

Libraries and Learning Services

University of Auckland Research
Repository, ResearchSpace

Version

This is the Pre-print Manuscript version. This version is defined in the NISO
recommended practice RP-8-2008 http://www.niso.org/publications/rp/

Suggested Reference

Kuske, D., Liu, J., & Lohrey, M. (2013). The isomorphism problem on classes of
automatic structures with transitive relations. Transactions of the American
Mathematical Society, 365(10), 5103-5151. doi:10.1090/S0002-9947-2013-
05766-2

Copyright

Items in ResearchSpace are protected by copyright, with all rights reserved,
unless otherwise indicated. Previously published items are made available in
accordance with the copyright policy of the publisher.

© American Mathematical Society, 2013

First published in Transactions of the American Mathematical Society in volume
365, issue 10, 2013, published by the American Mathematical Society.

For more information, see General copyright, Publisher copyright,
SHERPA/RoMEO.

http://www.niso.org/publications/rp/
http://dx.doi.org/10.1090/S0002-9947-2013-05766-2
http://dx.doi.org/10.1090/S0002-9947-2013-05766-2
http://www.library.auckland.ac.nz/services/research-support/depositing-theses/copyright
http://www.ams.org/publications/authors/ctp
http://www.sherpa.ac.uk/romeo/issn/0002-9947/

The Isomorphism Problem On Classes of Automatic
Structures with Transitive Relations

Dietrich Kuske1, Jiamou Liu2, and Markus Lohrey2, ?

1 TU Ilmenau, Institut für Theoretische Informatik, Germany
2 Universität Leipzig, Institut für Informatik, Germany

dietrich.kuske@tu-ilmenau.de, liujiamou@gmail.com, lohrey@informatik.uni-leipzig.de

Abstract. Automatic structures are finitely presented structures where the universe and all
relations can be recognized by finite automata. It is known that the isomorphism problem for
automatic structures is complete for Σ1

1 , the first existential level of the analytical hierarchy.
Positive results on ordinals and on Boolean algebras raised hope that the isomorphism
problem is simpler for transitive relations. We prove that this is not the case. More precisely,
this paper shows:
(i) The isomorphism problem for automatic equivalence relations is complete for Π0

1 (first
universal level of the arithmetical hierarchy).

(ii) The isomorphism problem for automatic trees of height n ≥ 2 is Π0
2n−3-complete.

(iii) The isomorphism problem for well-founded automatic order trees is recursively equiva-
lent to true first-order arithmetic.

(iv) The isomorphism problem for automatic order trees is Σ1
1 -complete.

(v) The isomorphism problem for automatic linear orders is Σ1
1 -complete.

We also obtain Π0
1 -completeness of the elementary equivalence problem for several classes

of automatic structures and Σ1
1 -completeness of the isomorphism problem for trees (resp.,

linear orders) consisting of a deterministic context-free language together with the prefix
order (resp., lexicographic order). This solves several open questions of Ésik, Khoussainov,
Nerode, Rubin, and Stephan.

1 Introduction

The idea of an automatic structure goes back to Büchi and Elgot who used finite automata to
decide, e.g., Presburger arithmetic [12]. Automaton decidable theories [19] and automatic group-
s [14] are similar concepts. A systematic study was initiated by Khoussainov and Nerode [24] who
also coined the name “automatic structure”. In essence, a structure is automatic if the elements of
the universe can be encoded by strings from a regular language and every relation of the structure
can be recognized by a finite state automaton with several heads that proceed synchronously.
Automatic structures received increasing interest over the last years [3, 6, 22, 23, 25–27, 30, 32, 38].
One of the main motivations for investigating automatic structures is that their first-order theories
can be decided uniformly (i.e., the input is an automatic presentation and a first-order sentence).

Automatic structures form a subclass of computable (or recursive) structures. A structure is
computable, if its domain as well as all relations are computable sets of finite words (or naturals).
A typical example of a computable structure is (N; +,×). Computable structures are the starting
point of the rich field of computable model theory [15]. A well-studied problem in this field is
the isomorphism problem, which asks whether two given computable structures over the same
signature (encoded by Turing-machines for the domain and all relations) are isomorphic. It is well
known that the isomorphism problem for computable structures is complete for the first level of
the analytical hierarchy Σ1

1 . In fact, Σ1
1 -completeness holds for many subclasses of computable

structures, e.g., for linear orders, trees, undirected graphs, Boolean algebras, Abelian p-groups,
see [8, 16]. These papers also show, as a consequence of the Σ1

1 -completeness of the isomorphism
problem, that these classes do not have a “good classification” (more precisely: they do not have
a hyperarithmetical Friedberg enumeration).

? The second and third author are supported by the DFG research project GELO.

In [26], it was shown that also for automatic structures the isomorphism problem is Σ1
1 -

complete. By a direct interpretation, it follows that for the following classes the isomorphism
problem is still Σ1

1 -complete [34]: automatic successor trees, automatic undirected graphs, auto-
matic commutative monoids, automatic partial orders (of height 2), automatic lattices (of height
4), and automatic 1-ary functions. On the other hand (and in contrast to computable structures),
the isomorphism problem is decidable for automatic ordinals [27] and automatic Boolean alge-
bras [26]. An intermediate class is the class of all locally-finite automatic graphs, for which the
isomorphism problem is complete for Π0

3 (third level of the arithmetical hierarchy) [37].

Although the interpretation technique from [34] yields undecidability for the isomorphism
problem for automatic partial orders, it seems to be difficult to extend this technique to more
restricted classes like order trees (i.e., trees seen as particular partial orders) or linear orders.
Moreover, the automatic graphs constructed in [26] are based on transition graphs of Turing-
machines. But the transitive closure of such a transition graph is in general not automatic (its
first-order theory is undecidable in general). Hence, the techniques from [26, 34] do not work for
automatic order trees, automatic linear orders, and also automatic equivalence relations. Moreover,
as mentioned above, for some very restricted classes of automatic structures (ordinals [27], Boolean
algebras [26]), the isomorphism problem is decidable. Recent surveys consequently ask whether
the isomorphism problem is decidable for automatic equivalence relations and automatic linear
orders [25, 38]. For automatic equivalence relations, it is conjectured in [25] that the isomorphism
problem is decidable. For automatic linear orders, already [27] asked for the decidability status of
the isomorphism problem.

Contrary to the hopes expressed in [25, 27, 38], our main results are:

– The isomorphism problem for automatic equivalence relations is Π0
1 -complete.

– The isomorphism problem for automatic trees of finite height n ≥ 2 (where the height of a
tree is the maximal number of edges along a path) is Π0

2n−3-complete.

– The isomorphism problem for automatic well-founded order trees is recursively equivalent to
true arithmetic (the first-order theory of (N; +,×)).

– The isomorphism problem for automatic order trees is Σ1
1 -complete.

– The isomorphism problem for automatic linear orders is Σ1
1 -complete.

Contrary to the above-mentioned technique using configuration graphs of Turing machines, our
proofs are based on the undecidability of Hilbert’s 10th problem. Recall that Matiyasevich proved
that every recursively enumerable set of natural numbers is Diophantine, i.e., the projection to
the first component of the set of zeros of some polynomial p(x) ∈ Z[x] [33]. Honkala inferred that
it is undecidable whether the range of a rational power series equals N [20]. His basic idea was to
construct from a given polynomial p(x) in several variables a finite automaton, such that on a word
encoding an input tuple c for the polynomial, the automaton has exactly p(c) many accepting runs,
see also [39, Theorem II.11.1]. Using a similar encoding, we show that the isomorphism problem for
automatic equivalence relations is Π0

1 -complete, which answers Question 4.2 from [25] negatively.
By the same arguments, we obtain that elementary equivalence of automatic equivalence relations
(i.e., the problem whether two equivalence relations have the same first-order theory) is Π0

1 -
complete as well, thereby partially answering Question 4.8 from [25].

Next, we extend our technique in order to show that the isomorphism problem for automatic
successor trees of height n ≥ 2 is Π0

2n−3-complete. Using the easy correspondence between equiv-
alence structures and trees of height 2, our result for equivalence relations makes up, in some
sense, the induction base n = 2. Our result for automatic trees of finite height gives an answer
to Question 4.6 from [25], which asks for natural classes of automatic structures, for which the
isomorphism problem is complete for levels of the arithmetical hierarchy.

For arbitrary automatic trees, we prove that the isomorphism problem has maximal complexity,
i.e., that it is Σ1

1 -complete. For automatic successor trees, Σ1
1 -completeness of the isomorphism

problem was already shown in [26]. Here, the crucial point is that we consider order trees (for trees
of finite height, the distinction between order trees and successor trees is not important). Our
proof for Σ1

1 -completeness on automatic order trees is based on a reduction from the isomorphism

2

problem for computable trees. To achieve this reduction, we combine our techniques for automatic
trees of finite height with the method from [26].

As a corollary of our construction, we can show that the following problem is Σ1
1 -complete as

well: Given two deterministic pushdown automata P1 and P2 such that ε ∈ L(P1) ∩ L(P2), are
the trees (L(P1);�) and (L(P2);�) (where � denotes the prefix relation) isomorphic. Recently,
it was shown that the same problem with P1 and P2 nondeterministic (resp., deterministic) finite
automata is EXPTIME-complete (resp. P-complete) [31].

Finally, using a similar but technically more involved reduction than those for trees, we can
show that also the isomorphism problem for automatic linear orders is Σ1

1 -complete. This answers
Question 4.3 (and consequently Question 4.7) from [25] negatively. From this proof, we obtain two
further results as well:

– Elementary equivalence of automatic linear orders is Π0
1 -complete (giving another partial

answer to Question 4.8 from [25]).
– The isomorphism problem for linear orders of the form (L;≤lex), where L is a deterministic

context-free language and ≤lex is the lexicographic order on strings (these are the algebraic
linear orders [4]), is Σ1

1 -complete.

The latter result answers a question of Ésik [13], where he proved undecidability of the isomor-
phism problem for linear orders of the form (L;≤lex) with L a context-free language and ≤lex the
lexicographic order. The same problem is decidable for regular languages instead of deterministic
context-free languages [41]. A polynomial time algorithm for the case that the regular language is
given by a deterministic automaton can be found in [31].

For the important subclass of automatic scattered linear orders, we can provide a reduction of
the isomorphism problem to true arithmetic. Although non-arithmetical, true arithmetic belongs
to a relatively low level of the hyperarithmetical hierarchy. This shows that the isomorphism
problem for scattered linear orders is strictly simpler than for general linear orders. It remains
open, whether the isomorphism problem for scattered linear orders is decidable. It seems that our
new techniques cannot help to solve this problem: Our proof for linear orders uses shuffle sums,
and this construction always yields non-scattered linear orders.

Related work. Beyond the works cited so far, we should mention that Blumensath and Grädel [6]
were the first to prove undecidability of the isomorphism problem for automatic structures. The
paper [22] studies several methods of constructing automatic equivalence structures with different
types of isomorphism invariants. Automatic linear orders were also studied in unpublished work
by Delhommé [10], where it was shown that an ordinal is automatic if and only if it is strictly
below ωω. Extending Delhommé’s technique, Khoussainov et al. [27] prove that all automatic linear
orders have finite Hausdorff ranks. In the same paper [27], automatic order trees are studied and
it is shown that the Cantor-Bendixson rank of any automatic order tree is finite. The paper [23]
constructs automatic structures of high ordinal height and Scott rank, again by using transition
graphs of Turing-machines. Recently, we extended our techniques to ω-automatic structures (which
are represented by Büchi-automata instead of ordinary finite automata) [29], where we proved that
the isomorphism problem for ω-automatic structures (even ω-automatic trees of finite height) does
not belong to the analytical hierarchy. Lastly, we mention that for equivalence structures, linear
orders, and order trees which have automatic presentations over a unary alphabet, the isomorphism
problem is decidable in polynomial time [32].

2 Preliminaries

Let N+ = {1, 2, 3, . . .}. Let p(x1, . . . , xn) ∈ N[x1, . . . , xn] be a polynomial with non-negative integer
coefficients. We define

Img+(p) = {p(y1, . . . , yn) | y1, . . . , yn ∈ N+} .

If p is not the zero-polynomial, then Img+(p) ⊆ N+.
For any alphabet A, we denote with � the prefix order on the set A∗ of finite words over A.

For a subset L ⊆ A∗ we denote with �L the restriction of � to L.

3

2.1 Logic

A relational structure S consists of a domain D and finitely many atomic relations on the set D. It
will be denoted by (D;R1, . . . , Rn), where R1, . . . , Rn are the atomic relations of S. The signature
of S is the tuple consisting of the arities of all relations Ri. We will only consider structures with
countable domains. Occasionally, we will write a ∈ S for a ∈ D. If S1 and S2 are two structures
with the same signature and with disjoint domains, then we write S1] S2 for the union of the
two structures. Hence, when writing S1]S2, we implicitly express that the domains of S1 and S2
are disjoint. More generally, if {Si | i ∈ I} is a class of pairwise disjoint structures with the same
signature, then we denote with

⊎
{Si | i ∈ I} the union of these structures.

We assume that the reader has some familiarity with first-order logic (briefly FO) and second-
order logic, see e.g. [18] for more details. Recall that in second-order logic there are first-order
variables (denoted by lower case letters) and second-order variables of arbitrary arity (denoted
by upper case letters), which can be quantified existentially and universally. First-order variables
range over elements of the domain of the underlying structure, whereas second-order variables
range over relations of the appropriate arity. With S |= ϕ we denote the fact that the formula ϕ
evaluates to true in the structure S (which has to have the appropriate signature); if ϕ has free
variables then appropriate values have to get assigned to these variables. If ϕ(x) is an FO-formula,
x is a first-order variable, and m ∈ N, then we will also allow the formulas ∃≥mx : ϕ(x) and
∃=mx : ϕ(x) with the following meanings: S |= ∃≥mx : ϕ(x) (resp., S |= ∃=mx : ϕ(x)) if there
exist at least (resp., exactly) m many elements a ∈ S with S |= ϕ(a). Clearly these quantifiers do
not increase the expressiveness of FO. Moreover, the quantifier ∃≥mx can be replaced by a block
of m ordinary existential quantifiers.

Definition 1. Two structures S and S ′ are elementary equivalent (denoted S ≡ S ′) if for all
first-order formulas ϕ without free variables, we have:

S |= ϕ ⇐⇒ S ′ |= ϕ .

FSO (for “fragment of second order logic”) [30] is a proper extension of FO by the following three
formation rules (S is again a structure with the appropriate signature):

– If ϕ(x) is an FSO-formula and x a first-order variable, then ∃=∞x : ϕ is also an FSO-formula,
which has the following meaning: S |= ∃=∞x : ϕ(x) if and only if there are infinitely many
a ∈ S with S |= ϕ(a).

– If ϕ(x) is an FSO-formula, x a first-order variable, and p ∈ N+, then ∃(p)xϕ is also an FSO-
formula, which has the following meaning S |= ∃(p)xϕ if and only if the number of a ∈ S with
S |= ϕ(a) is finite and a multiple of p.

– If X is an n-ary second-order variable that occurs only negatively (i.e., in the range of an
odd number of negations) in the FSO-formula ϕ(X), then ∃X infinite : ϕ(X) is also an FSO-
formula, which has the following meaning: S |= ∃X infinite : ϕ(X) if and only if there exists
an infinite relation R ⊆ Sn such that S |= ϕ(R).3

Example 2. FSO allows to express that a graph with edge relation E has an infinite clique by the
formula

∃X infinite∀x, y : x, y ∈ X ∧ x 6= y → (x, y) ∈ E

(X is a unary second-order variable). Note that this formula is equivalent to

∃X infinite∀x, y : x 6∈ X ∨ y 6∈ X ∨ x = y ∨ (x, y) ∈ E,

i.e., X occurs indeed only negatively.

3 The condition that X occurs only negatively in ϕ(X) ensures that if S |= ϕ(R) then S |= ϕ(Q) for
every subset Q ⊆ R.

4

Σ0
1 ∩Π0

1

Σ0
1

Π0
1

Σ0
2 ∩Π0

2

Σ0
2

Π0
2

Σ0
3 ∩Π0

3

Σ0
3

Π0
3

Σ0
4 ∩Π0

4
. . . Σ1

1

Fig. 1. The arithmetical hierarchy and Σ1
1

2.2 Computability

We assume some familiarity with the basic concepts of computability theory, see e.g. [35, 40] for
more details. An index for a computable function f is a Turing machine (or the Gödel number
of a Turing machine) that computes f . With Σ0

n we denote the nth (existential) level of the
arithmetical hierarchy; it is the class of all subsets A ⊆ N such that there exists a computable
predicate P ⊆ Nn+1 with

A = {a ∈ N | ∃x1∀x2 · · ·Qxn : (a, x1, . . . , xn) ∈ P} , (1)

where Q = ∃ (Q = ∀) for n odd (even). The set of complements of Σ0
n-sets is denoted by Π0

n.
The arithmetical hierarchy is

⋃
n≥0Σ

0
n =

⋃
n≥0Π

0
n. There is a lot of freedom in the definition of

the classes Σ0
n and Π0

n. Instead of requiring P in (1) to be a recursive predicate, one can take a
quantifier-free FO-formula over the structure (N; +,×). Moreover, each of the quantifiers in (1) can
be replaced by a block of quantifiers of the same type (since a tuple of naturals can be encoded by
a single natural using a computable coding function). In particular, the quantifier ∃≥mx is allowed
in place of an ordinary existential quantifier.4 Similarly, one may allow first-order quantifiers that
range over finite objects of a particular type, e.g., words from a regular language, finite automata,
computable mappings (represented by Turing machines), etc..

For lower bounds, we will use the following characterizations of the classesΠ0
m, see [35, Theorem

XVIII], where the result is attributed to Kreisel, Shoenfield, and Wang.

Proposition 3. The class Π0
2n is the class of all sets of the form

{a ∈ N | ∃∞x1∃∞x2 · · · ∃∞xn : (a, x1, . . . , xn) ∈ P} ,

where P ⊆ Nn+1 is a computable predicate. The class Π0
2n+1 is the class of all sets of the form

{a ∈ N | ∃∞x1∃∞x2 · · · ∃∞xn∀y : (a, x1, . . . , xn, y) ∈ P} ,

where P ⊆ Nn+2 is a computable predicate.

If quantifiers over arbitrary subsets of natural numbers are allowed, one moves from the arithmeti-
cal hierarchy to the so called analytical hierarchy. We will only need the first (existential) levelΣ1

1 of
this hierarchy. It is the class of all subsets of N of the form {n ∈ N | ∃A ⊆ N : (N; +,×) |= ϕ(A,n)},
where ϕ(A,n) is an FO-formula (the subset A is used as an additional unary predicate). Figure 1
shows an inclusion diagram. By fixing some effective encoding of strings by natural numbers, we
can talk about Σ0

n-sets, Π0
n-sets, and Σ1

1 -sets of strings over an arbitrary alphabet. Statements
about the completeness of a set for one of the above classes will always refer to many-one reduc-
tions. A typical example of a Σ1

1 -set, which does not belong to the arithmetical hierarchy and
which is not Σ1

1 -complete is true arithmetic, i.e., the first-order theory of (N; +,×), which we de-
note by FOTh(N; +,×). In terms of the hyperarithmetical hierarchy,5 FOTh(N; +,×) is complete
for its first non-arithmetical level ∆0

ω.

