−7 1331 78 28 171 1781 3.1× 10−3

10−8 1794 100 33 221 2332 8.1× 10−4

10−9 2382 121 41 273 3013 1.2× 10−4

10−10 3230 122 56 317 3960 7.5× 10−6

10−11 4503 149 77 402 5250 8.7× 10−6

10−12 6350 168 105 529 7224 1.4× 10−6

Table B.3: Results for Robertson problem using RADAU5 and VODE.

METHOD TOL TOT ST REJ ST J-EVAL LU F-EVAL END GL ER

10−1 52 1 39 52 362 4.2× 10−5

10−2 58 1 48 57 405 1.0× 10−6

10−3 70 0 61 70 469 7.3× 10−8

10−4 89 1 78 89 646 3.4× 10−9

10−5 117 1 104 117 884 2.1× 10−10

RADAU5 10−6 158 1 143 157 1225 1.5× 10−11

10−7 222 1 194 212 1745 3.3× 10−13

10−8 308 1 235 256 2446 8.6× 10−14

10−9 443 2 283 317 3528 1.6× 10−14

10−10 640 2 359 406 5105 8.8× 10−15

10−11 934 1 473 532 7452 4.6× 10−15

10−12 1364 2 634 730 10893 1.8× 10−15

10−1 121 5 6 45 163 3.2× 10−4

10−2 222 9 9 56 315 1.8× 10−4

10−3 272 19 9 71 458 6.1× 10−6

10−4 350 13 9 64 604 2.5× 10−6

10−5 496 21 9 81 740 4.6× 10−8

VODE 10−6 700 36 12 106 968 1.3× 10−8

10−7 889 40 15 123 1164 2.2× 10−9

10−8 1309 87 22 202 1693 3.1× 10−10

10−9 1725 130 29 270 2166 4.3× 10−11

10−10 2272 153 39 321 2775 6.6× 10−12

10−11 2997 176 51 391 3567 9.6× 10−13

10−12 3803 122 65 365 4265 1.4× 10−13

RADAU5, VODE and PSIDE Results 213

Table B.4: Results for van der Pol problem using RADAU5 and VODE.

METHOD TOL TOT ST REJ ST J-EVAL LU F-EVAL END GL ER

10−2 178 6 95 161 1348 3.2× 10−4

10−3 221 7 122 205 1663 1.3× 10−4

10−4 281 7 163 252 2242 8.3× 10−6

10−5 363 8 221 310 2954 2.1× 10−6

10−6 499 8 306 411 3985 2.9× 10−7

RADAU5 10−7 722 7 435 587 5751 1.8× 10−8

10−8 1055 6 483 842 8281 2.3× 10−9

10−9 1548 4 530 1194 12019 3.7× 10−10

10−10 2274 2 619 1713 17526 5.5× 10−11

10−11 3341 2 753 2507 25478 1.0× 10−11

10−12 4923 2 960 3672 37069 1.3× 10−12

10−1 128 17 28 64 255 3.0× 10−1

10−2 374 46 22 114 621 3.0× 10−2

10−3 588 66 19 146 908 1.2× 10−2

10−4 810 83 21 177 1207 2.0× 10−3

10−5 1154 99 24 210 1611 3.1× 10−4

10−6 1538 133 30 273 2130 2.4× 10−5

VODE 10−7 2187 160 38 319 2867 5.9× 10−6

10−8 3341 241 55 475 4267 4.9× 10−7

10−9 4647 287 76 597 5734 8.0× 10−8

10−10 6458 347 106 755 7777 6.6× 10−9

10−11 8702 431 144 984 10339 1.0× 10−9

10−12 11842 462 197 1159 13734 1.2× 10−10

214 RADAU5, VODE and PSIDE Results

Table B.5: Results for Ring Modulator using RADAU5, VODE and PSIDE.

