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Abstract

Smart home is a promising solution for the aging population who requires assistance but prefers 

living independently at home. Smart home is a manifestation of pervasive computing which 

incorporates multimodal sensors, actuators, devices, information, and communication 

technologies to gather different information about the environment and its users. One of the 

main characteristics of pervasive computing is context awareness. In this thesis, we present the 

development of a context-aware activity recognition system using wearable and sensors 

embedded in environment to continuously monitoring activities of daily living of elderly 

people. The proposed system fuses contextual information about user’s physical activity, 

location and interactions with objects in the environment using ontology, and accurately 

recognize the activities. To develop a robust physical activity recognition, we propose a novel 

adaptive sliding window segmentation to select a more effective window segmentation of 

acceleration signals. In addition, we propose an activity transition diagram to be integrated into 

the activity classification algorithm to validate the activity transition after window 

classification. To overcome the limitation of ontology in dealing with uncertainty due to 

missing sensor data, we propose a novel reasoning algorithm that integrates ontological 

reasoning mechanism with Dempster-Shafer theory of evidence. The algorithm provides 

support for handling uncertainty by quantifying uncertainty while aggregating contextual 

information and produce a degree of belief to facilitate a more robust decision making in 

activity recognition. To further enhance the recognition accuracy of the system, we present the 

integration of user context into the activity ontology to handle uncertainty due to missing sensor 

data. In addition, the approach allows additional and more precise inference of activities and 

recognizes activities that do not involve interaction with objects in the environment. 
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1 
Introduction

1.1 Aging Population 

The world’s population is aging. Longer lifespans and lower birth rates have led to the increase 

in the number and proportion of elderly population. According to World Health Organization, 

it is estimated that there will be 2 billion people of age 60 and above by 2050 [1]. In New 

Zealand, the composition of population pyramid is changing, with the older age group 

widening. The projection of elderly population aged over 65 by the year 2051 is 1.14 million, 

which is 25% of the population [2]. In Europe, it is expected that the elderly population of 

European Union (EU27) aged 65 years and over to rise to 30% in 2060 [3]. In the United States, 

the elderly population aged 65 years and over is projected to increase to 20.9% in 2050 [4]. The 

world’s fertility rate and life expectancy is illustrated in Figure 1.1 [1]. Clearly, in general, the 

trend of growth rate is decreasing while the trend of life expectancy is increasing. It is projected 

that by the year 2050, the growth rate will drop to 2.25 children per woman and the life 

expectancy will increase to 77.06 years. By the year 2050, the proportion of elderly population 

is projected to be above 20% for all regions except Africa as shown in Figure 1.2 [1]. 
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Figure 1.1: The trend of fertility rate and longer life expectancy from 2005 to 2050. 

 

Figure 1.2: The growing elderly population (aged 60 and over). 
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Aging and dependent population is becoming a major social and economic issue. Previous 

studies have reported that chronic diseases such as Alzheimer’s disease, osteoporosis and heart 

disease are more prevalent among elderly people [5], [6]. With the increase of elderly 

population, rise in healthcare cost with insufficient and ineffective care are becoming an issue 

in the future. According to the Ministry of Health New Zealand, people aged over 65 are the 

high users of general practice services with an average visit of six or seven times a year. 

Hospital discharges have been increasing for elder people, from 5.57% in 2006 to 6.30% in 

2013 [7]. It is also projected that the cost of elderly healthcare will be experiencing the greatest 

growth. In United States, the healthcare costs for elderly aged 65 and over is three to five times 

greater than the people aged less than 65, and the cost of public healthcare is projected to 

increase by 21% by 2020 [8].  

Elders who are dependent and vulnerable due to cognitive and physical impairment require 

assistance in their activities of daily living (ADL). Also, caregivers become overburdened with 

continuous monitoring responsibilities. As a result, it affects the timely assistance the elders 

require and deserve. On the other hand, most elderly people prefer to remain independent rather 

than to be moved in to a home care [9], [10]. In fact, a study has shown that people fear more 

losing independence in old age than death [11]. Therefore, it is of the utmost importance to 

develop technologies and services which can enable elderly people to live independently and 

happily, and at the same time enhancing their quality of life. 

1.2 Motivation and Objectives 

A retirement village contains several homes of elderly people who are dependent and vulnerable 

in different aspects due to cognitive and physical impairment. The residents are living alone 

with limited assistance.  A system is context aware if it exploits information about the context 

of its user and adapts itself to provide relevant services in order to improve the user experience 

[12]. Therefore, a context-aware system is a potential way to monitor the residents’ ADL in the 

village and alert healthcare provider in the case of emergency. Furthermore, it is desirable for 

the system to act upon any ongoing anomalous situation by providing reminder to the residents 
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such as to switch off stove after cooking. Ultimately, the system will allow the elders to live 

independently and at the same time enhancing their quality of life. 

Let us look at an example scenario that can be used as the motivation for our work. An 

elderly person is living alone in a house which has two bedrooms, a living room with a sofa, a 

toilet, a bathroom and a kitchen with a dining table. This person has high blood pressure and 

diabetes. Normally the person wakes up around 7 a.m. in the morning and takes medication for 

high blood pressure after toileting. Breakfast happens about 8 a.m. and is followed by a 

recommended 30 minutes exercise around 10 a.m. Lunch is between 1 and 2 p.m. after some 

routine housework such as cleaning and working with computer. Dinner is usually around about 

7 p.m. after taking insulin. Afterwards, the person watches television or reads before going to 

sleep at 11 p.m. On average, (s)he visits the toilet 15 times a day. This person’s movement and 

vital signs such as temperature, heart rate, blood pressure and blood glucose are monitored 

continuously using wearable sensors. Sensors are distributed all over the living environment 

and connected to the smart home system which implements a context-aware system for 

processing. The sensors are passive infrared (PIR) sensor or motion detector to provide user’s 

location in the house, and door sensor, temperature sensor, force sensor, water detector and fire 

sensor to provide the states of objects as shown in Figure 1.3. The information from the sensors 

will be used to infer the activities of the elderly. 

Based on the scenario, a context-aware system must be able to provide monitoring services 

and healthcare support to the elderly. In realizing this goal, a context-aware system must be 

aware of the normal and abnormal situations by learning the activity patterns of the elderly 

using context information acquired from wearable sensors and sensors deployed in the 

environment. However, activity recognition is facing a number of challenges. Activity patterns 

of an elderly are different from one to another due to different lifestyles, habits and health 

conditions and as such have their own way of performing activities. Specifically, activities can 

be carried out with a high degree of freedom in relation to the way and the sequential order they 

are performed. There is no strict constraint on the order and duration of individual physical 

actions. Furthermore, multiple activities can be carried out at the same time such as making 

coffee while heating up food. 
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Wearable sensors such as accelerometers are proved by a number of researchers to be 

effective in monitoring physical activities. Typically, the accelerometers are worn on various 

parts of the body such as wrist, waist and ankle to capture hand motions and ambulatory 

activities. However, multiple accelerometers are not feasible for long-term activity monitoring 

because they impede elderly’s daily living activities due to multiple attachments to the body. 

Furthermore, wearable sensors are not suitable for monitoring activities that involve complex 

physical motions and multiple interactions with the environment [13], [14]. Embedded sensors 

in a smart home provide contextual information about the environment which can be used to 

infer the activity being undertaken. For instance, a sensor embedded or installed on a chair can 

indicate if a person is sitting on it. However, the contextual information is emerging from 

heterogeneous sources with different contextual representation. Furthermore, uncertainties are 

always present due to sensor errors, communication failures and variability in human activities.  

The aim of this thesis is to develop a context-aware activity recognition system for elderly 

healthcare using wearable and sensors embedded in the environment. The main goal has been 

carried out through the following three research objectives. 

1. To develop a robust wearable sensor-based activity recognition system using a single 

accelerometer that provides context information on the physical activity of the user.  

2. To develop an algorithm that handles uncertainty due to missing sensor data in ontology-

based activity recognition. 

3. To develop a sensor fusion technique that combines context information from wearable 

and ambient sensors. 
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Figure 1.3: Sensor distribution in smart home.
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1.3 Contributions 

The main contributions of this thesis are presented as follows: 

 We propose a novel adaptive sliding window segmentation for physical activity 

recognition using a single tri-axial accelerometer. The approach can adaptively change 

the window size to detect not only static and dynamic, but also transitional activity 

signals of varying periods as the segmentation window is being evaluated. The window 

size is dynamically adjusted based on the continuous evaluation of the activity signals. 

As a result, a more effective window size can be selected for signal segmentation to 

achieve more accurate classification (Chapter 3). 

 We propose a physical activity transition model in the form of state transition diagram 

to model the temporal dependence of physical activities. The approach includes the 

integration of the transition diagram into the classification algorithm to validate the 

activity transition. As a result, the recognition accuracy is improved (Chapter 4). 

 We propose a novel Description Logic-based ontological reasoning algorithm for 

activity recognition in smart environments. The algorithm resolves uncertainty due to 

missing sensor data while combining context information, and hence supporting the 

decision making process in order to improve the reasoning performance (Chapter 5). 

 We investigate the fusion of wearable and ambient sensors for recognizing activities in 

smart environments. The approach exploits the advantages of both types of sensing to 

resolve uncertainty due to sensor observation errors. The approach includes the proposal 

of ontology-based sensor fusion methodology (Chapter 6). 

1.4 Thesis Outline 

The following chapters are included in this thesis: 

 Chapter 2 reviews the areas of study relevant to the development of context-aware 

activity recognition system in smart home environment that include sensing, activity 

modeling and recognition approaches. 
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 Chapter 3 describes a novel approach to activity signal segmentation in which, the 

window size is adaptively adjusted according to signal information to achieve the most 

effective segmentation. This is significant because fixed window size will not produce 

good segmentation due to the diversity of activity signals, which will lead to 

misclassification. We describe the characterization of activity signals and the rationale 

behind the introduction of adaptive sliding window.  

 Chapter 4 describes the proposed activity transition diagram to model the temporal 

dependence of physical activities. The approach exploits the temporal dependence and 

improves the recognition accuracy by validating the activity transition after window 

classification. The integration of transition model enables the system to become more 

robust. 

 Chapter 5 describes a novel reasoning algorithm which integrates Description Logic-

based ontological reasoning with Dempster-Shafer theory to handle data uncertainty due 

to missing sensor data. This is significant because traditional ontological reasoning can 

only infer an activity when all the contextual information that define the activity is 

asserted. If one of the contexts is missing, ontology will not be able to infer the activity 

and as a result, the recognition accuracy is reduced. We describe the modeling of 

uncertainty in ontological reasoning and the evidential operations. 

 Chapter 6 describes the proposal of an activity recognition system that uses an integrated 

wearable sensor and dense sensing approaches. The approach can not only resolve 

uncertainty due to missing sensor data, but also allows additional and more precise 

inference of information about the activity being recognized. The approach can also 

infer activities which do not involve user-object interaction context. 

 Chapter 7 give conclusions about the presented context-aware activity recognition 

system and provides some directions for the future work. 
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2 
Background Research and System 

Architecture

2.1 Introduction 

Elderly population is increasing in every part of the world. This brings a need for more 

healthcare options. This chapter discusses the roles of smart homes in supporting independent 

living of the elderly populations. Firstly, the overview of smart homes and the essential contexts 

in recognizing situations in a home environment are presented. Then, we discuss human activity 

recognition from the aspect of sensing, activity modeling and recognition approaches. Finally, 

we summarize the chapter by describing the proposed context-aware activity recognition 

system for elderly healthcare. 
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2.2 Smart Homes 

Smart home is a promising solution for the aging population, assisting and providing services 

to the elders living alone at home [15]–[17]. Smart home technology aims to provide better 

quality of life and to ensure elderly to live independently through automated appliance control 

and assistive services. Home appliances and devices can be controlled to execute tasks 

remotely. Household electricity usage can be reduced by the ambient intelligence system. The 

intelligent monitoring system can be used to ensure the safety of inhabitants in the environment. 

Specifically, the objectives of a smart home is to provide comfort, security and healthcare 

services to the inhabitants [15].  

User comfort can be achieved through automation of home appliances and remote access 

and control of home environment. Home appliances automation is an intelligent system that 

utilizes human activity and behavior information. Based on the information, home appliances 

are automated to make life easier and more comfortable by facilitating the inhabitants’ daily 

activities. Furthermore, energy usage can be optimized by controlling unattended home 

appliances. Remote access and control provides a platform for users to control and monitor 

home appliances from distant and remote location and hence, make life more convenient. Smart 

homes are vulnerable to security threats such as hacking, phishing and firmware alteration. 

Security services ensure user privacy by enforcing system security enforce through user and 

device authentication. 

Elderly people who are living alone with limited assistance can be worrying for family 

members. Healthcare services in smart homes provide continuous monitoring of the inhabitants’ 

health conditions and overall well-being. The physiological state and vital signals are acquired 

to identify the health conditions, as well as to generate warnings and alarms if necessary. Long-

term data can be analyzed to predict any potential risks in the future. In addition, daily activities 

are monitored to detect abnormal behavior or deviations from the routine. It has been suggested 

that smart home technology has positive effects on care efficiency and cost. However, despite 

the positive prospects, smart home technology has not been widely accepted and adopted. 

Furthermore, the technology readiness level of smart homes in general is still at low as reported 

in [18]. Thus, efforts are needed for research in smart homes especially in the domain of fall 
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detection and health and activity monitoring. One area that needs special attention is the 

development of “intelligent” algorithms for sensor data analysis and interpretation [19]. 

2.3 Context-aware System for Elderly Healthcare 

Smart home is a manifestation of pervasive computing that involves incorporating multimodal 

sensors, actuators, devices, information, and communication technologies [20]. Sensors gather 

different types of information about the environment including the inhabitants, deliver that 

information to automatic systems and caregivers to control the environment or to healthcare 

professionals to monitor their behavior and health conditions. Pervasive computing is a 

paradigm in which computing can occur using any device in any location to access and 

exchange information. One of the main characteristics of pervasive computing is context 

awareness [21], [22]. A system is context aware if it exploits information about the context of 

its user and adapts itself to provide relevant services in order to improve the user experience 

[12]. The term context has been defined by many researchers−Dey et al. [12] defined context 

as: “Any information that can be used to characterize the situation of a person, place, or object 

that is considered relevant to the interaction between a user and an application”. Context is not 

raw data obtained from a sensor. Context is generated by processing raw sensor data. 

Context can be any measurable information which can affect the behavior of the system. 

Typically, contexts are acquired through low-cost and low-power sensor nodes wirelessly 

connected and working together in the environment and such networks are called wireless 

sensor networks (WSN). These sensor nodes are attached to specific locations and objects to 

provide context information about the users’ location and users’ interaction with objects. Sensor 

nodes are also attached to the users to create an interface to humans, which allows them to 

capture information related to body movements and health conditions and send this information 

for further processing. The interconnection of the sensors into a system is called body area 

sensor network (BASN).  

Context information is gathered from a large variety of sensors that differ in their sensor 

output, sampling rate and semantic level. Some sensors provide fast and real-time raw data 

which has to be interpreted before being useful to the application. For examples, inertial sensors 
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provide continuous acceleration and angular velocity data of body motions at high frequency 

for estimating the position and orientation of body segments [23] and recognizing human 

activities [24]. Whereas information such as user profiles do not need further interpretation and 

are updated rarely. In [25], social networks are used to retrieve personal information such as 

gender and age for context-aware multimedia recommender. Moreover, context information 

can also be derived from existing context information. For instance, distance between two 

objects can be determined using their coordinates provided by GPS [12]. Therefore, context-

aware system needs to formally represent the contexts in order to ease the development and 

reduce the complexity of its application. It is also necessary for consistency checking before 

sensor data and contexts are being processed [26], [27]. The methodology of organizing and 

storing contexts is called context modelling. The ability to classify and infer situations is 

important in order for the system to adapt itself and react to different circumstances. A situation 

is typically defined by the activities that are occurring in a specific location and at a specific 

time or for a certain period of time [28], [29]. Therefore, activity context is an essential context 

in context-aware system for elderly healthcare. However, context information derived from 

sensors, called low-level context, is less meaningful, trivial, vulnerable to small changes, and 

uncertain. In order to better understand and deduce new knowledge about the environment, the 

context information should be interpreted to acquire activity information that can describe the 

situation of environment [30]. The process of identifying the state of the inhabitant in a smart 

home is called human activity recognition.  

2.4 Human Activity Sensing 

Human activity recognition is a process of discovering an activity pattern and recognizing the 

activity from a series of observations acquired by various types of sensors [31]. With respect to 

the type of sensors, sensing approaches to activity recognition can be classified into two groups. 

The first group is referred to as vision-based activity recognition, which is based on the use of 

vision sensors to record the events in the environment. The sensor data are a sequence of 

digitized images. The approach utilizes video processing techniques to analyze the visual 

observations and recognize the ongoing activities. The recognition process includes low-level 
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features extraction, action descriptions from low-level features and semantic interpretations 

from primitive actions [32], [33]. However, vision-based sensors in the context of smart homes 

are debatable as they are perceived as recording devices that intrude resident’s privacy [34], 

[35]. The second group of approaches is referred to as sensor-based activity recognition, which 

is based on the use of sensor network technologies for activity recognition. The sensor data are 

time series of parameter values and state changes. These approaches utilize data fusion, 

machine learning techniques and formal knowledge engineering methods for activity 

recognition [35].  

The sensing approach of sensor-based activity recognition can be further classified into two 

categories. The first approach makes use of wearable sensors, either dedicated sensors attached 

to human body directly or indirectly (i.e. sensors embedded into clothes, wristwatches, 

eyeglasses etc.) or those available on the portable devices like mobile phones. The sensors 

generate signals when the user performs activities, where their characteristics describe the 

person’s movement or physiological state. Numerous sensors have been studied to determine 

their effectiveness in activity recognition applications and can be categorized into biosensors 

and inertial sensors. Biosensors such as electrocardiogram (ECG) are found to be useful in 

discriminating walking-related activities [36]. In [37], electroencephalography (EEG) is used 

to provide information which can be integrated into classification system to improve activity 

and gesture recognition accuracy. In [38], body temperature of soldiers is monitored to detect 

hypothermia. Similar works include [39], [40]. In [39], heart rate measurement is acquired to 

monitor the dynamic regulation of the heart, while [40] measures knee joint movement to assess 

its functional ability. Inertial sensors, specifically accelerometers, are the most frequently used 

in monitoring human activity. They measure acceleration of an entity along sensitive axes. 

Accelerometers are found to be effective in recognizing physical activities such as walking, 

running, sitting and standing [35]. They can also be used for detection of fall [41].  

Wearable sensor-based activity recognition suffers from limitations and is not suitable for 

monitoring ADL which involve multiple interaction with the environment. For example, 

preparing meal activity involves complex hand motions and object interactions which would be 

difficult to recognize by using wearable and especially inertial sensors only. It is also not 

sufficient to differentiate even simple activities such as working with computer and having 
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meals [35]. As a result, another approach which makes use of sensors attached to objects has 

emerged. The approach which is referred to as dense sensing approach attaches sensors to 

objects in the environment to capture the user-object interactions. The approach performs 

activity recognition through the inference of user-object interaction. An object being used 

provides clues about the activity being undertaken. In this way, activities can be recognized 

from data collected from sensors that monitor the interaction with objects in the environment.  

Dense sensing makes applications such as smart environments possible, whereby it is 

adopted to realize smart homes [15], [16], [20]. The deployed sensors capture an inhabitant 

movement and environmental events and these data are processed to infer the undergoing 

activities. This approach is called “dense sensing-based activity recognition”. In [42], 

environmental state-change sensors are used to collect information on user-object interaction 

to recognize activities such as preparing meal, toileting and grooming. In [43], four binary 

sensors, motion detectors, break-beam sensors, pressure mats and contact switches, are used to 

track the inhabitants’ movements and recognize their activities. Similar work is found in [44] 

where sensors such as reed switches, pressure mats, mercury contacts, PIR, float sensors and 

temperature sensors are used for activity recognition. In [45], accelerometers are attached to 

objects such as plates and cups, and reed switches are attached to fridge, dishwasher and 

drawers for activity recognition. 

2.5 Activity Modeling and Recognition 

Activity modeling and recognition can be classified into two approaches, data-driven 

approaches and knowledge-driven approaches. Data-driven approaches use learning-based 

(machine learning) techniques to model the activity patterns by extracting specific features from 

sensor data. In knowledge-driven approaches, prior knowledge is exploited to build semantic 

activity model by using knowledge engineering techniques, and then reason on it with input 

sensor data. 
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2.5.1 Data-driven Approaches 

There are two categories of data-driven approaches, generative modeling and discriminative 

modeling. Generative modeling attempts to model the probability distribution over the sensor 

observations and activity labels, and performs classification using Bayes theorem to calculate 

the posterior probability. Naïve Bayes is a simple classification model based on Bayes’ theorem 

with independence assumption between the features, and has been used extensively for activity 

recognition [46]–[49]. The classifier models all features that characterize the activity by 

estimating their joint probabilities, and chooses an activity with the maximum posterior 

probability. In the literature, naïve Bayes produces good classification accuracies. However, the 

performance might reduce if the independence assumption is broken [50]. Furthermore, naïve 

Bayes is not capable of modeling temporal information which is important in activity 

recognition [35]. Bayesian network is a probabilistic graphical model that represents a set of 

random variables and their conditional probabilities in the form of directed acyclic graph. The 

model encodes the dependencies among the variables and the causal relationships, allowing 

more accurate activity classification [51]–[54]. 

Hidden Markov Model (HMM) is a probabilistic approach that can model temporal 

information. HMM is composed of a finite set of hidden states and observations, where each 

state has a probability distribution over state transitions and the possible observations. HMM 

have been successfully used in the domain of activity recognition due to its ability to model 

temporal information [55]–[58]. In [57], the activities are the hidden states and the observations 

are the user-object interactions derived from the sensor data. In [55], two-layer HMM is 

developed for recognizing hospital-staff activities. The first layer comprises two HMMs, where 

people interactions and object interactions are used as inputs. The outputs of the models are fed 

to the second layer HMM to produce the classification. A problem with the use of traditional 

HMMs is that the state duration is modeled with fixed distribution. Hidden semi-Markov model 

can be used to explicitly model the state duration [59], and, hence improving the performance 

of the classifier. Despite the successful implementation in activity recognition, due to its strict 

independence assumptions on the observations, an HMM is not capable of capturing transitive 
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dependencies of the observations. Furthermore, an HMM may not be able to recognize all the 

possible observation sequences consistently without significant training process [57]. 

Discriminative modeling attempts to model the dependence of the activity labels on the 

sensor observations. The k-Nearest Neighbors (k-NN) is a non-parametric, instance-based 

learning that performs classification based on similarity measure called distance function. The 

approach has been used in activity recognition and provide very good results [48], [60]. A 

drawback of k-NN is the cost of computation because classifications require the entire training 

set to be compared with the new instance, and, hence, not feasible for mobile devices [24]. 

Decision Tree is a hierarchical model where the training data is partitioned into nodes and 

branches. Each branch from the root to a leaf node represents the classification rule. The 

generated classification rules are easy to understand and interpret, and useful for analysing the 

feature extraction and sensor performances [46]. [46], [47], [61], [62] have used Decision Tree 

in classifying human activities from the body acceleration and angular velocity data. Support 

vector machine (SVM) is a classification algorithm that searches for the linear optimal decision 

boundary to separate the training data of one class from another. SVM has been applied in 

classifying physical activities [47], [63] and in detecting falls [64]. A variant of SVM called 

Probabilistic-SVM is proposed and provides a probability vector instead of a single predicted 

output to deal with transitional activity signals such as stand-to-sit and sit-to-lie [65]. 