4 On the other hand, the exact counting quantifier ∃=mx introduces an additional quantifier alternation
and therefore does not preserve the levels of the arithmetical hierarchy.

5 The hyperarithmetical hierarchy is a kind of transfinite extension of the arithmetical hierarchy. The
class of all hyperarithmetical sets is Σ1

1 ∩Π1
1 , where Π1

1 is the set of complements of Σ1
1 -sets. See [35]

for more details.

5

2.3 Automata

We assume basic terminologies and notations from automata theory, see, for example, [21]. As
usual, we denote with Σ+ the set of all non-empty words on the alphabet Σ. For a fixed alphabet
Σ, a (non-deterministic finite) automaton is a tuple A = (S,∆, I, F) where S is the finite set
of states, ∆ ⊆ S × Σ × S is the transition relation, I ⊆ S is a set of initial states, and F ⊆ S
is the set of accepting states. For technical reasons, we want to exclude the empty word from
the language accepted by an automaton. Hence, we require I ∩ F = ∅ in the following. A run
of A on a word u = a1a2 · · · an (n > 0, a1, a2 . . . , an ∈ Σ) is a word over ∆ of the form r =
(q0, a1, q1)(q1, a2, q2) · · · (qn−1, an, qn). It is accepting if q0 ∈ I and qn ∈ F . For u ∈ Σ+, we denote
by Run(A, u) ⊆ ∆+ the set of all accepting runs of A on the word u. Since we assume I ∩ F = ∅,
we can define the language L(A) accepted by A as {u ∈ Σ+ | Run(A, u) 6= ∅}. For K ⊆ Σ+ let
Run(A,K) =

⋃
u∈K Run(A, u), and let Run(A) = Run(A, Σ+) be the set of all accepting runs of

A. This is a regular language: A finite automaton for Run(A) can be obtained by replacing every
transition (p, a, q) ∈ ∆ by (p, (p, a, q), q). For the accepting run r ∈ Run(A), we write lab(r) for the
word accepted by r, i.e., r ∈ Run(A, lab(r)). We state the following fact which is used at several
occasions in the paper: for a given automaton A, one can compute effectively the cardinality
|L(A)| ∈ N ∪ {ℵ0} of the language accepted by A.

We use synchronous n-tape automata to recognize n-ary relations. Such automata have n input
tapes, each of which contains one of the input words. The n tapes are read in parallel until all input
words are processed. Formally, let Σ� = Σ ∪ {�} where � /∈ Σ. For words w1, w2, . . . , wn ∈ Σ∗,
their convolution w1⊗· · ·⊗wn or ⊗(w1, . . . , wn) is a word in (Σn

�)∗ of length max{|w1|, . . . , |wn|},
and the kth symbol of w1 ⊗ · · · ⊗ wn is (σ1, . . . , σn) where σi is the kth symbol of wi if k ≤ |wi|,
and σi = � otherwise. We lift this definition to sets of words in the obvious way, i.e., for languages
L1, L2 ⊆ Σ∗ let L1⊗L2 = {w1⊗w2 | w1 ∈ L1, w2 ∈ L2}. For an n-ary relation R ⊆ (Σ∗)n, let R⊗

be the set of convolutions of tuples from R. Then R is FA recognizable if R⊗ is a regular language.

2.4 Automatic structures

A structure S is called automatic over Σ if its domain is a regular subset of Σ∗ and each of its
atomic relations is FA recognizable; any tuple P of automata that accept the domain and the
relations of S is called an automatic presentation of S; in this case, we write S(P) for S. If an
automatic structure S is isomorphic to a structure S ′, then S is called an automatic copy of S ′
and S ′ is automatically presentable. In this paper we sometimes abuse the terminology referring
to S ′ as simply automatic and calling an automatic presentation of S also automatic presentation
of S ′. We also simplify our statements by saying “given/compute an automatic structure S” for
“given/compute an automatic presentation P of a structure S(P)”.

Example 4. The following structures are known to be automatic:

– Finite structures
– (N;≤,+)
– (Q;≤)
– Every ordinal < ωω

– Transition graphs of Turing machines, i.e., graphs where the set of nodes is the set of all
configurations of a fixed Turing machine M and there is an edge from configuration c1 to
configuration c2 if M can move in one step from c1 to c2.

On the other hand, the following structures have no automatic copies:

– (N;×) [5]
– Every ordinal ≥ ωω [10]
– Every infinite field [26]
– (Q; +) [42]

6

Well-known examples of automatic linear orders are the lexicographic order ≤lex and the length-
lexicographic order ≤llex on a regular language D. To define them, we first need a fixed linear order
≤ on the alphabet Σ of D. For w,w′ ∈ D, we say that w is lexicographically less than w′, denoted
by w <lex w

′, if either w is a proper prefix of w′ or there exist x, y, z ∈ Σ∗ and σ, τ ∈ Σ such that
w = xσy, w′ = xτz, and σ < τ . We write w ≤lex w

′ if either w = w′ or w <lex w
′. Furthermore,

w ≤llex w
′ if |w| < |w′| or (|w| = |w′| and w ≤lex w

′). For convenience, in this paper, we use
≤lex to denote the lexicographic order regardless of the corresponding alphabets and orders on the
alphabets. The precise definition of ≤lex in different occurrences will be clear from the context.
Note that ≤llex is always a well-order. Hence, every automatic structure can be expanded by a
well-order on its domain.

The following theorem from [5, 19, 24, 30, 37] lays out the main motivation for investigating
automatic structures.

Theorem 5. From an automatic presentation P and an FSO-formula ϕ(x1, . . . , xn) in the sig-
nature of S(P), one can compute an automaton for the set {(v1, . . . , vn) ∈ S(P)n | S(P) |=
ϕ(v1, . . . , vn)}⊗. In particular:

– The FSO theory of any automatic structure S is (uniformly) decidable.
– If S is automatic and S ′ is FSO-interpretable in S ′, then S ′ is effectively automatic (i.e., an

automatic presentation for S ′ can be computed from an automatic presentation for S).

This paper is mainly interested in the complexity of the following two decision problems:

Definition 6. For a class K of automatic presentations, we consider the following sets:

– The isomorphism problem Iso(K) for K is the set of pairs (P1,P2) ∈ K × K of automatic
presentations with S(P1) ∼= S(P2).

– The elementary equivalence problem EE(K) for K is the set of pairs (P1,P2) ∈ K × K of
automatic presentations such that S(P1) ≡ S(P2).

If K is the class of all automatic presentations for a class C of relational structures (e.g. trees or
linear orders), then we will briefly speak of the isomorphism problem for (automatic members of)
C. The classes C that will appear in this paper (equivalence relations and various classes of trees
and linear orders) have the nice property that they can be axiomatized by a single FSO-formula.
Theorem 5 implies that the corresponding classes K of automatic presentations are decidable. In
this case, since the set of all FO-formulas without free variables can be enumerated, Theorem 5
implies that EE(K) ∈ Π0

1 . On the other hand, the isomorphism problem can be much harder: The
isomorphism problem for the class of all automatic structures is complete for Σ1

1 [26]. However, if
one restricts to special subclasses of automatic structures, this complexity bound can be reduced.
For example, for the class of automatic ordinals [27] and also the class of automatic Boolean alge-
bras [26], the isomorphism problem is decidable. Another interesting result is that the isomorphism
problem for locally finite automatic graphs is Π0

3 -complete [37].

3 Automatic Equivalence Structures

An equivalence structure is of the form E = (D;≈) where ≈ is an equivalence relation on D.
As usual, we denote with [a]≈ (or briefly [a], if ≈ is clear from the context), the equivalence
class containing a ∈ D. In this section, we prove that the isomorphism problem for automatic
equivalence structures is Π0

1 -complete. This result also follows from our handling of automatic trees
in Section 4. However, we present it separately here as it is a good starting point for introducing
our techniques.

Let E = (D;≈) be a countable equivalence structure. Define the function hE : N+ ∪ {ℵ0} →
N∪{ℵ0} such that for all n ∈ N+∪{ℵ0}, hE(n) equals the number of equivalence classes (possibly
infinite) in E of size n. If E is automatic, hE(n) can be computed effectively from n: it equals m if

E |= ∃=mx : (∃=ny : x ≈ y ∧ ∀y : x ≈ y → x ≤llex y)

7

(here ∃=ℵ0 stands for ∃=∞). Thus, one can check by Theorem 5 whether hE(n) = m for m =
ℵ0, 0, 1, 2, . . . until one finds the correct value. Given two automatic equivalence structures E1 and
E2, deciding if E1 ∼= E2 amounts to checking if hE1 = hE2 , i.e., if ∀n ∈ N+ ∪{ℵ0} : hE1(n) = hE2(n).
Since the function hE is computable for automatic equivalence structures, the isomorphism problem
for automatic equivalence structures is consequently in Π0

1 .
Consider the automatic equivalence structures (a+; =) and ((bb)+; =) that are isomorphic.

There is no FA recognizable isomorphism, but there is a computable one (mapping, e.g., an to
b2n). This is no coincidence as the following proposition shows.

Proposition 7. Let E1 and E2 be two isomorphic automatic equivalence structures. Then there
exists a computable isomorphism from E1 to E2.

Proof. Let Ei = (Vi;≈i) (w.l.o.g. V1 ∩ V2 = ∅) and let ≤llex denote the length-lexicographic order
on V1 ∪ V2. In the following, min(U) (U ⊆ Vi) denotes the minimal element of U w.r.t. ≤llex. This
minimum exists, since ≤llex is a well-order. Let Mini = {u ∈ Vi | u = min([u])}. This set is FSO-
definable in the structure (Vi;≈i,≤llex). Since ≤llex is FA recognizable, this structure is automatic.
Hence Mini is a regular language. It contains a unique element from each equivalence class of ≈i.
For u ∈ Vi, define:

m1(u) = |{v ∈ Vi | v <llex u ∧ u ≈i v}| ∈ N
m2(u) = |{x ∈ Mini | x <llex min([u]) ∧ |[x]| = |[u]|}| ∈ N
m3(u) = |[u]| ∈ N+ ∪ {ℵ0}

Thus, m1(u) is the number of equivalent, but smaller words than u and m2(u) is the number of
equivalence classes of size |[u]| whose minimal element is smaller than the minimal element of [u].
Clearly, every isomorphism f between E1 and E2 must satisfy m3(u) = m3(f(u)) for all u ∈ V1.
Moreover, there exists a unique isomorphism f such thatm1(u) = m1(f(u)) andm2(u) = m2(f(u))
for all u ∈ V1. Below, we show that the mappings mi (1 ≤ i ≤ 3) are computable. This implies
that the unique isomorphism f with mi(u) = mi(f(u)) for all 1 ≤ i ≤ 3, u ∈ V1 is computable
as well: For a given u ∈ V1 we enumerate all v ∈ V2 until we find a v with mi(u) = mi(v) for
1 ≤ i ≤ 3. Then, we set f(u) = v.

Computability of m3(u) follows from the fact that [u] is FSO-definable in the automatic struc-
ture (Vi;≈i,≤llex, {u}). Hence [u] is effectively regular (i.e., an automaton for [u] can be computed
from u), and we can compute the cardinality of [u]. Let κ ∈ N+ ∪ {ℵ0} be this cardinality.
The cardinality of the set {v ∈ Vi | v <llex u ∧ u ≈i v} (i.e., m1(u)) can be computed by the
same argument. Finally, using the cardinality κ = |[u]|, we can find an FSO-definition for the
set {x ∈ Mini | x <llex min([u]) ∧ |[x]| = κ} in the structure (Vi;≈i,≤llex,Mini), which is again
automatic. Hence the set {x ∈ Mini | x <llex min([u]) ∧ |[x]| = κ} is regular as well and we can
compute its cardinality (which is m2(u)). ut

For the Π0
1 lower bound, we use a reduction from Hilbert’s 10th problem: Given a polynomial

p(x1, . . . , xk) ∈ Z[x1, . . . , xk], decide whether the equation p(x1, . . . , xk) = 0 has a solution in N+

(for technical reasons, it is useful to exclude 0 in solutions). This problem is well-known to be
undecidable, see e.g. [33]. More precisely, letX ⊆ N+ be someΣ0

1 -complete set. Then, Matiyasevich
provides two polynomials p1(x, x1, . . . , xk), p2(x, x1, . . . , xk) ∈ N[x, x1, . . . , xk] such that for all
n ∈ N+: n ∈ X if and only if ∃y1, . . . , yk ∈ N+ : p1(n, y1, . . . , yk) − p2(n, y1, . . . , yk) = 0, i.e.,
p1(n, y1, . . . , yk) = p2(n, y1, . . . , yk). Hence the mapping n 7→ (p1(n, x1, . . . , xk), p2(n, x1, . . . , xk))
is a reduction of X to the set

{(p1, p2) ∈ N[x1, . . . , xk]2 | k ∈ N+,∃c ∈ Nk+ : p1(c) = p2(c)} .

Since this set belongs to Σ0
1 , it is therefore Σ0

1 -complete. Hence, the set

{(p1, p2) ∈ N[x1, . . . , xk]2 | k ∈ N+,∀c ∈ Nk+ : p1(c) 6= p2(c)}

is Π0
1 -complete.

8

To reduce this problem to the isomorphism problem of automatic equivalence structures, we
define for a non-zero polynomial p ∈ N[x1, . . . , xk] a countably infinite equivalence structure E(p)
setting

hE(p)(n) =

{
ℵ0 if n ∈ Img+(p)

0 otherwise.

In particular, E(p) does not have infinite equialence classes. Next consider the polynomial function
C : N× N→ N with

C(x, y) = (x+ y)2 + 3x+ y (2)

that is injective (C(x, y)/2 is the position of (x+y, x) in the lexicographic enumeration of N2). Now,
let p1, p2 ∈ N[x1, . . . , xk] (with k ≥ 2) be two non-zero polynomials and define the polynomials

S1(x) = C(p1(x), p2(x)), S2(x) = C(x1 + x2, x1), and S3(x) = C(x1, x1 + x2) .

Finally, set
E(p1, p2) = E(S1)] E(S2)] E(S3) and EGood = E(S2)] E(S3) .

Lemma 8. For two non-zero polynomials p1, p2 ∈ N[x1, . . . , xk] (with k ≥ 2), we have E(p1, p2) ∼=
EGood if and only if p1(c) 6= p2(c) for all c ∈ Nk+.

Proof. If p1(c) = p2(c) for some c ∈ Nk+, then there is y ∈ N+ such that C(y, y) ∈ Img+(S1).
Therefore in E(p1, p2) there is an equivalence class of size C(y, y), but no such equivalence class
exists in EGood. Hence E(p1, p2) � EGood.

Conversely, suppose that p1(c) 6= p2(c) for all c ∈ Nk+. For all y, z ∈ N+, E(p1, p2) contains an
equivalence class of size C(y, z) if and only if C(y, z) belongs to Img+(S1)∪ Img+(S2)∪ Img+(S3),
if and only if y 6= z, if and only if EGood contains an equivalence class of size C(y, z). Therefore,
for any s ∈ N+, E(p1, p2) contains an equivalence class of size s if and only if EGood contains an
equivalence class of size s. Since moreover, EGood has an equivalence class of size s if and only if it
has ℵ0 many equivalence classes of size s, and similarly for E(p1, p2), we get E ∼= EGood. ut

To reduce Hilbert’s 10th problem to the isomorphism problem of automatic equivalence struc-
tures, it remains to construct an automatic presentation of E(p) from a non-zero polynomial
p ∈ N[x1, . . . , xk]. More precisely, we will construct a nondeterministic automaton A such that

(Run(A);∼) ∼= E(p)

where r ∼ r′ if and only if lab(r) = lab(r′), i.e., two runs of A are equivalent if and only if they
accept the same word. The necessary connection between polynomials from N[x] and automata is
provided by the following lemma; in its general form, we will need it in Section 4.2.2.

Lemma 9. There exists an algorithm, whose input consists of the following data:

– A sequence s = (a1, . . . , ak) of symbols with k > 0 and ai 6= ai+1 for 1 ≤ i < k (we may have
ai = ai+j for j ≥ 2).

– A non-zero polynomial p(x) ∈ N[x] in k variables.

On such an input, the algorithm constructs an automaton A = A[s, p] with L(A) = a+1 a
+
2 · · · a

+
k

such that for all x1, . . . , xk ∈ N+ we have p(x1, . . . , xk) = |Run(A, ax1
1 · · · a

xk

k)| (the latter is the
number of accepting runs of A on ax1

1 · · · a
xk

k).

Proof. Let us fix s = (a1, . . . , ak) with ai 6= ai+1 for 1 ≤ i < k. We construct the automaton
A[s, p] by induction on the construction of the polynomial p. The base case is provided by the
polynomials 1 and xj .

For A[s, 1] we take a deterministic automaton with L(A[s, 1]) = a+1 a
+
2 · · · a

+
k . Next, suppose

p(x1, . . . , xk) = xj for some j ∈ {1, . . . , k}. We define

A[s, xj] = ({q0, q1, . . . , qk, p}, ∆, {q0}, {qk}),

9

where

∆ = {(qi, ai, qi) | 1 ≤ i ≤ m} ∪ {(qi−1, ai, qi) | 1 ≤ i ≤ m} ∪ {(qj−1, aj , p), (p, aj , p), (p, aj , qj)}.

When the automaton A[s, xj] runs on an input word ax1
1 · · · a

xk

k , it has exactly xj many times the
chance to move to state qj . Therefore there are exactly xj many accepting runs on ax1

1 · · · a
xk

k .
Next, let p1(x1, . . . , xk) and p2(x1, . . . , xk) be polynomials in N[x]. Assume as inductive hy-

pothesis that there is, for i ∈ {1, 2}, an automaton A[s, pi] = (Si, ∆i, Ii, Fi) such that the number
of accepting runs of A[s, pi] on ax1

1 · · · a
xk

k equals pi(x1, . . . , xk).
For the polynomial p(x) = p1(x1, . . . , xk) + p2(x1, . . . , xk), let A[s, p] be the disjoint union of

the automata A[s, p1] and A[s, p2]. Then, the number of accepting runs of A[s, p] on ax1
1 · · · a

xk

k is
p1(x1, . . . , xk) + p2(x1, . . . , xk).

For the polynomial p(x1, . . . , xk) = p1(x1, . . . , xk) ·p2(x1, . . . , xk), consider the Cartesian prod-
uct A[s, p] = A[s, p1]×A[s, p2]. This Cartesian product is the automaton (S1×S2, ∆, I1× I2, F1×
F2), where

∆ = {((p1, p2), σ, (q1, q2)) | (p1, σ, q1) ∈ ∆1, (p2, σ, q2) ∈ ∆2} .

Then, Run(A[s, f, p], ax1
1 · · · a

xk

k) = p1(x1, . . . , xk) · p2(x1, . . . , xk). ut

Lemma 10. From two non-zero polynomials p1, p2 ∈ N[x1, . . . , xk−1] with k ≥ 2, one can con-
struct a finite automaton A such that

E(p1, p2) ∼= (Run(A);∼) .

Proof. We consider p1 and p2 as polynomials in the variables x1, . . . , xk. Then, using Lemma 9,
we can construct a finite automaton A with L(A) = {1, 2, 3}a∗1a∗2 . . . a∗k such that the number of
accepting runs of A on dax1

1 a
x2
2 . . . axk

k equals Sd(x1, . . . , xk). For simplicity, we write E for the
automatic equivalence structure (Run(A);∼). Since Sd(x1, . . . , xk) = Sd(x1, . . . , xk + 1), we have
hE(n) > 0 if and only if hE(n) = ℵ0 for all n ∈ N+ ∪ {ℵ0}.