METHOD TOL TOT ST REJ ST J-EVAL LU F-EVAL END GL ER CPU

10−2 1212 67 669 1138 9493 3.9× 10−2 0.33

10−3 1624 247 795 1389 11074 3.8× 10−3 0.32

10−4 2183 350 989 1740 14496 1.2× 10−3 0.39

10−5 2915 423 1088 2088 19528 6.9× 10−5 0.51

10−6 3974 453 1293 2679 26333 1.2× 10−5 0.67

RADAU5 10−7 5568 493 1577 3588 37067 1.9× 10−6 0.93

10−8 7848 482 1943 4709 52541 3.2× 10−7 1.28

10−9 11152 456 2392 6536 75577 5.3× 10−8 1.82

10−10 16111 445 2945 9224 111116 8.4× 10−9 2.64

10−11 23398 430 3421 12999 163641 1.4× 10−9 3.83

10−12 34112 409 3543 18427 240223 2.3× 10−10 5.55

10−3 6122 372 438 1227 9597 1.5× 10−1 0.32

10−4 7448 474 260 1163 11001 2.3× 10−2 0.36

10−5 10812 729 264 1609 15971 1.2× 10−3 0.52

10−6 15052 909 289 1881 21297 6.3× 10−5 0.69

VODE 10−7 19535 1157 338 2311 26524 6.2× 10−6 0.87

10−8 24436 1241 409 2560 31210 1.2× 10−6 1.06

10−9 29611 1150 493 2643 35734 1.1× 10−6 1.23

10−10 36922 951 608 2792 42158 2.3× 10−7 1.47

10−11 49769 953 828 3522 55214 4.0× 10−8 1.94

10−12 71298 930 1175 4542 77978 7.4× 10−9 2.74

10−2 1994 701 882 7748 27993 2.7× 10−3 2.20

10−3 1450 509 621 5484 22785 1.4× 10−3 1.59

10−4 1360 349 682 5212 27865 1.8× 10−3 1.69

10−5 1712 475 802 6072 39178 3.2× 10−5 2.12

PSIDE 10−6 2258 539 708 6460 46412 1.6× 10−6 2.41

10−7 3213 629 629 7400 59669 2.0× 10−7 3.01

10−8 4677 710 637 8676 76875 1.8× 10−8 3.82

10−9 6973 770 581 10184 104870 1.8× 10−9 5.10

10−10 10304 621 486 10120 146451 1.5× 10−10 6.74

10−11 15816 573 414 10460 215618 1.3× 10−11 9.51

10−12 24612 556 365 10876 325994 1.6× 10−12 13.91

RADAU5, VODE and PSIDE Results 215

Table B.6: Results for the Medical Akzo Nobel problem using RADAU5, VODE

and PSIDE.

METHOD TOL TOT ST REJ ST J-EVAL LU F-EVAL END GL ER CPU

10−1 59 0 35 59 524 1.7× 10−2 0.23

10−2 89 10 41 87 694 7.9× 10−3 0.32

10−3 96 17 45 92 763 4.3× 10−4 0.35

10−4 125 20 65 119 933 7.6× 10−5 0.44

10−5 160 19 92 153 1156 2.0× 10−5 0.55

10−6 215 19 131 196 1561 3.3× 10−6 0.74

RADAU5 10−7 284 17 181 242 2056 3.1× 10−7 0.96

10−8 399 23 251 327 2560 3.4× 10−8 1.23

10−9 543 18 339 418 3524 3.1× 10−9 1.66

10−10 787 20 464 577 5138 1.0× 10−9 2.38

10−11 1152 28 462 578 7552 1.3× 10−9 3.20

10−12 1658 27 361 503 10990 1.4× 10−9 4.28

10−4 433 19 10 77 615 1.3× 10−3 0.34

10−5 653 26 12 97 849 2.9× 10−4 0.48

10−6 829 26 14 102 1040 8.0× 10−5 0.59

10−7 1057 32 18 128 1262 1.7× 10−5 0.73

VODE 10−8 1416 43 24 164 1622 6.0× 10−7 0.96

10−9 1941 42 33 195 2101 3.7× 10−8 1.25

10−10 2647 34 44 227 2766 3.8× 10−9 1.66

10−11 3837 43 63 302 3975 2.4× 10−9 2.37

10−12 5510 40 91 384 5643 1.6× 10−9 3.36

10−2 83 19 34 328 912 3.0× 10−3 0.62

10−3 90 22 30 356 944 1.2× 10−4 0.66

10−4 118 35 34 456 1263 1.0× 10−5 0.87

10−5 142 46 42 548 1668 5.6× 10−6 1.11

PSIDE 10−6 158 45 64 628 2258 1.1× 10−6 1.43

10−7 159 14 109 624 2834 7.6× 10−8 1.70

10−8 238 14 47 596 4253 1.5× 10−8 2.37

10−9 361 14 23 592 6156 2.2× 10−9 3.29

10−10 551 14 21 620 8915 7.4× 10−15 4.88

10−11 849 14 14 640 13236 1.1× 10−10 7.46

10−12 1316 14 12 664 19279 1.5× 10−10 11.56

Bibliography

[1] E. Anderson et al, Lapack users’ guide, Society for Industrial and Applied

Mathematics, Philadelphia, 1992.