Conditional random field (CRF) is a discriminative classifier that includes temporal information 

by modeling the conditional probability of the state sequence rather than the joint probability 

of the states. As such, the classifier eliminates the independence assumption which allows CRF 

to incorporate complex features of the observation sequence. CRF has been used in classifying 

activity from body acceleration data [66], [67] and embedded sensors [68]. Van Kasteren et al. 

[69] recorded a dataset consisting of 14 sensors embedded in a three-room apartment for 28 

days. Using the dataset, a study has been conducted to compare the offline and online 

performance of HMM and CRF model for activity recognition in terms of accuracy. The results 

show that CRF achieved an overall accuracy of 95.6% which is 1.1% higher than HMM in 

offline experiment. However, the overall accuracy for HMM (94.4%) is higher than CRF 

(88.2%) in online experiment. 
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2.5.2 Knowledge-driven Approaches 

Numerous knowledge-driven approaches have been developed such as key-value, markup 

schemes, object-based, logic-based and ontology-based modeling [12], [27], [70]. Key-value 

model is the simplest form of context modeling. It uses simple key-value pairs to define the list 

of attributes and their values describing context information used by context-aware 

applications. Markup scheme is an improvement over the key-value modeling technique 

whereby the key-value pairs are stored under appropriate tags, and as a result it allows efficient 

data retrieval. An example of popular markup scheme modeling is Composite 

Capabilities/Preference Profiles (CC/PP) [71]. Further model validation is available through 

schema definitions such as eXtensible Markup Language (XML). However, these approaches 

are not able to capture variety of context types, relationships, dependencies, timeliness and 

quality of context information. These approaches also exhibit lack of consistency checking and 

reasoning capabilities [70]. Object based technique uses object oriented concepts to model data 

using class hierarchies and relationships. The advantages of using this technique are 

encapsulation, re-usability and easy integration with context-aware systems. However, it does 

not have reasoning capabilities and validation of the model is difficult due to the lack of 

standards and specification [12], [70].  

Logic based modeling uses facts, expressions and rules to represent context information. 

Rules can be used to express policies, constraints and preferences. Therefore, reasoning is 

possible in logic based modeling. Furthermore, the model representation can be developed by 

employing interactive graphical techniques to allow non-technical users to add rules and logic 

to the system which makes it highly flexible. However, logic based modeling lacks standards, 

specification and validation and is strongly coupled with applications, which reduces its re-

usability and applicability [12]. Ontology-based modeling is a formal and explicit way of 

specifying and representing domain knowledge through formal axioms and constraints. It uses 

semantic technologies to represent and organize context information according to their 

relationship into hierarchical structures which are understandable to both human and machine. 

Ontology-based models have several advantages over other models [12], [50], [70], [72]. 

Firstly, they allow the domain knowledge to be decoupled from the operational knowledge. 
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Next, they have strong support through standardization such as Resource Description 

Framework Schema (RDF) and Web Ontology Language (OWL) and hence a variety of 

development tools are available. The current recommendation is OWL 2 which is an extended 

version of OWL. The main reasons OWL is recommended as the context modeling mechanism 

are interoperability among other context-aware systems, high-level of inference/reasoning 

support, more expressive and World Wide Web Consortium (W3C) support for standards and 

specification. Finally, rules which are tightly integrated into reasoning can be expressed via 

Semantic Web Rule Language (SWRL). Despite the advantages of ontology-based technique, 

ontological reasoning is computationally expensive, support for modeling temporal information 

is minimal and they cannot deal with uncertainty. 

2.6 Dealing with Uncertainty in Activity Recognition 

Uncertainty is always present in ambient intelligence environment [73]. Uncertainty may arise 

due to errors in sensor measurements, missing activations or communication failures. Activities 

performed by persons are carried out in different sequences and with different durations 

depending on the persons’ habits and lifestyle. Hence, uncertainty may also arise as a result of 

variability in human activities. As such, uncertainty significantly influences the decision 

making in activity recognition. Uncertain sensor data is normally associated with 

incompleteness, imprecise, inaccurate, timeliness and incongruent [50], [70], [74].  

Numerous approaches have been used for reasoning under uncertainty. Probabilistic theory 

is the most widely used method in dealing with uncertainty. In probabilistic theory, the 

likelihood of an event is represented by means of a non-negative value called probability. 

Probabilistic theory such as Bayes theorem can model the reliability of sensor data by learning 

the correlation between sensor data and the activity to be detected as presented in [75]. 

Moreover, Bayesian networks are well suited for resolving conflicting data by representing 

causal relationships between context information and activities through conditional 

probabilities. In [53], contexts derived from embedded sensors are fused using Bayesian 

network to achieve location-aware activity recognition. Hidden Markov Model is another 

probabilistic approach which can be used for sensor fusion as reported in [59]. However, 
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incompleteness of sensor data would reduce the performance of probabilistic approaches 

because they requires sufficient and representative datasets to obtain reliable predictive models 

[35], [50].  

Data-driven approaches such as support vector machines (SVM) and Decision Trees model 

the classification boundary rather than the joint probability of the observation variables and 

class labels. SVM can deal with missing sensor data by defining a risk function to incorporate 

uncertainty due to missing data into the predictive model [76]. An enhancement to the Decision 

Tree-building algorithm is reported in [77], which uses a numeric weighting scheme when 

splitting the data to deal with incompleteness. Imprecise sensor data can be dealt with fuzzy 

logic. Fuzzy logic assigned a membership value to an element which quantifies the degree of 

membership of the element in a given set. For example, a range of sensor data in ontology can 

be represented by a fuzzy membership function [78]. Fuzzy logic can also be used to quantify 

the relevance of sensor data with time by defining a temporal decaying function [79]. Dempster-

Shafer (DS) theory is an evidence theory based on belief function, which can be used to combine 

context information derived from multiple sensors to calculate the degree of belief of an 

activity. In DS theory, the universal set comprises all possible states of an entity. Hence, the 

belief function can explicitly represent any ambiguity or ignorance about what is being 

observed such as incompleteness of sensor data [80]. Table 2.1 summarizes the aforementioned 

approaches in resolving uncertainty. 

Table 2.1: Reasoning under uncertainty approaches. 

 Bayesian model Decision Tree 

& SVM 

Fuzzy logic Dempster-

Shafer theory 

Incompleteness  Y  Y 

Imprecise   Y  

Inaccuracy Y Y   

Timeliness   Y  

Incongruent Y Y  Y 
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2.7 System Architecture 

As previously introduced, the objective is to develop a context-aware activity recognition 

system for elderly healthcare that is capable of inferring the ADL in the home to support 

independent living. In this thesis, an activity recognition system which combines physical 

activity recognition using a single wearable sensor and dense sensing-based activity recognition 

is proposed. Our proposed approach harnesses the best of both sensing approaches to achieve a 

robust and comprehensive context-aware activity recognition system which has the ability to 

elicit and reason context information from the user and environment (user-object interaction 

and location). In principle, dense sensing-based activity recognition recognizes the ADL by 

classifying the sensor data of the user-object interaction and location in the environment. The 

wearable sensor-based activity recognition provides context information about the user in the 

form of physical activity which can be used to resolve uncertainties in the activity recognition 

such as distinguishing between sitting on a sofa and lying on a sofa. The proposed activity 

recognition system is graphically depicted in Figure 2.1. 

The lower layer (SENSORS) includes wearable sensor and ambient sensors embedded in 

the environment. The wearable sensor is based on a single tri-axial accelerometer. The 

embedded tri-axial accelerometer provides data about the mobility and activity information 

about the user in the form of body acceleration measurement. A machine learning-based 

classifier processes the sensor data by building a feature vector to predict the user’s physical 

activity (Chapter 3). In addition, a physical activity transition model is integrated into the 

recognition system to validate the activity transition. As a result, the recognition system 

becomes more robust (Chapter 4). The classification output represents the contextual data about 

the user’s physical activity. The ambient sensors capture the raw contextual data by using 

various types of sensors. The contextual data represents the events occurring in the environment 

such as user-object interaction context and location context. The contextual data also includes 

the time of the sensor data (timestamp) that describes the temporal relationship between events. 

The data provided by the ambient sensors and wearable sensor-based activity recognition are 

communicated through a wireless connection to the base station, to be mapped into the activity 

ontology. The activity ontology is a description of shared concepts and their relationship within 
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the domain of activity recognition. Then, the ontological reasoner is used to reason the 

information represented in the ontology to infer the activity being performed in the 

environment. The ontological reasoner is integrated with DS theory to handle uncertainty due 

to missing sensor data (Chapter 5). The fusion of the contextual information from user and 

environment allows the system to resolve uncertainty during inference process achieving a 

robust context-aware activity recognition system (Chapter 6). 

 

Figure 2.1: Architecture of context-aware activity recognition system 
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2.8 Conclusions 

In this chapter, the impacts of aging population and the viable technology to support 

independent living have been presented. The overview of activity recognition system in terms 

of sensing technology and data processing techniques are reviewed. Following this, the 

proposed system architecture is described. In the next chapter, the wearable sensor-based 

activity recognition is presented. A novel adaptive sliding window segmentation and activity 

transition model for robust physical activity recognition is described. Following this, the dense 

sensing-based activity recognition is presented. A novel reasoning algorithm that features 

ontological reasoning mechanism of Description Logic and uncertainty management due to 

missing sensor data is described. Finally, the proposed sensor fusion methodology is described 

to achieve a hybrid approach to activity recognition. In each chapter, the state-of-the-art and 

research challenges are described. 
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3 
Adaptive Sliding Window for Physical 

Activity Recognition

3.1 Introduction and Problem Formulation (Physical Activity) 

This chapter introduces the methodology of the wearable sensor-based activity recognition 

system. The ability to gather the physical activity and physiological information is a crucial 

feature in context-aware activity recognition system. Particularly, monitoring physical activity 

is a task of high interest within elderly care applications because physical activity is associated 

with physical functional state [81]. Furthermore, transitional activities such as rising from a 

chair and sitting down is a prerequisite for maintaining independent living. Difficulties in 

performing these activities can limit independence and lead to a less active lifestyle and a 

subsequent deterioration in health [82]–[84]. Falls cause two thirds of fatal death in elderly 

people aged 65 years or older [85], and they are the most common type of accidents among the 

elders [86]. Most falls occurred during postural transition activities such as from standing to 

sitting and vice versa and when initiating walking [87], [88]. Several features of sit-to-stand or 
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stand-to-sit performance have been associated with falls or fall risks such as transition duration 

and number of successful attempts [86], [89]. Therefore, it is important to recognize transitional 

activities so that early preventive measures can be provided to prevent fall incidents. Also, 

physical activity is an essential information in context-aware activity recognition system to infer 

ADL [24]. ADL information can be used by the system to react and adapt to the circumstance 

of the user, allowing preventive measures to be taken if necessary. 

Activity recognition usually segments the sensor signals into windows for the successive 

features extraction and classification. The size of the segmented windows is empirically 

selected based on past experiments and hardware limitations for specific types of activity 

recognition. Majority of approaches used window size in the range of 2s to 6.7s while a few of 

them used larger window size such as 10s and 12.8s [90]–[93]. As a result, the developed 

techniques may not be applicable to be trained for recognizing different activities. In addition, 

misclassifications could still happen especially for transitional activities. This is due to the fact 

that the length of transitional activity signals varies depending on the time to complete the 

activity [92], [93]. Evidently, sliding window with a fixed size is not an effective approach for 

activity recognition system. This is the motivation for our proposed approach in which the 

window size is dynamically adapted during classification, based on certain characteristics in 

the signal, to better capture signals of different activities. 

In this thesis, a systematic adaptive signal segmentation approach is developed for physical 

activity recognition based on the use of a single tri-axial accelerometer. The foundation of 

adaptive sliding window approach is presented. The approach can detect not only static and 

dynamic, but also transitional activity signals of varying period as the segmentation window is 

being evaluated and its size adapted dynamically. The window size is adaptively adjusted based 

on the continuous evaluation of the activity signals. As a result, a more effective window size 

can be selected for segmentation to achieve more accurate classification. 
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3.2 Related Works 

3.2.1 Existing Signal Segmentation Approaches 

In activity recognition, signal segmentation is a technique of dividing a large signal into smaller 

segments for processing and has direct impact on the quality of feature extraction and 

classification accuracy [94]. At the same time, it also determines suitability of the approach for 

real-time operation. Numerous techniques have been proposed for signal segmentation. Santos 

et al. [95] proposed an adaptive sliding window approach to improve segmentation of human 

action sequences for activity recognition. In the approach, window size and time shift are 

dynamically adjusted based on entropy feedback to improve the classification results. However, 

the experiments do not involve transitions between activities such as stand-to-sit, sit-to-lie and 

lie-to-sit. Furthermore, the algorithm could be computationally expensive since shorter time 

shifts would increase the rate of classifications per second. Kozina and Lustrek [96] proposed 

a segmentation algorithm that searches for significant differences between consecutive samples 

which is defined by the reduction of the samples’ values exceed certain threshold. The threshold 

is determined by the difference of average maximum and minimum values of a set of samples. 

Bifet & Gavalda [97] proposed a segmentation algorithm that can adapt the window size 

according to the determination of concept drift (change in data stream) in which, the window 

size is increased when the data values in the window are stable (low concept drift) to include 

more training instances. Otherwise, the window size is decreased. The change detection is based 

on mean difference of two sub-windows is greater than a given threshold. However, the 

algorithms are sensitive to noise such as abnormal high or low peaks which is very common in 

acceleration data. Núñez et al. [98] proposed the OnlineTree2 algorithm which uses an adaptive 

windowing technique to induce improved Decision Tree by evaluating the performance of the 

Decision Tree. Sheng et al. [99] proposed an adaptive time window method to extract features 

from quasi-periodic signals more accurately for activity recognition. The method uses pitch 

extraction algorithms to achieve more effective segmentation. The experiments involve 

dynamic and static activities only. Activity-defined techniques detect changes in activity and 

take the initial and end time as segmentation boundaries. Then, the specific activity in the 
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window is identified. In [100] and [101], wavelet analysis is used to detect changes in frequency 

characteristics which indicate changes in activity. In [102], a changing point which is defined 

by the change in action from static activity to dynamic activity and vice versa is detected by 

calculating the displacement of sensor data, and from this point the window segmentation is set 

and classified. Event-defined techniques locate specific events such as heel strikes and toe-offs 

to segment a signal [103], [104]. The detection of events is achieved by filtering the signals to 

produce resultant signals which indicate the location of the events. In [105], wavelet analysis is 

used to detect the heel strikes and toe-offs events. Jasiewicz et al. [106] uses foot linear 

accelerations and foot sagittal angular velocity to detect the events. Benocci et al. [107] detects 

walking tasks on loaded conditions by identifying gait cycle through heel strike events. Symbol-

based method is used to detect heel strikes and toe-offs events in [108]. Ignatov and Strijov 

[109] proposed a segmentation algorithm for activity recognition that defines the segmentation 

boundaries by extracting the fundamental period of the signals. Sliding window is the most 

widely used technique in activity recognition due to its simplicity. It segments the signal into a 

window of fixed size for features extraction and classification. Then the window is shifted to 

segment new sensor data with a degree of overlap. A degree of 50% would shift the window by 

half of its size, which means 50% of the previous data are included in the window. A degree of 

0% means that the windows are not overlapping. Various window sizes from 0.1s to 12.8s have 

been used in previous studies [90]–[93]. However, in our study we have found that fixed sliding 

window is not an effective segmentation approach for activity recognition because the lengths 

of transitional activities are varies from one to another. A small window size could split an 

activity signal while large window size could contain multiple activity signals. Both cases could 

lead to suboptimal information for an activity classification algorithm. 

3.2.2 Physical Activity Recognition Systems 

Inertial sensors, specifically accelerometers, are the most frequently used, and they are 

found to be effective in monitoring physical activities such as walking, running, standing and 

sitting [35]. In [46], [64], [67], [110], [111], multiple accelerometers were placed on different 

parts of body to investigate the performance of the sensors at various body parts for activity 

recognition. Their findings provide a strong case for the use of accelerometers in activity 
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recognition. Some of the studies utilized accelerometers with other sensors such as barometer, 

electrocardiogram (ECG) and GPS [36], [47]. Multiple attachment of sensors allows the 

systems to recognize complex activities such as cooking, grooming and cleaning with high 

accuracy. However, these systems are not feasible for long-term activity monitoring because 

they impede subject’s daily physical activities due to multiple attachments to the body [13]. The 

use of single accelerometer has been investigated for activity recognition with encouraging 

results [36], [47], [63], [112]–[115]. The focus of the studies is to recognize physical activities 

such as ambulation activities (walking, running), body postures (sitting, standing) and postural 

transitions. In [36], [47], [63], [112], [113], [116], fixed window size in the range of 2.56s to 

10s is used to classify the activity signals. In [114], [115], wavelet transform is used to 

decompose the raw acceleration signals to extract wavelet features such as low-frequency 

components and wavelet coefficients using 2.56s and 10.24s window with 50% overlapping. 

The results show wavelet transform can discriminate the activities effectively. However, 

according to [90], time-frequency features outperform the wavelet features in the performed 

experiments. All the aforementioned works do not consider transitional activities in their 

studies. 

Transitional activities are usually disregarded in activity recognition since the number and 

length of transition windows is relatively lower and shorter than for other activities as reported 

in [24]. A number of systems have been proposed which consider transitional activities in the 

classification. In [117], an algorithm is designed to compute tilting angles using signals from 

three wearable sensors. The computed tilt angles are used to classify walking, body postures 

and postural transitions such as stand-to-sit and sit-to-stand. However, these systems require 

attachment of multiple sensors to the body. Ahanathapillai et al. [118] utilized a single 

accelerometer worn on the wrist to recognize walking, sitting, stand-to-sit and sit-to-stand. 

Using k-NN, accuracy rate of 89% was achieved. Window size is not mentioned in the study. 

Khan et al. [119] utilized a single accelerometer to recognize physical activities including 

postural transitions such as stand-to-sit, sit-to-lie and stand-to-walk with an accuracy of 97.9%. 

However, fixed window size of 3.2s is used which can give rise to an increase in false negative 

rate especially when the main focus is ambulation activities and body postures rather than 

transitions. 
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Reyes-Ortiz et al [65] presented the Transition-Aware Human Activity Recognition to deal 

with transitional activities: stand-to-sit, sit-to-stand, sit-to-lie, lie-to-sit, stand-to-lie and lie-to-

stand. 2.56s window size and 50% fixed window overlap is used to classify the signals from an 

accelerometer and a gyroscope attached to the waist. The approach uses heuristic filtering 

technique to filter a sequence of classification in the form of probability vectors to recognize 

transitional activities by measuring the length of the signal activation. A transitional activity is 

determined if the signal activation does not exceed a threshold. However, the system does not 

distinguish between the different transitional activities in which the transitional activities are 

classified as postural transition. The proposed approach achieved overall accuracy of 96.7%. 

Gupta and Dallas [48] introduced new features to effectively capture the characteristics of 

transitional activities: stand-to-sit/sit-to-stand and stand-to-kneel-to-stand. The features are 

mean trend, windowed mean difference, variance trend, windowed variance difference. These 

features further break the fixed window size of 6s into 0.5s sub-windows with no overlap, and 

extract the characteristics of the signals within the sub-windows. They also evaluated features 

called detrended fluctuation analysis coefficient, uncorrelated energy and maximum difference 

acceleration to capture the correlation and uncorrelation between signals. The features were 

chosen ahead of other features such as mean, variance and energy by Relief-Feature (Relief-F) 

selection algorithm and wrapper-based sequential forward floating search (SFFS). The 

proposed approach achieved overall accuracy of 98%. However, stand-to-sit and sit-to-stand 

are not distinguished by the system in which the activities are classified as a single class (sit-

to-stand/stand-to-sit). Table 3.1 shows the comparison of the related works and our proposed 

approach in terms of wearable sensing component and activities recognized. 

All presented existing approaches used sliding window technique with various fixed 

window sizes and degrees of overlapping without discussing criteria for selecting window size. 

The impact of window size on the performance of activity recognition system has been 

investigated in [92], [93]. The results show a variation in accuracy between the different 

window sizes, with transitions being most often misclassified. In this work, the transitional 

activities are targeted by adaptively adjusts the size of segmentation based on the signal 

information. Therefore, a more effective segmentation can be selected to achieve more accurate 

classification. We validate the proposed algorithm with an internal and public datasets. The 
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datasets contain physical activities and transitional activity signals of different lengths which is 

required for the evaluation of the system. Additionally, we have implemented the state-of-the-

art approach described in [48] to compare with the proposed approach. This work is, to the best 

of our knowledge, the first to propose an adaptive sliding window to deal with transitional 

activities. 

Table 3.1: Comparison of different related works that deal with transitional activities. 

Referenced work Wearable sensing 

component 

Activities recognized 

Reyes-Ortiz and colleagues Single wearable sensor: 

accelerometer and 

gyroscope. 

Seven activities: walking, 

walking upstairs, walking 

downstairs, standing, sitting, 

lying down and postural 

transition. 

Gupta and Dallas Single wearable sensor: 

accelerometer. 

Six activities: walking, 

running, jumping, staying 

stationary, sit-to-stand/stand-

to-sit and stand-to-kneel-to-

stand. 

Adaptive sliding window 

(this dissertation) 

Single wearable sensor: 

accelerometer. 

Ten activities: walking, 

standing, sitting, lying face-

up, lying face-down, stand-

to-sit, sit-to-stand, sit-to-lie, 

lie-to-sit, falling. 

3.3 Characterization of Activity Signals 

A key factor in signal segmentation is to select a suitable window size for activity classification. 

Window size is important because it needs to capture necessary characteristics of a signal in 

order to achieve correct detection/classification. Short windows could slice an activity signal 

into multiple separate windows. Thus a truncated signal lacks the full information to describe 

the activity. On the other hand, larger window size could contain multiple activity signals which 

could also lead to misinterpretation of physical activities. The most effective window size 

depends on the type of signals being evaluated because different activities have different 

periods of motion. The scenario is shown in Figure 3.1. The signal contains three activity signals 
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(A1, A2 and A3) with varying length. The fixed sliding window with 50% overlapping is 

employed to classify the activities. As shown in Figure 3.1, only signal A2 is shorter than the 

window size while signals A1 and A3 are longer. Therefore, the signals are not fully segmented 

by window W1, W2 and W4. In both cases, misclassification could happen because the 

windows do not have optimal information of the signals. 

 

Figure 3.1: Activity classification with fixed sliding window. 

To demonstrate the differences in signal characteristics and motion periods, three scenarios 

of activity signal are considered and illustrated in Figure 3.2 and Figure 3.3. The signals are 

generated at 50Hz by an accelerometer attached to the right waist. In the first scenario, the 

signals are generated by dynamic activity. Dynamic activity signal exhibits periodic behavior 

with high frequency components and the trend is generally flat. An acceleration signal along 

the horizontal axis, 𝐴𝑦 of a dynamic activity (walking) is illustrated in Figure 3.2(a). The second 

scenario involves segmenting signals generated by static activities. Since static activities do not 

involve much body movement, the generated signals have almost constant magnitude values 

and very low frequency components. Therefore, the trend of the signals is also generally flat. 