Furthermore, hE(n) > 0 (or, equivalently, hE(n) = ℵ0) if and only if there exists w ∈ L(A) that
is accepted by precisely n distinct runs. By Lemma 9, this is the case if and only if n ∈ Img+(S1)∪
Img+(S2)∪ Img+(S3). By the definition of E(p1, p2), this is equivalent to saying hE(p1,p2)(n) = ℵ0.

ut

In the following, letΣ2 denote the alphabet {0, 1}×{0, 1}. Note that words overΣ2 are convolutions
of two words over {0, 1} of the same length. We set u ⊗ v ≈ u′ ⊗ v′ if and only if u = u′. This
defines an automatic equivalence structure (Σ∗2 ;∼). Note that all equivalence classes of (Σ∗2 ;∼)
are finite. In the following, we will consider restrictions of this equivalence structure to regular
sets L ⊆ Σ∗2 , to simplify notation, we write (L;≈) for (L;≈ ∩ L2).

Proposition 11. The set of finite automata B with (L(B);≈) ∼= EGood is hard for Π0
1 . It equals

the set of finite automata B with (L(B);≈) ≡ EGood.

Proof. Let p1, p2 ∈ N[x1, . . . , xk] be non-zero polynomials and let A be the automaton from
Lemma 10 such that (Run(A);∼) ∼= E(p1, p2) and therefore by Lemma 8

(Run(A);∼) ∼= EGood ⇐⇒ ∀c ∈ Nk+ : p1(c̄) 6= p2(c̄) .

Let {b1, b2, . . . , bm} be the alphabet of A and let T = {t1, . . . , tn} denote the set of transitions of A
with m ≤ n. If ti = (p, bj , q), then set f(ti) = 0j1m−j ⊗ 0i1m−i and extend f to a homomorphism
from T ∗ to 2∗. Note that f is injective. For two runs r, r′ ∈ Run(A), we have r ∼ r′ if and only
if lab(r) = lab(r′) if and only if f(r) ≈ f(r′). Hence (L;≈) ∼= (Run(A);∼) with L = f(Run(A)).
Since, from A, we can construct a nondeterministic automaton accepting L, the first claim follows
from the Π0

1 -hardness of the set of pairs of polynomials p1, p2 over N with p1(c) 6= p2(c) for all
c ∈ Nk.

The second statement follows since all equivalence classes of (L;∼) and EGood are finite. This
implies that (L;∼) ≡ EGood if and only if they are isomorphic. ut

10

Theorem 12. The isomorphism problem and the elementary equivalence problem for automatic
equivalence structures are Π0

1 -complete.

Proof. At the beginning of this section, we already argued that the isomorphism problem is in Π0
1 ;

hardness follows immediately from Proposition 11, since EGood is necessarily automatic.
Note that the set of automatic presentations of equivalence structures is decidable. Hence the

elementary equivalence problem belongs to Π0
1 as explained after Definition 1. Hardness follows

from the second statement of Proposition 11. ut

4 Automatic Trees

A forest is a structure H = (V ;≤), where ≤ is a partial order on V such that for every x ∈ V ,
the order ≤ restricted to the set {y | y ≤ x} of ancestors of x is a finite linear order. A tree is a
forest with least element, called root, or the empty structure. A maximal element of the forest H
is also called a leaf of H. Let us fix a forest H = (V ;≤). For a node v ∈ V we denote with H(u)
(the subtree of H rooted at u) the forest H restricted to the set {v ∈ V | u ≤ v}; this is indeed
a tree whose root is u. The level of a node v ∈ V is |{x | x < v}| ∈ N. The height of H is the
supremum of the levels of all nodes in V ; it may be infinite even in case H is well-founded. One
may also view H as a directed graph (V ;E), where there is an edge (u, v) ∈ E if and only if u
is the largest element in {x | x < v}. We call E the edge relation of H. The edge relation E is
FO-definable in (V ;≤): (u, v) ∈ E if and only if u < v and ¬∃x : u < x < v. The set of children of
v ∈ V is denoted by E(v) = {u ∈ V | (v, u) ∈ E}. The forest H = (V ;≤) is well-founded, if there
does not exist an infinite branch in H, which is an infinite sequence of nodes v0 < v1 < v2 < · · · .
An example of a well-founded tree is (X<k;�) where X<k denotes the set of all words over the
set X of length at most k − 1. We will denote this tree briefly by X<k. We also write X<ω for
the tree whose universe is X∗ with the prefix relation. A forest H1 = (V1;≤1) embeds into a forest
H2 = (V2;≤2), briefly H1 ↪→ H2, if there exists an injective mapping f : V1 → V2 such that for all
u, v ∈ V1, u ≤1 v if and only if f(u) ≤2 f(v).

Let us emphasize again that in this paper, forests and in particular trees are partial orders.
In the literature, a tree viewed as a partial order is also called an order trees, whereas the graph
consisting of the edge relation of an order tree is also called a successor tree. Hence, when talking
about trees, we implicitly speak of order trees.

Note that for an automatic forest H and a node v ∈ H the subtree H(v) is FO-definable in H
(using v as a parameter). Hence, the domain of H(v) is a regular subset of the domain of H and
H(v) is effectively automatic (i.e., an automatic presentation for H(v) can be computed from an
automatic presentation for H and v) as well.

We use Tn (n ∈ N) to denote the class of all automatic presentations P such that S(P) is
an automatic tree of height at most n. Note that one can write down a sentence of FSO that
is satisfied by a directed graph G if and only if G is a forest. Hence the set of all automatic
presentations of forests is decidable by Theorem 5. The same argument shows decidability of the
set of all automatic presentations of trees, of well-founded trees6, and of trees of height at most n.
The same holds for the class of trees of finite height (a generalization of this theorem in the spirit
of Theorem 5 can be found in [28]):

Theorem 13. The set of automatic presentations of trees of finite height is decidable.

Proof. Let P be an automatic presentation of some tree and let S(P) = (V ;≤). Then the relation
≥ is rational7 and a rational transducer A for ≥ can be computed from P. The tree S(P) has
finite height if and only if this transducer is finite-valued, i.e., there exists n ∈ N such that
|{v ∈ V | u ≥ v}| ≤ n for all words u ∈ V . But this is decidable by [43]. ut
6 This latter result was first shown in [27]. Note that a tree (V ;≤) is well-founded if and only if the

undirected graph (V ;≤ ∪ ≥) does not contain an infinite clique. Hence, one can use the FSO-formula
from Example 2.

7 A relation R ⊆ Γ ∗ × Γ ∗ is rational, if it can be accepted by a rational transducer, which is a finite
automaton with transition labels from Γ ∗ × Γ ∗.

11

4.1 Upper bounds for trees with countably many infinite branches

We will show that the isomorphism problem for automatic trees with countably many infinite
branches can be reduced to true arithmetic. Towards this aim, we will parameterize these trees T
by their embeddability rank erank(T) (which is defined in Section 4.1.1) and show in Section 4.1.2
the arithmetical upper bound Π0

2k−4 for trees of embeddability rank at most k. The claim then
follows from the uniformity of our proof and the computability of erank(T).

4.1.1 The embeddability rank of a tree. Let T be a tree. Its embeddability rank or e-rank
erank(T) is defined to be

erank(T) = sup{k + 1 | k ∈ N ∪ {ω},N<k ↪→ T} ∈ N+ ∪ {ω, ω + 1} .

Then the empty tree has e-rank 1 (since only the empty tree N<0 can be embedded into it), any
finite and non-empty tree has e-rank 2, the disjoint union of all trees N<k for k ∈ N together with
a new root has e-rank ω, and N<ω has e-rank ω + 1. A nonempty tree has e-rank 2 if and only
if it does not contain an infinite antichain, i.e., if and only if it is finitely branching and has only
finitely many branching points, i.e., nodes with at least two children.

By T er
k , we denote the set of all automatic presentations of trees of e-rank at most k ∈ N+ ∪

{ω, ω + 1}. Then we have obviously

T er
1 (T er

2 (T er
3 (· · · (

⋃
i≥1

T er
i ⊆ T er

ω (T er
ω+1 (3)

(strictness in the last inclusion holds since the automatic tree N<ω has e-rank ω + 1). The aim of
this section is to prove that an automatic tree has only countably many infinite branches if and
only if its e-rank is finite. For this, we first prove that the e-rank of a tree is ω + 1 if and only
if it has uncountably many infinite branches (Lemma 14) and then, that no automatic tree has
e-rank ω (Lemma 17). This latter result implies in particular

⋃
i≥1 T er

i = T er
ω . Thus, the inclusion

chain (3) can be simplified to

T er
1 (T er

2 (T er
3 (· · · (

⋃
i≥1

T er
i = T er

ω (T er
ω+1 .

We will also show that all the classes T er
k (k ∈ N+ ∪ {ω, ω + 1}) are decidable.

Lemma 14. Let T = (L;≤) be a countable tree. The following are equivalent:

(1) erank(T) = ω + 1
(2) T has 2ℵ0 many infinite branches.
(3) T has uncountably many infinite branches.

Proof. First suppose that erank(T) = ω + 1. Then the tree N<ω embeds into T , hence T has 2ℵ0

many infinite branches which proves the implication (1)⇒(2). The implication (2)⇒(3) is trivial.
To prove the remaining implication (3)⇒(1), suppose that T has uncountably many infinite

branches. For a node x ∈ L, let br(x) denote the number of infinite branches of T (x). Let B =
{x ∈ L | br(x) > ℵ0}. We first show that B contains two incomparable nodes (w.r.t. the tree order
≤). Suppose towards a contradiction that B is linearly ordered. Let X denote the set of nodes
y ∈ L \B whose immediate predecessor (i.e., parent node) belongs to B. Since L is countable, so
is X. Hence the number of infinite branches of T equals

1 +
∑
y∈X

br(y) ≤ 1 + ℵ0 · ℵ0 = ℵ0

contradicting our assumption that T contains uncountably many many infinite branches. By in-
duction, it follows that the complete binary tree {0, 1}<ω can be embedded into T . But then we
have N<ω ↪→ {0, 1}<ω ↪→ T , which is statement (1). ut

12

By the following result, the properties from Lemma 14 are decidable.

Proposition 15. The set of automatic presentations of trees with only countably many infinite
branches is decidable.

Proof. Let T = (L;≤) be an automatic tree. Let B ⊆ 2L be the set of its infinite branches, and
let in be the set of pairs (x, a) ∈ L × B with x ∈ a. In [30], it was shown that the structure

(L ∪B;≤, B, in) is effectively ω-automatic. Hence, by [3], its (FO + ∃2ℵ0)-theory8 is decidable. In
this logic, it is expressible that the set B has size 2ℵ0 , which means that T has 2ℵ0 many infinite
branches. By Lemma 14, this is equivalent to the fact that T has uncountably many infinite
branches. ut

Our next aim is to show that there is no automatic tree of e-rank ω. As a first step, we show that
no well-founded automatic tree has e-rank ω.

Lemma 16. Let T = (L;≤) be an automatic well-founded tree. Then erank(T) is finite.

Proof. Let us fix an arbitrary length-lexicographic order ≤llex on the set of words L. We define the
Kleene-Brouwer order KB(T) = (L;v), where u < v if and only if v ≤ u or there exist w, u1, v1 ∈ L
such that u1 ≤ u, v1 ≤ v, w is the parent node of u1 and of v1 in T , and u1 <llex v1. This order is
linear. Moreover, since T is well-founded, KB(T) is an ordinal.

Note that the expansion of T by ≤llex is still an automatic structure and that v is first-order
definable in this structure. Hence KB(T) is an automatic ordinal. Thus, by [11], there exists k ∈ N
with KB(T) < ωk.

By induction on i, we now show KB(T (x)) ≥ ωi in case N<i+1 ↪→ T (x) for all nodes x. If
N<2 ↪→ T then T is infinite and we get KB(T) ≥ ω. Now assume that i ≥ 2 and that N<i+1 ↪→ T .
Then there exists an infinite antichain {a0, a1, a2, . . .} in T such that N<i ↪→ T (aj) for all j ≥ 0.
W.l.o.g. assume that a0 < a1 < a2 < · · · . By induction, we have KB(T (aj)) ≥ ωi−1 for all j ≥ 0
and therefore

KB(T) ≥
∑
j∈N

KB(T (aj)) ≥ ωi−1 · ω = ωi .

This finishes the induction.
Since KB(T) < ωk, we therefore get N<k+1 6↪→ T , i.e., the e-rank of T is at most k + 1 and

therefore finite. ut

By Lemma 16, no well-founded automatic tree has e-rank ω. To prove this fact for all automatic
trees, we will use the notion of Cantor-Bendixon-rank of a tree T = (L;≤): Let d(T) denote the
restriction of T to those nodes that belong to at least two infinite branches of T . This is again
a countable tree (possibly empty). By [27], there exists a number r ∈ N with dr(T) = dr+1(T).
The least such number is called the Cantor-Bendixon-rank. Note that it is very different from
the e-rank we defined above: the tree N<ω has Cantor-Bendixon-rank 0 and e-rank ω + 1. The
following lemma generalizes Lemma 16.

Lemma 17. Let T = (L;≤) be an automatic tree with countably many infinite branches. Then
erank(T) is finite.

Proof. The lemma is shown by induction on the Cantor-Bendixon-rank of T . If this rank equals
0, then every node of T belongs to at least two infinite branches, so T is either empty or embeds
{0, 1}<ω. Since T has only countably many infinite branches, we get T = ∅. Hence, erank(T) = 1.

Now suppose that the Cantor-Bendixon-rank of T = (L;≤) is r+ 1. We split L into three sets:
L0 contains all nodes that do not belong to any infinite branch, L1 consists of those nodes that
belong to precisely one infinite branch, and L2 is the rest (i.e., (L2;≤) ∼= d(T)). The sets L1 and L2

(and therefore L0) are effectively regular [26]. Let T0 be obtained from the forest (L0;≤) by adding

8 FO + ∃2
ℵ0

is the extension of FO by the quantifier ∃2
ℵ0

, which expresses that there are 2ℵ0 many
elements with a given property.

13

a new root. Then T0 is a well-founded automatic tree that has finite e-rank e0 by Lemma 16. Also
d(T) is an automatic tree with at most ℵ0 many infinite branches. Since its Cantor-Bendixon-rank
is properly smaller than that of T , the induction hypothesis guarantees that its e-rank e2 is finite.

We want to show that the e-rank of T is at most e2+e0+1. So let k ∈ N+ and let f : N<k ↪→ T
be an embedding. We have to prove k ≤ e2 + e0. If the image of f is contained in L2, then f is
an embedding into d(T) implying k < e2 ≤ e2 + e0. Otherwise let w2 ∈ N<k be a word of minimal
length with f(w2) /∈ L2. Then all words of length < |w2| are mapped into L2, i.e., the restriction
of f to N<|w2| is an embedding into d(L) which implies |w2| < e2. We now distinguish two cases.

(a) Suppose f(w2) ∈ L0. Then the mapping g : N<k−|w2| → T0 with g(x) = f(w2x) is an
embedding implying k − |w2| < e0 and therefore k < e2 + e0.

(b) Now suppose f(w2) ∈ L1. If |w2| = k − 1, then |w2| < e2 implies k ≤ e2 ≤ e2 + e0. So
let |w2| < k − 1. Since (L1;≤) is a disjoint union of copies of ω, there is some n ∈ N with
f(w2n) ∈ L0. As in (a), we obtain k − |w2n| < e0 which, together with |w2n| = |w2|+ 1 ≤ e2
implies k < e2 + e0. ut

Corollary 18. An automatic tree T has countably many infinite branches if and only if erank(T)
is finite.

Proof. If T has countably many infinite branches, then erank(T) is finite by Lemma 17. If erank(T)
is finite, then it is not ω+1 and so T has only countably many infinite branches by Lemma 14. ut

We finish our consideration of the e-rank proving that it can be computed. Consider the following
recursively defined formulas of FSO for k ∈ N+:

rank1(x) = (x = x)

rankk+1(x) = ∃X infinite ∀y, y′ ∈ X : x < y ∧ (y ≤ y′ → y = y′) ∧ rankk(y) .

By induction on k, one can show:

Lemma 19. Let T be some tree, v a node of T , and k ∈ N. Then T |= rankk+1(v) if and only if
N<k ↪→ T (v) (i.e., erank(T (v)) > k).

Corollary 20. For a given automatic tree, one can compute its e-rank.

Proof. Let T = (L;≤) be an automatic tree. First, we check whether erank(T) = ω + 1: By
Lemma 14, we have to check whether T contains 2ℵ0 many infinite branches, which is decidable
by Proposition 15.

Next, assume that it turns out that erank(T) < ω + 1. Thus, by Lemma 18, erank(T) is finite.
Then, for every k ∈ N, erank(T) ≤ k if and only if T |= ¬∃x : rankk+1(x). Since this is a sentence
of FSO that can be computed from k, we can check effectively, whether erank(T) ≤ k. By doing
this successively for k = 1, 2, . . ., we can compute erank(T). ut

4.1.2 The isomorphism problem. Note that the empty tree is the only tree of e-rank 1. The
following definition will be used in our proof of an upper bound for the isomorphism problem for
automatic trees of higher e-rank.

Definition 21. Let T = (L;≤) be some tree of e-rank k ≥ 2. Then the initial segment I(T) ⊆ L
consists of all nodes x ∈ L with erank(T (x)) = k.

Note that the root of T always belongs to the initial segment I(T) and that x ≤ y ∈ I(T) implies
x ∈ I(T).

Lemma 22. Let T = (V ;≤) be some tree with erank(T) = k ≥ 2. Then (I(T);≤) is a tree of
e-rank 2.

14

Proof. Since I(T) is downwards closed in T , (I(T);≤) is indeed a tree itself. Since I(T) 6= ∅ by
the above remark, we get erank(I(T);≤) ≥ 2. If erank(I(T);≤) ≥ 3, then N<2 would embed into
(I(T);≤), i.e., I(T) would contain an infinite antichain B = {bi | i ∈ N}. Since the e-rank of T (bi)
is k, we get N<k−1 ↪→ T (bi) implying N<k ↪→ T . But this contradicts erank(T) = k. ut

We now study the isomorphism problem Iso(T er
2) of automatic trees of e-rank at most 2. Recall

that a nonempty tree has e-rank 2 if and only if it is finitely branching and has only finitely many
branching points. But this is the case if and only if it is a finite tree where some of the leaves are
replaced by infinite branches. In particular, there are only finitely many isomorphisms between
two trees of e-rank 2. But these isomorphisms need not be automatic in case the two trees are
automatic (e.g., consider the automatic trees {a}<ω and {aa}<ω that are both isomorphic to ω).

Lemma 23. The following holds:

(1) Any isomorphism between two automatic trees of e-rank 2 is computable.
(2) From two automatic presentations of trees of e-rank 2, one can compute a list of all (indices

of) isomorphisms.
(3) The isomorphism problem Iso(T er

2) of automatic trees of e-rank at most 2 is decidable.