[2] O. Axelsson, A class of A-stable methods, BIT, 9:185-199, 1969.

[3] A. Bellen, R. Vermiglio, M. Zenarro, Parallel ODE-solvers with stepsize con-

trol, Journal of Comput. Appl. Math., 31:277-293, 1990.

[4] P. N. Brown, A. C. Hindmarsh and G. D. Byrne, VODE: A variable coefficient

ODE solver, August 1992. Available at http://www.netlib.org/ode/vode.f.

[5] K. Burrage, Parallel and sequential methods for ordinary differential equa-

tions, Oxford University Press, Clarendon Press, Oxford, 1995.

[6] K. Burrage, A special family of Runge-Kutta methods for solving stiff differ-

ential equations, BIT, 18:22-41, 1978.

[7] K. Burrage, J. C. Butcher, Stability criteria for implicit Runge-Kutta methods,

SIAM J. Numer. Anal., 16:46, 57, 1979.

[8] K. Burrage, J. C. Butcher, Non-linear stability of a general class of differential

equation methods, BIT 20:185-203, 1980.

[9] K. Burrage, J. C. Butcher, F. H. Chipman , An implementation of singly

implicit Runge-Kutta methods, BIT 20:326-340, 1980.

[10] K. Burrage and P. Moss, Simplifying assumptions for the order of partitioned

mutivalue methods, BIT 20: 452-465, 1980.

[11] J.C. Butcher, Implicit Runge-Kutta processes, Math. Comput. 18:233-244,

1964.

217

218 Bibliography

[12] J.C. Butcher, On the convergence of numerical solutions to ordinary differ-

ential equations, Math. Comp., 20: 1-10, 1966.

[13] J.C. Butcher, An algebraic theory of integration methods, Math.Comp., 26:79-

106, 1972.

[14] J.C. Butcher, A stability property of implicit Runge-Kutta methods, BIT,

15:358-361, 1975.

[15] J.C. Butcher, On the implementation of implicit Runge-Kutta methods, BIT,

16:237-240, 1976.

[16] J.C. Butcher, A transformed implicit Runge-Kutta method, J. Assoc. Comput.

Mach., 26:731-738, 1979.

[17] J.C. Butcher, General linear method: A survey, Applied Mathematics, 1 :

273-284, 1985.

[18] J.C. Butcher, The Numerical Analysis of Ordinary Differential Equations:

Runge-Kutta and General Linear Methods, Wiley, Chichester, 1987.

[19] J. C. Butcher, Diagonally-implicit multi-stage integration methods, Applied

Numerical Mathematics, 11:347-363, 1993.

[20] J.C. Butcher, General linear methods for the parallel solution of ordinary

differential equations, WSSIAA, 2:99-111, 1993.

[21] J.C. Butcher, The parallel solution of ordinary differential equations and some

special functions, Approximations and Computation, ISNM 119, Birkhaeuser

Verlag, Basel-Bostem-Berlin, 67-74, 1994.

[22] J.C. Butcher, An introduction to DIMSIMs Comp. Appl. Math., 14:59-72,

1995.

[23] J.C. Butcher, General linear methods, Computers Math. Applic. 31, No.

4/5:105-112, 1996.

[24] J.C. Butcher, Order and Stability of parallel methods for stiff problems, Ad-

vances in Computational Mathematics, 7: 79-96, 1997.

Bibliography 219

[25] J.C. Butcher, J.R. Cash, M.T. Diamantikis, DESI methods for stiff initial

value problems, ACM Trans. Math. Software 22:401-422, 1996.

[26] J.C. Butcher and P. Chartier, The construction of DIMSIMs for stiff ODEs

and DAEs, Report Series No. 308, The University of Auckland, New Zealand,

1994.

[27] J.C. Butcher and P. Chartier, Parallel general linear methods for stiff ordinary

differential and differential algebraic equations, Applied Numerical Mathe-

matics, 17:213-222, 1995.