Figure 3.2(b) illustrates the acceleration signal along the horizontal axis, 𝐴𝑦  of the standing 

activity. 
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(a) 

 

(b) 

Figure 3.2: Acceleration signals for (a) walking and (b) standing. 
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(a) 

 

(b) 

Figure 3.3: Acceleration signals for (a) stand-to-sit and (b) sit-to-stand. 

In the third scenario, the signals have low frequency components and the magnitude is either 

increasing or decreasing. Furthermore, the signal length is varying from one to another because 

some activities take longer time to complete. This type of signal is generated by transitional 

activities. For example, from the position of standing to sitting, the trend of the acceleration 

signal along the horizontal axis is decreasing before the magnitude is stabilized at -5m/s2, and 

it takes 2.5s (125 samples) to complete as illustrated in Figure 3.3(a). The flat signal indicates 

the person is in a sitting position. Conversely, when the person is getting up, the trend of the 
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signal is increasing before the magnitude stabilizes at 0m/s2, and it takes 0.4s (20 samples) 

longer to complete as shown in Figure 3.3(b). Evidently, fixed size window is not the most 

effective approach to achieve accurate activity recognition due to the diverse characteristics and 

periods of different activity signals. 

 

Figure 3.4: Activity classification with adaptive sliding window. 

In this thesis, we present the adaptive sliding window algorithm for physical activity 

recognition as shown in Figure 3.4. In Figure 3.4, activity signals of varying length are being 

classified by employing adaptive sliding window. The algorithm has an initial size of window 

used for segmentation which can be expanded dynamically to accommodate more samples if 

the signal is deemed longer than the current window size. The scenario is shown in Figure 3.4, 

in which windows W1’ and W3’ are the actual segmentation windows expanded from W1 and 

W3, respectively, since signals A1 and A3 are longer than initial window size. In this way, a 

more effective segmentation for classification can be achieved. The key challenges are the 

criteria for triggering window size expansion, how to adapt the window size to capture the 

whole signal and how to determine the most effective window size. 
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Figure 3.5: The block diagram of physical activity recognition system. 

3.4 System Overview 

The block diagram of the proposed physical activity recognition system is given in Figure 3.5. 

The activity signal from accelerometer is pre-processed for noise filtering. Then, relevant 

features are extracted from the signal for activity classification. The classification system 

consists of three classifiers: transitional activity detector, non-transitional activity classifier and 

transitional activity classifier. All three classifiers are implemented as Decision Tree. The 

implementation of the classifiers is described in Section 3.6.2. The function of transitional 

activity detector is to differentiate transitional activity signal from static/dynamic activity 

signals by processing the signal in the fixed initial window size. When transitional activity 

signal is identified, adaptive sliding window is executed and the signal is classified by 

transitional activity classifier. Then, the window is expanded to determine the most effective 

segmentation by calculating the probability of the segmented signal belong to a particular 

activity given a set of features, which is classified by transitional activity classifier. Multivariate 

Gaussian distribution is used to calculate the probability. The window will be expanded as long 

as the calculated probability is increasing in each iteration. If the signal is non-transitional 
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activity, fixed sliding window is executed and the signal is classified by non-transitional activity 

classifier. 

3.5 Adaptive Sliding Window 

The proposed algorithm requires transitional activity signals to be detected in order to trigger 

the usage of adaptive sliding window technique. Therefore, a feature that can effectively capture 

the acceleration trend (increasing or decreasing) needs to be determined for identifying the 

transitional activity. The process of selecting the features for transitional activity detector is 

described in Section 3.6.2. The pseudo-code is shown in Listing 3.1. The algorithm starts with 

an initial (default) window size for signal segmentation and classification. The algorithm first 

distinguishes non-transitional activity (static/dynamic activity) and transitional activity as the 

windows are being evaluated as defined by line 1-2. Detection of transitional activity signal is 

performed for every window classification. If a transitional activity window is detected, 

adaptive sliding window algorithm is executed to expand the window size and segment the 

transitional activity signal. Otherwise, the window will be classified by the non-transitional 

(dynamic/static) activity classifier as defined by lines 4. Lines 6‒16 define the adaptive sliding 

window process, which are executed whenever transitional activity signal is detected. The 

algorithm starts with extracting features to be evaluated by transitional activity classifier, and 

then calculates the probability density function (PDF) of the classified activity which is used to 

determine the most effective window segmentation. 

Probability density function of d-dimensional data (features) 𝕩 = {𝑥} given an activity, 𝐴𝑗, 

denoted by 𝑝(𝕩; 𝝁𝒋, 𝚺𝐣) is calculated by using multivariate Gaussian distribution, which allows 

correlation between multiple features and their relevance to the problem to be modeled [120] 

as follows. Probability density function is the likelihood that a signal belongs to a particular 

activity, which is used to determine the most effective window segmentation. 

 𝑝(𝕩|𝐴𝑗) ∝ 𝑝(𝕩; 𝝁𝒋, 𝜮𝒋) =
1

(2𝜋)𝑛 2⁄ |𝜮𝒋|
1 2⁄ 𝑒−

1

2
(𝕩−𝝁𝒋)

𝑇
𝛴−1(𝕩−𝝁𝒋)

 (3.1) 
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where 𝑛 is the dimension of the feature vector. 𝜇𝑗 is the mean matrix and 𝛴𝑗 is the covariance 

matrix corresponding to the features extracted from the window. Parameters 𝜇𝑗 and 𝛴𝑗 are 

estimated from the training datasets as follows: 

 𝝁𝒋 =
1

𝑁𝑗
∑ 𝑥𝑥∈𝐴𝑗

  (3.2) 

 𝜮𝒋 =
1

𝑁𝑗
∑ 𝑥𝑥𝑇

𝑥∈𝐴𝑗
− 𝝁𝒋𝝁𝒋

𝑻 (3.3) 

where 𝑁𝑗 is the total number of observations belonging to activity, 𝐴𝑗. The same features used 

by the regular classifiers are used to model the distribution. 

Based on the recognition result and PDF, the window may be expanded to capture a longer 

duration transitional activity signal. Window expansion algorithm is an iterative process in 

which the window size is expanded by the amount defined by an expansion factor (𝑒𝑓) of the 

initial window size as defined by line 1. The expansion factor in the range of 0 ≤ 𝑒𝑓 ≤ 1 is 

predefined to determine the size of window expansion. A value of one (𝑒𝑓 = 1) indicates that 

the window is expanded by the size of the initial window. In each iteration, the features of the 

signal are computed for the transitional activity classifier to be evaluated. Then the PDF of the 

window corresponding to the activity is calculated. The window will continue expanding until 

the most effective window segmentation is found. The most effective window segmentation is 

the window with the highest probability density function value. 

One window expansion scenario is illustrated in Figure 3.6. Figure 3.6 shows that the 

window has been expanded two times. 𝑊𝑖,0, 𝑊𝑖,1 and 𝑊𝑖,2 denote the initial window and the 

windows after each expansion. The PDF for each window is denoted by 𝑝𝑆𝑖,𝑗,0, 𝑝𝑆𝑖,𝑗,1 and 𝑝𝑆𝑖,𝑗,2. 

In this scenario, since PDF value of 𝑊𝑖,2 is lower than the PDF value of 𝑊𝑖,1, the window 

expansion operation is stopped at 𝑊𝑖,2 and 𝑊𝑖,1 is determined as the most effective window 

segmentation. 
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Listing 3.1: Adaptive sliding window 

𝑤 is the size of initial window in number of samples. 

𝑜𝑓 is the window overlapping factor in the range of 0 ≤ 𝑜𝑓 ≤ 1. 

𝑒𝑓 is the window expansion factor in the range of 0 ≤ 𝑒𝑓 ≤ 1. 

𝑘 is the number of window expansions, where 𝑘 = 0,1, … , 𝑘𝑚𝑎𝑥 and 𝑘𝑚𝑎𝑥 is the maximum 

number of allowed window expansion. 

𝑁𝑖,𝑘 is the number of samples in window 𝑖 after k expansion, where 𝑁𝑖,0 = 𝑤. 

𝑆𝑖,𝑗 is a sample in window 𝑖, where 𝑗 = 0,1,2, … , 𝑁𝑖,𝑘 − 1 is the sample index within the 

window. 

𝑝𝑆𝑖,𝑗,𝑘(𝕩|𝐴) is the probability density function of extracted features, 𝑥, from samples of 

window 𝑖 after 𝑘 expansion given an activity 𝐴. 

𝑝𝑚𝑎𝑥 is the maximum probability density function value for a window expansion to 

determine the most effective window segmentation. 

𝑟𝑜𝑢𝑛𝑑(𝑖) is rounding 𝑖 to the nearest integer. 

  

1 calculate features of the signal 

2 execute transitional activity detector 

3 if non-transitional activity then 

4 activity, 𝐴 = execute non-transitional (dynamic/static) activity classifier 

5 else 

6 while 𝑘 ≤ 𝑘𝑚𝑎𝑥 do 

7 calculate features of the signal 

8 activity, 𝐴 = execute transitional activity classifier 

9 calculate probability density function, 𝑝𝑆𝑖,𝑗,𝑘(𝕩|𝐴) 

10 if 𝐴 is not changed or 𝑝𝑆𝑖,𝑗,𝑘 > 𝑝𝑚𝑎𝑥 then 

11 𝑝𝑚𝑎𝑥 = 𝑝𝑆𝑖,𝑗,𝑘   

12 𝑁𝑖,𝑘 = 𝑤 + 𝑟𝑜𝑢𝑛𝑑(𝑒𝑓×𝑤)×𝑘  

13 else 

14 stop window expansion 

15 end if 

16 end while 

17 end if 

18 𝑆𝑖+1,0 = 𝑆𝑖,𝑣 where 𝑣 = (𝑁𝑖,𝑘 − 1) − 𝑟𝑜𝑢𝑛𝑑(𝑜𝑓×𝑤) 
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Three conditions are defined as stopping conditions of the window expansion. Firstly, 

classification of the current iteration is found to be different than the initial classification. Initial 

classification is defined by the transitional activity classifier in the first iteration of window 

expansion. If classification result is changed in the next iteration, it is assumed the window 

contains another activity signal and hence affecting the classification. Secondly, the computed 

probability density function of current iteration is lower than of the previous iteration. This 

indicates the window contains other activity signal which is the reason of the smaller PDF value. 

Lastly, the window reaches its maximum number of expansions and the window stop 

expanding. After window classification process is finished, line 18 shifts the window forward 

to segment new samples with an overlapping factor (𝑜𝑓). The overlapping factor determines 

the number of samples from current window to be overlapped by the next window. In other 

words, the new window will contain some samples from the previous window. The overlapping 

factor is in the range of 0 ≤ 𝑜𝑓 ≤ 1. 

 

Figure 3.6: Window expansion scenario. 
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3.6 Experimental Setup for Physical Activity Recognition 

3.6.1 Device and Data Collection 

Digital tri-axial accelerometer is a sensing device which can measure the acceleration in three 

mutually orthogonal directions. Virtenio Preon32 wireless sensor node with a digital tri-axial 

accelerometer is used in this research for data acquisition. The accelerometer is configured to 

collect acceleration in the range of ±4.0g at a sampling rate of 50Hz during the experiments. 

Previous study results show that sampling rate beyond 20Hz increases recognition accuracy by 

just 1% and without further improvements beyond 50Hz [49]. Therefore, sampling rate of 50Hz 

is considered to be sufficient. A single tri-axial accelerometer worn on the right waist achieved 

the highest recognition accuracy in a single sensor comparison study [46], [49], [121] and hence 

is used in this research. The sensor position with its coordinate system is illustrated in Figure 

3.7. 

 

Figure 3.7: Sensor position and its coordinate system. 

The accelerometer measures acceleration along X-axis or vertical axis (𝐴𝑥), Y-axis or 

horizontal axis (𝐴𝑦) and Z-axis or sideway axis (𝐴𝑧). The low pass filter with 0.5Hz cutoff 

frequency 𝑓𝑐 is applied to separate the acceleration force from gravity force [122]. The 

separation process produces linear acceleration (𝐿𝐴𝑖) and is performed for each axis to generate 

𝐿𝐴𝑥, 𝐿𝐴𝑦, and 𝐿𝐴𝑧. Firstly, the gravity force, �̂�  is estimated. Then, the acceleration force is 

subtracted with the estimated gravity force as follows. 



Adaptive Sliding Window for Physical Activity Recognition  40 

 

Table 3.2: Summary of the thirteen signals. 

Signal Description 

𝐴𝑥 Vertical axis (X-axis) 

𝐴𝑦 Horizontal axis (Y-axis) 

𝐴𝑧 Sideway axis (Z-axis) 

𝐴𝑥𝑦 Vertical plane 

𝐴𝑦𝑧 Horizontal plane 

𝐴𝑥𝑦𝑧 Resultant plane 

𝐿𝐴𝑥 Linear acceleration of vertical axis 

𝐿𝐴𝑦 Linear acceleration of horizontal axis 

𝐿𝐴𝑧 Linear acceleration of sideway axis 

𝐿𝐴𝑥𝑦 Linear acceleration of vertical plane 

𝐿𝐴𝑦𝑧 Linear acceleration of horizontal plane 

𝐿𝐴𝑥𝑦𝑧 Linear acceleration of result acceleration 

𝑇𝐴 Tilt angle of the body trunk 

 �̂�𝑡
𝑖 = 𝛼𝑔𝑡−1

𝑖 + (1 − 𝛼)𝐴𝑡
𝑖  𝑤ℎ𝑒𝑟𝑒 𝑖 = 𝑥, 𝑦, 𝑧 (3.4) 

where initial value of gravity force, 𝑔0
𝑖  is set as: 

𝑔0
𝑥 = −9.8𝑚/𝑠2 𝑔0

𝑦
= 0𝑚/𝑠2 𝑔0

𝑧 = 0𝑚/𝑠2. ∝ is defined as follows. 

 ∝=
∆𝑡

∆𝑡+𝜏
 (3.5) 

∆𝑡 is the sampling period and 𝜏 = 1 2𝜋𝑓𝑐⁄  is the time-constant or the filter response in the time 

domain. Linear acceleration is obtained as follows. 

 𝐿𝐴𝑡
𝑖 = 𝐴𝑡

𝑖 − �̂�𝑡
𝑖  𝑤ℎ𝑒𝑟𝑒 𝑖 = 𝑥, 𝑦, 𝑧 (3.6) 

Acceleration and linear acceleration in the horizontal plane (𝐴𝑦𝑧 and 𝐿𝐴𝑦𝑧), vertical plane 

(𝐴𝑥𝑦 and 𝐿𝐴𝑥𝑦) and resultant acceleration (𝐴𝑥𝑦𝑧 and 𝐿𝐴𝑥𝑦𝑧) are derived from raw and linear 

acceleration. For instance, acceleration in horizontal plane, 𝐴𝑦𝑧 is obtained as follows. 

 𝐴𝑦𝑧 = √𝐴𝑦
2 + 𝐴𝑧

2 (3.7) 
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The characteristic of tilt angle (𝑇𝐴) of body trunk signal also had been investigated. The tilt 

angle (𝑇𝐴) of the body trunk can be derived by  𝑐𝑜𝑠−1 𝐿𝐴𝑥 𝐿𝐴𝑥𝑦𝑧⁄ . In total, thirteen signals 

including the raw acceleration, linear acceleration, horizontal and vertical plane acceleration, 

resultant acceleration and tilt angle are investigated. Table 3.2 list all the thirteen signals. 

Six healthy volunteers (4 males, age: 33 ± 2.2 years, 1 female, age: 33 years), including a 

kid (female, age: 10 years) were asked to wear the tri-axial accelerometer on their right waist. 

Each subject was asked to perform the activities described in Table 3.3 in their own preferred 

style and pace. No specific instructions were given about how to perform the activities. All 

activities were performed continuously for a single trial in a house which consisted of a corridor, 

a lounge and a bedroom. The length of the corridor and the distance from a room to another is 

about 10m – 15m. Each volunteer was asked to conduct each experiment five times in their 

own pace. This internal dataset is referred as IELAB. 

Table 3.3: Classification of physical activities. 

Dynamic Static Transitional 

Walking Standing Stand-to-Sit 

 Sitting Sit-to-Stand 

 Lying Face-up Sit-to-Lie 

 Lying Face-down Lie-to-Sit 

  Falling 

 

A public (SBHAR) [65] dataset is also used in the experiment to validate the proposed 

algorithm. SBHAR dataset contains activity signals collected gathered from a smartphone 

inertial sensors (accelerometer and gyroscope). 30 subjects were asked to perform six basic 

activities. The position of the device is different to our experiment where it was attached to the 

front waist instead of right waist. The dataset includes six transitional activities: stand-to-sit, 

sit-to-stand, sit-to-lie, lie-to-sit, stand-to-lie and lie-to-stand. Stand-to-lie is actually a sequence 

of other two transitional activities (stand-to-sit and sit-to-lie). Similarly for lie-to-stand. The 

labels were defined between the end and the start of consecutive static activities. The 

experiments generated 5 hours of data. Table 3.4 shows the average, standard deviation and 

maximum durations of the transitional activities for both datasets. We randomly chose 10 out 
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of 30 data to train the model for both datasets. Then, the model was tested on the 30 data. Only 

accelerometer signals are considered for the purpose of this research. 

Table 3.4: Average ± standard deviation duration and maximum duration of IELAB and 

SBHAR datasets transitional activities. 

 IELAB SBHAR 

Transitional 

activity 
Average ± 

standard 

deviation 

duration (s) 

Maximum 

duration (s) 
Average ± 

standard 

deviation 

duration (s) 

Maximum 

duration (s) 

Stand-to-Sit 2.96 ± 0.61 4.60 3.41 ± 0.8 4.50 

Sit-to-Stand 2.34 ± 0.43 3.30 2.57 ± 0.5 3.70 

Sit-to-Lie 3.22 ± 0.76 5.30 4.12 ± 0.8 7.10 

Lie-to-Sit 3.01 ± 0.69 5.20 3.69 ± 0.7 7.30 

Stand-to-Lie N.A. N.A. 4.95 ± 1.4 8.40 

Lie-to-Stand N.A. N.A. 3.72 ± 0.8 11.20 

Falling 2.99 ± 0.64 4.30 N.A. N.A. 

3.6.2 Pre-processing and Feature Selection 

Moving average filter is applied to remove high frequency noise. As shown in Table 3.5, 

thirteen features are extracted for activity recognition. The slope of signal is calculated by using 

linear regression technique, which fits a straight line through the signal. Mean Trend and 

Windowed Mean Difference introduced by [48] describes the trend of mean values over the 

window. The window is divided into 𝑁 sub-windows with no overlap. Then the mean of each 

sub-window, 𝜇𝑖 is calculated. Mean Trend and Windowed Mean Difference are computed as 

follows. 

 |𝜇𝑇| = ∑ |𝜇𝑖 − 𝜇𝑖−1|𝑁
𝑖=2  (3.8) 

 |𝜇𝐷| = ∑ |𝜇 − 𝜇𝑖|𝑁
𝑖=1  (3.9) 

In this study, we have investigated the variants of the features by not taking the absolute 

difference in order to obtain the trend (increasing or decreasing) of signal as follows. 
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 𝜇𝑇, 𝜇𝐷 = {
> 0 𝑡𝑟𝑒𝑛𝑑 𝑜𝑓 𝑠𝑖𝑔𝑛𝑎𝑙 𝑖𝑠 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔
< 0 𝑡𝑟𝑒𝑛𝑑 𝑜𝑓 𝑠𝑖𝑔𝑛𝑎𝑙 𝑖𝑠 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔

 (3.10) 

Table 3.5: Initial set of features. 

Feature Key Formulation 

Average Avg 
𝜇 =

1

𝑁
∑ 𝑠𝑖

𝑁

𝑖=1
 

 

Standard Deviation Std 

𝜎 = √
1

𝑁
∑ (𝑠𝑖 − 𝜇)

𝑁

𝑖=1
 

 

Skewness SK 
𝐸 [(

𝑠 − 𝜇

𝜎
)

3

] 

 

Signal Magnitude Area SMA 1

𝑁
∑ |𝑠𝑥𝑖

|
𝑁

𝑖=1
+ |𝑠𝑦𝑖

| + |𝑠𝑧𝑖
| 

 

Slope M 𝑁 ∑ (𝑠𝑖×𝑖)𝑁
𝑖=1 − ∑ 𝑠𝑖

𝑁
𝑖=1 ∑ 𝑖

𝑁 ∑ 𝑠𝑖
2 − (∑ 𝑖)2𝑁

𝑖=1

 

 

Absolute Slope AM |M| 
 

Spectral Energy E ∑ |𝑆𝑖|
2𝑁

𝑖=1   

 

Mean Trend |𝜇𝑇|, 𝜇𝑇 
𝜇𝑇 = ∑ 𝜇𝑖

𝑁

𝑖=1
− 𝜇𝑖−1 

|𝜇𝑇| = ∑ |𝜇𝑖 − 𝜇𝑖−1|
𝑁

𝑖=1
 

 

Windowed Mean Difference |𝜇𝐷|, 𝜇𝐷 
𝜇𝐷 = ∑ 𝜇 − 𝜇𝑖

𝑁

𝑖=1
 

|𝜇𝐷| = ∑ |𝜇 − 𝜇𝑖|
𝑁

𝑖=1
 

 

 

Maximum Max 𝑚𝑎𝑥(𝑠𝑖) 

 

Minimum Min 𝑚𝑖𝑛(𝑠𝑖) 
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All thirteen features are extracted from each of the thirteen signals. Therefore, a total of 169 

features are extracted from the acceleration, linear acceleration and tilt angle signals. Waikato 

Environment for Knowledge Analysis (WEKA) toolkit is used to analyze the features [123]. 

Features are extracted from the acceleration and linear acceleration data over the sliding 

window. Najafi et al. investigated the correlation of temporal postural duration with falling risk 

in elderly people [86], and it is found that the average of postural duration is 2.95s. Therefore, 

the initial window size is set to 3s (150 samples). We have chosen overlapping factor (𝑜𝑓) of 

0.5 (75 samples) and expansion factor (𝑒𝑓) of 0.5 (75 samples). The three classifiers are 

implemented as Decision Tree. Decision Tree is chosen in this study due to its short execution 

and training time [49]. Furthermore, Decision Tree is found to give the highest levels of 

classification accuracy according to [90]. ID3 algorithm is used to construct the Decision Tree 

classifiers [124]. The algorithm determines the threshold value that gives the best separation of 

samples to effectively distinguish between classes, in this case activities. This is achieved by 

finding the value of threshold that maximizes the information gain. Given a set of samples, 𝑆 =

〈𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑛〉  of attribute (in this case feature) 𝐴, the information gain ratio is calculated as 

follows. 

 𝐺(𝑆, 𝐴) = 𝐻(𝑆) − ∑
𝑆𝑣

𝑆
𝐻(𝑆𝑣)𝑣∈𝑣𝑎𝑙𝑢𝑒𝑠(𝐴)  (3.11) 

where 𝐻(𝑆) is the entropy of the given samples. 𝑆𝑣 is a subset of 𝑆 for which has value 𝑣 and 

𝐻(𝑆𝑣) is the entropy of 𝑆𝑣. Given a set of classes, 𝐶 = 〈𝑐1, 𝑐2, … , 𝑐𝑛〉, entropy is given as 

follows. 