Proof. Clearly, (2) implies (3). For (1) and (2), let P1,P2 ∈ T er
2 and let Ti = S(Pi) = (Li;≤i). Let

Bi ⊆ Li be the set of nodes x ∈ Li such that there exists a leaf y or a branching point y in Ti with
x ≤i y. Let Ci ⊆ Li be the union of Bi and all children of nodes in Bi. Clearly, Ci is downwards
closed in Ti, i.e., (Ci,≤i) is a tree. Since Ti has no infinite antichains (otherwise, it would embed
N<2 and therefore have e-rank at least 3), the sets C1 and C2 are finite and computable from P1

and P2, respectively.
Any isomorphism f : T1 → T2 induces an isomorphism g : (C1;≤1) → (C2;≤2) with g(B1) =

B2. Note that the nodes from Ci \Bi are the starting points of non-branching infinite branches of
Ti. Hence, conversely, any isomorphism g : (C1;≤1)→ (C2;≤2) with g(B1) = B2 extends uniquely
to an isomorphism f : T1 → T2. Given the finite set g, the isomorphism f is even computable: for
x ∈ C1, output g(x); for x ∈ L1 \C1, compute the unique node y ∈ C1 \B1 with y <1 x, compute
the distance in T1 from y to x, and map x to the unique node of the same distance in T2 from
g(y).

A list of all indices of isomorphisms from T1 to T2 can be computed by listing all isomorphisms
between the finite trees (C1;≤1) and (C2;≤2) that map B1 to B2. By the above argument we can
compute from an isomorphism g : (C1;≤1) → (C2;≤2) with g(B1) = B2 an index for the unique
isomorphism f : T1 → T2 that extends g. This shows (2). ut

Lemma 24. From an automatic presentation P ∈ T er
2 of a tree of e-rank at most 2, one can

compute a first-order sentence ϕP such that, for all trees T , we have

T |= ϕP ⇐⇒ T ∼= S(P) .

Proof. Recall that a tree has e-rank at most 2 if and only if it is a finite tree where some of the
leaves are replaced by infinite branches. Hence any tree of e-rank at most 2 can be described in
first-order logic up to isomorphism. To find ϕP , simply list all sentences that describe trees of
e-rank at most 2 and output the first from this list that holds in S(P). ut

Lemma 25. For 3 ≤ n < ω, the isomorphism problem Iso(T er
n) for automatic trees of e-rank at

most n belongs to Π0
2n−5.

Proof. The proof proceeds by induction on n. So let n ≥ 3, and P1,P2 ∈ T er
n , Ti = S(Pi) =

(Li;≤i). Define the automatic forest H = T1] T2 and let E be the edge relation of H (it is again
automatic). Moreover, let I = I(T1)] I(T2).

For x ∈ H and a tree t, let #(x, t) ∈ N ∪ {ℵ0} denote the number of children y ∈ E(x) of x
in H such that H(y) ∼= t. Given this definition, we have T1 ∼= T2 if and only if there exists an
isomorphism f : (I(T1),≤1)→ (I(T2),≤2) such that for all x ∈ I(T1):

∀ trees t with erank(t) ≤ n− 1 : #(x, t) = #(f(x), t) .

15

If t is not automatic, then #(x, t) = #(f(x), t) = 0, i.e., we can restrict quantification to au-
tomatic trees of e-rank at most n − 1. Hence, T1 ∼= T2 if and only if one of the isomorphisms
f : (I(T1);≤1)→ (I(T2);≤2) satisfies the following:

∀x ∈ I(T1) ∀P ∈ T er
n−1 ∀` ≥ 1

(
∃≥`x ∈ E(x) \ I : S(P) ∼= H(x)

⇐⇒ ∃≥`x ∈ E(f(x)) \ I : S(P) ∼= H(x)

)
(4)

Recall that by Lemma 22 and 23, a finite list of all isomorphisms f : (I(T1),≤1)→ (I(T2),≤2)
(each of these isomorphisms is computable) can be computed. Hence, it suffices to show that the
formula (4) is a Π0

2n−5-statement. Note that we have erank(S(P)) < n and erank(H(x)) < n for
all P ∈ T er

n−1 and for all nodes x ∈ (E(x) \ I) ∪ (E(f(x)) \ I). We now distinguish the cases n = 3
and n > 3:

– Let n = 3. Then the subformula S(P) ∼= H(x) in (4) is equivalent to H(x) |= ϕP , where ϕP
is the FSO-formula from Lemma 24. By Lemma 19, the set I is FSO-definable and therefore
effectively regular. Given x ∈ I(T1), the set E(x) is also effectively regular. Since the isomor-
phism f is computable, the set E(f(x)) is effectively regular as well. Hence the equivalence
in brackets is an FSO-statement about an automatic structure and therefore decidable. Thus,
the whole formula belongs to Π0

1 = Π0
2n−5.

– Now let n > 3. Hence the subformula S(P) ∼= H(x) is by the induction hypothesis a Π0
2n−7

statement. As for the case n = 3, one can argue that the sets I, E(x), and E(f(x)) are
effectively regular. Thus, the whole formula belongs to Π0

2n−5. ut

Proposition 26. The isomorphism problem Iso(T er
ω) of automatic trees with countably many in-

finite branches is many-one reducible to FOTh(N; +,×).

Proof. Let P1, P2 ∈ T er
ω be automatic presentations of trees T1 and T2 with countably many

branches. Then there are k1, k2 ∈ N such that erank(Ti) = ki. By Corollary 20, these natural
numbers can be computed. If k1 6= k2, then the two trees are not isomorphic. Otherwise, they are
isomorphic if and only if (P1, P2) belongs to the Π2k1−4-relation Isok1 . The uniformity of the proof
of Lemma 25 implies the result. ut

Note that a tree of height n has e-rank at most n + 2. Hence, we have Tn ⊆ T er
n+2 for all n ≥ 0

(recall that Tn is the class of all automatic presentations of trees of height at most n). Lemma 25
implies that the isomorphism problem Iso(Tn) for automatic trees of height at most n belongs to
Π0

2(n+2)−5 = Π0
2n−1 for all n ≥ 1. We can improve this upper bound by two levels:

Lemma 27. The isomorphism problem for the class Tn of automatic trees of height at most n is

– decidable for n = 1 and
– in Π0

2n−3 for all n ≥ 2.

Proof. For the first part of the lemma, take P1,P2 ∈ T1. To check if S(P1) ∼= S(P2), it suffices
to compute the cardinality of the two trees, which can be done as their universes are regular
languages.

We show the second part of the lemma (i.e., where n ≥ 2) by induction on n. Consider
automatic presentations P1,P2 ∈ Tn. Define the automatic forest H = S(P1)] S(P2) and let E
be the edge relation of H (it is again automatic). Let ri be the root of Ti.

For n = 2, the trees T1 and T2 have height at most 2. Then T1 ∼= T2 if and only if

∀κ ∈ N ∪ {ℵ0} ∀` ≥ 1

(
∃≥`x ∈ E(r1) : |E(x)| = κ

⇐⇒ ∃≥`x ∈ E(r2) : |E(x)| = κ

)
.

In other words: for every κ ∈ N ∪ {ℵ0}, r1 and r2 have the same number of children with exactly
κ children. For fixed κ ∈ N ∪ {ℵ0} and ` ≥ 1, the equivalence in brackets is an FSO-sentence and
therefore decidable by Theorem 5. Thus, the whole formula is indeed a Π0

1 -sentence (note that
2n− 3 = 1 for n = 2).

16

Now assume that the statement holds for n− 1. We have T1 ∼= T2 if and only if

∀v ∈ E(r1) ∪ E(r2) ∀` ≥ 1

(
∃≥`x ∈ E(r1) : H(v) ∼= H(x)

⇐⇒ ∃≥`x ∈ E(r2) : H(v) ∼= H(x)

)
.

By quantifying over all v ∈ E(r1) ∪ E(r2), we quantify over all isomorphism types of trees that
occur as a subtree rooted at a child of r1 or r2. For each of these isomorphism types τ , we express
that r1 and r2 have the same number of children x with H(x) of type τ . Note that the automatic
trees H(v) and H(x) in the above formula have height n−1. Hence, there exists a Π0

2n−5-statement
for H(v) ∼= H(x). Thus, T1 ∼= T2 is a Π0

2n−3-statement. ut

4.2 Arithmetical lower bounds for trees of finite height

In this section, we will show that the upper bounds from Lemmas 25 and 27 are optimal. For the
minimal classes T er

3 and T2, this is an immediate consequence of Proposition 11:

Corollary 28. There exists an automatic tree TGood of height 2 and e-rank 3 such that the set
of automatic presentations P with S(P) ∼= TGood is Π0

1 -hard. Hence, the isomorphism and the
elementary equivalence problems for the classes T2 and T er

3 are Π0
1 -hard.

Proof. Let E = (L;≡) be an automatic equivalence structure without infinite equivalence classes.
Now build the tree T (E) as follows:

– The set of nodes is L ∪ {r} ∪ {ua | u ∈ L, u is ≤llex-minimal in [u]≡} where r and a are two
new letters.

– r is the root, its children are the words ending in a, and the children of ua are the words from
[u]≡.

Then it is clear that T (E) is an automatic tree of height at most 2. Since any node of the form
ua has only finitely many successors, it has e-rank 3 (since N<3 does not embed). Furthermore,
an automatic presentation for T (E) can be computed from one for E .

Recall the automatic equivalence structure EGood (which does not have infinite equivalence
classes) from Section 3. Note that E ∼= EGood if and only if T (E) ∼= T (EGood). Hence, we reduced
the set of automatic presentations of EGood to the set of automatic presentations of T (EGood). Since
the former is Π0

1 -hard by Proposition 11, so is the latter.
For m,n ∈ N, consider the following FO-formula:

ϕm,n = ∃r
(
∀x : (x, r) 6∈ E ∧ ∃≥my

(
(r, y) ∈ E ∧ ∃=nz : (y, z) ∈ E

))
.

Then, if E is an equivalence structure without infinite equivalence classes, we have T (E) ∼= T (EGood)
if and only if

∀m,n ∈ N : T (E) |= ϕm,n ⇐⇒ T (EGood) |= ϕm,n

(here, the relation symbol E from the formula ϕm,n denotes the edge relation of T (E) and T (EGood),
respectively). Hence, T (E) ∼= T (EGood) if and only if T (E) ≡ T (EGood). Thus, the set of automatic
presentations of trees elementary equivalent to T (EGood) is Π0

1 -hard as well. ut

In the rest of this section we will prove a generalization of Corollary 28: The isomorphism problem
for the class of automatic trees of height at most n ≥ 2 is Π0

2n−3-hard. Note that with Lemma 27
it follows that this problem is Π0

2n−3-complete. To prove Π0
2n−3-hardness, we provide a generic

reduction from an arbitrary Π0
2n−3-predicate Pn(x0) to the isomorphism problem for Tn.

In the following, all quantifiers with unspecified range run over N+. Let Pn(x0) be a Π0
2n−3-

predicate. By Proposition 3, Pn(x0) is of the form

∃∞x1 · · · ∃∞xn−2∀y : R(x0, x1, . . . , xn−2, y) ,

17

where R is computable. For 2 ≤ i ≤ n let

Pi(x0, x1, . . . , xn−i) = ∃∞xn−i+1 · · · ∃∞xn−2∀y : R(x0, x1, . . . , xn−2, y) .

Hence, we have

P2(x0, x1, . . . , xn−2) = ∀y : R(x0, x1, . . . , xn−2, y) and

Pi+1(x0, x1, . . . , xn−i−1) = ∃∞xn−i : Pi(x0, x1, . . . , xn−i−1, xn−i) .

Let us fix these predicates Pi for the rest of Section 4. W.l.o.g. we can assume

∀x ∈ Nn−i+ ∃xn−i ∈ N+ : Pi(x, xn−i) . (5)

To ensure this, we can replace the predicate Pi(x, xn−i) by Pi(x, xn−i)∨(xn−i = 1).9 By induction
on 2 ≤ i ≤ n, we will construct the following trees of height i and e-rank i+ 1:

– test trees T ic ∈ Ti for c ∈ Nn−i+1
+ (which depend on Pi) and

– trees U iκ ∈ Ti for κ ∈ N+ ∪ {ℵ0}.

The crucial properties of these trees are the following, where c ∈ Nn−i+1
+ :

(P1) Pi(c) holds if and only if T ic
∼= U iℵ0 .

(P2) Pi(c) does not hold if and only if T ic
∼= U im for some m ∈ N+.

For 2 ≤ i < n and c ∈ Nn−i+ , the idea is that T i+1
c
∼= U i+1

m if and only if

m = card({xn−i | Pi(c, xn−i) holds }) ∈ N+ ∪ {ℵ0} .

Note that the case card({xn−i | Pi(c, xn−i) holds }) = 0 is excluded by our assumption (5).
Property (P1) is certainly sufficient for proving Π0

2n−3-hardness (with i = n), the second
property (P2) and therefore the trees U im for m < ℵ0 are used in the inductive step.

In the following section, we will describe the trees T ic and U iκ of height i and prove (P1) and
(P2). The subsequent section is then devoted to prove the effective automaticity of these trees.

4.2.1 Construction of trees. We start with a few definitions concerning forests: Let H1 and
H2 be two forests. For κ ∈ N+∪{ℵ0}, the forest κ ·H1 is the disjoint union of κ many copies of H1.
Formally, if H1 = (V ;≤), then κ ·H1 = (V × {x | 0 ≤ x < κ};≤′) with (v, i) ≤′ (w, j) if and only
if v ≤ w and i = j. We write H1 ∼ H2 for ℵ0 ·H1

∼= ℵ0 ·H2. Thus, for countable forests H1 and
H2, we have H1 ∼ H2 if and only if they are formed, up to isomorphism, by the same set of trees
(i.e., any tree is isomorphic to some connected component of H1 if and only if it is isomorphic to
some connected component of H2). If H is a forest, then we denote with 〈H〉 the tree that results
from adding a new least element to H. The construction in the following two Sections 4.2.1.1 and
4.2.1.2 is similar to a construction from [17] for levels of the hyperarithmetical hierarchy.

4.2.1.1 Induction base: construction of T 2
c and U2

κ. Note that P2 is an (n− 1)-ary Π0
1 -predicate.

By Matiyasevich’s theorem, we find two non-zero polynomials p1(x1, . . . , x`), p2(x1, . . . , x`) ∈ N[x],
` > n− 1, such that for any c ∈ Nn−1+ :

P2(c) holds ⇐⇒ ∀x ∈ N`−n+1
+ : p1(c, x) 6= p2(c, x) . (6)

For two numbers k,m ∈ N+, let T [k,m] denote the tree of height 1 with exactly C(k,m) leaves,
where C is the injective polynomial function from (2). Then define the following forests:

H2 =
⊎
{T [k,m] | k,m ∈ N+, k 6= m} ,

H2
c = H2]

⊎
{T [p1(c, x) + x`+1, p2(c, x) + x`+1] | x ∈ N`−n+1

+ , x`+1 ∈ N+} and

J2
κ = H2]

⊎
{T [x, x] | x ∈ N+, x > κ} for κ ∈ N+ ∪ {ℵ0} .

9 The formulas ∃∞x : ϕ(x) and ∃∞x : (ϕ(x) ∨ (x = 1)) are equivalent. Moreover if x and y are different
variables, then the formulas (x = 1) ∨ (∃∞y : ϕ(x, y)) and ∃∞y : (ϕ(x, y) ∨ (x = 1)) are equivalent.

18

The tree T 2
c

∀x ∈ N`−n+1
+

∀x`+1 ∈ N+ ∀k,m
k 6= m

T [p1(c, x) + x`+1,
p2(c, x) + x`+1]

T [k,m]

The tree U2
κ

∀x > κ ∀k,m
k 6= m

T [x, x] T [k,m]

Fig. 2. The tree T 2
c and U2

κ

Note that J2
ℵ0 = H2. Moreover, the forests J2

κ (κ ∈ N+ ∪ {ℵ0}) are pairwise non-isomorphic, since
C is injective.

The trees T 2
c and U2

κ , resp., are obtained from H2
c and J2

κ, resp., by taking countably many
copies and adding a root (see Figure 2):

T 2
c = 〈ℵ0 ·H2

c 〉 and U2
κ = 〈ℵ0 · J2

κ〉 . (7)

The following lemma (stating (P1) for the Π0
1 -predicate P2, i.e., for i = 2) is proved in a similar

way as Theorem 12.

Lemma 29. For any c ∈ Nn−1+ , we have

P2(c) holds ⇐⇒ H2
c ∼ J2

ℵ0 ⇐⇒ T 2
c
∼= U2

ℵ0 .

Proof. By (7), it suffices to show the first equivalence. First, assume that P2(c) holds. We have to
prove that the forests H2

c and J2
ℵ0 = H2 contain the same trees (up to isomorphism). Clearly, every

tree from H2 is contained in H2
c . For the other direction, let x ∈ N`−n+1

+ and x`+1 ∈ N+. Then the
tree T [p1(c, x) + x`+1, p2(c, x) + x`+1] occurs in H2

c . Since P2(c) holds, we have p1(c, x) 6= p2(c, x)
by (6) and therefore p1(c, x) + x`+1 6= p2(c, x) + x`+1. Hence this tree also occurs in H2.

Conversely suppose H2
c ∼ H2 and let x ∈ N`−n+1

+ . Then the tree T [p1(c, x) + 1, p2(c, x) + 1]
occurs in H2

c and therefore in H2. Hence p1(c, x) 6= p2(c, x). Since x was chosen arbitrarily, this
implies P2(c). ut

Lemma 30. For every c ∈ Nn−1+ there exists κ ∈ N+ ∪ {ℵ0} such that T 2
c
∼= U2

κ.

Proof. It suffices to show H2
c ∼ J2

κ for some κ ∈ N+ ∪ {ℵ0}. This holds, because if H2
c contains a

tree of the form T [m,m] for some m (we must have m ≥ 2), then it contains all trees T [x, x] for
x ≥ m. ut

Lemma 29 and 30 imply the following lemma, which states (P2) for the Π0
1 -predicate P2, i.e., for

i = 2:

Lemma 31. For any c ∈ Nn−1+ , we have:

P2(c) does not hold ⇐⇒ ∃m ∈ N+ : T 2
c
∼= U2

m .

This finishes the construction of the trees T 2
c and U2

κ for κ ∈ N+ ∪ {ℵ0}, and the verification of
properties (P1) and (P2).

4.2.1.2 Induction step: construction of T i+1
c and U i+1

κ . Note that Pi+1 is a (n− i)-ary predicate
and Pi a (n− i+ 1)-ary one.

We now apply the induction hypothesis. For any c ∈ Nn−i+ , x ∈ N+, and κ ∈ N+ ∪ {ℵ0}, let
T icx and U iκ be trees of height i such that:

19

The tree T i+1
c

∀m ∈ N+

ℵ0 many
∀x ∈ N+

Ui
m T i

cx

The tree U i+1
κ

∀m ∈ N+

ℵ0 many
κ many

Ui
m Ui

ℵ0

Fig. 3. The trees T i+1
c and U i+1

κ

– Pi(c, x) holds if and only if T icx
∼= U iℵ0 .

– Pi(c, x) does not hold if and only if T icx
∼= U im for some m ∈ N+.

Let us define the forest
Hi+1 =

⊎
{ℵ0 · U im | m ∈ N+} .