[28] J.C. Butcher , P. Chartier, A generalization of singly implicit Runge-Kutta

methods, Applied Numerical Mathematics 24:343-350, 1997.

[29] J.C. Butcher , M.T. Diamantikis, DESIRE: diagonally extended singly im-

plicit Runge-Kutta effective order methods, Numer. Algorithms, 17:121-145,

1998.

[30] J. C. Butcher and Z. Jackiewicz Diagonally implicit general linear methods

for ordinary differential equations, BIT, 33:452-472, 1993.

[31] J. C. Butcher and Z. Jackiewicz Implementation of iagonally implicit multi-

stage integration methods for ordinary differential equations, SIAM J. Num.

Anal., 34:2119-2141, 1997.

[32] P. Chartier, Parallelism in the numerical solution of initial value problems

for ODEs and DAEs, Thesis, Université de Rennes I, France, 1993.

[33] F.H. Chipman, A-stable Runge-Kutta processes, BIT, 11: 384-388, 1971.

[34] M.Crouzeix Sur la B-stabilité des méthodes de Runge-Kutta , Numer. Math.

32:75-82, 1979.

[35] C.W. Cryer, On the instability of high order backward-difference multistep

methods, BIT, 12:17-25, 1972.

[36] C.F. Curtiss and J.O. Hirschfelder, Integration of stiff equations, Proc. Nat.

Acad. Sci., 38:235-243, 1952.

220 Bibliography

[37] G. Dahlquist, Convergence and Stability in the numerical integration of ordi-

nary differential equations, Math. Scand., 4:33-53, 1956.

[38] G. Dahlquist, A special stability problem for linear multistep methods, BIT,

3: 27-43, 1963.

[39] K. Dekker, Algebraic stability of general linear methods, University of Auck-

land, Computer Science Repert No. 25, 1981.

[40] M.T. Diamantakis, Diagonally extended singly implicit Runge-Kutta methods

for stiff initial-value problems, PhD thesis, Imperial College, University of

London, UK, (1995).

[41] B.L. Ehle, On Padé approximations to the exponential functions and A-stable

methods for the numerical solution of initial value problems, Research Rep.

CSRR 2010, Dept. AACS, University of Waterloo, 1969.

[42] R.F. Enenkel, DIMSEMs-Diagonally implicit single eigenvalue methods for

the numerical solution of stiff ODEs on parallel computers, PhD thesis,

(1996), University of Toronto, Canada.

[43] R.F. Enenkel and K.R. Jackson, DIMSEMs-Diagonally implicit single eigen-

value methods for the numerical solution of stiff ODEs on parallel computers,

Computational Mathematics, 7: 97-133, 1997.

[44] W.H. Enright, Improving the efficiency of matrix operations in the numer-

ical solution of stiff ordinary differential equations, ACM trans. on Math.

Software, 4:127-136, 1978.

[45] C.W.Gear, The automatic integration of stiff ordinary differential equations:

in Information Processing 68, Proc. IFFP Congress, Edinnburgh; 187-193,

1969.

[46] C. W. Gear, Numerical initial value problems in ordinary differential equa-

tions, Prentice-Hall, Englewood Cliffs, N.J., 1971.

[47] C. W. Gear, Parallel methods for ordinary differential equations, Calcolo 25:1-

20, 1988.

Bibliography 221

[48] E. Hairer, S. Nørsett and G. Wanner, Solving Ordinary Differential Equations

I, Nonstiff Problems, Springer-Verlag, Second Revised Edition, 1993.

[49] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II, Stiff

Problems, Springer-Verlag, Second Revised Edition, 1996.

[50] A.C. Hindmarsh, LSODE and LSODI, two new initial value ordinary differ-

ential equation solvers, ACM/SIGNUM newsletter, 15(4): 10-11, 1980.

[51] P.J. van der Houwen and B. Sommeijer, Parallel iteration of high order Runge-

Kutta methods with stepsize control, Journal of Computational and Applied

Mathematics, 29:111-127, 1990.

[52] P.J. van der Houwen and B. Sommeijer, Iterated Runge-Kutta methods on

parallel computers, SIAM Journal of Scientific and Statistical Computing,

12:1000-1028, 1991.