 𝐻(𝑆) = ∑ −𝑝𝑖 𝑙𝑜𝑔2 𝑝𝑖
𝑛
𝑖=1  (3.12) 

where 𝑝𝑖 is the proportion of 𝑆 belonging to class 𝑐𝑖. The objective is to find the threshold value 

that most effectively split samples. This is achieved by finding the value that maximizes the 

information gain ratio. The implementation of the classifiers are described as follows. 

For the Transitional Activity Detector, the signals (acceleration and linear acceleration) are 

segmented by the fixed initial window size and divided into non-transitional activity and 

transitional activity signals. The thirteen features are calculated using the segmented signals, 
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and Relief-F is used to select the most relevant features against target activities. Relief-F is 

chosen because of its speed and simplicity [125]. Then, ID3 algorithm is used to construct the 

Decision Tree classifier.  

For training the Non-transitional (Dynamic/Static) Activity Classifier, all non-transitional 

activity signals are segmented and divided into walking, standing, sitting, lying face-up and 

lying face-down classes. The thirteen features are calculated using the fixed 3s signal segments, 

and Relief-F is used to select the most relevant features against target activities. ID3 algorithm 

is used to construct the Decision Tree classifier. 

For the Transitional Activity Classifier, all transitional activity signals are segmented and 

divided into stand-to-sit, sit-to-stand, sit-to-lie, lie-to-sit and falling. Transitional activity 

signals are of different durations. Therefore, the size of the window to calculate the features 

varies from one signal to another. The algorithm expands the window by expansion factor, 𝑒𝑓 

which is 1.5s (75 samples). Hence, the window size to calculate the features are 3s (150 

samples), 4.5s (225 samples), 6s (300 samples) etc. depending on the length of the signals. 

Relief-F is used to select the most relevant features against target activities. Then ID3 algorithm 

is used to construct the Decision Tree classifier. The features of each classifier for both datasets 

are given in Table 3.6. Notice that the selected features may be different due to varying sensor 

location and types of activities. 

Table 3.6: Features of the Decision Tree classifier for IELAB and SBHAR datasets. 

 IELAB SBHAR 

Transitional Activity 

Detector 
AM 𝐴𝑦 |𝜇𝐷| 𝐴𝑦 

Non-transitional Activity 

Classifier 
Avg 𝐿𝐴𝑦𝑧, Avg 𝐴𝑦 Avg 𝐿𝐴𝑥𝑦, Avg 𝐴𝑦 

Transitional Activity 

Classifier 
𝜇𝑇 𝐴𝑦, Avg 𝐴𝑦 M 𝐴𝑦, Avg 𝐴𝑦 
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Figure 3.8: The values of μT Ay for each window expansion. 

 

Figure 3.9: The fitted line through acceleration Y signal for each window expansion. 

During window expansion process, multivariate Gaussian distribution is used to determine 

the most effective window expansion based on the probability density function. Two features 

from Decision Tree classifier (Avg 𝐿𝐴𝑦𝑧 and Avg 𝐴𝑦) are used to model the distribution. 𝜇𝑇 

𝐴𝑦 is not effective to capture the trend of the activity signal when determining the most effective 

window expansion. An example of this scenario is shown in Figure 3.8. As can be seen in Figure 

3.8, 𝜇𝑇 𝐴𝑦 values of 𝑊𝑖,1 (-7.579) and 𝑊𝑖,2 (-7.574) are almost the same, and the PDF value is 

increasing due to the flat trend of the signal. As a result, the window continues expanding and 
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the most effective window segmentation cannot be identified. Therefore, M (slope) 𝐴𝑦 is 

selected to model the distribution since it has the highest information gain after 𝜇𝑇 𝐴𝑦 during 

feature selection process. Figure 3.9 shows how the slope of fitted lines can effectively capture 

the trend of an activity signal. Three lines, M1, M2 and M3 are fitted through the activity signal 

for each window expansion. As can be seen, the slope of the fitted line is decreasing as more 

samples (of other activity signal) are segmented by the window and as a result the PDF value 

is decreasing. 

3.6.3 Physical Activity Recognition 

We have applied the proposed algorithm to develop a physical activity recognition system. The 

system is implemented in MATLAB. Gupta and Dallas (later referred to as GD approach) [48] 

have introduced new features to effectively recognize transitional activities. The features are 

mean trend, windowed mean difference, variance trend, windowed variance difference, 

detrended fluctuation analysis coefficient, energy uncorrelated and maximum difference 

acceleration. Naïve Bayes and k-NN are used to recognize the activities with a fixed window 

size of 6s. Window size of 6s was used assuming it was long enough to segment transitional 

activity signals. We implemented the GD approach using the Naïve Bayes classifier since it 

achieved better accuracy when classifying transitional activities. We have compared their 

approach with the proposed adaptive sliding window approach in terms of recognition accuracy. 

3.7 Results and Discussion 

3.7.1 IELAB: Intelligent Environment Lab Dataset 

We compute and tabulate the accuracy of the recognition from the values of true positive (TP) 

and false negative (FN) to evaluate the performance of the proposed approach. Recall or true 

positive rate is the number of windows that are correctly classified and is given by 

 𝑅𝑒𝑐𝑎𝑙𝑙 = (𝑇𝑃 (𝑇𝑃 + 𝐹𝑁)⁄ )×100 (3.13) 

In addition to the recall, we calculated the precision and F-score metrics [24] as follow. 
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 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 (𝑇𝑃 + 𝐹𝑃)⁄  (3.14) 

 𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (3.15) 

The additional metrics are given in Figure 3.11. Table 3.7 compares the accuracy of activity 

recognition system using adaptive sliding window (AW) approach against the existing GD 

approach. Table 3.8 and Table 3.9 show the performance of the approaches by means of 

confusion matrices. The recognition accuracy of individual activities, transitional activities, 

non-transitional activities and the overall accuracy are compared and analyzed. In general, GD 

approach performed reasonably well in classifying most activities and achieved an overall 

accuracy of 89.9%, which is 3.1% lower than the proposed AW approach. For the AW 

approach, classification accuracy is over 90% for every individual activity except walking and 

falling. 

Table 3.7: Comparison of accuracy of activity recognition. 

 Recall (Transitional) Recall 

(Non-transitional) 

Overall Recall 

GD Approach 88.7% 90.5% 89.9% 

AW Approach 93.6% 92.9% 93.0% 

 

As for classifying transitional activities, GD approach achieved 88.7% accuracy. Majority 

of the transitional activities can be classified with 91.2%-97.6% accuracy range with the 

exception of stand-to-sit which was poorly classified with only 82.7% accuracy. This reflects 

the fact that GD approach cannot handle activity signal with varying length as shown in Figure 

3.10. The length of stand-to-sit signal in Figure 3.10(a) is about 2s (100 samples) while stand-

to-sit signal in Figure 3.10(b) is about 3.5s (175 samples). As can be seen in Figure 3.10(a), 

walking signal occupies almost half of the window, which leads to misclassification. 

Conversely, AW approach achieved recognition accuracy of 93.6% in transitional activities. It 

successfully detected the activities and adapted the window size to accommodate activity 

signals of varying lengths. However, GD approach achieved slightly higher accuracy, about 

1.9% and 2.7%, in classifying Lie-to-Sit and Sit-to-Lie respectively than AW approach. This is 

because, in the experiments, AW approach failed to detect transitional activity signal at the 
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beginning and hence adaptive sliding window is not applied. As a result, the window being 

processed is wrongly classified. It is also observed that in a few experiments, the algorithm 

failed to determine the best window segmentation due to the over-expansion of the window, 

which leads to misclassification of the activity. Out of 210 window expansion operations 

(adaptive window mode), only in 9 cases the windows are not correctly expanded.  

In total, 6.4% of transitional activity windows were misclassified by AW approach while 

GD approach misclassified 11.3% of transitional activity windows. This demonstrates that 

adaptive sliding window segmentation is significantly more effective in classifying transitional 

activities. Based on our previous observation, activities are very often misclassified during 

activity transitions due to ambiguous signal characteristics caused by some minor motion 

behavior change. These can be clearly observed in dynamic behaviors such as walking and 

falling, as well as standing which is the preceding activity of walking. In AW approach, these 

activities (walking, falling and standing) are classified relatively poor with only an average of 

91.1% accuracy.
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(a) 

 

(b) 

Figure 3.10: Stand-to-sit with varying length. 
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Table 3.8: Confusion matrix of GD approach. 

 

a. Stand-to-sit 

b. Sit-to-stand 

c. Sit-to-lie 

d. Lie-to-sit 

e. Lying face-up 

f. Lying face-down 

 

 Walk St-Si Si-St Si-Li Li-Si Fall Stand Sit Lie-Up Lie-Dw Count Recall 

Walk 183 10 3 0 0 3 0 0 0 0 199 92.0% 

St-Sia 3 67 0 11 0 0 0 0 0 0 81 82.7% 

Si-Stb 8 0 69 0 3 1 0 0 0 0 81 85.2% 

Si-Lic 0 0 0 41 1 0 0 0 0 0 42 97.6% 

Li-Sid 0 0 1 0 30 0 0 0 0 0 31 96.8% 

Fall 1 0 0 0 0 52 0 0 0 4 57 91.2% 

Stand 7 0 2 0 0 0 50 0 0 0 59 84.7% 

Sit 0 6 5 1 0 0 3 73 0 0 88 83.0% 

Lie-Upe 0 0 0 6 2 0 0 3 83 0 94 88.3% 

Lie-Dwf 0 0 0 0 0 0 0 0 0 98 98 100% 
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Table 3.9: Confusion matrix of AW approach. 

 

 

a. Stand-to-sit 

b. Sit-to-stand 

c. Sit-to-lie 

d. Lie-to-sit 

e. Lying face-up 

f. Lying face-down 

 

 Walk St-Si Si-St Si-Li Li-Si Fall Stand Sit Lie-Up Lie-Dw Count Recall 

Walk 446 21 39 0 0 0 4 0 0 0 510 87.5% 

St-Sia 0 84 1 1 0 2 0 0 0 0 88 95.5% 

Si-Stb 2 1 83 0 2 0 0 0 0 0 88 94.3% 

Si-Lic 0 0 0 56 0 0 0 0 3 0 59 94.9% 

Li-Sid 0 0 0 0 37 0 0 0 2 0 39 94.9% 

Fall 4 0 4 0 0 62 0 0 0 0 70 88.6% 

Stand 3 1 0 0 0 0 138 0 0 0 142 97.2% 

Sit 2 1 2 0 0 0 6 215 0 0 226 95.1% 

Lie-Upe 0 0 0 12 0 0 0 0 223 0 235 94.9% 

Lie-Dwf 3 0 0 0 0 1 0 0 0 212 216 98.1% 
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(a) 

 

(b) 

Figure 3.11: Comparison of (a) precision and (b) F-score between GD and AW for IELAB 

dataset. 
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3.7.2 SBHAR: Smartphone-based HAR Dataset 

Table 3.10 compares the accuracy of activity recognition system using GD and AW on the 

dataset. The recognition accuracy of individual activities, transitional activities, non-

transitional activities and the overall accuracy are compared and analyzed. GD approach 

performed reasonably well in classifying the activities and achieved overall accuracy of 91.9% 

which is 3.8% lower than AW. For AW approach, the classification accuracies for all activities 

are above 90% except stand-to-sit and sit-to-lie, achieving overall recognition accuracy of 

95.7%. As for transitional activities, AW performed better in classifying all transitional 

activities than GD approach. Figure 3.12 illustrates examples of window misclassifications by 

GD approach. In Figure 3.12(a), the window (sit-to-lie) is misclassified as stand-to-sit because 

the window contains large portion of sitting signal. In Figure 3.12(b), the length of sit-to-lie 

signal is about 7s (350 samples) while the window size is 6s. As can be seen in the figure, the 

signal is not completely contained in the window, which leads to misclassification of the 

subsequent window. This reflects the fact that GD approach is not effective in classifying 

activity signal with varying length. Table 3.11 and Table 3.12 are the confusion matrices of GD 

and AW approaches. However, GD approach performed slightly better in classifying Lie-to-Sit 

than AW approach, achieving slightly higher accuracy about 0.2%. This is because, in few 

experiments, the algorithm failed to determine the best window segmentation due to the under-

expansion of the window, which leads to misclassification of the activity. Out of 240 window 

expansion operations (adaptive window mode), only in 21 cases the windows are not correctly 

expanded. Overall, AW achieved recognition accuracy of 90.3% which is 2.1% higher than 

GD. It is also observed that, misclassification often occurred when classifying sitting signals 

due to the pattern of the signals’ is similar to standing and lying face-up. This is shown in Table 

3.11 and Table 3.12, whereby the percentages of sitting misclassified as standing or lying-face-

up are 6.4% and 7.1% for AW and GD respectively. Figure 3.13 shows the comparison of 

precision and F-score between GD and AW.
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Table 3.10: Comparison of accuracy of activity recognition. 

 Recall (Transitional) Recall 

(Non-transitional) 

Overall Recall 

GD Approach 88.2% 92.4% 91.9% 

AW Approach 90.3% 96.1% 95.7% 

 

(a) 

 

(b) 

Figure 3.12: Examples of window misclassification by GD approach. 
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Table 3.11: Confusion matrix of GD approach. 

 Walk St-Si Si-St Si-Li Li-Si Stand Sit Lie Count Recall 

Walk 1718 19 58 0 1 15 1 0 1812 94.8% 

St-Sia 5 87 1 6 0 0 0 0 99 87.9% 

Si-Stb 1 2 80 0 10 0 0 0 93 86.0% 

Si-Lic 0 8 0 94 2 0 0 2 106 88.7% 

Li-Sid 1 0 7 0 90 0 0 2 100 90.0% 

Stand 12 0 8 0 0 362 3 0 385 94.0% 

Sit 5 7 2 3 8 11 276 12 324 85.2% 

Lie 0 2 2 0 20 7 26 351 408 86.0% 
 

a. Stand-to-sit 

b. Sit-to-stand 

c. Sit-to-lie 

d. Lie-to-Sit 
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Table 3.12: Confusion matrix of AW approach. 

 

 

a. Stand-to-sit 

b. Sit-to-stand 

c. Sit-to-lie 

d. Lie-to-Sit 

 

 Walk St-Si Si-St Si-Li Li-Si Stand Sit Lie Count Recall 

Walk 3341 48 68 0 0 1 11 0 3469 96.3% 

St-Sia 0 116 13 0 0 1 0 0 130 89.2% 

Si-Stb 3 1 92 0 3 0 0 0 99 92.9% 

Si-Lic 0 10 2 120 0 0 0 1 133 90.2% 

Li-Sid 0 2 9 0 99 0 0 1 111 89.2% 

Stand 2 1 4 0 0 1004 1 0 1012 99.2% 

Sit 1 6 9 2 5 12 684 36 755 90.6% 

Lie 1 3 5 1 5 16 1 897 929 96.6% 
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(a) 

 

(b) 

Figure 3.13: Comparison of (a) precision and (b) F-score between GD and AW for SBHAR 

dataset. 
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3.8 Conclusions 

We proposed a novel adaptive sliding window technique for segmentation of activity signal 

acquired from a tri-axial accelerometer to overcome the limitations of fixed-size sliding window 

used in existing works. In the proposed approach the window size is adaptively adjusted and 

increased gradually, starting with initial size, based on signal information to achieve the more 

effective window segmentation compared to fixed-size window approaches. In this study, we 

demonstrated the performance of the approach on two datasets in which one of them is a public 

dataset. The employed datasets were generated by different subjects with different styles and 

pace. It was observed that the system can classify different activities performed by different 

subjects with excellent accuracy. The results showed that the proposed approach effectively 

segments activity signals resulting in better classification accuracy in a wide range of activities. 

The approach specifies small initial window size, which is able to segment dynamic and static 

activity signals, and expand window size dynamically to accommodate transitional activity 

signals which is longer than the current window size. The approach determines the optimum 

window size automatically as the signal is being evaluated. As a result, the window contains 

the right information when performing classification. The results showed that AW achieved 

93.0% overall accuracy, which is 3.1% better than existing GD approach. AW achieved an 

overall accuracy of 95.7%, which is 3.8% better than GD approach when tested on SBHAR 

dataset. 
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4 
Physical Activity Transition Model 

4.1 Introduction 

A sequence of physical activities is characterized by the temporal dependence of the activities. 

For example, the possible activities after the standing position are standing, walking and stand-

to-sit. However, the Decision Tree is not capable of modeling the temporal dependence of a 

sequence of activities. In this chapter, the transition model of physical activity in the form of an 

activity transition diagram (ATD) is proposed. The role of the transition diagram in the 

classification system is explained. The transition model is integrated into the activity 

classification algorithm resulting in a higher recognition accuracy. 

4.2 Related Works 

The finite state machine has been used for activity recognition. Kerr et al. [126] proposed a 

novel approach to activity recognition by extracting the signatures that are shared between all 

training instances of an activity. Using the signatures, a generic finite state machine (FSM) is 
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generated for activity recognition. In [127], a hand recognition system is proposed by using 

FSMs. The FSMs are developed according to the specific hand motion pattern. Similar work is 

found in [128] whereby the states represent the action patterns.  Langensiepen et al. [129] 

proposed a fuzzy finite state machines to model the activities in an office. The model 

incorporates ambient sensor data as the input and a set of fuzzy rules to define the state 

transitions. In [130], a fuzzy finite state machine is improved by learning the fuzzy rule set that 

best suits the training data. 

A stochastic state machine such as hidden Markov model (HMM) has been used model 

action sequences for activity recognition [131]. Lee and Cho [132] proposed a two-layer HMM 

to recognize short-term and long-term activity in real time. The first layer of the HMM 

recognizes the short-term activity while the second layer recognizes the activities with longer 

time period. Similar work is found in [133], whereby the first layer of the HMM recognizes the 

activity class and the actual activity is recognized by the second layer of the HMM. Kozina et 

al. [134] proposed a new architecture for activity recognition to recognize ADL, exercise 

activities and seven transitional activities using three accelerometers. The architecture consists 

of three layers, in which knowledge-based and machine learning classifiers are implemented in 

the first two layers. The outputs of the classifiers are aggregated and fed to the top layer to 

correct the final decision of the recognized activity using Hidden Markov Model by filtering 

the spurious or ambiguous transitions between activities. Unlike existing works, this 

dissertation utilizes the transition diagram to enhance the performance of the activity 

recognition. The model represents the possible transitions of the activities providing support to 

the classification system in order to improve the recognition accuracy. 

4.3 Integration of Activity Recognition with Transition Model 

In order to make classification of activity more robust, a further enhancement of activity 

recognition is proposed by the integration of a transition model of physical activities 

represented by an ATD, in the activity recognition system as shown in Figure 4.1. The ATD is 

a part of the state validator of the activity recognition system. The role of the state validator is 

to provide feedbacks to the system in order to improve the accuracy of classification. The state 
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validator consists of invalid activity transition detector, three state buffers and ATD. The 

function of invalid activity transition detector is to check the validity of an activity transition. 

State buffers are to store the three consecutively classified activities, the current one and two 

immediately preceding ones. The classification system provides the recognized activity for 

every classified window to the state validator. Each time the current activity is updated, the 

activity transition validity is checked by the invalid activity transition detector. In the case of 

an invalid activity transition, multivariate Gaussian distribution is applied to re-classify the 

signal. Next possible activities are acquired from ATD to aid the re-classification process. 

 

Figure 4.1: The block diagram of physical activity recognition system. 

4.4 Activity Transition Diagram 

The physical activity transition model in the form of activity transition diagram is proposed as 

illustrated in Figure 4.2. All activities are represented as states, and the transitions define 

conditions under which we consider changes of the states. These conditions are not depicted in 

the figure and will be explained in the following text. The state transitions reflect the possible 

transitions between activities.  For example, from standing position, a person can perform either 

walking or sitting. There are two possible scenarios of invalid activity transition which can be 

detected by the state validator as illustrated in Figure 4.3. The shaded windows are 

misclassified. The first scenario involves the occurrence of invalid activity transition due to 
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misclassification of current window, 𝑊𝑖,𝑘. As shown in Figure 4.3, activity transition from 

walking activity (𝑊𝑖−1,𝑘) to sit-to-stand activity (𝑊𝑖,𝑘) is an invalid transition, which will be 

detected by the state validator. In the second scenario, the current window, 𝑊𝑖,𝑘 is correctly 

classified, but violation of activity transition is caused due to misclassification of the previous 

window, 𝑊𝑖−1,𝑘. As shown in Figure 4.3, walking activity (𝑊𝑖,𝑘) is correctly classified but an 

invalid activity transition is detected (falling to walking) due to misclassification on 𝑊𝑖−1,𝑘. 

However, no invalid activity transition was detected from previous window because walking to 

falling is a valid transition. Note that, the state validator can only detect invalid activity 

transition by checking the activity transition from the previous window to current window. But 

it does not know which window is being misclassified. 

 

Figure 4.2: Activity transition diagram. 
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Figure 4.3: Invalid activity transition scenarios. 

 

Listing 4.1: Re-classification of windows 

𝑊𝑥,𝑘 is a window after k expansion being classified where 𝑥 = 𝑖 − 1, 𝑖, with 𝑊𝑖,𝑘 

representing the current window. 

𝐴 is a list of 𝑁 possible valid activities, with 𝑎𝑗 represents a single activity where 𝑗 = 1 … 𝑁 

𝑝𝑚𝑎𝑥 is the maximum probability density function value for a possible activity to determine 

the activity (state) of the window. 

  

1 if invalid activity transition is detected then 

2 for 𝑥 = 𝑖 − 1 until 𝑖 do 

3 calculate features of 𝑊𝑥,𝑘 

4 𝐴 = get next possible activities of 𝐴𝑊𝑥−1,𝑘
 

5 for all 𝑎𝑗 in 𝐴 do 

6 𝑝𝑎𝑗
 = calculate probability density function of 𝑎𝑗 

7 if 𝑝𝑎𝑗
> 𝑝𝑚𝑎𝑥 then 

8 𝑝𝑚𝑎𝑥 = 𝑝𝑎𝑗
  

9 𝐴𝑊𝑥,𝑘
= 𝑎𝑗  

10 end if 

11 end for 

12 end for 

13 end if 
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In the case of invalid activity transition, the state validator will notify the classification 

system to re-perform classification on the windows. The re-classification algorithm is given in 

Listing 4.1. The algorithm begins by calculating features of window 𝑊𝑖−1,𝑘 as defined by line 

3. Then, using the ATD, all possible next activities of the previous window (i.e. 𝑊𝑖−2,𝑘) are 

acquired for reclassifying 𝑊𝑖−1,𝑘 as defined by line 4. Using scenario 2 as an example, the 

algorithm will acquire next possible activities of window 𝑊𝑖−2,𝑘 (walking) which are walking, 

falling, standing and stand-to-sit. Next, for each next possible activity, the probability density 

functions of extracted features are calculated using the multivariate Gaussian distribution (lines 

5-6) explained in Section 3.5. Among the possible next activities, the one that has the highest 

probability density function value will now be assigned as the state of window 𝑊𝑖−1,𝑘. Then, 

the same process is repeated for window 𝑊𝑖,𝑘. Notice that, the algorithm performs re-

classification on the current window and its previous window to handle both invalid transition 

scenarios without having any prior knowledge on which one is misclassified. In order not to 

invalidate all previous activity transitions, the algorithm acquires only valid next activities of 

the previous window to perform re-classification. 

4.5 Results and Discussion 

We have compared the adaptive sliding window with and without ATD in terms of recognition 

accuracy to investigate the effectiveness of the integration of ATD in the classification 

algorithm. The performance evaluation is performed using IELAB dataset and the SBHAR 

dataset. 