The trees T i+1
c and U i+1

κ (κ ∈ N+ ∪ {ℵ0}) are defined as follows:

T i+1
c = 〈Hi+1]

⊎
{T icx | x ∈ N+}〉 and U i+1

κ = 〈Hi+1] κ · U iℵ0〉 . (8)

Note that the height of any of these trees is one more than the height of the forests defining them
and therefore at most i+ 1.

The following lemma shows (P1) for the Π0
2i−1-predicate Pi+1.

Lemma 32. For any c ∈ Nn−i+ , we have

Pi+1(c) holds ⇐⇒ T i+1
c
∼= U i+1

ℵ0 .

Proof. We have T i+1
c
∼= U i+1

ℵ0 if and only if T i+1
c contains infinitely many copies of the tree U iℵ0 .

Since U iℵ0 6∼= U im for all m ∈ N+, this is equivalent to the existence of infinitely many x ∈ N+ with

T icx
∼= U iℵ0 . By induction, this holds, if and only if there exist infinitely many x ∈ N+ with Pi(c, x),

i.e., if and only if Pi+1(c) holds. ut

The following lemma states (P2) for the Π0
2i−1-predicate Pi+1:

Lemma 33. For any c ∈ Nk+, we have

Pi+1(c) does not hold ⇐⇒ ∃m ∈ N+ : T i+1
c
∼= U i+1

m .

Proof. Properties (P1) and (P2) of the trees T icx (x ∈ N+) imply that every tree T icx (x ∈ N+) is
isomorphic to one of the trees U iκ for some κ ∈ N+ ∪ {ℵ0}. This implies that for every c ∈ Nk+,

there exists κ ∈ N+ ∪ {ℵ0} such that T i+1
c
∼= U i+1

κ . With Lemma 32 we get

Pi+1(c) does not hold ⇐⇒ T i+1
c 6∼= U i+1

ℵ0 ⇐⇒ ∃m ∈ N+ : T i+1
c
∼= U i+1

m .

ut

In summary, we obtained the following:

Proposition 34. For the Π0
2n−3-predicate Pn(x0) we have for all c ∈ N+:

Pn(c) holds ⇐⇒ Tnc
∼= Unℵ0 .

To infer the Π0
2n−3-hardness of the isomorphism problems for Tn and T er

n+1 from this proposition,
it remains to be shown that the trees Tnc and Unℵ0 are effectively automatic – this is the topic of
the next section.

20

4.2.2 Automaticity. Automatic presentations of the trees T ix and U im for m ∈ N+ ∪ {ℵ0}
will be constructed inductively. Note that the construction of T i+1

x involves all the trees T ix x for
x ∈ N+. Hence we need one single automatic presentation for the forest consisting of all these
trees. Therefore, we will deal with forests.

Let us take symbols a, #, and β; later we need further symbols b, c, d, and $. For n1, . . . , nj ∈
N+ and a word w ∈ an1#+ · · · anj−1#+anj we define the tuple t(w) = (n1, . . . , nj). For 2 ≤ i ≤ n
let Ri be the regular language

Ri = a+(#a+)n−i.

Technically, this section proves by induction over i the following statement:

Proposition 35. For 2 ≤ i ≤ n, one can compute an automatic forest Fi with the following
properties:

– the set of roots of Fi is (Ri ∪ β∗)#.
– Fi(v#) ∼= T it(v) for all v ∈ Ri.
– Fi(βm#) ∼= U im for all m ∈ N+.
– Fi(#) ∼= U iℵ0 .

This will give the desired result since Tnx is then isomorphic to the connected component of Fn that
contains the word ax# (and similarly for Unκ). Note that this connected component is automatic
by Theorem 5 since it consists of all nodes above ax#. Moreover, an automatic presentation for
the connected component containing ax# can be computed from x.

4.2.2.1 Induction base: the automatic forest F2. The forest F2 will be formed by the language
and certain accepting runs of a finite automaton A; this fact will be used later in Section 4.4.
More precisely, let A be a finite automaton. We define the forest forest(A) as follows: Clearly,
(L(A);�L(A)) (recall that �L(A) denotes the prefix relation restricted to L(A)) is a forest. The
set of all leaves of the forest (L(A);�) is again a regular language; let us denote this language
with leaves(A). Then, we define the forest

forest(A) = (L(A)] Run(A, leaves(A));≤),

where
≤ = �L(A) ∪ {(u, r) | u ∈ L(A), r ∈ Run(A, leaves(A)), u � lab(r)}.

Clearly, forest(A) is automatic. Intuitively, we take the forest resulting from the prefix order on the
regular language L(A) and append to each leaf v of (L(A);�L(A)) all runs of A on v as children.
All these children are leaves in the forest forest(A). In case forest(A) is a tree, we denote this tree
with tree(A).

From now on, we use the notations from Section 4.2.1.1. The following construction is visualized
in Figure 4–6.

Besides the symbols a, #, and β, we need the auxiliary symbols b, c, and d. The symbol #
has two purposes in the following construction: (i) it separates consecutive blocks of a’s, b’s, and
c’s and (ii) it ensures that some subtrees appears ℵ0 many times. Let us start with the regular
language

L2 = R2

(
{ε} ∪ (#+a+)`−n+2 ∪ #+b+#b+ ∪ #+c+#c+

)
∪

β∗
(
{ε} ∪ #+b+#b+ ∪ #+c+#c+ ∪ β#+d+

)
#

Using Lemma 9, we can construct finite automata A1, . . . ,A4 with the following properties:

– L(A1) = R2(#+a+)`−n+2# and on every word v# ∈ L(A1) the automaton A1 has exactly
C(p1(x) + x`+1, p2(x) + x`+1) many accepting runs, where (x, x`+1) = t(v),

21

v#

vw# v#mbx#by# v#mcx#cy#

∀w ∈ (#+a+)`−n+2

∀m,x, y
∀m,x, y

. . .︸ ︷︷ ︸
C(p1(x)+x`+1,p2(x)+x`+1) many

. . .︸ ︷︷ ︸
C(x,x+y) many

. . .︸ ︷︷ ︸
C(x+y,x) many

Fig. 4. Automatic presentation of T 2
t(v) for v ∈ R2: Let t(vw) = (x, x`+1).

βm#

βm#nbx#by# βm#ncx#cy# βm#ndx#

∀x, n, y
∀x, n, y

∀n, x

. . .︸ ︷︷ ︸
C(x,x+y) many

. . .︸ ︷︷ ︸
C(x+y,x), many

. . .︸ ︷︷ ︸
C(m+x,m+x) many

Fig. 5. Automatic presentation of U2
m (m ∈ N+)

– L(A2) = (R2 ∪ β∗)#+b+#b+# and on every word from (R2 ∪ β∗)#+bx#by#, the automaton
A2 has exactly C(x, x+ y) many accepting runs.

– L(A3) = (R2 ∪ β∗)#+c+#c+# and on every word from (R2 ∪ β∗)#+cx#cy#, the automaton
A3 has exactly C(x+ y, x) many accepting runs.

– L(A4) = β+#+d+# and on every word from βm#+dx#, the automaton A4 has exactly
C(m+ x,m+ x) many accepting runs.

Note that L(Ai) ⊆ L2 for 1 ≤ i ≤ 4 and that the languages L(A1), . . . , L(A4) are pairwise
disjoint. Moreover, their union is exactly the set of leaves of the forest (L2;�). From the automata
A1, . . . ,A4 we can easily construct an automaton A such that L(A) = L2 and for all 1 ≤ i ≤ 4
and w ∈ L(Ai), we have |Run(A, w)| = |Run(Ai, w)|. Then we set

F2 = forest(A).

We claim that with this definition of F2 all properties of Proposition 35 hold for i = 2. Clearly,
the set of roots of F2 is indeed (R2 ∪ β∗)#. Here, the final # in all words from L2 is important
in order to make the set (R2 ∪ β∗)# prefix-free.

Now consider a root v# with v ∈ R2. The set of children of v# is the prefix-free set

v
(
(#+a+)`−n+2 ∪ #+b+#b+ ∪ #+c+#c+

)
#.

The automatonA1 ensures that the subtree rooted in a word vw# (w ∈ (#+a+)`−n+2) is T [p1(x)+
x`+1, p2(x) + x`+1], where t(vw) = (x, x`+1). Moreover the automaton A2 (resp. A3) ensures that
the subtree rooted in a word v#mbx#by# (resp. v#mcx#cy#) is T [x, x + y] (resp. T [x + y, x]).
Finally, since each of these subtrees appears ℵ0 many times (due to the factors #+), the subtree
rooted in v# is indeed isomorphic to T 2

t(v).

A similar argument shows that the subtree rooted in a root βm# (resp., #) is U2
m (resp., U2

ℵ0)
for all m ∈ N+. For U2

m note that the subtree rooted in a child βm#ndx# is T [m+ x,m+ x].

22

#

#mbx#by# #mcx#cy#

∀m,x, y ∀m,x, y

. . .︸ ︷︷ ︸
C(x,x+y) many

. . .︸ ︷︷ ︸
C(x+y,x) many

Fig. 6. Automatic presentation of U2
ℵ0

4.2.2.2 Induction step: the automatic forest Fi+1. Suppose Fi = (Vi;≤i) is as described in
Proposition 35. The following construction is visualized in Figure 7–9. We note that the forest
Fi+1 (for i ≥ 2) will not be realized as forest(A) for a finite automaton A.

For a regular subset K ⊆ Vi (K will be either Ri#, β+#, or {#} below) let us write Fi(K)
for the set of all nodes v ∈ Vi such that u ≤i v for some u ∈ K. Since Fi has bounded height, the
set Fi(K) is regular if K is regular. Take a new symbol $ and let the regular language

Vi+1 = (Ri+1 ∪ β∗)# ∪ Fi(Ri#) ∪ (Ri+1 ∪ β∗)#+Fi(β+#) ∪ (β∗ ∪#)$+Fi(#).

be the universe of the forest Fi+1. The partial order ≤i+1 of Fi+1 is the reflexive and transitive
closure of the following relation v:

– u v v for all u ∈ (Ri+1 ∪ β∗)# and v ∈ Vi+1 with u � v.

– u v v for all u, v ∈ Fi(Ri#) with u ≤i v.

– wu v wv for all w ∈ (Ri+1 ∪ β∗)#+, and u, v ∈ Fi(β+#) with u ≤i v.

– wu v wv for all w ∈ (β∗ ∪#)$+ and u, v ∈ Fi(#) with u ≤i v.

– βm# v βm−x$x# for all m ∈ N+ and 1 ≤ x ≤ m (these edges are the reason for Fi+1 not be
being of the form forest(A) for a finite automaton A).

We claim that with this definition of Fi+1 all properties of Proposition 35 hold.
First of all, the above definition of v implies that Fi+1 is indeed an automatic forest. Moreover,

the definition of v implies that the set of roots of Fi+1 is (Ri+1∪β∗)#. Now consider v# ∈ Ri+1#.
The set of children of v# is v#a+# ∪ v#+β+#. Note that v#a+# ⊆ Ri#. By induction, the
subtree rooted in the child v#ax# is T it(v)x. Moreover, by induction, the subtree rooted in the

child v#xβm# is U im. Hence, the tree rooted in v# ∈ Ri+1# consists of the root v# together with
all trees T it(v)x (for x ∈ N+) and ℵ0 many copies of U im (for all m ∈ N+). Hence, the tree rooted

in v# ∈ Ri+1# is indeed T i+1
t(v) .

The children of the root βm# (m ∈ N+) are the nodes βm−x$x# (for all 1 ≤ x ≤ m)
and βm#xβk# (for all k, x ∈ N+). Moreover, the subtree rooted in the child βm−x$x# (resp.,
βm#xβk#) is the tree U iℵ0 (resp. U ik). It follows that the tree rooted in βm# is indeed U i+1

m .

Finally, similar arguments show that U i+1
ℵ0 is the tree rooted in #.

Theorem 36. The following holds:

(a) For any n ≥ 2, the isomorphism problem Iso(Tn) for automatic trees of height at most n is
Π0

2n−3-complete.
(b) For any n ≥ 3, the isomorphism problem Iso(T er

n) for automatic trees of e-rank at most n is
Π0

2n−5-complete.

23

v#

v#ax# v#xβm#

∀x ∀m,x

T it(v)x v#xU im

Fig. 7. Automatic presentation of T i+1
t(v) for v ∈ Ri+1

βm#

βm−x$x# βm#xβk#

∀1 ≤ x ≤ m ∀k, x

βm−x$xU iℵ0 βm#xU ik

Fig. 8. Automatic presentation of U i+1
m (m ∈ N+)

(c) The isomorphism problems for the following classes of automatic structures are recursively
equivalent to FOTh(N; +,×): (i) automatic trees of finite height, (ii) well-founded automatic
trees, (iii) automatic trees with only countably many infinite branches.

Proof. We first prove (a). Containment in Π0
2n−3 was shown in Lemma 27. For the hardness, let

Pn ⊆ N+ be any Π0
2n−3-predicate and let x ∈ N+. Then, as above, we construct the automatic for-

est Fn of height n. The trees Tnx and Unℵ0 are first-order definable in Fn since they are (isomorphic
to) the trees rooted at ax# and #, resp. Hence these two trees are automatic. By Proposition 34,
they are isomorphic if and only if Pn(c) holds.

The upper bound in (b) is stated in Lemma 25. The lower bound follows as in (a) from the
fact that erank(Tnc) = erank(Unℵ0) = n+ 1 (one can embed into these trees N<n but not N<n+1).

The upper bound in (c) for the largest class (automatic trees with only countably many infinite
branches) is stated in Proposition 26. The lower bound for the smallest class (automatic trees of
finite height) follows from our proof for (a), since the construction is uniform in the predicate P .

ut

Concerning the lower bound, we actually proved a slightly stronger statement: For every n ≥ 2,
there exists a fixed Π0

2n−3-complete set P2n−3 ⊆ N+. If we apply our construction, we obtain
a fixed automatic forest Fn of height n with the following properties: It is Π0

2n−3-complete to
determine, whether for a given x ∈ N+, the tree rooted at ax# in Fn is isomorphic to the tree
rooted at # in Fn.

4.3 Computable trees of finite height

In this section, we briefly discuss the isomorphism problem for computable trees of finite height. In
an automatic tree, one can compute the root by Theorem 5 which is not the case for computable
trees. A similar remark concerns the edge relation E: in an automatic tree, it is FA recognizable, but
in a computable tree, it need not be computable. But these two concepts (root and edge relation)
are foundational for our proof of the upper bounds of the isomorphism problem. Therefore, here,

24

#

#$x# #xβm#

∀x ∀m,x

#$xU iℵ0 #xU im

Fig. 9. Automatic presentation of U i+1
ℵ0

we consider rooted successor trees, i.e., structures of the form (V ;E, r) where E is the edge relation
of some tree (V ;≤) with root r.

Theorem 37. For every n ≥ 1, the isomorphism problem for computable rooted successor trees
of height at most n is Π0

2n-complete.

Proof. For the upper bound, let us first assume that n = 1. Two computable trees T1 and T2 of
height 1 are isomorphic if and only if: for every k ≥ 0, there exist at least k nodes in T1 if and
only if there exist at least k nodes in T2. This is a Π0

2 -statement. For the inductive step, we can
use arguments similar to those from the proof of Lemma 27.

For the lower bound, we first note that the isomorphism problem for computable rooted trees
of height 1 is Π0

2 -complete. The problem whether a given recursively enumerable set is infinite is
Π0

2 -complete [35]. For a given deterministic Turing-machine M , we construct a computable tree
T (M) of height 1 as follows: the set of leaves of T (M) is the set of all accepting computations
of M . We add a root to the tree and connect the root to all leaves. If L(M) is infinite, then
T (M) is isomorphic to the height-1 tree with infinitely many leaves. If L(M) is finite, then there
exists m ∈ N such that T (M) is isomorphic to the height-1 tree with m leaves. We can use this
construction as the base case for our construction in Section 4.2.1.2. This yields the lower bound
for all n ≥ 1. ut

Remark 38. Among other result, in [7] it is shown that the isomorphism problem of computable
equivalence structures is Π0

4 -complete. This result also follows from Theorem 37. This is because
given any computable equivalence structure E = (D;≈) one may effectively construct a com-
putable rooted successor tree TE = (V ;E, r) of height 2 such that any two computable equivalence
structures E1, E2 are isomorphic if and only if TE1

∼= TE2 : The set V = {r} ∪ D ∪ E where E is
the set of nodes on level 1 and two nodes u, v in D have the same parent if and only if u ≈ v.
The converse construction transforms any computable rooted successor tree T of height 2 to a
computable equivalence structure E such that TE ∼= T .

4.4 Σ1
1-hardness for trees

In this section, we prove that the isomorphism problem for the class of all automatic trees is hard
(and hence complete) for Σ1

1 . In [26], the authors prove Σ1
1 -completeness for the isomorphism

problem for automatic graphs. Their proof, as pointed out in [38], can be easily adapted to show
the same lower bound for automatic successor trees. So, it is important to note that we work (as
in all of this paper) with order trees, i.e., trees viewed as partial orders. We will prove Σ1

1 -hardness
for trees of the form tree(A) for a finite automaton A; see Section 4.2.2 (this fact will be needed
in Section 4.5).

For a word u = a0a1 · · · an ∈ {0, 1}∗1 with ai ∈ {0, 1}, let num(u) =
∑n
i=0 2iai, i.e., u is the

binary expansion of num(u) (least significant bit first).

25

q0

q1

q2 q3

0, 1

0, 1

1 0

0, 10, 1

1

1

0

1

Fig. 10. The automaton Anum

Lemma 39. There exists an automaton Anum on the alphabet {0, 1} with L(Anum) = {0, 1}∗1 such
that num(w) = |Run(Anum, w)| for all w ∈ {0, 1}∗1.

Proof. Let Anum be the automaton from Figure 10. Note that for each 1, the automaton can move
from q0 and q1 resp. to the final state q2, then the rest of the input is processed deterministically.
If Anum moves at input position k to the final state q2, then there are 2k−1 possible runs until
reaching input position k. Hence, if p1 < p2 < · · · < pn are the 1-positions in an input w ∈ {0, 1}∗1
(p1 ≥ 1, pn = |w|) then Anum has

∑n
i=1 2pi−1 = num(w) accepting runs on w. ut

The following lemma is analogous to Lemma 9. The only difference is that the first argument to
the polynomial p(x, y) is encoded in binary. To prove the lemma, we use the same construction as
for Lemma 9 except the induction base p(x) = x is handled by Lemma 39.

Lemma 40. There exists an algorithm that, given a non-zero polynomial p(x, y) ∈ N[x, y] in k+1
variables, constructs an automaton A[p(x, y)] on the alphabet {0, 1, a,#} with L(A[p(x, y)]) =
{0, 1}∗1(#+a+)k# such that

p(num(w), n1, . . . , nk) = |Run(A[p(x, y)], w#m1an1 · · ·#mkank#)|

for all w ∈ {0, 1}∗1 and m1, n1, . . . ,mk, nk ∈ N+.

The following lemma will be only used for the case that the set A is decidable. We state the lemma
for arbitrary Σ0

2 -sets, since the proof is exactly the same.

Lemma 41. There exist two trees U0 and U1 of height 3 (U0 6∼= U1) with the following property:
For a given index of a Σ0

2 -set A ⊆ {0, 1}∗1 one can effectively construct a finite automaton B such
that F = forest(B) is a forest of height 3 with the following properties:

– The set of roots of F is {0, 1}∗1#.
– For every w ∈ {0, 1}∗1, F(w#) ∼= U1 if w ∈ A, and F(w#) ∼= U0 if w 6∈ A.