[53] P.J. van der Houwen and B. Sommeijer, Block Runge-Kutta methods on par-

allel computers, Z. Angnew Math. Mech., 72(1):3-18, 1992.

[54] P.J. van der Houwen, B. Sommeijer and W. Cousy, Embedded diagonally im-

plicit Runge-Kutta algorithms on parallel computers, Mathematics of Com-

putations, 58:135-159, 1992.

[55] P.J. van der Houwen and J.J.B. de Swart, Parallel linear system solvers for

Runge-Kutta methods, Advances in Computational Mathematics, 7:157-181,

1997.

[56] P.J. van der Houwen and J.J.B. de Swart, Triangularly implicit iteration

methods for ODE-IPV solvers, Applied Numerical Mathematics, 18:387-396,

1995.

[57] W. Hoffmann and J.J.B. de Swart, Approximating Runge-Kutta matrices by

triangular matrices, BIT Numerical Mathematics, 37(2):346-354, 1997.

[58] A. Iserles and S.P. Nørsett, On the theory of parallel Runge-Kutta methods,

IMA J. of Numer. Anal., 4:463-488, 1990.

222 Bibliography

[59] Z. Jackiewicz, R. Vermiglio, M. Zennaro, Variable stepsize diagonally implicit

multistage integration methods for ordinary differential equations, Applied

Numerical Mathematics, 16:343-367, 1995.

[60] K.R. Jackson, A survey of parallel numerical methods for initial value prob-

lems for ordinary differential equations, IEEE Transactions on Magnetics,

27:3792-3797, 1991.

[61] P. Kaps, The Rosenbrock-type methods, Nuemrical methods for stiff initial

value problems, (Proceeding, OBerwolfach), G. Dahlquist and R. Jeltsch,

Bericht nr. 9, Inst. f r Geometrie und Praktische Mathematik der RWTH

Aachen, 1981.

[62] J.D. Lambert, Numerical methods for ordinary differential systems, the initial

value problem, Wiley, Chichester, 1991.

[63] W.M. Lioen, J.J.B. de Swart and W.A. van der Veen, Test set for IVP solvers,

http://www.cwi.nl/cwi/projects/IVPtestset.shtml, Test set for IVP solvers,

1996.

[64] J.J.H. Miller, On the location of zeros of certain classes of polynomials with

applications to numerical analysis, J. Inst. Maths Applics, 8:397-406, 1971.

[65] S.P. Nørsett and P.G. Thomson, Embedded SDIRK-methods of basic order

three, BIT, 24:634-646, 1984.

[66] G. Pólya aand G. Szegö, Problems and theorems in Analysis, Vol 1, Springer

Verlag, 1972.

[67] A. Prothero and A. Robinson, On the stability and accuracy of one-step meth-

ods for solving stiff systems of ordinary differential equations, Math. Comp.,

28:145-162, 1974.

[68] H.H. Robertson, The solution of a set of reaction rate equations, In:J. Wal-

shed.: Numer. Anal., an Introduction, Academic Press, 178-182, 1966.

[69] L.F. Shampine, Implementation of Implicit formulas for the solution of ODEs,

SIAM Journal of Scientific and Statistical Computing, 1:103-118, 1980.

Bibliography 223

[70] L.F. Shampine, Numerical Solution of Ordinary Differential Equations, Chap-

man & Hall, New York, 1993.

[71] B. Sommeijer and W. Cousy, P.J. van der Houwen, A-stable parallel block

methods for ordinary and integro-differential equations, PhD thesis, Univer-

siteit van Amsterdam, CWI, Amsterdam, 1992.

[72] J.J.B. de Swart, Parallel software for implicit differential equations, PhD

thesis, CWI, Amsterdam, 1997.

[73] O.B. Widlund, A note on unconditionally stable linear multistep methods,

BIT, 7:65-70, 1967.

[74] J. Van Wieren, Using diagonally implicit multistage integration methods for

solving ordinary differential equations, Naval Air Warfare Center Weapons

Division, China Lake, California, Report, Part 1: Introduction and explicit

methods, 1997.

[75] J. Van Wieren, Using diagonally implicit multistage integration methods for

solving ordinary differential equations, Naval Air Warfare Center Weapons

Division, China Lake, California, Report, Part 2: Implicit methods, 1997.

[76] LAPACK routines available at http://www.netlib.org/lapack .

	coversheet.pdf
	General copyright and disclaimer