4.5.1 IELAB: Intelligent Environment Lab Dataset 

We compute and tabulate the (recall) accuracy of the recognition from the values of true 

positive (TP) and false negative (FN) to evaluate the performance of the proposed approach. 

We also calculated the precision and F-score metrics as illustrated in Figure 4.4. Table 4.1 

compares the accuracy of activity recognition system using adaptive sliding window approach 

with ATD (AW-TD) against the AW approach. Table 4.2 and Table 4.3 show the performance 

of the approaches by means of confusion matrices. The recognition accuracy of individual 
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activities, transitional activities, non-transitional activities and the overall accuracy are 

compared and analyzed. There is an additional improvement to the overall recognition accuracy 

when the state validator is integrated into the activity recognition system and acts as a feedback. 

In general, classification accuracy of AW-TD approach is over 90% for every individual 

activity. For AW approach, although the overall accuracy is only marginally lower (2.4% less) 

compared with AW-TD, the standard deviation in classification accuracy is higher, which are 

3.4% for AW and 2.1% for AW-TD. This indicates AW approach is less accurate in some 

activities while AW-TD provides good classification in every case. 

The recognition accuracy of walking has seen significant improvement whereby more than 

half of the misclassification have been corrected.  From the observation, the state validator 

successfully detected the invalid transition when a window is misclassified and the window 

classification is corrected by the classification system. The overall recognition accuracy is also 

improved with lower standard deviation, in which recognition accuracy for all activities are 

well above 90%. However, recognition accuracy of sitting and standing has been decreased by 

1.3% and 0.7% respectively. This is because the windows were incorrectly re-classified by 

multivariate Gaussian distribution. 

Table 4.1: Comparison of accuracy of activity recognition. 

 Recall (Transitional) Recall 

(Non-transitional) 

Overall Recall 

AW Approach 93.6% 92.9% 93.0% 

AW-TD Approach 95.3% 95.4% 95.4% 
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Table 4.2: Confusion matrix of AW approach. 

 

 

a. Stand-to-sit 

b. Sit-to-stand 

c. Sit-to-lie 

d. Lie-to-sit 

e. Lying face-up 

f. Lying face-down 

 

 Walk St-Si Si-St Si-Li Li-Si Fall Stand Sit Lie-Up Lie-Dw Count Recall 

Walk 446 21 39 0 0 0 4 0 0 0 510 87.5% 

St-Sia 0 84 1 1 0 2 0 0 0 0 88 95.5% 

Si-Stb 2 1 83 0 2 0 0 0 0 0 88 94.3% 

Si-Lic 0 0 0 56 0 0 0 0 3 0 59 94.9% 

Li-Sid 0 0 0 0 37 0 0 0 2 0 39 94.9% 

Fall 4 0 4 0 0 62 0 0 0 0 70 88.6% 

Stand 3 1 0 0 0 0 138 0 0 0 142 97.2% 

Sit 2 1 2 0 0 0 6 215 0 0 226 95.1% 

Lie-Upe 0 0 0 12 0 0 0 0 223 0 235 94.9% 

Lie-Dwf 3 0 0 0 0 1 0 0 0 212 216 98.1% 
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Table 4.3: Confusion matrix of AW-TD approach. 

 

 

a. Stand-to-sit 

b. Sit-to-stand 

c. Sit-to-lie 

d. Lie-to-Sit 

e. Lying face-up 

f. Lying face-down 

 

 Walk St-Si Si-St Si-Li Li-Si Fall Stand Sit Lie-Up Lie-Dw Count Recall 

Walk 484 10 11 0 0 1 4 0 0 0 510 94.9% 

St-Sia 0 87 0 1 0 0 0 0 0 0 88 98.9% 

Si-Stb 2 1 84 1 0 0 0 0 0 0 88 95.5% 

Si-Lic 0 0 0 56 0 0 0 0 3 0 59 94.9% 

Li-Sid 0 0 0 0 37 0 0 0 2 0 39 94.9% 

Fall 4 2 0 0 0 64 0 0 0 0 70 91.4% 

Stand 2 3 0 0 0 0 137 0 0 0 142 96.5% 

Sit 0 2 8 0 0 0 4 212 0 0 226 93.8% 

Lie-Upe 0 0 0 12 0 0 0 0 223 0 235 94.9% 

Lie-Dwf 0 0 2 0 0 2 0 0 0 212 216 98.1% 
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(a) 

 

(b) 

Figure 4.4: Comparison of (a) precision and (b) F-score between AW and AW-TD for IELAB 

dataset. 
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4.5.2 SBHAR: Smartphone-based HAR Dataset 

Table 4.4 compares the accuracy of activity recognition system using AW-TD and AW on the 

dataset. The recognition accuracy of individual activities, transitional activities, non-

transitional activities and the overall accuracy are compared and analyzed. In general, the 

overall recognition accuracy is improved when state validator is integrated into the activity 

recognition system. For the AW-TD, the classification accuracies for all activities are above 

90%, achieving overall recognition accuracy of 96.5% while AW approach achieved an overall 

recognition accuracy of 95.7%. This can be seen by the lower standard deviation for AW-TD 

(2.7%) compared to AW (3.9). However, the recognition accuracy for standing slightly 

decreased by 0.4%. This is because, the windows were incorrectly re-classified by multivariate 

Gaussian distribution. As for transitional activities, AW-TD performed better in classifying all 

transitional activities than AW approach, achieving recognition accuracy of 95.1% which is 

4.8% higher than AW. Table 4.5 and Table 4.6 are the confusion matrices of AW and AW-TD 

approaches. Figure 4.5 shows the comparison of precision and F-score between AW and AW-

TD. 

Table 4.4: Comparison of accuracy of activity recognition. 

 Recall (Transitional) Recall 

(Non-transitional) 

Overall Recall 

AW Approach 90.3% 96.1% 95.7% 

AW-TD Approach 95.1% 96.6% 96.5% 
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Table 4.5: Confusion matrix of AW approach. 

 Walk St-Si Si-St Si-Li Li-Si Stand Sit Lie Count Recall 

Walk 3341 48 68 0 0 1 11 0 3469 96.3% 

St-Sia 0 116 13 0 0 1 0 0 130 89.2% 

Si-Stb 3 1 92 0 3 0 0 0 99 92.9% 

Si-Lic 0 10 2 120 0 0 0 1 133 90.2% 

Li-Sid 0 2 9 0 99 0 0 1 111 89.2% 

Stand 2 1 4 0 0 1004 1 0 1012 99.2% 

Sit 1 6 9 2 5 12 684 36 755 90.6% 

Lie 1 3 5 1 5 16 1 897 929 96.6% 
 

a. Stand-to-sit 

b. Sit-to-stand 

c. Sit-to-lie 

d. Lie-to-Sit 
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Table 4.6: Confusion matrix of AW-TD approach. 

 Walk St-Si Si-St Si-Li Li-Si Stand Sit Lie Count Recall 

Walk 3387 40 41 0 0 1 0 0 3469 97.6% 

St-Sia 1 127 0 1 0 1 0 0 130 97.7% 

Si-Stb 1 1 94 0 3 0 0 0 99 94.9% 

Si-Lic 0 4 2 126 0 0 0 1 133 94.7% 

Li-Sid 0 2 5 0 103 0 1 0 111 92.8% 

Stand 4 3 3 0 0 1000 2 0 1012 98.8% 

Sit 3 12 11 8 8 9 685 19 755 90.7% 

Lie 1 4 4 4 5 16 10 885 929 95.3% 
 

a. Stand-to-sit 

b. Sit-to-stand 

c. Sit-to-lie 

d. Lie-to-Sit 
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(a) 

 

(b) 

Figure 4.5: Comparison of (a) precision and (b) F-score between AW and AW-TD for 

SBHAR dataset. 
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4.6 Conclusions 

We propose an activity transition diagram to model the temporal dependence of the physical 

activities. The activity transition diagram is a part of the state validator of the activity 

recognition system. The state validator performs validation of activity transition for every 

window classification based on the proposed activity transition model and notifies the 

classification system to re-perform classification in the case an invalid transition is detected. In 

this study, we demonstrated the performance of the approach on two datasets in which one of 

them is a public dataset. The employed datasets were generated by different subjects with 

different styles and pace. The results showed that AW-TD achieved 95.4% overall accuracy, 

which is 2.4% better than AW approach. The standard deviations of the accuracy are 2.12% 

and 3.40% for AW-TD and AW respectively. AW-TD achieved an overall accuracy of 96.5%, 

which is 0.8% better than AW approach when tested on SBHAR dataset. The standard deviation 

of the accuracy are 2.71% and 3.87%  
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5 
Ontological Reasoning with Uncertainty for 

Activity Recognition

5.1 Introduction 

This chapter introduces the methodology of the ADL (later referred to as activity) recognition 

or dense sensing-based activity recognition. The approach is based on the aggregation of 

context information from diverse sources which contain some knowledge about the events in 

the environment. As such, it is assumed that activities can be recognized through the inference 

of user-object interaction and location of the user. Activity recognition in a smart environment 

still faces a number of challenges. Firstly, the activities performed by persons depend on their 

habits and lifestyle and hence they are carried out in different sequences and with different 

durations. Although there exist correlations among some activities, there is no strict pattern in 

a sequence of activities. Secondly, multimodal sensors embedded in smart home environment 

generate heterogeneous data that varies in terms of formats, sensing rates and semantics. 

Furthermore, a fusion of these sensor data is required to establish the context of the activity 
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being carried out. Finally, uncertainties are always present in ambient intelligence environment 

[73]. For instance, sensor data are inherently noisy. This can be due to sensor errors (run out of 

batteries, imprecise outputs, missing activations etc.), communication failures and variability 

in human activities. These issues may significantly influence the accuracy of activity 

recognition. 

Different approaches have been proposed by researchers for activity modeling and 

recognition. They can be classified into data-driven and knowledge-driven approaches [35], 

[50]. Data-driven approaches use learning-based techniques with robust activity models that 

extract specific features from sensor data. The main advantage of learning-based techniques is 

the ability to handle uncertainty and noise. Previous research works have shown that they are 

able to obtain high accuracy rate of activity recognition [56]–[58], [135]–[139]. Furthermore, 

learning-based techniques are applicable to different domains and achieve good results [32], 

[77]. However, data-driven approaches tend to suffer from the curse of dimensionality and 

require large amount of training data to train activity models. As users perform activities in 

various ways and orders, it is difficult to obtain sufficient and representative datasets [35], [50], 

[140], especially in smart home environment due to cost, privacy and ethical consideration. 

Moreover, collecting and manually annotating huge amount of sensor data is an extremely time-

consuming task. Therefore, data-driven approaches suffer from scalability, applicability and 

adaptability [50], [72], [141]. 

Knowledge-driven approaches exploit prior knowledge to build semantic activity model by 

using knowledge engineering techniques (also called specification-based techniques), and then 

reason on it with input sensor data. The advantages of these approaches are interoperability and 

ability to adapt to different scenarios, which are essential for context-aware environment where 

the sensors are multimodal. Moreover, they provide a way to represent sensor data and contexts 

by a formal data structure with the aid of semantic descriptions, which makes them 

understandable to both human and machine. Consequently, they facilitate the development of 

semantic activity model and recognition process. Numerous knowledge-based techniques have 

been introduced for context modeling. Among the techniques, ontology-based models are 

preferable for managing and modeling context recently [12], [50]. Despite the advantages of 

ontology-based technique, there are still limitations that must be tackled: ontological reasoning 
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is computationally expensive, support for modeling temporal information is minimal and they 

cannot deal with uncertainty. 

In this thesis, we are focusing on the weakness of ontology-based techniques to deal with 

uncertainty, because it affects the accuracy of activity recognition [73]. There are three levels 

of uncertainty in decision making process: data uncertainty, comprehension uncertainty and 

projection uncertainty [74]. Data uncertainty is normally associated with errors in sensor’s 

measurements, which arise due to incompleteness (missing sensor data), imprecise, inaccurate, 

timeliness and incongruent [50], [74], [142]. This study is focusing on incompleteness which is 

the most common in smart home environments because sensors operate with certain degree of 

reliability or loss of data during transmission. Existing ontology-based activity recognition 

systems can only infer an activity when all the contextual information that defines the activity 

is asserted. The contextual information is captured by the sensors embedded in the environment. 

If one of the sensor data is missing, ontology will not be able to infer the activity that is being 

carried out, which is indicated by a total ignorance about the current situation in the 

environment. In Dempster-Shafer (DS) [143], [144] theory, total ignorance can be assigned 

with a weightage (called belief) and combined with other evidences with a series of 

mathematical functions. Furthermore, DS theory can also resolve conflicting data by combining 

the evidences and arriving at a degree of belief [50], [145] to facilitate the activity recognition 

process. 

In this thesis, we propose a novel reasoning algorithm which integrates ontological 

reasoning based on Description Logic (DL) [146] with DS theory. The proposed algorithm 

preserves the advantages of ontological reasoning and has the ability to manage data 

uncertainties that occur during the activity recognition process. An activity is modeled as a 

sequence of actions separated by elapsed time between two actions and may be used to represent 

the real-life activity. The reasoning algorithm assigns degree of beliefs to actions based on their 

states: active, inactive or uncertain which are determined by using the actions’ temporal 

sequence and inference of the actions. Then, the algorithm aggregates the action contexts to 

produce a belief for the activity which supports the decision making of activity recognition 

process. In addition, we propose a four-layered activity ontology which systematically 

organizes the contextual information in accordance with the activity inference process. We also 
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propose a methodology to incorporate the evidential parameters in the ontology for reasoning 

using DS theory. The new algorithm is applied on two datasets, one collected internally and 

one publicly available, and then compared with ontology-only based recognition approach and 

data-driven approach. It shows very good recognition accuracy compared with other 

approaches. 

5.2 Related Works 

5.2.1 Ontologies for Activity Recognition 

A number of ontology-based systems have been developed for activity recognition. In [147], 

an DL-based reasoning engine is used to recognize coarse-grained and fine-grained activities. 

Bae [148] proposed a method for recognition of ADL. Ontology is used to model the activity 

while semantic reasoning and rule engines are used to recognize the activities. Okeyo et al. 

[149] proposed a novel sensor data segmentation approach for activity recognition. Activities 

are modeled using ontology and semantic reasoner is used to recognize the activities. Ye et al. 

[150] present a novel ontology-based approach for concurrent activity recognition. Semantic 

dissimilarity is used to segment a continuous sensor sequence into fragments, which 

corresponds to one ongoing activity. In [151], an ontology-based hybrid framework for activity 

recognition is proposed by combining the standard reasoning semantics of OWL 2 and the 

standard query language of the Semantic Web. The proposed framework allows the OWL 2 

reasoning module to incorporate temporal correlations of complex activities which is essential 

in activity recognition. Khattak et al. [152] proposed an approach to improve the general health 

and life status of elderly peoples by monitoring the dietary intake and health activity 

information. The ontology is used to model the daily life activities and patient profile 

information, allowing the analysis of fine-grained situation for personalized service 

recommendations. Ahmadi-Karvigh et al. [153] proposed a novel ontology-based framework 

to allocate appliance-level electricity consumption to daily activities. In the framework, 

appliance usage data is separated into categories of activity events, which are next segmented 

into activity segments. Then, a classification model is used to classify the activity segments into 
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activity classes. None of the aforementioned approaches address uncertainty in activity 

recognition scenarios. Riboni and Bettini [154] proposed a hybrid reasoning for activity 

recognition which combines data-driven and knowledge-driven approaches called COSAR. In 

COSAR, statistical classifier recognizes an activity which is then tested through consistency 

checking by ontological reasoning to verify the recognition. COSAR can deal with uncertainties 

since machine learning technique is used as the classifier. However, the approach suffers from 

data scarcity to train the activity model. In [155], a novel unsupervised approach that combines 

data-driven and knowledge-based techniques for mining activity recognition is proposed. The 

ontology is used to represent the domain knowledge for facilitating the unsupervised discovery 

of activity patterns. However, the system fall short in distinguishing semantically similar 

activities that are occurring close together. Furthermore, the system has limited ability to deal 

with uncertainty. 

5.2.2 Reasoning under Uncertainty 

A number of approaches have been proposed in the literature for reasoning with uncertainty. 

Probabilistic theory is a widely used method in dealing with uncertainty. It provides a 

mathematically sound representation for degrees of belief. Ranganathan et al. [156] use 

ontologies combined with probabilistic logic to infer on-going activity based on object and 

location contexts. Uncertainty is modeled by a confidence value specified to context predicates. 

Similar approach is found in [157] in which, probabilities are assigned to events to handle noisy 

and ambiguous observations. However, the approaches do not utilize ontological reasoning for 

inferring new context information. Helaoui et al. [158] combines log-linear models with DL to 

represent uncertainty in the ontology for activity recognition. However, log-linear DL do not 

support nominal and concrete domains to model concrete properties and values. Furthermore, 

the proposed approach does not support complex temporal modeling and reasoning. Several 

previous works deal with uncertainty by extending OWL through Bayesian Network. These 

approaches represent uncertain information by using probability and dependency annotation. 

For example, BayesOWL [159] extends OWL by a set of rules to transform the defined concepts 

in ontology into a Bayesian network. OntoBayes [160] improves BayesOWL by supporting 
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OWL properties and multi-valued random variables. However, it lacks OWL’s class support 

and hence it is not possible to model relationship between concepts. Ausín [161] overcomes 

limitations of OntoBayes and BayesOWL and offers uncertainty information isolation to ease 

the reutilization of probabilistic ontologies. Although Bayesian model is capable of dealing 

with uncertainties due to inaccurate and contradicting sensor data, it is not capable of dealing 

with missing sensor data [50] which is the focus of this study. Using Bayesian theory a missing 

sensor data could be represented by a proposition of inactive sensor. However, such proposition 

is not always true because the system might not receive the data due to communication loss. 

Unlike Bayesian theory where each individual proposition is assigned a non-negative value 

(probability), DS theory distributes non-negative weights (masses) to any combination of 

propositions [144]. This means that the belief function can explicitly represent any ambiguity 

or ignorance about what has been observed such as missing sensor data.  

DS theory has been used in activity recognition for handling uncertainty. Wu [162] proposed 

to combine sensor outputs using DS theory for context-aware computing. Hong et al. [163] 

introduced evidential-based activity model where DS theory is used for combining contextual 

information to infer activities. Zhang et al. [164] used similar model for activity recognition 

and presented evidence selection and conflict resolution techniques based on evidence theory. 

Directed acyclic graph-based activity model is introduced in [165], [166] for activity 

recognition. DS theory is extended by including temporal information when fusing contextual 

information to improve recognition accuracy. Sebbak et al. [167] proposed new conflict 

resolution and evidential mapping techniques to optimize decision making in activity 

recognition. Similar model found in [165] is used for modeling activity. Liao et al. [168] 

introduced new activity model in the form of three-layer lattice structure which allows historical 

data to be used as a priori knowledge, and DS theory is used to handle uncertainty derived from 

sensor errors. Finally, Chen et al. [169] proposed a framework to fuse activity classification 

obtained by processing signals from a depth camera and an accelerometer using DS theory. The 

framework resolved uncertainty due to differing modality sensors. Although all presented 

approaches address the uncertainty problem, ontology technique is not used, which we consider 

to be the most advantageous and convenient tool for activity modeling. Aloulou et al. [170] 

proposed an algorithm for handling uncertainty in sensor detection by modeling its reliability 
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in terms of battery level, physical and operational behaviors.  Ontology is used for representing 

uncertainty level in context information and DS theory is used to combine contexts acquired 

from multiple sources in order to obtain the consensual uncertainty value. Similar work is found 

in [171], in which a novel modeling approach based on DS theory is proposed to handle 

uncertainty in sensor data. The proposed approach handles uncertainty by modeling not only 

hardware characteristics of the sensor, but also the consensus of a group of sensors. However, 

the literature does not address the uncertainty due to missing sensor data in ontological 

reasoning which is the focus of this research. Uncertainty could be handled through a hybrid 

approach, in which the data-driven approach is used to enrich the activity ontology [140], [172]. 

However, incorrect activity definitions could be encoded and that may lead to incorrect 

classification. Furthermore, traditional ontological reasoning is used for activity recognition. 

Fuzzy logic has been used for handling uncertainty in ontology-based activity recognition [78]. 

However, fuzzy logic is dealing with the concept of vagueness in context information, not the 

occurrence of an activity. Dai et al. [173] proposed a missing data reconstruction approach 

based on similarity measure to improve human behavior prediction. However, the transfer 

learning algorithm requires a significant amount of data, in which it involves binary matrices 

of user behaviors where a matrix represents an activity data for a number of days. 

Ontology offers several advantages over other specification-based techniques [35], [174]. 

Firstly, it is understandable, sharable and reusable by both human and machine, and hence 

allows non-technical users to encode domain knowledge. Secondly, it provides reasoning 

services to infer activity by fusing information through reasoning mechanism of DL such as 

subsumption, satisfiability and instance checking. Furthermore, ontological reasoning can 

detect possible inconsistencies in the definition of concepts and properties of an ontology. 

Consistency checking is crucial because it may lead to erroneous conclusions. Finally, user’s 

activity preferences and styles can be encoded easily and hence facilitate personalized and 

adaptive modeling process. All the above features make ontology the preferred approach for 

activity modeling and recognition. 

In this study, we propose a new reasoning algorithm for recognition of activities. It features 

reasoning mechanism of DL and uncertainty management due to missing sensor data while 

combining contexts from different sensors and provides a degree of belief of the activities, 
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supporting the decision making process in order to improve the reasoning performance. The 

proposed algorithm is evaluated using two datasets, an internally collected and the other public 

one. In addition, we have implemented the HMM-based approach that can handle uncertainties 

to compare with the proposed approach. This work is, to the best of our knowledge, the first to 

propose an integration of DS theory with the OWL-DL based reasoning to deal with missing 

sensor data. 

5.3 Ontological Reasoning with Uncertainty 

An activity has diverse contextual information in terms of spatial, object and temporal contexts. 

Spatial context contains location and area information such as rooms, household furniture and 

appliances. Object contexts refer to human-object interactions such as opening a door, using a 

burner etc. Temporal contexts represent the time and duration. The contextual information is 

captured by embedded sensors in an environment, which provide clues about the activity being 

performed. By capturing and modeling this information, it is possible to infer the corresponding 

object interaction and location contexts from the activation of the sensors, which is generally 

referred to as human action context. For example, a magnetic contact switch installed on a door 

of a kitchen cabinet and PIR sensors installed in the kitchen can indicate the action of opening 

and closing the cabinet door. A series of human actions form an activity. By fusing human 

action contexts, it is possible to infer an activity being performed by a person in the inferred 

location with the inferred object interactions. In summary, activity is an aggregation of contexts 

from diverse sources which contain some knowledge about the events in the environment. 

In this research, we propose an activity ontology organized into four layers of concepts, in 

which each layer of concept is explicitly defined in the ontology. The rationale is that by 

explicitly defining the concepts, annotation property can be used to annotate the evidential 

parameters which are required when reasoning using DS theory. The details are explained in 

Section 5.4.2. Figure 5.1 illustrates the four-layered activity ontology. The object interaction 

and location concepts are the atomic concepts which are used to describe the action concepts, 

while action concepts are used to describe activity concepts. An action might be associated with 

multiple activities. Activity inference is a process whereby a lower layer concept is semantically 
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interpreted by the higher layer concept. The sensor layer models sensor states and provides 

contextual information on object interaction and location in the environment. From here, the 

process goes further up to the action layer, in which object interaction and location concepts 

are propagated and fused to infer an action. In the end, several actions are combined to form a 

conclusion on what activity is being performed. The modeling of the activity ontology is 

described in Section 5.4.1. 