Proof. Recall the definition of the trees U2
κ (κ ∈ N+ ∪ {ℵ0}) from Section 4.2.1.1. We define the

trees U0 and U1 as follows:

U0 =

〈⊎
{ℵ0 · U2

m | m ∈ N+}
〉

U1 =

〈⊎
{ℵ0 · U2

κ | κ ∈ N+ ∪ {ℵ0}}
〉

Fix a Σ0
2 -set A ⊆ {0, 1}∗1. Using the effectiveness of Matiyasevich’s theorem, we can compute

from an index of A two polynomials p1(x, y, z) and p2(x, y, z) with coefficients in N such that

A = {w ∈ {0, 1}∗1 | ∃y ∈ N+ ∀z ∈ N`+ : p1(num(w), y, z) 6= p2(num(w), y, z)} .

26

We first repeat the construction from Section 4.2.2.1 with Lemma 40 instead of Lemma 9, i.e.,
the first argument to the polynomials p1 and p2 is binary encoded. We obtain a finite automaton
B′ such that the forest F ′ = forest(B′) satisfies the following properties, which are analogous to
Proposition 35:

– The set of roots of F ′ is {0, 1}∗1#+a+# ∪ α+# (we do not need the root # of F2).
– F ′(w#nay#) ∼= T 2

num(w) y for all w ∈ {0, 1}∗1 and n, y ∈ N+.

– F ′(αm#) ∼= U2
m for all m ∈ N+.

Together with Lemmas 29 and 31 we get the following properties for all w ∈ {0, 1}∗1 and n, y ∈ N+:

∀z ∈ N`+ : p1(num(w), y, z) 6= p2(num(w), y, z) holds ⇐⇒ F ′(w#nay#) ∼= U2
ℵ0

∃z ∈ N`+ : p1(num(w), y, z) = p2(num(w), y, z) holds ⇐⇒ ∃m ∈ N+ : F ′(w#nay#) ∼= U2
m

The domain of the final forest F is the set

V = {0, 1}∗1# ∪ F ′({0, 1}∗1#+a+#) ∪ {0, 1}∗1#+F ′(α+#).

Let ≤′ be the order relation of F ′. The order relation ≤ of F is the reflexive and transitive closure
of the relation

�V ∪ {(u, v) | u, v ∈ F ′({0, 1}∗1#+a+#), u ≤′ v} ∪
{(wu,wv) | w ∈ {0, 1}∗1#+, u, v ∈ F ′(α+#), u ≤′ v}.

Hence, for all w ∈ {0, 1}∗1, we have

F(w#) ∼=
〈⊎

{F ′(w#nay#) | n, y ∈ N+}]
⊎
{ℵ0 · U2

m | m ∈ N+}
〉
.

From the definition of U0 and U1 and the properties of the forest F ′ it follows that for every
w ∈ {0, 1}∗1, F(w#) ∼= U1 if w ∈ A, and F(w#) ∼= U0 if w 6∈ A. Moreover, the construction
of F from F ′ = forest(B′) implies that we can construct from B′ a finite automaton B with
F = forest(B). ut

Remark 42. It is possible to generalize the proof of Lemma 41 to arbitrary levels of the arithmetical
hierarchy. Hence, for every n ≥ 2, there exist trees U0, U1 of height n+ 1 such that from a given
index of a Σ0

n-set A ⊆ {0, 1}∗1 one can compute a finite automaton B such that F = forest(B) is
a forest of height n+ 1 with the following properties:

– The set of roots of F is {0, 1}∗1#.
– For every w ∈ {0, 1}∗1#, F(w) ∼= U1 if w ∈ A, and F(w) ∼= U0 if w 6∈ A.

This yields an alternative proof for the lower bound in Theorem 36(c). But only the (in fact more
complicated) construction from Sections 4.2.1 and 4.2.2 yields the exact lower bounds stated in
Theorem 36(a).

Also notice that the forests constructed in Sections 4.2.1 are not of the form forest(A) for a
finite automaton A. This is due to the children αm−xex$+# for a root αm# in U im, see Figure 8.

In [26], the authors prove Σ1
1 -completeness for the isomorphism problem for automatic graphs.

Their proof, as pointed out in [38], can be easily adapted to show the same lower bound for (non-
well-founded) automatic successor trees. So, it is important to note that the following theorem
refers to order trees, i.e., trees viewed as partial orders.

Proposition 43. There exists an order tree TGood such that the set of all finite automata A with
tree(A) ∼= T is Σ1

1 -complete.

27

Proof. The proof combines the ideas from [26] and Lemma 41. In [26], the authors prove Σ1
1 -

completeness for the isomorphism problem for automatic graphs by a reduction from the isomor-
phism problem for computable trees. For the latter problem, a computable tree is a prefix-closed
and decidable subset T ⊆ (2N)∗ together with the prefix order �. Such a tree is represented by an
index for T . In the following, we construct for any computable tree T ⊆ N∗ an automatic order
tree aut(T) such that for two computable trees T1, T2, we have (T1;�) ∼= (T2;�) (where � is the
prefix relation) if and only if aut(T1) ∼= aut(T2).

We start with the automatic presentation ({1} ∪ 1{0, 1}∗1;�) of the tree (N∗;�). An iso-
morphism between these two trees is given by the computable mapping f with f(n1n2 · · ·nk) =
10n110n21 · · · 0nk1 (k ≥ 0).

Let us fix a computable tree T ⊆ (2N)∗. Since T and f are computable, the image A = f(T) ⊆
{1} ∪ 1{0, 1}∗1 ⊆ {0, 1}∗1 is computable and hence a Σ0

2 -set. An index for A can be computed
from an index for T . Now we apply Lemma 41 to the set A. We obtain a finite automaton A′
(which can be constructed from an index for A) such that F ′ = forest(A′) is a forest of height 3
with the following properties:

– The set of roots of F ′ is {0, 1}∗1#.
– For every w ∈ {0, 1}∗1, the subtree rooted in w# is isomorphic to U1 (resp. U0) if w ∈ A (resp.
w 6∈ A).

In particular, any subtree rooted at w /∈ ({1} ∪ 1{0, 1}∗1)# is isomorphic to U0. Let F ′′ be the
subforest consisting of all trees of F ′ rooted at some word from ({1} ∪ 1{0, 1}∗1)#. Since this
language is regular, we can easily construct a finite automaton A′′ such that F ′′ = forest(A′′).

Our automatic tree aut(T) results from the automatic forest F ′′ by adding to the domain all
nodes from {1} ∪ 1{0, 1}∗1 together with the prefix relation. Intuitively, the tree aut(T) results
from the tree (N∗;�) by appending to each node x ∈ N∗ a copy of the tree U1 (resp. U0) if x ∈ T
(resp. x 6∈ T). For every node x ∈ N∗, we have x.(2n+ 1) ∈ N∗ \ T , so to infinitely many sibblings
of every nonempty node, we append the tree U0. From these observations and U0 6∼= U1, it follows
that (T1;�) ∼= (T2;�) ⇔ aut(T1) ∼= aut(T2) for all computable trees T1, T2 ⊆ (2N)∗. Moreover,
aut(T) is of the form tree(A) for a finite automaton A and A can be constructed effectively from
an index for the computable tree T .

The statement of the theorem follows from the fact that there exists a computable tree T whose
computable copies form a Σ1

1 -complete set [16]. Our previous construction transforms this tree T
into a fixed tree aut(T), whose set of automatic presentations is Σ1

1 -complete. ut

As an immediate consequence, we obtain

Theorem 44. The isomorphism problem for automatic order trees is Σ1
1 -complete.

Recall that the Π0
1 -hardness of the isomorphism problem of automatic equivalence structures could

be shown within a single automatic equivalence structure. Here, we obtain a similar result: Let
Γ = {0, 1} ∪ ({0, 1} × {0, 1}) and L = {0, 1}∗ ∪ ({0, 1} × {0, 1})∗. On this set, we define a partial
order v as the reflexive and transitive closure of the following relation:

– u v u′ if and only if u is a prefix of u′

– u v u′ ⊗ v′ if and only if u is a prefix of u′

where u, u′, v′ ∈ {0, 1}∗ with |u′| = |v′|. Then (L;v) is a tree, intuitively, it is obtained from the
complete binary tree ({0, 1}∗;�) by attaching 2|u| new leaves to every node u ∈ {0, 1}∗.

Theorem 45. There exists an order tree TGood such that the set of finite automata B with (L(B);v
) ∼= TGood is Σ1

1 -complete.

Proof. Let A be a finite automaton over the alphabet Σ = {b1, . . . , bm} whose set of transitions
equals T = {t1, . . . , tn} with m ≤ n. Define f(bi) = 0i1n−i and f(tj) = 0i1n−i ⊗ 0j1n−j (where
bi is the letter of the transition tj) and extend this function f to a monoid homomorphism from
(Σ ∪ T)∗ to ({0, 1} ∪ {0, 1} × {0, 1})∗. Then

tree(A) ∼= (f(L(A)] Run(A, leaves(A)));v)

28

and an automaton B accepting f(L(A)] Run(A, leaves(A))) can be constructed from A. Hence
the claim follows from Proposition 43. ut

4.5 Context-free languages with the prefix order

Given two regular languages L1 and L2 such that ε ∈ L1 ∩ L2, it is decidable whether the trees
(L1;�) and (L2;�) are isomorphic.10 Recently, this problem was shown to be EXPTIME-complete
(resp., P-complete) for the case that L1 and L2 are given by nondeterministic (resp., deterministic)
finite automata [31]. Ésik showed that the same problem is undecidable for context-free languages
and asks whether it becomes decidable for deterministic context-free languages. Based on the
construction from the previous section, we can show that it is Σ1

1 -complete in this case. Details on
deterministic context-free languages and deterministic pushdown automata can be found in [21].
We use L(P) to denote the language recognized by a pushdown automaton P .

Theorem 46. There is a tree T such that the set of deterministic pushdown automata P with
(L(P);�) ∼= T is Σ1

1 -complete.

Proof. By Proposition 43 it suffices to show that for every tree of the form tree(A) (where A is
a finite automaton) there exists (effectively) a deterministic pushdown automaton P such that
tree(A) ∼= (L(P);�).

So, let A be a finite automaton over the alphabet Σ. For a word w = a1 · · · ak, let ←−w be its
reversal, i.e., ←−w = ak · · · a1. Then consider the language

K = L(A)] {w←−r | w ∈ leaves(A), r ∈ Run(A, w)} ⊆ Σ+∆+,

where ∆ is the set of transitions of A. One can easily construct a deterministic pushdown automa-
ton P with L(P) = K. Moreover, the mapping f : K → L(A)] Run(A, leaves(A)) with f(w) = w
for all w ∈ L(A) and f(w←−r) = r for all w ∈ leaves(A) and all r ∈ Run(A, w) is an isomorphism
between the trees tree(A) and (L(P);�). ut

5 Automatic Linear Orders

More details on linear orders can be found in [36]. We use ω to denote the linear order (type of)
(N;≤) of the natural numbers, ω∗ for ({−n | n ∈ N};≤), ζ for (Z;≤), and n for the finite linear
order (type) of size n. Let I = (DI ;≤I) be a linear order and, for i ∈ DI , let Li = (Di;≤i) be
a linear order. The sum

∑
i∈I Li is the linear order ({(x, i) | i ∈ DI , x ∈ Di};≤) where for all

i, j ∈ DI , x ∈ Di, and y ∈ Dj ,

(x, i) ≤ (y, j) ⇐⇒ i <I j ∨ (i = j ∧ x ≤i y) .

We use L1 + L2 to denote
∑
i∈2 Li and L1 · L2 to denote the sum

∑
i∈L2

Li1 where Li1 = L1

for every i ∈ L2. An interval or convex subset of a linear order L = (D;≤) is a subset I ⊆ D
such that x, y ∈ I and x < z < y imply z ∈ I. For x, y ∈ D we write (x, y) for the interval
{z ∈ D | x < z < y}.

Lemma 47. If 0 < 1, then ({0, 1}∗1;≤lex) ∼= (Q;≤).

Proof. Let u′ ∈ {0, 1}∗ and v ∈ {0, 1}∗1 such that u = u′1 <lex v. Then

u′01 <lex u <lex u0|v|1 <lex v <lex v01 .

Note that indeed u0|v|1 <lex v: if u is a prefix of v, then u0|v|1 and v differ (for the first time) at
some position in the block 0|v| where v carries 1. If u is no prefix of v, then u0|v|1 and v differ (for
the first time) at some position in u where u carries 0 and v carries 1.

Hence ({0, 1}∗1;≤lex) is countable, dense, and without endpoints. Thus, by Cantor’s theorem
(see [18]) it is isomorphic to (Q;≤). ut
10 The condition ε ∈ L1 ∩L2 is just a convenient way to ensure that (L1;�) and (L2;�) are indeed trees.

29

The goal of this section is to prove that the isomorphism problem for automatic linear orders
is Σ1

1 -complete. The general strategy of the proof is similar to the proof of Proposition 43 for
automatic order trees. We will reduce the (Σ1

1 -complete) isomorphism problem for computable
linear orders to the isomorphism problem for automatic linear orders. For this, we will need the
following lemma:

Proposition 48. From an index e of a computable linear order L, one can compute an index of
a computable set P (e) ⊆ {0, 1}∗1 whose complement is dense in ({0, 1}∗1;≤lex) such that

L ∼= L′ ⇐⇒ ({0, 1}∗1;≤lex, P (e)) ∼= ({0, 1}∗1;≤lex, P (e′))

for all indices e and e′ of computable linear orders L and L′, resp.

Proof. Let e be an index of a computable linear order L = (D;≤). Then the product linear
order ({0, 1}∗1;≤lex) · L is isomorphic to ({0, 1}∗1;≤lex) ∼= (Q;≤) (since it is countable, dense,
and without endpoints) and an index for ({0, 1}∗1;≤lex) · L can be computed from e. Next, we
use the well-known computable variant of Cantor’s theorem: If L1 and L2 are computable copies
of (Q;≤), then there exists a computable isomorphism f : L1 → L2 and an index for f can be
computed from indices for L1 and L2 [9]. Applied to our situation, this means that from e we can
compute an index for a computable isomorphism fe : ({0, 1}∗1;≤lex)·L→ ({0, 1}∗1;≤lex). Since the
complement of {1}×D is dense in ({0, 1}∗1;≤lex) ·L, so is the complement of P (e) = fe({1}×D)
in ({0, 1}∗1;≤lex). Since fe is computable, the set P (e) is computable too and an index for P (e)
can be computed from the index e.

The implication “⇐” follows since (P (e);≤lex) ∼= L for any index e of the computable linear
order L. Conversely, let L = (D;≤) and L′ = (D′;≤′) with index e and e′, resp. Assume that
L ∼= L′. Then we have

({0, 1}∗1;≤lex, P (e)) ∼= ({0, 1}∗1×D;v, {1} ×D)
∼= ({0, 1}∗1×D′;v′, {1} ×D′) since L ∼= L′

∼= ({0, 1}∗1;≤lex, P (e))

where v is the order of ({0, 1}∗1;≤lex) · L and similarly for v′. ut

The following section will, from P ⊆ {0, 1}∗1, construct a linear order aut(P) and prove that
({0, 1}∗1;≤lex, P) ∼= ({0, 1}∗1;≤lex, P

′) if and only if aut(P) ∼= aut(P ′) (assuming the complements
of P and P ′ are dense). The subsequent section will then prove that aut(P) is effectively automatic
for P computable.

5.1 Construction of linear orders

A key technique used in the construction is the shuffle sum of a class of linear orders. Let I be a
countable set. A dense I-coloring of a linear order L = (D;≤) is a mapping c : D → I such that
for all x, z ∈ D with x < z and all i ∈ I there exists y ∈ (x, z) with c(y) = i. Equivalently, c−1(i)
is dense in (D;≤) for all i ∈ I.

Definition 49. Let L be a countable set of linear orders and let c : Q→ L be a dense L-coloring
of Q. The shuffle sum of L, denoted Shuf(L), is the linear order

∑
x∈(Q;≤) c(x).

Extending the classical back-and-forth construction of isomorphisms, one obtains that (Q;≤, c1) ∼=
(Q;≤, c2) for any two dense I-colorings c1 and c2 of Q. Hence, in the above definition, the isomor-
phism type of

∑
x∈(Q;≤) c(x) does not depend on the choice of the dense L-coloring c, see e.g. [36].

This implies that Shuf(L) is indeed uniquely defined.
For m,n ∈ N+, let L[m,n] be the finite linear order with C(m,n) elements (recall from (2) on

page 9 that the polynomial function C(x, y) = (x+ y)2 + 3x+ y is injective). For κ ∈ N+ ∪ {ω},
we define the class of linear orders L′κ and the linear order L′κ as follows:

L′κ = {L[m,n] | m,n ∈ N+,m 6= n or m = n ≥ κ} and (9)

L′κ = Shuf(L′κ) . (10)

30

Next, two linear orders M0 and M1 are given by

M0 = Shuf{L′κ | 2 ≤ κ < ω} and

M1 = Shuf{L′κ | 2 ≤ κ ≤ ω} .

Finally, let P ⊆ {0, 1}∗1. Then the linear order aut(P) is obtained from ({0, 1}∗1;≤lex, P) by
replacing every element of P by M1 and every element of {0, 1}∗1 \ P by M0:

aut(P) =
∑

x∈({0,1}∗1;≤lex)

LPx with LPx =

{
M1 if x ∈ P
M0 if x /∈ P

By the very definition, ({0, 1}∗1;≤lex, P) ∼= ({0, 1}∗1;≤lex, R) implies aut(P) ∼= aut(R). The fol-
lowing example shows that the converse is false in general.

Example 50. Let P = {1} and let R be the open interval (1, 11). Thus, ({0, 1}∗1;≤lex, P) 6∼=
({0, 1}∗1;≤lex, R). Since

∑
x∈((1,11);≤lex)

Lx with Lx = M1 for all x ∈ (1, 11) is isomorphic to M1,

we get aut(P) ∼= aut(R).

Note that above the complement of P is dense, but the complement of R is not. The following
lemmas prepare the proof that density of the complement is the only obstacle, see Proposition 55.

Lemma 51. Let Shuf(L) =
∑
p∈(Q;≤) c(p) be a shuffle sum. For all x ∈ Shuf(L) there exists y > x

such that the interval (x, y) contains an interval isomorphic to Shuf(L).

Proof. Let x = (q, a) with q ∈ Q and a ∈ c(q). Choose an arbitrary r ∈ Q with r > q. A
direct back-and-forth argument shows ((q, r);≤, c) ∼= (Q;≤, c) and therefore

∑
p∈((q,r);≤) c(p)

∼=∑
p∈(Q;≤) c(p) = Shuf(L), which implies the lemma. ut

Lemma 52. Let L1 and L2 be countable sets of linear orders. Let L = (D;≤) be a linear order
and I1 and I2 intervals of L with I1 ∼= Shuf(L1), I2 ∼= Shuf(L2), and I1 ∩ I2 6= ∅. Then Shuf(L1)
is isomorphic to an interval of Shuf(L2) or vice versa.