 

Figure 5.1: The generic conceptual activity ontology organized into four layers of concepts. 

5.3.1 Modeling Uncertainty in Ontological Reasoning 

From ontological engineering perspective, activity a is represented as a concept in an 

activity ontology O, and a concept is a specification that defines the aggregation of series of 

human action contexts. Such aggregation can be represented as conjunctive implication 

Activity(𝑑) = Action(𝑥𝑛
𝑡𝑛) ⊓ [⋂ Action(𝑥𝑖

𝑡𝑖)1
𝑖=𝑛−1 ⊓ FartherThanT1 ⊓ CloserThanT2] (5.1) 

where ⊓ is the intersection operator as described in Table 5.1. Activity(𝑑) is the concept of 

activity 𝑑. 𝑥𝑖
𝑡𝑖 is the 𝑖th contextual information at time 𝑡𝑖 describing the activity 𝑑 ∈ 𝑂, 𝑖 =

(𝑛 − 1), … ,2,1. Time is expressed with respect to an absolute time reference. 𝑥𝑛
𝑡𝑛 is the most 

recent contextual information in the series at time 𝑡𝑛. The Action predicate is an atomic concept 

associated with Activity(𝑑) in 𝑂. FartherThanT1 and CloserThanT2 are optional temporal 

constraints which define the minimum, T1 and maximum, T2 elapsed time between contexts 𝑥𝑖
𝑡𝑖 

and 𝑥𝑖+1
𝑡𝑖+1. Specifically, such definition requires context 𝑥𝑖+1

𝑡𝑖+1 to have a predecessor (human 

action context) in the range of 𝑡𝑖+1 − T2 < 𝑡𝑖 < 𝑡𝑖+1 − T1. 
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In ontology-based activity recognition system, an activity is recognized if every action 

concept associated with it is inferred. However, uncertainty due to missing data may arise 

during context reasoning process. If one of the action concepts is not inferred, then the activity 

will not be recognized. In order to accommodate such uncertainty, we propose a novel reasoning 

algorithm which integrates ontological reasoning with DS theory to support the reasoning 

process. The proposed algorithm assigns each context 𝑥 with a degree of belief that is a function 

of uncertainty in the observations. It measures the strength of the context supporting an activity. 

Therefore, the higher the degree of belief of the context, the greater is the possibility that the 

activity is being performed. The concept of activity 𝑑 could be represented with uncertainty 

component as follows. 

 Activity(𝑑) = [Action(𝑥𝑛
𝑡𝑛) with 𝑚(𝑥𝑛

𝑡𝑛)] ⊓ [⋂ [Action(𝑥𝑖
𝑡𝑖) with 𝑚(𝑥𝑖

𝑡𝑖)]1
𝑖=𝑛−1 ⊓

FartherThanT1 ⊓ CloserThanT2]  (5.2) 

where 𝑚(𝑥𝑖
𝑡𝑖) is the mass function of 𝑥𝑖

𝑡𝑖. Then, Dempster’s rule of combination can be used 

for fusing action contexts to calculate the degree of belief of activity 𝑑. 

We propose the assignment of the degree of beliefs based on the states of the action contexts. 

We define three states to represent the occurrence of an action in the environment: active, 

inactive and uncertain. The active state represents that the action has occurred in the 

environment and inactive state represents the opposite case. The uncertain state represents the 

ignorance about the state of the action, either active or inactive. The action states are determined 

by the temporal sequence of the actions and inference of the actions. Temporal sequence of 

actions is the human action sequence associated with a timeline, in which the actions are 

performed one after another as illustrated in Figure 5.2. Assuming the context reasoning is 

performed at 𝑡𝑛 and Action2 and Action3 are inferred while Action1 is not inferred due to 

missing sensor data, then, Action2 and Action3 are assigned the active state. Action4 is 

considered inactive since the action comes after Action3 in the sequence of actions while 

Action1 is assigned the uncertain state. The rationale is that Action1 might have been performed 

but the sensor data is lost, for example during transmission. Next, the sensors associated with 

the object interaction and location contexts which define the actions are not activated because 
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the action is not actually performed in the environment. This uncertainty represents the 

ignorance about the environment being observed. The algorithm for determining the states of 

the action concepts in ontological reasoning is described in Section 5.5.2. 

 

 

Figure 5.2: The determination of states of the actions in the action sequence timeline, (a) is 

active, (i) is inactive and (u) is uncertain. 

In DS theory, the degree of belief, referred to as a mass, takes a value between 0 and 1. It 

represents the degree of belief of each subset of a frame of discernment denoted by Θ, where Θ 

is the universal set that comprises all possible states of an entity. Therefore, any subset of the 

frame of discernment can be assigned a mass, which means any ambiguity or uncertainty on 

what is being observed can be explicitly represented by the mass function. For instance, the 

elements representing the states (active, inactive and uncertain) of the action contexts are 

{action}, {¬action} and {action,¬action} respectively. The distribution of mass over the frame 

of discernment must satisfy the following two properties.  

 ∑ 𝑚(𝐴) = 1𝐴⊆𝛩 𝑚(𝜙) = 0 (5.3) 

where 𝐴 is a subset of Θ and 𝜙 is the empty set. 

5.3.2 Evidential Operations 

An action context with active state is inferred by semantically interpreting the lower-level 

contextual information. Therefore, the belief of an action is assigned by propagating the mass 

from the associated sensors. As shown in Figure 5.1, a sensor activation indicates a location 

context or an object interaction context. This relationship is defined by a compatibility relation 

[175], whereby the mass of a sensor can be translated to the corresponding context through 

compatibility mapping. The propagation of masses from location and object contexts to action 

context is defined by an evidential mapping [176] due to their uncertain relationship. An 
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evidential mapping for the frame of discernment of a location context (evidence), 𝛩𝐸 to the 

frame of discernment of an action context (hypothesis), 𝛩𝐻 is given as follows 

 𝛤∗(𝑒𝑖) = {(𝐻𝑖𝑗 , 𝑓(𝑒𝑖 → 𝐻𝑖𝑗)) , … , (𝐻𝑖𝑚, 𝑓(𝑒𝑖 → 𝐻𝑖𝑚))} (5.4) 

where 𝑒𝑖 ∈ Θ𝐸 , 𝐻𝑗 ∈ Θ𝐻 , 𝑖 = 1, … , 𝑛, 𝑗 = 1, … , 𝑚. Then, a mass function of 𝐻𝑗 can be calculated 

if the evidence of Θ𝐸  is propagated to Θ𝐻 through an evidential mapping as follows. 

 𝑚(𝐻𝑗) = ∑ 𝑚(𝑒𝑖)𝑖 𝑓(𝑒𝑖 → 𝐻𝑗) (5.5) 

Then, the propagated masses from the location and object contexts to action context are 

combined to produce a single mass representing the belief of the action context. Dempster’s 

rule of combination solves the problem of combining evidence from two distinct sources as 

follows 

 (𝑚1 ⊕ 𝑚2)(𝐶) =
1

1−𝑘
∑ 𝑚1(𝐴)𝐴⋂𝐵=𝐶 𝑚2(𝐵) (5.6) 

where ⊕ denotes the combination operation and 𝑘 is defined as follows. 

 𝑘 = ∑ 𝑚1(𝐴)𝑚2(𝐵)𝐴⋂𝐵=∅  (5.7) 

𝑘 is the total conflicting mass between the two pieces of evidence. Similar methodology is used 

for propagating the action contexts to the activity context. Often, more than two action contexts 

are combined to infer an activity context. The problem of combining more than two evidences 

is described by 

 𝑚1 ⊕ 𝑚2 ⊕ … ⊕ 𝑚𝑛 = (((𝑚1 ⊕ 𝑚2) ⊕ … ) ⊕ 𝑚𝑛) (5.8) 

One major criticism of DS theory is its handling of conflicting mass which is called Zadeh 

paradox [177]. It gives counter-intuitive results in case of high conflict. Numerous combination 

rules have been proposed to resolve the paradox [178]. Murphy’s rule overcomes the possibility 

of a single source dominating all other sources by averaging the sources of evidences as follows 

[179]. 
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 𝑚𝑀(𝑍) =
1

𝑛
(𝑚1(𝐴) + 𝑚2(𝐵) + ⋯ + 𝑚𝑛(𝑁)) (5.9) 

After calculating the average of 𝑛 sources, Dempster’s rule of combination is applied 𝑛 − 1 

times. The algorithm of propagating the masses and calculating the mass of the activity is 

described in Section 5.5.3. 

5.4 Activity Model 

We use Web Ontology Language (OWL), a DL-based markup language, to develop the context 

model. Ontology consists of three core elements: concepts, roles and individuals, which 

represent domain knowledge. A concept corresponds to a set of individuals, a role is a binary 

relationship between individuals and an individual is an instance of a given concept. The 

concepts can be organized in a hierarchical structure based on the “is-a” relationship to form 

superconcept and subconcept relations, whereby the subconcept inherits the properties of the 

superconcept. A logical statement relating concepts and/or roles is called axiom which can be 

formed by using the basic elements in Table 5.1. In DL, a knowledge base is comprised of 

Terminological Box (TBox) and Assertional Box (ABox). 

The TBox contains the vocabularies of concepts and roles. Also, complex concept 

definitions can be built based on other concepts. For instance, it is possible to define 

 Ambient_Sensor ≡ Sensor ⊓ ∃hasLocation. Room (5.10) 

In the expression, we associate the concept definition (right-hand side) with Ambient_Sensor. 

The concept definition consists of hasLocation role that define the binary relation between 

Sensor and Room concepts. The definition characterizes Ambient_Sensor as a sensor that is 

located in a room. The ABox contains the vocabularies of asserted individual and their 

relationships. For instance, by using the concepts above 

 

Sensor(SENSOR_01)

Room(LOUNGE)

hasLocation(SENSOR_01, LOUNGE)
 (5.11) 
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assert individuals named SENSOR_01 and LOUNGE in the ABox. The first and second 

definitions, called concept assertions, state that “sensor 01” is a sensor and “lounge” is a room 

respectively. The third definition, called role assertions, one states that “sensor 01” is located 

in the “lounge”. 

A DL system not only stores the terminologies and assertions, but it can also reason about 

them, where implicit knowledge about concepts and individuals can be inferred from the 

knowledge that is explicitly contained in the knowledge base. Reasoning in the TBox includes 

satisfiability, equivalence and disjointness, which ultimately can be reduced to checking the 

subsumption of concepts [146]. A subsumption reasoning is to decide whether a concept 𝐶 is 

more general than another concept 𝐷 i.e. if 𝐷 logically implies 𝐶. For instance, reasoning the 

following definition 

 
Location_Sensor ⊑ Sensor

Location_Sensor ≡ ∃hasLocation. Room
 (5.12) 

will deduce that Location_Sensor is subsumed by (or “is a”) Ambient_Sensor. The ABox 

reasoning includes consistency checking, instance checking, retrieval and realization. The 

consistency checking is to check whether the concept and role assertions are consistent with 

respect to the TBox. The instance checking is to check if an individual is an instance of a given 

concept. The retrieval problem is to find all individuals that are instances of a given concept 

and realization problem is to find the most specific concepts for a given individual, with respect 

to the subsumption ordering. The following example demonstrates the mechanism of instance 

checking since it is the main reasoning scheme in the proposed model. Using the concept 

definitions above, the following assertions are included in the ABox: 

 
Location_Sensor(PIR_01)

hasLocation(PIR_01, LOUNGE)
 (5.13) 

Then, it can be inferred that PIR_01 is an instance of Ambient_Sensor.  
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Table 5.1: Description logic notations. 

Syntax Description 

𝐴  Atomic concept 

𝑅  Atomic role 

¬𝐴  Negation or complement of concepts 

𝐶 ⊓ 𝐷  Intersection or conjuction of concepts 

𝐶 ⊔ 𝐷  Union or disjunction of concepts 

∀𝑅. 𝐶  Universal restriction (All values restriction) 

∃𝑅. 𝐶  Existential restriction (Some values restriction) 

𝐶 ⊑ 𝐷  Concept inclusion 

𝐶 ≡ 𝐷  Concept equivalence 

 

Numerous methodologies of ontological modeling have been proposed. In this research 

work, we mostly followed a methodology introduced in [174]. Several reasons are identified as 

to why the methodology is chosen. Firstly, the methodology allows for context recognition 

through ontology-based reasoning without using rule-based system and external reasoning 

engine. Secondly, a set of temporal concepts (FartherThan and CloserThan) are introduced to 

define temporal constraints between two concepts. Lastly, the methodology introduces a role 

called hasPredecessor to specify temporal precedence relationship between concepts. The last 

two features are important because they allow activity concepts to be defined as a series of 

actions with specific durations. 

5.4.1 Activity Ontology 

The developed activity ontology consists of five main concepts: Sensor, Location, Object, 

Action and Activity. Sensor models the most recent state of a sensor. Embedded sensors in the 

environment can be divided into object sensors and location sensors. Therefore, two 

subconcepts are defined corresponding to those sensors in the ontology: Object_Sensor and 

Location_Sensor. Object_Sensor represents object sensors which monitor person’s object 

interaction such as dispenser sensor, door sensor and water detector. Location_Sensor 

represents location sensors such as PIR sensors which monitor person’s presence in an 

environment such as kitchen, living room and toilet. A sensor concept consists of subconcepts 
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which represent its states. For example, a sensor to detect the presence of an item has two 

possible states: PRESENT and ABSENT. The two possible states of the sensor are defined as 

follows: 

 

Object_Sensor ⊑ Sensor
Item_Sensor ⊑ Object_Sensor

Item_Sensor_PRESENT ⊑ Item_Sensor
Item_Sensor_ABSENT ⊑ Item_Sensor

 (5.14) 

Location concept models the location contexts that is provided by embedded sensors. Each 

location sensor that is included in the system corresponds to a different subconcept of Location 

concept in the ontology which represents a particular room or area. To define a location concept, 

restriction is applied by using concept equivalence operator through hasFluent role that 

specifies the relevant sensor in a given state as follows: 

 
In_Kitchen ⊑ Location

In_Kitchen ≡ ∃hasFluent. PIR_Kitchen_ON
 (5.15) 

which describes a person is in the kitchen when the state of PIR sensor is ON. The hasFluent 

role establishes a relationship between individuals of the location concept and individuals of 

the sensor state concept. Object concept models the object interaction context which is provided 

by the object sensors. Object concept consists of subconcepts that represent the object 

interaction contexts in the environment. Similar modeling approach is used whereby concept 

equivalence operator is used to apply a restriction via hasFluent, for example 

 
Water_Tap_Is_Open ⊑ Object

Water_Tap_Is_Open ≡ ∃hasFluent. Water_Tap_OPEN
 (5.16) 

The methodology introduced a concept called Interval which has the following definition 

[174]. 

 Interval ≡ hasFluent. Sensor ⊓ ∃hasBeginAt. Integer ⊓ (hasPredecessor ∘

hasPredecessor = hasPredecessor)  (5.17) 
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Interval concept models time intervals through hasBeginAt role which states the starting time 

of each time interval, and also the states of sensors that hold in each time interval through 

hasFluent role. The hasPredecessor role defines the precedence relationships between a time 

interval and the preceding time interval. Action or human action is a simple motion which 

typically lasts for a short time [32], [72], for example opening a water tap, turning on a burner, 

or closing a cabinet door. Using interval concept, an action concept is defined with additional 

constraints using object and location concepts. Considering the context of “a person is opening 

a water tap”. We can describe the context as 

Opening_Water_Tap ⊑ Action
Opening_Water_Tap ≡ Interval ⊓ In_Kitchen ⊓ Water_Tap_Is_Open

 (5.18) 

This definition requires the “water tap sensor” that monitors the water tap status and the PIR 

sensor that detects people in proximity in the state of OPEN and ON, respectively. An example 

of inferring an action, suppose at time 𝑡6, the following individuals are asserted in the ABox: 

 

PIR_Kitchen_ON(PIR1)

Water_Tap_ON(WATER1)

Interval(E6)

hasBeginAt(E6, t6)

hasFluent(E6, PIR1)

hasFluent(E6, WATER1)

 (5.19) 

Then, reasoning individual interval E6 will return Opening_Water_Tap. 

Activity concept models a series of actions by expressing temporal precedence relationships 

between action concepts using hasPredecessor and temporal constraints if required. Consider 

the following definition 

 

Cooking_Meal ⊑ Activity 

 Cooking_Meal ≡ Using_Burner ⊓ ∃hasPredecessor. (Opening_Water_Tap ⊓

∃hasPredecessor. (Taking_Pot ⊓ ∃hasPredecessor. Opening_Cabinet)) (5.20) 
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The definition is basically a list of action concepts, temporally ordered from the more recent to 

the older one. An example of activity recognition, suppose at time 𝑡7, the following individuals 

have been asserted in the ABox that already contain (5.17). 

 

Interval(E3), hasPredecessor(E3, E2)

Interval(E4), hasPredecessor(E4, E3)

Interval(E5), hasPredecessor(E5, E4)

Interval(E6), hasPredecessor(E6, E5)

Interval(E7), hasPredecessor(E7, E6)

 (5.21) 

and the individuals have the following properties: 

 

Opening_Cabinet_Door(E3)

Taking_Pot(E4)

Taking_Pot(E5)

Opening_Water_Tap(E6)

Using_Burner(E7)

 (5.22) 

Then, reasoning individual interval E7 will return Cooking_Meal. 

5.4.2 Representation of Evidential Parameters 

An individual in the ontology such as individual sensor state is a piece of evidence that supports 

a proposition. The strength of an evidence in favor of a proposition is called mass. To represent 

a mass in the ontology we propose a role called hasMass to store the values. The role has a 

datatype of double, which is implicitly in the range from 0 to 1. Listing 5.1 shows an example 

of an individual (PIR16_ON) of the PIR concept is asserted with hasMass to store its mass as 

defined by line 3. 

 

Listing 5.1: Asserting an individual of a sensor state with hasMass role 

1 <NamedIndividual rdf:about="#PIR16_ON"> 

2 <rdf:type rdf:resource="#PIR_Kitchen_ON"/> 

3 <hasMass rdf:datatype="&xsd;double">1.0</hasMass> 

4 </NamedIndividual> 
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When a context is propagated to another context, the relationship is represented by an 

evidential mapping, which reflects the strength of interrelationship between the propagated 

contexts and the inferred contexts. Figure 5.3 illustrates an example of the propagation of 

Opening_Cabinet, Opening_Water_Tap, Taking_Pot and Using_Burner contexts to 

Cooking_Meal context. The impact of the propagated contexts is represented by evidential 

mappings defined by ‘a’, ‘b’, ‘c’ and ‘d’. The evidential mappings are given in Table 5.2. For 

instance, the evidential mapping of “using burner” to “cooking meal” is 0.857. The evidential 

mappings can be estimated by examining for each context occurrence the number of times the 

corresponding sensors are activated. In the absence of training data, domain knowledge can be 

obtained from experts and users [165], [167]. We propose to use annotation property to 

represent evidential mappings in the ontology. Listing 5.2 shows an example of annotating 

evidential mappings of Cooking_Meal. 
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Figure 5.3: Propagating contexts to Cooking_Meal. 

 

Table 5.2: Evidential mappings of Cooking_Meal. 

Propagation Evidential Mapping 

Open_Cab → 
Cook_Meal 

{Open_Cab} → {({Cook_Meal},0.625), 
({Cook_Meal,¬Cook_Meal},0.375)} 

{¬Open_Cab} → {({¬Cook_Meal}),1.0} 

{Open_Cab,¬Open_Cab} → {({Cook_Meal,¬Cook_Meal},1.0)} 
 

Take_Pot → 
Cook_Meal 

{Take_Pot} → {({Cook_Meal},0.609), 
({Cook_Meal,¬Cook_Meal},0.391)} 

{¬Take_Pot} → {({¬Cook_Meal}),1.0} 
{Take_Pot,¬Take_Pot} → {({Cook_Meal,¬Cook_Meal},1.0)} 

 

Open_Wat_Tap 
→ Cook_Meal 

{Open_Wat_Tap} → {({Cook_Meal},0.518), 
({Cook_Meal,¬Cook_Meal},0.492)} 

{¬Open_Wat_Tap} → {({¬Cook_Meal}),1.0} 
{Open_Wat_Tap,¬Open_Wat_Tap} → 

{({Cook_Meal,¬Cook_Meal},1.0)} 

 

Using_Burner 
→ Cook_Meal 

{Using_Burner} → {({Cook_Meal},0.857), 
({Cook_Meal,¬Cook_Meal},0.143)} 

{¬Using_Burner} → {({¬Cook_Meal }),1.0} 
{Using_Burner,¬Using_Burner} → {({Cook_Meal,¬Cook_Meal},1.0)} 
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Listing 5.2: Annotation of evidential mapping 

1 <AnnotationProperty rdf:about="#evidentialMapping"/> 

2 <Class rdf:about="#Cooking_Meal"> 

3 <equivalentClass> 

4 <Class> 

5 ... 

6 </Class> 

7 </equivalentClass> 

8 <rdfs:subClassOf rdf:resource="#Activity"/> 

9 <evidentialMapping rdf:datatype="&xsd;string"> 

10 Opening_Cabinet:0.625,0,0.375;0,1,0;0,0,1 

11 </evidentialMapping> 

12 <evidentialMapping rdf:datatype="&xsd;string"> 

13 Taking_Pot:0.609,0,0.375;0,1,0;0,0,1 

14 </evidentialMapping> 

15 <evidentialMapping rdf:datatype="&xsd;string"> 

16 Opening_Water_Tap:0.518,0,0.492;0,1,0;0,0,1 

17 </evidentialMapping> 

18 <evidentialMapping rdf:datatype="&xsd;string"> 

19 Using_Burner:0.857,0,0.143;0,1,0;0,0,1 

20 </evidentialMapping> 

21 </Class> 

 

Line 1 defines annotation property called evidentialMapping. Lines 3-7 define the concept 

definition of Cooking_Meal. Lines 9-20 define the usage of annotation property of 

evidentialMapping to annotate Cooking_Meal with evidential mappings of each propagated 

concept. Each annotation consists of the name of the action concept and its evidential mappings. 

The evidential mappings of each relationship are delimited by semicolons. 

5.5 Activity Recognition Algorithm 

5.5.1 Ontological Reasoning with Uncertainty 

Activity recognition algorithm consists of two phases: knowledge acquisition and ontology 

reasoning. Knowledge acquisition phase is a repetitive process of acquiring sensor data and 

creating individuals of interval concept to reflect the current state of sensor activation. This is 

represented by line 1 in Listing 5.3, which shows the activity recognition algorithm. Before 

knowledge acquisition phase is executed, the ABox is initialized by adding a concept assertion 
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for each sensor state which is deemed relevant to define activity concepts. The algorithm 

utilizes two lists called sensor list, 𝕃 and interval list, 𝔼. 𝕃 is used to store the current sensor 

states which are used to define contexts in the ontology. The sensor states are represented by 

individuals of sensor concepts. Whenever a sensor changes its state, the individual of the sensor 

state is inserted into 𝕃. Symmetrically, the individual of its previous state is removed from the 

list. In this way, 𝕃 reflects the most recent states of the sensors. 