Proof. Let x ∈ I1 ∩ I2. By Lemma 51 there exist y1 ∈ I1 and y2 ∈ I2 such that (x, yi) contains an
interval isomorphic to Shuf(Li) for i ∈ {1, 2}. W.l.o.g. assume that y1 ≤ y2 in L. Then (x, y1) is
contained in I2 ∼= Shuf(L2), which proves the lemma. ut

Lemma 53. Let L1 and L2 be two countable sets of finite linear orders.

(1) Any infinite interval of Shuf(L1) contains an interval isomorphic to Shuf(L1).
(2) If Shuf(L1) is isomorphic to some interval of Shuf(L2), then L1 = L2 (up to isomorphism).
(3) Let L = (D;≤) be a linear order and I1 and I2 intervals of L with I1 ∼= Shuf(L1), I2 ∼=

Shuf(L2), and I1 ∩ I2 6= ∅. Then L1 = L2 (up to isomorphism).

Proof. For i ∈ {1, 2}, let ci : Q→ Li be a dense Li-coloring. For claim (1), let I be some infinite
interval in

∑
x∈(Q;≤) c1(x). Since c1(x) is finite for all x ∈ Q, there are x, y ∈ Q such that x < y and

both c1(x) and c1(y) intersect I. Hence
∑
z∈((x,y);≤) c1(z) is an interval in I. A direct back-and-forth

argument shows ((x, y);≤, c1) ∼= (Q;≤, c1) and therefore
∑
z∈((x,y);≤) c1(z) ∼=

∑
x∈(Q;≤) c1(x) ∼=

Shuf(L1).
For claim (2), suppose

∑
x∈(Q;≤) c1(x) is isomorphic to some interval I of

∑
x∈(Q;≤) c2(x). Then

there is an embedding f :
∑
x∈(Q;≤) c1(x)→

∑
x∈(Q;≤) c2(x) whose range I is convex.

First let L ∈ L1. Since c1 is surjective, there exists x ∈ Q with L = c1(x). Let a ∈ L and
(y, b) = f(x, a) with y ∈ Q. The maximal finite interval of

∑
x∈(Q;≤) c1(x) containing (x, a) is

isomorphic to c1(x) = L. Since f is an embedding with convex range, the maximal finite interval
of
∑
x∈(Q;≤) c2(x) containing f(x, a) is isomorphic to L as well. Since it contains (y, b), it is at the

same time isomorphic to c2(y). Hence, indeed, there exists L′ ∈ L2 with L ∼= L′.
For the converse implication, note that by (1), I ∼= Shuf(L1) contains an interval isomorphic to

Shuf(L2). By symmetry, we therefore obtain from the previous paragraph that, for any L′ ∈ L2,
there exists L ∈ L1 with L ∼= L′. This proves claim (2).

Finally, claim (3) follows from claim (2) and Lemma 52. ut

31

Lemma 54. The linear order M1 is not isomorphic to any interval of the linear order M0 and
vice versa.

Proof. Let Mi =
∑
x∈(Q;≤) ci(x) for i ∈ {1, 2}, where c0 : Q → {L′κ | 2 ≤ κ < ω} and c1 : Q →

{L′κ | 2 ≤ κ ≤ ω} are dense colorings. We start with the following claim:

Claim: Let i ∈ {0, 1}, f be an embedding of Mi into M1−i, and (x, a) ∈Mi, (y, b) = f(x, a) (with
x, y ∈ Q, a ∈ ci(x), b ∈ c1−i(y)). Then ci(x) ∼= c1−i(y).

To see this, note that (y, b) belongs to an interval isomorphic to c1−i(y) by definition. Moreover,
since f is an embedding with convex range, it also belongs to an interval isomorphic to ci(x). The
claim follows from Lemma 53(3).

Let us now prove the lemma and assume first, towards a contradiction, that f is an embedding
of M1 into M0 with convex range. Let x ∈ Q such that c1(x) = L′ω. Chose an element a ∈ L′ω
and consider (x, a) ∈ M0. Let (x′, a′) = f(x, a) ∈ M0 with x′ ∈ Q. By the above claim, we get
c0(x′) ∼= c1(x) = L′ω, which contradicts the fact that no order isomorphic to L′ω belongs to the
range of c0.

For the other case, suppose that f is an embedding of M0 into M1 with convex range I. Choose
x, y ∈ Q with x < y and c0(x) 6∼= c0(y) and let a ∈ c0(x), b ∈ c0(y). Let (x′, a′) = f(x, a) ∈ I and
(y′, b′) = f(y, b) ∈ I. Using our claim, we get c1(x′) ∼= c0(x) 6∼= c0(y) ∼= c1(y′). Since (x, a) < (y, b)
in M0, we must have (x′, a′) < (y′, b′) in M1. Because of c1(x′) 6∼= c1(y′), we have x′ < y′ in Q.
Take z′ ∈ Q with x′ < z′ < y′ and c′ ∈ c1(z′) = L′ω. Then (z′, c′) ∈ I, hence (z, c) = f−1(z′, c′) is
defined. Our claim yields c0(z) ∼= c1(z′) = L′ω, which is a contradiction. ut

Proposition 55. Let the complements of P,R ⊆ {0, 1}∗1 be dense in ({0, 1}∗1;≤lex). Then
aut(P) ∼= aut(R) if and only if ({0, 1}∗1;≤lex, P) ∼= ({0, 1}∗1;≤lex, R).

Proof. The if-direction is trivial since any isomorphism from ({0, 1}∗1;≤lex, P) to ({0, 1}∗1;≤lex, R)
induces an isomorphism from (P ;≤lex) to (R;≤lex). For the other implication, we show that the
elements of P are in one-to-one correspondence with the maximal intervals in aut(P) of type M1.

Let I be an interval of aut(P) with I ∼= M1 and suppose there is x ∈ {0, 1}∗1 \ P with
({x} ×M0) ∩ I 6= ∅. Hence an interval of type M1 intersects an interval of type M0. Lemma 52
implies that M0 is isomorphic to an interval of type M1 or vice versa, which leads to a contradiction
by Lemma 54. Thus, I ⊆ P ×M1.

Let p ∈ P . Then {p}×M1 is an interval in aut(P) of type M1. Let I) {p}×M1 be an interval
of type M1 properly larger than {p} ×M1. Then there is x ∈ {0, 1}∗1 with p 6= x such that I
contains an element of the form (x, u). Since the complement of P is dense in ({0, 1}∗1;≤lex), there
is y ∈ {0, 1}∗1 \ P such that p <lex y <lex x or x <lex y <lex p. Since I is an interval, we have
({y}×M0)∩I 6= ∅, contradicting the above observation I ⊆ P ×M1. Hence, the maximal intervals
in aut(P) of type M1 are precisely the intervals of the form {p} ×M1. Since the corresponding
statement holds for the maximal intervals in aut(R) of type M1, any isomorphism from aut(P) to
aut(R) induces an isomorphism from (P ;≤lex) to (R;≤lex). ut

Let e and e′ be indices of computable linear orders L and L′ and let P (e) and P (e′) be the
computable sets computed in Proposition 48. Since the complements of these sets are dense, we
have L ∼= L′ if and only if aut(P (e)) ∼= aut(P (e′)). In the following section, we will prove that an
automatic presentation of the linear order aut(P (e)) can be computed from e.

5.2 Automaticity

In this section, let P ⊆ {0, 1}∗1 be a Π0
1 -set with dense complement. We will effectively construct

an automatic presentation of aut(P). The following definition will be useful: Let A be a finite
automaton over the linearly ordered alphabet Σ (hence, a lexicographic order is available on Σ∗).
Fix an arbitrary linear order on the set of transition tuples of A, so that a lexicographic order is
available on Run(A). Then we define the linear order

lin(A) = (Run(A);≤),

32

where r1 ≤ r2 for r1, r2 ∈ Run(A) if and only if

lab(r1) <lex lab(r2) or (lab(r1) = lab(r2) and r1 ≤lex r2).

Intuitively, we obtain lin(A) from (L(A);≤lex) by replacing every word w ∈ L(A) by the finite
linear order with |Run(A, w)| many elements. Note that the isomorphism type of lin(A) does not
depend on the chosen linear order on the set of transition tuples of A. Clearly, lin(A) is automatic.
In this section, we will realize aut(P) as lin(A) for a finite automaton A.

Recall that for u ∈ {0, 1}∗1, num(u) ∈ N+ is the unique natural number such that u is the
binary expansion of num(u) (least significant bit first). Since P ∈ Π0

1 , the set {num(u) | u ∈ P}
is the complement of a recursively enumerable set. Hence (from an index of P), one can compute
` ∈ N+ and two polynomials p1, p2 ∈ N[x, y1, . . . , y`] such that for all u ∈ {0, 1}∗1:

u ∈ P ⇐⇒ ∀n ∈ N`+ : p1(num(u), n) 6= p2(num(u), n) .

In the rest of this section, we fix the number ` and the polynomials p1 and p2. We define the two
languages

D = (0∗1)+ and E = ((0+1)`+1{a, b, c})+ .

On the alphabet {0, 1, a, b, c} let us fix the order

0 < 1 < a < b < c,

which gives us a lexicographic order ≤lex on {0, 1, a, b, c}∗. For u ∈ D let colD(u) ∈ N be the
length of the last 0-block, i.e., colD(u0n1) = n for u ∈ (0∗1)∗. For u ∈ ((0+1)`+1{a, b, c})∗,
n1, . . . , n`+1 ∈ N+, and d ∈ {a, b, c} let colE(u0n110n21 · · · 0n`+11d) = (n1, . . . , n`+1, d).

Lemma 56. The following holds:

– (D;≤lex) ∼= (Q;≤) and colD is a dense N-coloring of (D;≤lex).
– (E;≤lex) ∼= (Q;≤) and colE is a dense (N`+1

+ × {a, b, c})-coloring of (E;≤lex).

Proof. For the first statement, let u, v ∈ D with u′1 = u <lex v and let n ∈ N. Then

u′01 <lex u <lex u0|v|10n1 <lex v <lex v01 .

Note that indeed u0|v|10n1 <lex v: if u is a prefix of v, then u0|v|10n1 and v differ (for the first
time) at some position in the block 0|v| where v carries 1. If u is no prefix of v, then u0|v|10n1 and v
differ (for the first time) at some position in u where u carries 0 and v carries 1. Hence (D;≤lex) is
countable, dense and without endpoints and therefore isomorphic to (Q;≤). Furthermore, col−1D (n)
is dense for all n ∈ N, i.e., colD is indeed a dense N-coloring.

For the second statement, let u, v ∈ E with u′1xu = u <lex v = v′1xv (where xu, xv ∈ {a, b, c}),
n1, . . . , n`+1 ∈ N+, and d ∈ {a, b, c}. Then

u′01a <lex u <lex u(0|v|1)`+1a0n110n21 · · · 0n`+11d <lex v <lex v(01)`+1a .

Arguments analogous to those above show the claims regarding E and colE . ut

Lemma 57. From a polynomial p ∈ N[x, y, z1, . . . , z`+1], one can compute a nondeterministic fi-
nite automaton Ap with L(Ap) = {0, 1}∗1#D#E that has precisely p(num(u), colD(v), n) accepting
runs on u#v#w ∈ {0, 1}∗1#D#E with colE(w) = (n, d) for any d ∈ {a, b, c}.

Proof. We proceed by induction on the construction of the polynomial p. First, consider the
polynomial p = x (for which the argument is very similar to the proof of Lemma 39). Let Ax be
the automaton from Figure 11. Note that for each 1 preceeding any #, a, b, c, the automaton can
move from q0 and q1 resp. to q2, then the rest of the input is processed deterministically. If Ax
moves at input position k to the state q2, then there are 2k−1 possible runs until reaching input

33

q0

q1

q2

0, 1

0, 1

#, 0, 1, a, b, c

0, 10, 1

1

1

Fig. 11. The automaton Ax

q0 q1 q2 q3 q4

0, 1 0, 1 0 #, 0, 1, a, b, c

0 1

Fig. 12. The automaton Ay

position k. Hence, if p1 < p2 < · · · < pn are the 1-positions in u (p1 ≥ 1, pn = |u|) then Ax has∑n
i=1 2pi−1 = num(u) accepting runs on u#v#w.

Next consider the polynomial p = y and let Ay be the automaton from Figure 12. Let v ∈ D.
Since 0colD(v)1 is the longest suffix of v from 0∗1, there are precisely colD(v) runs labeled v from q1
to q3. Since the rest of the automaton is deterministic, there are precisely colD(v) many accepting
runs on u#v#w ∈ {0, 1}∗1#D#E.

Now consider the polynomial p = zi for some 1 ≤ i ≤ ` + 1. For i = `, the automaton Azi is
depicted in Figure 13. Let w ∈ E with colE(w) = (n1, . . . , n`, n`+1, d). Then 0n`10n`+11d is the
longest suffix of w from 0∗10∗1{a, b, c}. Hence there are precisely n` runs labeled w from q0 to
q4. Since the rest of the word u#v#w is processed deterministically, there are precisely n` many
accepting runs on u#v#w ∈ {0, 1}∗1#D#E.

The rest of the proof follows that of Lemma 9. ut

Using the above lemma, one can compute a nondeterministic finite automaton A with

L(A) = {0, 1}∗1#D#E

such that for all u ∈ {0, 1}∗1, v ∈ D, and w ∈ E with colE(w) = (n, n`+1, d) and n = (n1, . . . , n`):

|Run(A, u#v#w)| =


C(p1(num(u), n) + n`+1, p2(num(u), n) + n`+1) if d = a and colD(v) = 0

C(colD(v) + n1, colD(v) + n1) if d = a and colD(v) > 0

C(n1, n1 + n2) if d = b

C(n1 + n2, n1) if d = c .

(11)

34

q0 q1 q2 q3 q4

#, 0, 1, a, b, c 0 0

0 1 1 a, b, c

Fig. 13. The automaton Az`

Recall the notations Run(A, u), Run(A,K), Run(A) and lab(r) from Section 2.3. Also recall the
definition of the linear order lin(A) from the beginning of this section. Let lin(A) = (Run(A);v).
We show in four steps that lin(A) ∼= aut(P):

Step 1: Let u#v#w ∈ {0, 1}∗1#D#E. Then the set Run(A, u#v#w) of runs r ∈ Run(A) accepting
u#v#w is a finite interval in lin(A) whose size is given by (11).

Step 2: Let u#v ∈ {0, 1}∗1#D. We analyze the restriction of the linear order lin(A) to the set
Run(A, u#v#E). Since u#v#E is an interval in ({0, 1}∗1#D#E;≤lex), so is Run(A, u#v#E)
in lin(A). It is obtained from (u#v#E;≤lex) by replacing u#v#w by a linear order of size
|Run(A, u#v#w)| (which is given by (11)). The size of this linear order depends on colE(w)
and colD(v) (but colD(v) ∈ N is constant since we fixed v). Hence, by Lemma 56, any size that
appears at all appears densely, i.e., (Run(A, u#v#E);v) is the shuffle sum of the class of finite
linear orders Lu#v := {n | ∃w ∈ E : n = |Run(A, u#v#w)}. To determine this class precisely, we
distinguish the cases colD(v) = 0 and colD(v) > 0.

If colD(v) = 0, then Lu#v consists of the linear orders L[p1(num(u), n) +n`+1, p2(num(u), n) +
n`+1] (recall that L[x, y] denotes the finite linear order with C(x, y) many elements) for n ∈ N`+
and n`+1 ∈ N+ and the linear orders L[m,n] for m 6= n. If u ∈ P , then p1(num(u), n) + n`+1 6=
p2(num(u), n) + n`+1 for all values of n and n`+1 and therefore Lu#v = L′ω, where the set L′ω was
defined in (9). If u /∈ P , let κ ∈ N+ be minimal with p1(num(u), n) + n`+1 = κ = p2(num(u), n) +
n`+1) for some values of n and n`+1. Then Lu#v = L′κ and κ ≥ 2 since it is the sum of two positive
integers p1(num(u), n) and n`+1.

On the other hand, if colD(v) > 0, then the set Lu#v consists of the finite linear orders
L[colD(v) + n, colD(v) + n] for n ∈ N+ and L[m,n] for m 6= n. Hence Lu#v = L′colD(v)+1.

In summary,

(Run(A, u#v#E);v) ∼=


L′ω if colD(v) = 0 and u ∈ P
L′κ for some 2 ≤ κ < ω if colD(v) = 0 and u /∈ P
L′c(v)+1 if colD(v) > 0

(12)

Step 3: Next, let u ∈ {0, 1}∗1. We analyze the restriction of lin(A) to the set Run(A, u#D#E).
Since u#D#E is an interval in ({0, 1}∗1#D#E;≤lex), so is Run(A, u#D#E) in lin(A). It is
obtained from (u#D;≤lex) by replacing u#v by the linear order (Run(A, u#v#E);v) whose type
is given by (12). Since u is fixed, this type depends on colD(v) only such that, by Lemma 56, any
type that appears at all appears densely, i.e., (Run(A, u#D#E);v) is the shuffle sum of the class
{L′κ | 2 ≤ κ < ω} if u /∈ P and {L′κ | 2 ≤ κ ≤ ω} otherwise. Hence,

(Run(A, u#D#E);v) ∼=

{
M1 if u ∈ P
M0 otherwise.

(13)

Step 4: Finally, lin(A) is obtained from ({0, 1}∗1;≤lex) by replacing u by the finite linear order
(Run(A, u#D#E);v) whose type is given by (13). Hence, indeed lin(A) ∼= aut(P).

Thus, we proved the following statement:

35

Proposition 58. From an index of a Π0
1 -set P ⊆ {0, 1}∗1, one can compute a finite automaton

A with lin(A) ∼= aut(P).

From Propositions 48, 55, 58, and the fact that the isomorphism problem for computable linear
orders is Σ1

1 -complete, it follows that the isomorphism problem for automatic linear orders is Σ1
1 -

complete as well. In fact, we can sharpen this result even to automatic linear orders of Hausdorff
rank 1, which we define next.

For a linear order L = (A;≤) we define the equivalence relation ≡L on A by: a ≡L b if and
only if the interval (a, b) is finite. Every equivalence class of ≡L is an interval of L of order type n
(n ∈ N), ω, ω∗, or ζ. We define the finite condensation of L as the linear order C(L), whose domain
is the set of equivalence classes of ≡L and [a] ≤ [b] if and only if a ≤ b. In other words, C(L) results
from L by identifying two elements a, b of L if the interval (a, b) is finite. In [27] it was shown that
for every automatic linear order L there exists a natural number n such that Cn(L) = Cn+1(L);
the least such n is called the Hausdorff rank of L. A linear order L has Hausdorff rank 1, if after
identifying all a, b ∈ L such that the interval (a, b) is finite, one obtains a dense order or the
singleton linear order. The result of [27] mentioned above suggests that the isomorphism problem
might be simpler for linear orders of low Hausdorff rank. But this is not the case:

Proposition 59. There is a linear order LGood of Hausdorff rank 1 such that the set of all finite
automata A with lin(A) ∼= LGood is Σ1

1 -complete.

Proof. There is a computable linear order, for which the set of all computable copies is Σ1
1 -

complete. A concrete example is the Harrison order ωCK
1 (1 + η) (here ωCK

1 is the Church-Kleene
ordinal and η is the order type of the rationals). Let h be an index of ωCK

1 (1 + η) and set L =
aut(P (h)). Note that the linear orders L′κ from (10) have Hausdorff rank 1. Hence M0 and M1 are
dense sums of linear orders of Hausdorff rank 1, i.e., their Hausdorff rank is 1 as well. Hence, L is
a dense sum of orders of Hausdorff rank 1 as well, implying that the Hausdorff rank of L is 1 too.