 

Listing 5.3: Algorithm for ontological reasoning under uncertainty 

𝔼 is a list of individual instances of Interval in the window, ordered chronologically with the 

most recently asserted individual at the head. 

𝔻 is a list of activity concepts which contain 𝑋 in their axioms. 

  

1 populates ABox with individual instances of Interval 
2 if enough time has passed then 

3 for all 𝑒 in 𝔼 do 

4 infer location concept 

5 for all activity 𝐷 of which 𝑒 is an instance, assert 𝐷(𝑎) in ABox    

6 for all action 𝑋 of which 𝑒 is an instance do 

7 𝔻 = get all 𝐷 where 𝐷 ≡ 𝐶 ⊓ … ⊓ 𝑋 ⊓ … and 𝐷 ⊑ Activity 

8 for all 𝐷 in 𝔻 do 

9 determine the states of the action concepts (contexts) of 𝐷 

10 calculate the mass of activity 𝐷 

11 end for 

12 end for 

13 end for 

14 end if 

 

In each iteration, whenever there is a new sensor state and its corresponding individual is 

inserted into 𝕃, the algorithm creates a new individual of interval concept and assert the 

individual with all individuals in 𝕃 and its temporal precedence relationship with previous 

interval. Then, this individual is inserted into 𝔼. 𝔼 is a list of individuals of interval concept in 

the window, ordered chronologically with the most recently asserted individual at the head. 

Whenever a sensor changes its state, the previous individual interval which was added at the 

time the sensor changed to the previous state is removed from 𝔼. Similarly, the individual of 
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the sensor state is removed from 𝕃. In this way, 𝔼 represents a sequence of events happening in 

the environment, defined by the sensor activations. The most recent interval holds the current 

sensor states. Details of the algorithm can be referred to [174]. Periodically, the ontology 

reasoning phase is executed to infer activities from the ontology by performing reasoning on 

every intervals in 𝔼 to infer action and activity concepts as defined by lines 2-5. 

5.5.2 Determination of Action Concept States 

Lines 6-12 define the proposed algorithm to support the reasoning under uncertainty. Lines 6-

7 check if 𝑒 is an instance of some action concept 𝑋 corresponding to a context of some activity 

concept 𝐷. These action concepts are inserted into 𝔻. For each activity concept in 𝔻, the 

contexts of the activity are aggregated to calculate the mass of the activity. The aggregation can 

be divided into two operations: determining the states of the action concepts of the activity and 

calculating the mass of the activity as defined by lines 9 and 10 respectively. Listing 5.4 shows 

the algorithm to determine the states of the actions. The algorithm utilizes two lists, 𝕏 and 𝕐 to 

store the action concepts which are assigned the active and inactive states respectively. The 

action concepts with uncertain state can be obtained by determining the concepts which are not 

in the lists. 𝑋 is the (current) action concept which is inferred from 𝑒 is inserted into 𝕏 as defined 

by line 1. Line 2 determines the index number, 𝑛 of 𝑋 in the series of actions which is defined 

in the concept definition of 𝐷. Line 3 inserts all action concepts which come after 𝑋𝑛 in the 

concept definition of 𝐷. Lines 4-5 acquire all individual intervals before 𝑒 to determine the 

states of the remaining action concepts and get the first interval in the list. Then, line 6 

decrements 𝑛 to determine the state of the preceding action concept. 

Lines 7-27 browse 𝕍 which contains every intervals prior to 𝑒, to determine the states of the 

remaining action concepts of 𝐷, by searching for intervals which can satisfy the remaining parts 

of the axiom defined in concept definition of 𝐷. For example, consider the following definition: 

Activity1 ≡ Action3 ⊓ ∃hasPredecessor. (Action2 ⊓ ∃hasPredecessor. Action1) 

Assuming the interval being reasoned is an instance of Action2. Since Action3 comes after 

Action2 in the sequence of actions, Action3 is considered to be inactive. Then, the algorithm 
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determines the states of actions that come before Action2 in the concept definition of Activity1, 

which in this case Action1. The state is determined by performing instance checking on the 

previous intervals if there is an interval which is an instance of Action1. The interval must also 

be a predecessor of Action2 in order to satisfy the axiom, including any temporal constraints if 

specified. If all conditions are satisfied, then the corresponding actions are considered to be 

active. Otherwise, the action is assigned the uncertain state. 

Specifically, for every �̂�, lines 9-13 test the three conditions in order to determine if �̂� is an 

instance of the action concept being checked. First, the condition is the equality of action 

concept, 𝐶 which is inferred from �̂� and the action concept, 𝑋𝑛 associated with 𝐷. Second, the 

condition is if hasPredecessor(𝑒, �̂�) is asserted in the ABox. If it is true, there is a temporal 

precedence relationship between 𝑒 and �̂�. The final condition is tested if temporal constraints 

are defined in the concept definition. If all the conditions are satisfied, it can be concluded �̂� is 

a part of the axiom being evaluated, insert the action concept into 𝕏 (line 23), and 𝑛 is decreased 

to evaluate the preceding action concept as defined by line 24. The procedure is repeated and 

the iteration stops when there is no more interval or action concept to be checked. At the end 

of the iteration, 𝕏 contains all action concepts with active state associated with 𝐷. 
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Listing 5.4: Determining the states of the action concepts 

𝕏 is a list of action concepts with active state 

𝕐 is a list of action concepts with inactive state 

𝐷 is an activity concept in 𝔻 

𝑒 is an individual of Interval being checked 

  

1 insert 𝑋(𝑒) into 𝕏 

2 𝑛 = determine the index number of 𝑋 in concept definition of 𝐷 where 𝐷 ≡ … ⊓ 𝑋𝑛+1 ⊓
𝑋𝑛 ⊓ 𝑋𝑛−1 ⊓ … 

3 insert all 𝑋𝑘 into 𝕐 where 𝐷 ≡  … ⊓ 𝑋𝑘 ⊓ 𝑋𝑛 ⊓ … , 𝑘 = 𝑛 + 1, 𝑛 + 2, … 

4 𝕍 = get individuals of Interval preceding 𝑒, ordered chronologically with the most 

recent individual at the head 

5 get �̂� at the head of 𝕍 

6 𝑛 = 𝑛 − 1  
7 while �̂� ≠ ∅ and 𝑖 > 0 do 

8 insert = False 

9 if 𝐶 = 𝑋𝑛 where �̂� is an instance of 𝐶 then 

10 if hasPredecessor(𝑒, �̂�) ∈ ABox then 
11 if FartherThanT1 or CloserThanT2 are defined where  

𝐷 ≡  … 𝑋𝑛+1 ⊓ (𝑋𝑛 ⊓ FartherThanT1 ⊓ CloserThanT2) then 
12 get hasBeginAt(𝑒, 𝑡) and hasBeginAt(�̂�, �̂�) 

13 if (𝑡 − T2) < �̂� < (𝑡 − T1) then 
14 insert = True 

15 end if 

16 else 

17 insert = True 

18 end if 

19 end if 

20 end if 

21 if insert = True then 

22 𝑒 = �̂�  
23 insert 𝑋𝑛(𝑒) in 𝕏 

24 𝑖 = 𝑖 − 1  
25 end if 

26 get the next �̂� in 𝕍 

27 end while 
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5.5.3 Propagation of Masses and Calculation of Belief 

Subsequently, the mass of 𝐷 is calculated by combining the action concepts to obtain the mass 

of the activity. The algorithm of calculating the mass is given in Listing 5.5. The algorithm 

assigns degree of belief to action concepts based on the states of the actions. All action concepts 

with inactive state are assigned value of 1.0 to the “not occurring action” element, to represent 

the action has not occurred in the environment. For all action concepts with uncertain state, a 

value of 1.0 is assigned to the uncertainty element, to represent the ignorance about the action 

being observed, either the action has occurred or not. As for the action concepts with active 

state, the degree of belief is assigned by propagating the mass from the associated sensor state 

concepts to the action concept. 

Specifically, for each 𝑋 in 𝕏, the associated object and location concepts, 𝐶 are acquired 

from the concept definition of 𝑋 as defined by lines 1-2. Every object and location concepts are 

associated with sensor state concepts. For each 𝐶, lines 4-5 acquire the associated sensor state 

concept (SensorState) and get all the individuals, 𝑠 of SensorState which are asserted through 

hasFluent role in ABox. Lines 6-7 calculate the joint mass of the sensor states which in turn 

can be translated into the mass of 𝐶. Then, line 8 propagates 𝐶 to 𝑋 by multiplying the mass 

with evidential mapping, and line 10 computes the joint mass of 𝑋. Lines 12-14 assign a mass 

of 1.0 to the {¬�̅�𝑗} set element for each action concept 𝑋 in 𝕐. Lines 15-17 assign a mass of 1.0 

to the {�̅�𝑗, ¬�̅�𝑗} set element to quantify the uncertainty. Then, lines 18-20 propagate all action 

concepts to 𝐷 by evidential mapping. Finally, line 21 combines the masses to obtain the mass 

of the activity. An activity with the mass greater than 𝑚𝑡 is inserted in 𝕄 as defined by line 22. 

𝑚𝑡 is the threshold value which the mass must exceed to have the believe the activity has been 

performed. For every reasoning phase, the mass of an activity is updated whenever the 

calculated mass of current reasoning phase is higher than the previous one. Line 4 of Listing 

5.3 infers user’s location to determine the current location of the user. Whenever the user’s 

location is changed, individuals of activity concepts in 𝕄 are asserted in ABox. 
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Listing 5.5: Propagating masses and calculating the mass of the activity 

1 for all 𝑋𝑗(𝑒) in 𝕏 do 

2 ℂ = get all 𝐶 where 𝑋 ≡ 𝐶𝑁 ⊓ … ⊓ 𝐶𝑖 and 𝐶𝑖 ≢ Interval 
3 for 𝐶𝑖 in ℂ do 

4 SensorState = get SensorState where 𝐶𝑖 ≡ ∃hasFluent. SensorState 

5 𝑆 = get all 𝑠 where 𝑠 ∈ SensorState and hasFluent(𝑒, 𝑠) ∈ ABox 

6 𝑚(𝑆) = 𝑚%(𝑠1) ⊕ 𝑚%(𝑠2) ⊕ … ⊕ 𝑚%(𝑠𝑁)  
7 𝑚(𝐶𝑖) = 𝑚(𝑆)  
8 𝑚𝑖(𝑋𝑗) = 𝑚(𝐶𝑖)×𝑚(𝐶𝑖 → 𝑋𝑗) where 𝑚(𝐶𝑖 → 𝑋𝑗) is evidential mapping of 

propagating 𝐶𝑖 to 𝑋𝑗 

9 end for 

10 𝑚(𝑋𝑗) = 𝑚𝑖(𝑋𝑗) ⊕ … ⊕ 𝑚𝑖+𝑁(𝑋𝑗)  𝑚(¬𝑋𝑗) = 0.0  𝑚({𝑋𝑗, 𝑋𝑗}) = 1.0 − 𝑚(𝑋𝑗) 

11 end for 
12 for all 𝑋𝑗 in 𝕐 do 

13 𝑚(𝑋𝑗) = 0.0 𝑚(¬𝑋𝑗) = 1.0 𝑚({𝑋𝑗, ¬𝑋𝑗}) = 0.0  

14 end for 
15 for all �̅�𝑗 where �̅�𝑗 ∉ 𝕏, 𝕐 and 𝐷 ≡ … ⊓ �̅�𝑛+1 ⊓ …  do 

16 𝑚(�̅�𝑗) = 0.0 𝑚(¬�̅�𝑗) = 0.0 𝑚({�̅�𝑗, ¬�̅�𝑗}) = 1.0  

17 end for 
18 for all 𝑋𝑗 where 𝐷 ≡ 𝑋𝑁 ⊓ … ⊓ 𝑋𝑗, 𝑗 = 𝑁, … ,2,1 do 

19 𝑚𝑗(𝐷) = 𝑚(𝑋𝑗)×𝑚(𝑋𝑗 → 𝐷) where 𝑚(𝑋𝑗 → 𝐷) is evidential mapping of 

propagating 𝑋𝑗 to 𝐷 

20 end for 
21 𝑚(𝐷) = 𝑚𝑗(𝐷) ⊕ … ⊕ 𝑚𝑗+𝑁(𝐷)  

22 insert 𝐷 into 𝕄 if 𝑚(𝐷) > 𝑚𝑡 

5.6 Scenario of Activity Recognition with Uncertainty 

To better illustrate the behavior of the algorithm, consider the following simple scenario. A 

resident walk into the kitchen. In the first instance the kitchen PIR (M02) is active. Then, the 

system detects water tap sensor (W01) state and pot sensor (I04) state are OPEN and ABSENT 

respectively. Sensor M02, W01 and I04 are bi-state sensors. The temporally ordered sequence 

of sensor events is given in Listing 5.6. The ABox is initialized by adding the concept assertion 

for each sensor state that has been identified as relevant to recognize the activities in the 

scenario.  
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Listing 5.6: Sequence of sensor events of the scenario 

Date Time Sensor State 
2015-11-05 10:59:49:0 M02 ON 
2015-11-05 10:59:54:0 I04 ABSENT 
2015-11-05 10:59:56:0 M02 OFF 
2015-11-05 10:59:57:0 M02 ON 
2015-11-05 11:00:13:0 W01 OPEN 
2015-11-05 11:00:36:0 M02 OFF 
2015-11-05 11:00:37:0 M02 ON 

Table 5.3 shows the assertions of the intervals in the ABox as a sensor changes its state over 

time. The first column is the time of the sensor events in which each row corresponds to each 

line of the sensor events. The second column shows the role (hasFluent and hasPredecessor) 

assertions of the intervals. The third and fourth columns show the contents of interval list (𝔼) 

and sensor list (𝕃) at each time. Periodically, ontological reasoning is performed on all intervals 

in 𝔼, which is indicated by *. The inference is given in the next row after each reasoning 

process. At time 𝑡1, sensor M02 changes its state to “ON” that has been asserted in the ABox 

as PIR_Kitchen_ON(M02_ON). Thus, the individual sensor state is inserted into 𝕃 and a new 

interval (E1) is asserted in the ABox and added into 𝔼. When the interval is asserted, its 

hasBeginAt role is asserted to specify its starting time and its hasFluent role is filled with all 

individual sensor state in 𝕃. The same procedures are executed when sensor I04 changes its 

state to “ABSENT”. Additionally, the precedence relationship between E2 and E1 is expressed 

by asserting hasPredecessor(E2, E1) in the ABox. At time 𝑡3, sensor M02 switches from 

“ON” to “OFF, which has not a corresponding individual sensor state in the ABox. Then, 

individual M2_ON is removed from 𝕃 and the interval that was added at the time sensor M02 

changed to “ON” is removed from 𝔼 (i.e. interval E1). Subsequently, the system substitutes E2 

with a new interval E3 which has the same role assertions with the exception of 

hasFluent(E3, M02_ON). 
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Table 5.3: Assertion of intervals in the ABox 

Time Assertion 𝔼 𝕃 
𝑡1 hasBeginAt(E1,𝑡1) 

hasFluent(E1,M02_ON) 
 

E1 M02_ON 

𝑡2* hasBeginAt(E2,𝑡2) 
hasFluent(E2,M02_ON) 
hasFluent(E2,I04_ABSENT) 
hasPredecessor(E2,E1) 
 

E2,E1 M02_ON, 
I04_ABSENT 

Taking_Pot(E2) 
𝑡3 hasBeginAt(E3,𝑡2) 

hasFluent(E3,I04_ABSENT) 
hasPredecessor(E3,E1) 
 

E3 I04_ABSENT 

𝑡4 hasBeginAt(E4,𝑡4) 
hasFluent(E4,I04_ABSENT) 
hasFluent(E4,M02_ON) 
hasPredecessor(E4,E3) 
 

E4,E3 I04_ABSENT, 
M02_ON 

𝑡5* hasBeginAt(E5,𝑡5) 
hasFluent(E5,I04_ABSENT) 
hasFluent(E5,M02_ON) 
hasFluent(E5,W01_OPEN 
hasPredecessor(E5,E4) 
 

E5,E4,E3 I04_ABSENT,  
M02_ON, 
W01_OPEN 
 

Taking_Pot(E4) 
Taking_Pot(E5) 
Opening_Water_Tap(E5) 

𝑡6 hasBeginAt(E6,𝑡6) 
hasFluent(E6,I04_ABSENT) 
hasFluent(E6,W01_OPEN) 
hasPredecessor(E6,E4) 
 

E6,E3 I04_ABSENT, 
W01_OPEN 

𝑡7* hasBeginAt(E7,𝑡7) 
hasFluent(E7,I04_ABSENT) 
hasFluent(E7,W01_OPEN) 
hasFluent(E7,M02_ON) 
hasPredecessor(E7,E6) 
 

E7,E6,E3 I04_ABSENT, 
W01_OPEN, 
M02_ON 

Taking_Pot(E7) 
Opening_Water_Tap(E7) 

 

When reasoning is performed at 𝑡5, the inference yields Taking_Pot and 

Opening_Water_Tap actions since the interval is asserted with I04_ABSENT, M02_ON and 

W01_OPEN through hasFluent role. Subsequently, for each action concept, the activity 
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concepts which are associated with the actions are added into 𝔻. For instance, when 𝑋 =

Opening_Water_Tap, then Cooking_Meal and Taking Medicine are added into 𝔻. Next, for 

each activity concept in 𝔻, the states of the action concepts of the activity are determined. When 

𝐷 = Cooking_Meal, then 𝑛 = 3 (𝑋 is the third action in the concept definition of 𝐷), 𝑋 is added 

into 𝕏 and Using_Burner (action concept after 𝑋) is added into 𝕐. Then, all intervals preceding 

E5 (E4 to E1) are acquired to determine the states of the remaining action concepts (Taking_Pot 

and Opening_Cabinet). The iteration is executed until there is no more intervals or the last 

action concept is evaluated: E4 is an instance of Taking_Pot and a predecessor of E5, while E3, 

E2 and E1 are not part of the axiom since they fail to satisfy the conditions. Thus, Taking_Pot 

is added into 𝕏 and Opening_Cabinet is assigned the uncertain state. Subsequently, the beliefs 

of the actions are assigned according to the states that were determined previously. Action 

concepts in 𝕐 are assigned value of 1.0 to the “not occurring action” element while action 

concepts with uncertain state are assigned value of 1.0 to the uncertainty element.  

For each action concept in 𝕏, the beliefs are assigned by propagating the mass from the 

associated sensors. For instance, the belief of 𝑋 = Opening_Water_Tap is performed by 

propagating the mass of corresponding individual sensor states (W01_OPEN and M02_ON) as 

follows. The masses are acquired and translated to their corresponding object interaction and 

location concepts. 

𝑚({Water_Tap_Is_Open}) = 𝑚({W01_OPEN}) = 1.0 

𝑚({In_Kitchen}) = 𝑚({M02_ON}) = 1.0 

An action concept is composed object interaction and location concepts. The mass propagation 

is defined by an evidential mapping as follows. Assuming 𝑚({Water_Tap_Is_Open} →

{Opening_Water_Tap}) = 1 and 𝑚({In_Kitchen} → {Opening_Water_Tap}) = 0.8. 

𝑚1({Opening_Water_Tap})

= 𝑚({Water_Tap_Is_Open})

×𝑚({Water_Tap_Is_Open} → {Opening_Water_Tap}) = 1.0 
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𝑚2({Opening_Water_Tap})

= 𝑚({In_Kitchen})×𝑚({In_Kitchen} → {Opening_Water_Tap}) = 0.80 

Then, the joint mass is calculated to obtain the mass of Opening_Water_Tap as follows. 

𝑚({Opening_Water_Tap}) = 𝑚1({Opening_Water_Tap}) ⊕ 𝑚2({Opening_Water_Tap}) = 0.99

𝑚({Opening_Water_Tap, ¬Opening_Water_Tap}) = 0.01
 

Similar operation is performed for propagating the mass from action concepts to activity 

concepts. Assuming 𝑚({Taking_Pot}) = 0.9694, and  

𝑚({Opening_Cabinet, ¬Opening_Cabinet}) = 1.0 and 𝑚({¬Using_Burner}) = 1.0 because 

the action concepts were assigned uncertain state and inactive state respectively, propagating 

the mass to 𝐷 = Cooking_Meal is given as follows. 

𝑚1({Cooking_Meal, ¬Cooking_Meal})

= 𝑚({Opening_Cabinet})

×𝑚({Opening_Cabinet} → {Cooking_Meal, ¬Cooking_Meal})

+ 𝑚({¬Opening_Cabinet})

×𝑚({¬Opening_Cabinet} → {Cooking_Meal, ¬Cooking_Meal})

+ 𝑚({Opening_Cabinet, ¬Opening_Cabinet})

×𝑚({Opening_Cabinet, ¬Opening_Cabinet}

→ {Cooking_Meal, ¬Cooking_Meal}) = 1.0 

𝑚2({Cooking_Meal}) = 𝑚({Taking_Pot})×𝑚({Taking_Pot} → {Cooking_Meal}) = 0.6059 

𝑚2({Cooking_Meal, ¬Cooking_Meal})

= 𝑚({Taking_Pot})×𝑚({Taking_Pot} → {Cooking_Meal, ¬Cooking_Meal})

+ 𝑚({¬Taking_Pot})

×𝑚({¬Taking_Pot} → {Cooking_Meal, ¬Cooking_Meal})

+ 𝑚({Taking_Pot, ¬Taking_Pot})

×𝑚({Taking_Pot, ¬Taking_Pot} → {Cooking_Meal, ¬Cooking_Meal})

= 0.3941 
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𝑚3({Cooking_Meal})

= 𝑚({Opening_Water_Tap})

×𝑚({Opening_Water_Tap} → {Cooking_Meal}) = 0.5128 

𝑚3({Cooking_Meal, ¬Cooking_Meal})

= 𝑚({Opening_Water_Tap})

×𝑚({Opening_Water_Tap} → {Cooking_Meal, ¬Cooking_Meal})

+ 𝑚({¬Opening_Water_Tap})

×𝑚({¬Opening_Water_Tap} → {Cooking_Meal, ¬Cooking_Meal})

+ 𝑚({Opening_Water_Tap, ¬Opening_Water_Tap})

×𝑚({Opening_Water_Tap, ¬Opening_Water_Tap}

→ {Cooking_Meal, ¬Cooking_Meal}) = 0.4872 

𝑚4({Cooking_Meal}) = 𝑚({¬Using_Burner})×𝑚({¬Using_Burner} → {¬Cooking_Meal})

= 1.0 

The joint mass is calculated as follows. 

𝑚(Cooking_Meal)

= 𝑚1(Cooking_Meal) ⊕ 𝑚2(Cooking_Meal) ⊕ 𝑚3(Cooking_Meal)

⊕ 𝑚4(Cooking_Meal) = 0.5249 

𝑚(¬Cooking_Meal) = 0.4187 

𝑚({Cooking_Meal, ¬Cooking_Meal}) = 0.0564 

Then, the mass is compared with 𝑚𝑡 to determine if the activity has reached the confidence 

level required to be recognized. 
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Figure 5.4: The sensor layout in the IELAB. 