We reduce the Σ1
1 -complete set of indices of ωCK

1 (1 + η) [16] to the set of all finite automata A
with lin(A) ∼= L: Let e be an index of some computable linear order K. By Proposition 48, we can
compute an index for the set P (e). From this index, we can compute a finite automaton A with
lin(A) ∼= aut(P (e)) by Proposition 58. Then K ∼= ωCK

1 (1 + η) if and only if ({0, 1}∗1;≤, P (e)) ∼=
({0, 1}∗1;≤, P (h)) by Proposition 48 if and only if aut(P (e)) ∼= aut(P (h)) = L by Proposition 55.

ut

As an immediate consequence, we obtain

Theorem 60. The isomorphism problem of automatic linear orders is Σ1
1 -complete.

As in the case of equivalence structures and of order trees, we can construct a single automatic
linear order such that the whole complexity of the isomorphism problem can be found in this
linear order. This this aim, let Σ2 = {0, 1} × {0, 1} and set u⊗ v ≤2

lex u
′ ⊗ v′ if

u <≤lex u
′ or u = u′ and v ≤lex v

′

where |u| = |v| and |u′| = |v′|.11 Now the following result can be shown as Theorem 45:

Theorem 61. There exists a linear order LGood such that the set of finite automata B with
(L(B);≤2

lex)
∼= LGood is Σ1

1 -complete.

Remark 62. The definition of ≤2
lex can easily be extended to ≤nlex for n ≥ 3, cf. [2]. We wonder

whether a linear order L is automatic if and only if there exists n ∈ N and a regular language
K ⊆ ({0, 1}n)∗ such that L ∼= (K;≤nlex).

Finally, we can also show that the elementary equivalence problem for automatic linear orders is
undecidable:

11 Bárány [2] uses a similar construction, but bases it on the length-lexicographic order instead of the
lexicographic order.

36

Theorem 63. The set of automatic presentations of linear orders that are elementary equivalent
to L′ω is Π0

1 -complete. In particular, the elementary equivalence problem for automatic linear orders
is Π0

1 -complete.

Proof. Let P ⊆ {0, 1}∗1 be Π0
1 -complete. For u ∈ {0, 1}∗1, write aut(u) for the linear order

(Run(A, u#1#E);v). By (12), this linear order is isomorphic to L′ω if u ∈ P and isomorphic to
some L′m for m < ω if u /∈ P . Note that L′m contains some maximal finite interval of size C(m,m)
and L′ω does not. Hence, for every m < ω there is a first-order sentence that distinguishes L′m and
L′ω. Thus, aut(u) ≡ L′ω if and only if u ∈ P . ut

5.3 Scattered linear orders

Recall that a linear order L is scattered if (Q;≤) cannot be embedded into L. Typical examples of
scattered linear orders are finite linear orders, ω, ω∗, and ζ. In [27] it was shown to be decidable,
whether a given automatic linear order is scattered. In this section, we show that the isomorphism
problem for scattered automatic linear orders is simpler than for general linear orders. An impor-
tant tool in this proof are ordered trees (not to be confused with order trees). An ordered tree is a
relational structure T = (V ;≤, R), where (V ;≤) is an order tree in the sense of Section 4 and the
binary relation R is a disjoint union

⊎
v∈V ≤v, where ≤v is a linear order on the set of children

of v. For a node v, let E(v) be the set of children and write R(v) for the linear order (E(v);≤v).
An ordered tree T = (V ;≤, R) is discrete if, for every v ∈ V , the linear order R(v) is finite or
isomorphic to ω, to ω∗, or to ζ.

For ` ∈ N, let O` denote the set of automatic presentations of discrete ordered trees of height
at most ` and let O =

⋃
`∈NO`. Note that one can axiomatize in the logic FSO the order type of

ω (there are infinitely many elements but for every x the set of all y with y < x is finite). Hence,
one can axiomatize the order types ω∗ and ζ = ω∗ + ω as well. Theorem 5 implies that the class
O` is decidable for every ` ∈ N. By Theorem 13, even O is decidable.

Lemma 64. The isomorphism problem for the class O of discrete automatic ordered trees of finite
height can be reduced to FOTh(N; +,×).

Proof. From P1,P2 ∈ O, we can compute ` ∈ N with P1,P2 ∈ O`. If ` = 0, then (P1,P2) ∈ Iso(O).
Now suppose ` > 0 and let Ti = (Vi;≤i, Ri) be the discrete ordered tree represented by Pi. Let ri
be the root of Ti. For v ∈ Vi, let Pi(v) be an automatic presentation for the ordered subtree of Ti
rooted at v (it can be computed from Pi and v). Furthermore, for v ∈ Vi \ {ri} let v + 1 be the
right sibling (i.e., the next element in the linear order Ri(w) where w is the parent node of v) and
v− 1 the left sibling. Inductively, we define v+ (n+ 1) = (v+n) + 1 and v− (n+ 1) = (v−n)− 1
for n ∈ N+. Note that v + n and v − n need not be defined, and that we can decide whether
v + n is defined since the tree Ti is automatic. To simplify notation in the formula below, let
Pi(v + n) be an automatic presentation for the empty tree in case v + n is not defined. Then we
have (P1,P2) ∈ Iso(O) if and only if

(P1,P2) ∈ Iso(O`−1) ∨ ∃v1 ∈ E(r1) ∃v2 ∈ E(r2) ∀n ∈ Z : (P1(v1 + n),P2(v2 + n)) ∈ Iso(O`−1)

By induction, this is a formula from Σ0
2`. ut

Theorem 65. The isomorphism problem for scattered automatic linear orders can be reduced
to FOTh(N; +,×).

Proof. We reduce this isomorphism problem to the isomorphism of automatic discrete ordered
trees of finite height. Let L = (A;≤) be a scattered automatic linear order. Let n be the Hausdorff
rank of L; it is finite by [27]. Since L is scattered, we have Cn(L) ∼= 1. By induction on n, we define
a discrete ordered tree TL as follows: The leaves of TL are the elements of L. If n = 0, then L is a
linear order with a single element and TL is a single node tree. Now assume that n > 0 and that
the discrete ordered tree TC(L) is already defined. Then, the leaves of TC(L) are the equivalence
classes w.r.t. ≡L. We obtain TL be attaching to each equivalence class B the elements of B as new

37

children and order them by ≤. Recall that the order type of L restricted to an equivalence classes
w.r.t. ≡L is indeed either finite, ω, ω∗, or ζ. Hence, TL is a discrete ordered tree. Moreover, since
L is automatic, the ordered tree TL is effectively automatic since the equivalence relation ≡L is
definable in FSO. Finally, two scattered automatic linear orders L1 and L2 are isomorphic if and
only if TL1

∼= TL2 . ut

While the above theorem shows that the isomorphism problem for scattered linear orders is sub-
stantially simpler than for arbitrary linear orders, we still do not have any lower bound. We do
not even know whether this problem is decidable or not.

5.4 Context-free languages with lexicographic orders

Given two regular languages L1 and L2 and a linear order on their alphabet, it is decidable whether
(L1;≤lex) ∼= (L2;≤lex) [41]. For context-free languages, the same problem is undecidable [13] and
Ésik asks whether the problem becomes decidable for deterministic context-free languages. In the
light of the current paper, it is natural to ask for the exact recursion-theoretic level of undecid-
ability. In this section, we show that it is Σ1

1 -complete for deterministic context-free languages.
The class of linear orders that can be realized as the lexicographic order on a deterministic

context-free language coincides with the class of algebraic linear orders [4]. An algebraic linear
order is a component of the initial solution of a first-order recursion scheme over the continuous
categorical algebra of countable linear orders equipped with the sum operation and the one-
element linear order as a constant. Hence, every algebraic linear order L can be represented by a
deterministic pushdown automaton P recognizing L.

Theorem 66. There is a linear order L of Hausdorff rank 1 such that the set of determinis-
tic pushdown automata P with (L(P);≤lex) ∼= L is Σ1

1 -complete. In particular, the isomorphism
problem for the class of algebraic linear orders is Σ1

1 -complete.

Proof. By Theorem 60, it suffices to construct from a given finite automaton A a deterministic
pushdown automaton P such that lin(A) ∼= (L(P);≤lex). The construction is very similar to those
in the proof of Theorem 46.

Let A be a finite automaton over the alphabet Σ. Recall from the proof of Theorem 46 that
←−w denotes the reversal of the word w. Then consider the language

K = {w←−r | w ∈ L(A), r ∈ Run(A, w)} ⊆ Σ+∆+

where ∆ is the set of transitions of A. One can easily construct a deterministic pushdown automa-
ton P with L(P) = K. On Σ ∪∆ we fix an order with δ < a for all δ ∈ ∆ and a ∈ Σ. For any
w ∈ L(A), we have

(Run(A, w);v) ∼= n ∼= ({←−r | r ∈ Run(A, w)};≤lex)

where n is the number of accepting runs of A on w. Moreover, since every symbol from ∆ is smaller
than every symbol from Σ, we have the following for all w1, w2 ∈ L(A) and r1 ∈ Run(A, w1),
r2 ∈ Run(A, w2) with w1 6= w2: w1

←−r1 ≤lex w2
←−r2 if and only if w1 ≤lex w2. Hence, (L(P);≤lex) can

be obtained from (L(A);≤lex) by replacing every word w by the finite linear order with |Run(A, w)|
many elements. Thus, we have (K;≤lex) ∼= lin(A). ut

6 Complexity of isomorphisms between automatic structures

We conclude this paper with an application of Theorem 44 and 60. The following corollary shows
that although automatic structures look simple (especially for automatic trees), there may be
no “simple” isomorphism between two automatic copies of the same structure. Recall that the
class of hyperarithmetical sets is Σ1

1 ∩Π1
1 , where Π1

1 is the set of complements of Σ1
1 -sets. This

class is stratified into levels ∆0
α for each computable ordinal α (the levels ∆0

n = Σ0
n ∩ Π0

n for
n ∈ N constitute an initial part of this hierarchy), see [1, 35] for more details. These levels can

38

be defined by computable infinitary formulas over (N; +,×) of certain ranks [1]. An isomorphism
f between two automatic structures with domains L1 and L2, respectively, is a ∆0

α-isomorphism
(resp. hyperarithmetical isomorphism), if the set {(x, f(x)) | x ∈ L1} belongs to ∆0

α (resp., is
hyperarithmetical).

Corollary 67. There exist two isomorphic automatic order trees (and two isomorphic automatic
linear orders) without a hyperarithmetical isomorphism.

Proof. We only prove the corollary for automatic order trees, the same proof works for automatic
linear orders (using Theorem 60). By Proposition 43, there exists an automatic order tree T such
that the set of all automatic copies of T is Σ1

1 -complete and hence not hyperarithmetical. It follows
that for each level ∆0

α of the hyperarithmetical hierarchy there exist two copies of T without a
∆0
α-isomorphism: To see this, assume that for any two automatic copies T1 and T2 of T there exists

a ∆0
α-isomorphism. Hence, for an automatic presentation P of an order tree we have T ∼= S(P) if

and only if there exists a ∆0
α-isomorphism between T and S(P). But this is a hyperarithmetical

statement (one has to state that there exists an index for an infinitary computable formula, which
defines a ∆0

α-isomorphism between T and S(P)). Hence, the set of all automatic copies of T is
hyperarithmetical, which contradicts the fact that this set is Σ1

1 -complete.
Now, we can transfer the proof of [1, Theorem 8.20] from computable structures to automatic

structures.12 The proof is exactly the same. One only has to change the computable infinitary
sentence φ in the proof of [1, Theorem 8.18] so that the models of φ are exactly all automatic
linear orders (instead of all computable structures) with elements named by constants from a fixed
set B. ut

7 Conclusion

This paper looks at the isomorphism problem of some typical classes of automatic structures.
Such classes include equivalence structures, order trees, and linear orders. We have shown that
(i) the isomorphism problem for automatic equivalence structures is Π0

1 -complete and (ii) the
isomorphism problem for automatic order trees and linear orders is Σ1

1 -complete. For order trees,
we proved better complexity bounds under certain restrictions. For instance, we have shown that
the isomorphism problem for automatic well-founded order trees and automatic trees of bounded
height is recursively equivalent to first-order arithmetic. For automatic trees of height n ≥ 2, the
isomorphism problem turned out to be Π0

2n−3-complete. We also showed that the isomorphism
problem for scattered linear orders can be reduced to true arithmetic, but any lower bound for
this problem is missing.

Acknowledgments. We would like to thank Alexander Kartzow for valuable comments.

References

1. C. J. Ash and J. Knight. Computable structures and the hyperarithmetical hierarchy, volume 144 of Studies in

Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, 2000.

2. V. Bárány. A hierarchy of automatic omegawords having a decidable mso theory. RAIRO, 42(3):417–450, 2008.

3. V. Bárány, L. Kaiser, and S. Rubin. Cardinality and counting quantifiers on omega-automatic structures. In

Proceedings of STACS 2008, pages 385–396. IFIB Schloss Dagstuhl, 2008.

4. S. L. Bloom and Z. Ésik. Algebraic linear orderings. Internat. J. Found. Comput. Sci., 22(2):491–515, 2011.

5. A. Blumensath and E. Grädel. Automatic structures. In Proceedings of LICS 2000, pages 51–62. IEEE

Computer Society Press, 2000.

6. A. Blumensath and E. Grädel. Finite presentations of infinite structures: Automata and interpretations. Theory

Comput. Syst., 37(6):641–674, 2004.

12 [1, Theorem 8.20] states that if S is a computable structure such that for every level ∆0
α of the hy-

perarithmetical hierarchy there exist two copies of S without a ∆0
α-isomorphism, then there exist two

copies of S without a hyperarithmetical isomorphism.

39

7. W. Calvert, D. Cenzer, V. Harizanov, and A. Morozov. Effective categoricity of equivalence structures. Annals

of Pure and Applied Logic, 141:61-78, 2006.

8. W. Calvert and J. F. Knight. Classification from a computable viewpoint. Bull. Symbolic Logic, 12(2):191–218,
2006.

9. D. Cenzer and J. B. Remmel. Complexity Theoretic Model Theory and Algebra. In Y. L. Ershov, S. S.

Goncharov, V. Marek, A. Nerode and J. Remmel, editors, Handbook of Recursive Mathematics, Vol 1, pages

381–513. Elsevier, 1998.

10. Ch. Delhommé. Non-automaticity of ωω . 2001. Manuscript.

11. Ch. Delhommé. Automaticité des ordinaux et des graphes homogènes. C. R. Acad. Sci. Paris, Ser. I, 339:5–10,
2004.

12. C. Elgot. Decision problems of finite automata design and related arithmetics. Trans. Am. Math. Soc., 98:21–51,

1961.

13. Z. Ésik. An undecidable property of context-free linear orders. Inform. Process. Lett., 111(3):107–109, 2011.

14. D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson, and W. P. Thurston. Word
processing in groups. Jones and Bartlett, Boston, 1992.

15. Y. L. Ershov, S. S. Goncharov, V. W. Marek, A. Nerode and J. Remmel. Handbook of Recursive Mathematics:

Volume 1,2. Elsevier, 1998.

16. S. S. Goncharov and J. F. Knight. Computable structure and antistructure theorems. Algebra i Logika,

41(6):639–681, 2002.

17. D. R. Hirschfeldt and W. M. White. Realizing levels of the hyperarithmetic hierarchy as degree spectra of
relations on computable structures. Notre Dame Journal of Formal Logic, 43(1):51–64 (2003), 2002.

18. W. Hodges. Model Theory. Cambridge University Press, 1993.

19. B. R. Hodgson. On direct products of automaton decidable theories. Theoret. Comput. Sci., 19:331–335, 1982.

20. J. Honkala. On the problem whether the image of an N -rational series equals N . Fund. Inform., 73(1-2):127–

132, 2006.

21. J. E. Hopcroft and J. D. Ullman. Introduction to automata theory, languages and computation. Addison–

Wesley, Reading, MA, 1979.

22. H. Ishihara, B. Khoussainov, and S. Rubin. Some results on automatic structures. In Proceedings of LICS
2002, pages 235–244. IEEE Computer Society Press, 2002.

23. B. Khoussainov and M. Minnes. Model theoretic complexity of automatic structures. In Proceedings of TAMC

2008, number 4978 in Lecture Notes in Computer Science, pages 514–525. Springer, 2008.

24. B. Khoussainov and A. Nerode. Automatic presentations of structures. In LCC: International Workshop on
Logic and Computational Complexity, number 960 in Lecture Notes in Computer Science, pages 367–392, 1995.

25. B. Khoussainov and A. Nerode. Open questions in the theory of automatic structures. Bulletin of the EATCS,

94, pages 181–204, 2008.

26. B. Khoussainov, A. Nies, S. Rubin, and F. Stephan. Automatic structures: richness and limitations. Log.

Methods Comput. Sci., 3(2):2:2, 18 pp. (electronic), 2007.

27. B. Khoussainov, S. Rubin, and F. Stephan. Automatic linear orders and trees. ACM Trans. Comput. Log.,
6(4):675–700, 2005.

28. D. Kuske. Where automatic structures benefit from weighted automata. In Bozapalidis Festschrift, Lecture

Notes in Comp. Science vol. 7020, pages 257–271. Springer, 2011.

29. D. Kuske, J. Liu, and M. Lohrey. The isomorphism problem for ω-automatic trees. In Proceedings of CSL

2009, number 6247 in Lecture Notes in Computer Science, pages 396–410. Springer, 2010.

30. D. Kuske and M. Lohrey. Some natural decision problems in automatic graphs. J. Symbolic Logic, 75(2):678–
710, 2010.

31. M. Lohrey and C. Mathissen. Isomorphism of regular trees and words. In Proceedings of ICALP 2011, number

6756 in Lecture Notes in Computer Science, pages 210–221. Springer, 2011.

32. J. Liu and M. Minnes. Analysing Complexity in Classes of Unary Automatic Structures. In Proceedings of

LATA 2009, number 5457 in Lecture Notes in Computer Science, pages 514–525. Springer, 2009.

33. Y. V. Matiyasevich. Hilbert’s Tenth Problem. MIT Press, Cambridge, Massachusetts, 1993.

34. A. Nies. Describing groups. Bull. Symbolic Logic, 13(3):305–339, 2007.

35. H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-Hill, 1968.

36. J. Rosenstein. Linear Ordering. Academic Press, 1982.

37. S. Rubin. Automatic Structures. PhD thesis, University of Auckland, 2004.

38. S. Rubin. Automata presenting structures: A survey of the finite string case. Bull. Symbolic Logic, 14:169–209,

2008.

39. A. Salomaa and M. Soittola. Automata-theoretic aspects of formal power series. Springer, 1978.

40. R. I. Soare. Recursively enumerable sets and degrees. Perspectives in Mathematical Logic. Springer, 1987.

41. W. Thomas. On frontiers of regular trees. RAIRO Theoretical Informatics and Applications, 20:371–381, 1986.

42. T. Tsankov. The additive group of the rationals does not have an automatic presentation. http://arxiv.org/

abs/0905.1505.

43. A. Weber. On the valuedness of finite transducers. Acta Informatica, 27:749–780, 1990.

40