5.7 Experimental Setup for Activity Recognition 

This section presents experiments performed with data recorded in two different scenarios and 

setups: the CASAS project [180] by Washington State University (WSU) and the intelligent 

environment laboratory (IELAB) at University of Auckland. The CASAS dataset contains 

sensor data recorded in a smart home, during which 20 undergraduate students were requested 

to perform a set of activities in a continuous manner. The activities are performed in following 

order: washing hand (60 s), cooking meal (420 s), taking medicine (30 s), having a meal (120 

s) and washing dishes (240 s). The whole experiment yields more than five hours of data. The 

sensors are PIR sensors to detect human presence, “item sensors” to indicate the state of a given 

object and “door sensor” to indicate a door is opened or closed. The IELAB dataset is recorded 

in a laboratory which is partitioned into four areas: lounge, toilet, kitchen and dining as shown 

in Figure 5.4. Similarly, each area is supplied with PIR sensors to detect presence, “chair 
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sensors” to indicate the occupancy of a chair, “item sensors” to indicate the state of a given 

object such as medicine dispenser and “door sensors” to indicate a door is opened or closed.  

10 persons (age: 30 ± 3.3 years) were requested to perform a set of activities twice in a 

continuous manner as described in Table 5.4. The whole experiment yields more than two hour 

and a half of data. Different to the CASAS case, participants do not follow a specific order 

when performing the activities. In both datasets, we randomly chose 2 out of the 20 data to 

model the activity ontologies. The threshold 𝑚𝑡 represents the amount of belief or the strength 

of the evidence that is required for an activity to be recognized, ranging from 0 (indicating no 

evidence) to 1 (denoting certainty). Therefore, we intuitively set  𝑚𝑡 to 0.5, which we believe 

a reasonable degree of belief to recognize an activity has been carried out, since the value 

requires the system to have at least half of the evidence to conclude an activity has been carried 

out. 

Table 5.4: Description of the experimental scenario. 

Activity Description Duration, s 

Cooking meal The subject takes a pot from 

the cabinet, pours water into 

the pot and boils it. 

 

180 

Taking medicine The subject takes the 

medicine container and pour 

water into a glass. 

40 

Having meal The subject takes a plate, a 

glass of water and the 

medicine container to the 

dining area and eats the 

meal. 

120 

Washing dishes The subject cleans all of the 

dishes and returns them to 

their places. 

60 

Toileting The subject sits on the toilet 

seat, flush the toilet and 

washes his/her hands in the 

sink. 

60 

Watching TV The subject turns on the 

television and rests on the 

sofa. 

120 
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5.8 Results and Discussion 

5.8.1 Comparison with Traditional Ontological Reasoning 

The proposed approach (OT-DS) is implemented and compared with the traditional ontological 

reasoning (OT). We used a Java API called OWL API to access and manipulate the ontology 

and HermiT [181] as the reasoner. Table 5.5 and Table 5.6 show the recognition results. We 

evaluate the performance of the proposed approach in terms of accuracy (recall) or the number 

of correctly classified activities. In addition to the accuracy, we calculated the precision metric 

as shown in Figure 5.5 and Figure 5.6. Recall and precision are defined as: 

 𝑅𝑒𝑐𝑎𝑙𝑙 = (TP (𝑇𝑃 + 𝐹𝑁)⁄ )×100, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = (TP (𝑇𝑃 + 𝐹𝑃)⁄ )×100 ( 5.23) 

where TP is the number of activities correctly recognized, FP is the number of activities 

incorrectly recognized and FN is the number of activities that have not been recognized. The 

rows correspond to different activities. The second column reports the number of contexts 

(action concepts) used when defining the corresponding activities. The third, fourth and fifth 

columns report, respectively, the results of the recognition of OT, OT-DS and HMM. 

Comparison with HMM is presented in Section 5.8.2. As shown in Table 5.5 and Table 5.6, OT 

approach performed generally well in all activities except “Washing dishes” from CASAS 

dataset with only 30% of them are detected, achieving accuracy rates of 76% (CASAS) and 

70.8% (IELAB). Tracing back to the sensor dataset, failures of OT approach are due to missing 

sensor data. As for “Washing dishes”, it is observed that the “item sensor” data associated with 

“returning bowl” context is missing from the remaining 14 data. As a result, the context which 

is required for the activity to be recognized is not inferred. OT-DS approach improves the 

results of OT in every activity considered, in which the recognition accuracy is significantly 

increased by 17% and 22.5% for CASAS and IELAB respectively. “Washing dishes” of 

CASAS dataset has seen the most improvement whereby the number of correctly classified 

activities is increased by 50%. It successfully aggregated the contexts, quantified the 

uncertainty in sensor data and concluded the activity is actually being performed. Overall, the 

proposed approach improves the recognition accuracy of OT approach by 19.75%. We evaluate 
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the performance of the proposed approach in terms of accuracy (recall) or the number of 

correctly classified activities. In addition to the accuracy, we calculated the precision metric as 

shown in Figure 5.5 and Figure 5.6. 

From the theoretical point of view, the mass of an activity being performed will be increased 

as more evidences are available, in which the evidences are the action concepts with active 

state. Analysis of the results is performed to determine the factors that affect the mass of the 

activities. In general, an activity has a reasonable degree of belief when half or more of its 

actions are in active state. Consider “Washing dishes” which is composed of “Opening Water 

Tap”, “Returning Pot” and “Returning Plate”. The activity has a mass of 0.670 when “Opening 

Water Tap” and “Returning Pot” are active and “Returning Plate” is inactive. Besides the 

number of evidences, evidential mappings of an action can also affect the belief value of an 

activity. For instance, “Watching TV” is composed of “Taking TV Remote Control” and 

“Sitting on Sofa”, in which the evidential mappings are 0.864 and 0.682 respectively. The mass 

of the activity is 0.561 if “Sitting on Sofa” is active while “Taking TV Remote Control” is 

uncertain. The mass is increased to 0.672 when “Taking TV Remote Control” is active and 

“Sitting on Sofa” is in uncertain state. We believe the calculated masses are sensible because 

“Taking TV Remote Control” is more indicative than “Sitting on Sofa” for recognizing 

“Watching TV”. 
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Table 5.5: Activity recognition with CASAS dataset. 

 Contexts Detected (OT), 

% 

Detected 

(OT-DS), % 

HMM, % 

Washing hand 1 100.0 100.0 100.0 

Cooking meal 4 70.0 100.0 100.0 

Taking medicine 2 85.0 90.0 90.0 

Having meal 2 95.0 95.0 90.0 

Washing dishes 3 30.0 80.0 85.0 

Accuracy  76.0 93.0 93.0 

Table 5.6: Activity recognition with IELAB dataset. 

 Contexts Detected (OT) Detected 

(OT-DS) 

HMM 

Cooking meal 4 65.0 95.0 90.0 

Taking medicine 2 90.0 95.0 100.0 

Having meal 2 75.0 90.0 100.0 

Washing dishes 3 55.0 100.0 85.0 

Toileting 3 65.0 85.0 95.0 

Watching TV 2 75.0 95.0 90.0 

Accuracy  70.8 93.3 93.3 
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Figure 5.5: Comparison of precision between OT, OT-DS and HMM in recognizing activities 

using CASAS dataset. 

 

Figure 5.6: Comparison of precision between OT, OT-DS and HMM in recognizing activities 

using IELAB dataset.
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Another factor that can affect the mass of an activity is when aggregating inactive actions. 

Consider “Cooking Meal” which is defined in (18). The mass of “Cooking Meal” is 0.813 when 

“Using burner” and “Opening water tap” are active while the other actions are uncertain. 

However, the aggregation yields lesser value (0.768) if “Opening water tap”, “Taking Pot” and 

“Opening cabinet” are active and “Using burner” is inactive, although there is an extra evidence 

in the later aggregation. This is because, the first aggregation does not involve inactive actions 

while the second aggregation involves inactive state which would reduce the mass when 

combining the evidences. Next, “Using burner” which has high evidential mapping value is 

active in the first aggregation while in the second aggregation, “Using burner” is inactive. 

Figure 5.7 and Figure 5.8 illustrate the average mass for each activity for CASAS and 

IELAB datasets, respectively. In Figure 5.7, average mass for “Washing hand” and “Having 

meal” are not available. This is because “Washing hand” is perfectly recognized by OT 

approach and no activity of “Having meal” is recognized by OT-DS. As shown in Figure 5.7 

and Figure 5.8, average masses for all activities are over 0.6. In the experiments, 44 out of 59 

activities are recognized through the integration of DS theory. Out of 44 activities, 40 activities 

are recognized when half or more of their actions are in active state. Therefore, a mass of 0.5 

and above is a good threshold to recognize activities with a high degree of confidence. The 

mass threshold against the recognition accuracy for both datasets is given in Figure 5.9. 
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Figure 5.7: Average mass for each activity for CASAS dataset. 

 

Figure 5.8: Average mass for each activity for IELAB dataset.
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Figure 5.9: Recognition accuracy against increasing mass threshold. 

5.8.2 Comparison with Data-driven Approach 

We have also implemented the Markov Model (HMM), the approach used on CASAS dataset 

which is described in [56]. In both datasets, we randomly chose 10 out of the 20 data to train 

the model. The approach is implemented in MATLAB using Hidden Markov Model (HMM) 

toolbox. Sequences of sensor events for each activity from the datasets are created in MATLAB. 

Then, utilizing HMM toolbox, a HMM is created with random transition (𝐴) and emission 

matrix (𝐵). Initially, the model is created using 5 hidden states and is trained repeatedly using 

the sequences of sensor events of an activity until it terminates. The same process was repeated 

by increasing the number of hidden states. Afterwards, a random observation sequence of the 

activity is used to calculate the log likelihood of the sequence, log(𝑂|𝐴, 𝐵) for all the 

constructed HMM. The model with minimum number of hidden states with maximum log 

likelihood is considered as the optimized model for the activity. The procedure is repeated for 

all activities from both datasets. 

 From the results in Table 5.5 and Table 5.6, we can see that HMM approach can accurately 

recognize the activities with the accuracy above 85%. This is because a data-driven approach 

such as HMM is capable of handling missing sensor data in the datasets. It is shown in 

“Washing dishes” from CASAS dataset, whereby the number of correctly classified activities 



Ontological Reasoning with Uncertainty for Activity Recognition 118 

 

has improved by 55%. The HMM achieved the same average recognition accuracy as the OT-

DS approach. Overall, the average of recognition accuracy for HMM is equal to OT-DS 

(93.15%), which is 19.75% higher than OT. In comparison with several state-of-the-art systems 

which are based on data-driven approaches, OT-DS appears promising in several regards. First, 

its performance compares favorably with the previously proposed systems. Kabir et al. [133] 

proposed a two-layer HMM that represents the mapping between sensor data and activity. The 

first layer predicts the activity class (group of activities according to location) using the sensor 

location information. Then, the corresponding second layer of the HMM is used to classify the 

activity using the sensor data. The proposed model is evaluated using three smart home datasets, 

achieving an average accuracy of 69.3%. In [182], an improved hierarchical HMM is proposed 

in the form of non-parametric hierarchical HMM, in which the number of hidden states is 

estimated from the data using Dirichlet Process. The classification is performed by capturing 

the relationships between actions and the activity labels using multinomial logistic regression. 

The proposed model achieved an average accuracy of 92.5% on a motion capture dataset.  

In [183], an interval temporal Bayesian network is proposed to overcome the limitation of 

the traditional graphical models in modeling complex temporal relationships between events. 

The proposed model combines Bayesian network with interval algebra network (i.e. Allen’s 13 

temporal relations) to model multiple temporal dependencies between events. Two real video 

data are used to evaluate the proposed model and the results show it outperformed other 

competing models, achieving an average accuracy of 66.9%. Similar work could be found in 

[184], whereby a graphical model is proposed by combining Chinese Restaurant Process model 

with Allen’s 13 temporal relations. The proposed model is evaluated using two real video data 

and a smart home dataset, achieving an average accuracy of 90%. An improved prediction 

model based on Bayesian network is proposed for activity recognition [185]. Unlike the 

traditional Bayesian network, the proposed model utilizes current features and next features to 

classify the next activity, whereby the next features are predicted using current activity. The 

experiments show the proposed model improved the traditional Bayesian model by 14.92%. 

Secondly, the aforementioned approaches require a sufficient amount of training datasets in 

order to obtain a reliable predictive model. In application with a larger number of activities and 

actions, it would be more difficult to obtain a sufficient dataset as users perform activities in a 
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variety of ways and orders [35], [50], [140]. In our proposed approach, the activity model is 

based on ontological modeling which does not require a large amount of training data and 

domain knowledge can be obtained from domain experts or users to determine the evidential 

parameters. This brings two benefits. First, it allows non-technical users to encode knowledge 

about the domain and provide reasoning services. Second, it is technically applicable and 

scalable to real-world scenarios. In addition, the proposed approach can be applied to other 

applications beyond the domain of activity recognition. It only requires the domain knowledge 

and evidential parameters to be specified in the ontology.  

5.9 Conclusions 

In this thesis, we have introduced a novel reasoning algorithm to support ontological reasoning 

for activity recognition with Dempster-Shafer theory of evidence. The approach utilizes 

ontological reasoning mechanisms of description logic and overcomes the limitation of 

ontology based models in terms of their inability to handle uncertainty due to missing sensor 

data. In the proposed algorithm, the associated concepts are aggregated and the degree of belief 

is computed to make decision whether the corresponding activity has been performed or not. In 

addition, a four-layered activity ontology, which incorporates the representation of evidential 

parameters, is proposed. Experiments performed on an internally collected and a public smart 

home datasets have returned promising results in terms of recognition accuracy. The results 

show that the proposed algorithm is able to deal with imperfect observations and gives 

improved the accuracy over the ontological reasoning performance by 19.75%. It is also showed 

that the performance of the proposed algorithm is comparable to the data-driven approach 

without requiring a large amount of data. The activity ontology models contexts from embedded 

sensors. In future work, we plan to include context from wearable sensor which could also be 

used to deal with missing sensor data. Also, we plan to investigate the applicability of the 

algorithm for use in real-time scenarios. 
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6 
Ontology-based Sensor Fusion Activity 

Recognition

6.1 Introduction 

This chapter describes the hybrid approach to activity recognition using wearable and ambient 

sensors. The best of both sensing approaches is harnessed to achieve a robust and 

comprehensive context-aware activity recognition system by exploiting contextual information 

from the user and environment. We introduce the methodology of ontology-based sensor fusion 

that fuses user context with environmental contexts provided by the physical activity 

recognition system (Chapter 3 and 4) and sensors embedded in environment respectively as 

illustrated in Figure 6.1. The physical activity recognition system recognizes the physical 

activity of the user such as walking, standing, sitting and lying down while the ambient sensors 

provides the user-object interaction and location contexts within the environment. The contexts 

are mapped into the activity ontology, fused and then reasoned by the ontological reasoner to 

infer the activity being performed by the user. The ontological reasoner is enhanced with 
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uncertainty handling by integrating the DS theory as described in Chapter 5. The focus of this 

approach is to highlight its advantages and the methodology of modeling the contexts using 

ontology. Firstly, the approach can resolve the uncertainty of imperfect observation due to 

sensor errors. For instance, the system would fail to recognize activity of having meal if the 

chair sensor is used alone and is not activated or the data is lost during transmission. In this 

case, sitting context provided by wearable sensor-based physical activity recognition system 

could be used to confirm the user is actually sitting on the chair. Secondly, the approach allows 

additional and more precise inference of information about activities because it fuses contextual 

information from both sensing approaches. Finally, the approach can infer activities which do 

not involve user-object interaction context such as wandering in the lounge, exercising etc. 
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Figure 6.1: A hybrid sensing approach for context-aware activity recognition. 



Ontology-based Sensor Fusion Activity Recognition 124 

 

6.2 Related Works 

Wearable sensor and dense sensing are complementary and can be used in combination to 

improve activity recognition results. Numerous RFID-based activity recognition systems have 

been proposed in which activities are recognized when tagged objects are detected by a 

wearable RFID readers [51], [186]–[189]. In [190], RFID has been used in combination with 

vision sensor for activity recognition. However, the systems are deemed to be less feasible 

because RFID sensors are prone to false reading [191]–[193]. Recently, accelerometers as the 

wearable sensors have been used in combination with RFID sensors for activity recognition. 

Gu et al. [194] fused sensor information from accelerometers and RFID sensors and recognized 

ongoing activities by using Emerging-Pattern-based technique. Three accelerometers are used 

which are worn on both hands and waist. A similar work has been done in [195] where three 

accelerometers and RFID sensors are used for activity recognition. In this work the inference 

is performed by fusing body postural orientation and hand activities, which indicate the activity 

being undertaken. In [196], four accelerometers and RFID sensors are used for nursing activity 

monitoring and the recognition is achieved by using support vector machine technique. All the 

aforementioned works used multiple accelerometers and RFID sensors system which is not 

feasible for long-term activity monitoring due to multiple sensor attachments and the drawbacks 

of RFID sensors. Accelerometers have also been used in combination with vision sensors for 

activity recognition [197]–[199]. In the literature, vision sensors are used to recognize activities 

that cannot be classified by wearable sensors only. For example, activities such as eating and 

reading can be classified by fusing accelerometer and vision sensors. However, the use of vision 

sensors in activity recognition is considered invasive and suffers from issues relating to privacy 

and ethics [200], [201]. 

Ambient sensors such as pressure sensors, contact switches and Passive InfraRed (PIR) 

sensors have been used in conjunction with wearable sensors to provide context information 

about the events occurring in the environments. Atallah et al. [75] proposed a real-time activity 

recognition system using a single accelerometer and ambient sensors such as door sensor, PIR 

sensor, pressure sensitive sensor etc. Activities are categorized into four classes according to 

their intensities. The wearable sensor-based system provides information on activity level 
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classes and information from ambient sensors is used to indicate the type of activity that is 

being performed in a particular class. The classification is achieved by using Bayesian classifier 

and multivariate Gaussian model. De et al. [67] proposed an activity recognition system using 

wearable sensors (accelerometers, gyroscope etc.) attached to waist, back, leg and wrist and 

Bluetooth beacons are used as ambient sensors to indicate the user’s location. The activity 

classification is selected from one of the sensor nodes, in which the selection is based on the 

relationship between the activity and the node’s position. The classification is performed using 

conditional random field classifier. However, both systems do not consider contextual 

information such as current location, user-object interaction and physical activity that can be 

exploited to derive the activities. Ge and Xu [202] proposed an activity recognition system 

using accelerometers and gyroscopes as wearable sensors and wireless sensor networks as 

ambient sensors to provide location contexts based on received signal strength indicator (RSSI). 

The physical activity and location contexts are used to distinguish activities such as reading 

books and watching TV. The classification is performed using Markov model. Similar approach 

is found in [203], whereby a smartphone and infrared motions sensors are used as wearable and 

ambient sensors respectively and hidden Markov model is used to classify the activities. In both 

literatures, ontology is not used to model the contextual information from wearable and ambient 

sensors, which we consider to be the most advantageous and convenient tool for activity 

modeling. 

Ontology has been used to construct activity models which can be processed by artificial 

intelligence-based inference. Riboni and Bettini [154] performed activity recognition using two 

accelerometers worn on the right wrist and waist to recognize user body and hand gestures. The 

ontologies represent and model the relations among contextual information such as activities, 

symbolic locations, objects, and time. Khattak et al. [199] proposed an ontology-based activity 

recognition by using accelerometer, gyroscope, vision and ambient sensors. However, object 

context is not specified in the ontology for activity inference. Wongpatikaseree et al. [204] 

proposed an ontology-based activity recognition system in which the activity model specifies 

human posture, location and object contexts. The human posture is modeled to solve the 

problem of several object sensors activated at the same time which is called “ambiguous activity 

problem”. By modeling the activity with its corresponding human posture, the on-going activity 
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can be ascertained during context reasoning. However, our proposed approach goes beyond the 

ones reported in [154], [199], [204]. The proposed approach is capable of handling not only 

uncertainty, but also provide more precise activity recognition, even for activities that do not 

involve interaction with objects.  Furthermore, our work uses a single tri-axial accelerometer 

while accelerometer, gyroscope and vision sensor are used in [199], and ultrasonic sensor is 

used in [204], which has a minimum sensing distance and is prone to false triggers. 

The proposed methodology is validated using an internal dataset which contains 10 ADL 

generated from experiments on a group of 20 subjects with an accelerometer on their right 

waist. In addition, we exploit the publicly available OPPORTUNITY dataset for benchmarking. 

The dataset is generated in a sensor rich environment from four subjects with sensor nodes 

(accelerometers, gyroscopes and magnetometer) attached to 17 different body parts. The 

wearable sensor nodes provide hand gestures contextual information in addition to physical 

activity contexts. This allow us to verify the efficacy of the proposed sensor fusion approach in 

different application domains. 

6.3 Ontology-based Sensor Fusion 

The activity ontology is organized into four layers of contexts as illustrated in Figure 6.2. As 

shown in Figure 6.2, the sensor layer consists of wearable and ambient sensors, and the contexts 

consists of physical activity, object interaction and location contexts. At this layer, the contexts 

are fused to describe action context. In addition to the five main concepts, Physical_Activity 

concept is implemented to model the physical activity context. 

 

Figure 6.2: The generic conceptual activity ontology organized into four layers of concepts. 
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Similar approach of modelling ambient sensors is used to model the states of wearable sensor. 

The following definition defines walking state which is one of the states of wearable sensor-

based physical activity recognition. A subconcept called WS_Body_WALK is defined to 

represent the walking state. 

Wearable_Sensor_Body ⊑ Sensor 

 WS_Body_WALK ⊑ Wearable_Sensor_Body (6.1) 

Physical_Activity models the physical activity context of the user. Each relevant physical 

activity in the system corresponds to a different subconcept of Physical_Activity concept in the 

ontology that represents a physical activity. The subconcepts are defined through hasFluent 

role to specify that the wearable sensor must be in a given state for the physical activity to be 

inferred. For example, the concept of walking context is defined as follows: 

 
Walking ⊑ Physical_Activity

Walking ≡ ∃hasFluent. WS_Body_WALK
 (6.2) 

which describes the user is walking when the state of wearable sensor is walking. The 

hasFluent role is used to specify the state of the corresponding sensor for the concept to be 

inferred. 

Missing sensor data would cause the activity recognition system fails to infer an activity. 

For instance, if the “chair sensor” is not activated due to sensor error or the sensor data is lost 

during transmission, Sitting_On_Dining_Chair will not be inferred and as a result the 

corresponding activity is not recognized. Physical activity context can be used to support the 

context reasoning by including the physical activity concept in the concept definition of 

Sitting_On_Dining_Chair as follows: 

Sitting_On_Dining_Chair ≡ Interval ⊓ In_Dining_Room ⊓ (Dining_Chair_Is_Seated ⊔

Sitting)  (6.3) 

In this definition, Sitting_On_Dining_Chair will be inferred even when “chair sensor” data is 

missing if the wearable sensor is in sitting state, which is modeled in the ontology as follows: 



Ontology-based Sensor Fusion Activity Recognition 128 

 

 
Sitting ⊑ Physical_Activity

Sitting ≡ ∃hasFluent. WS_Body_SIT
 (6.4) 

It has to be noted that the concepts will not be inferred if there is uncertainty due to the missing 

sensor data associated with location concept. 

Uncertainty might arise due to the fact that the activity can be performed in different ways. 

For example, consider Toileting1 definition as follows: 

Toileting1 ≡ Opening_Toilet_Water_Tap ⊓ ∃hasPredecessor. (Pressing_Toilet_Flush ⊓

∃hasPredecessor. (Sitting_On_Toilet_Seat)) (6.5) 

where Sitting_On_Toilet_Seat is given as follows. 

 Sitting_On_Toilet_Seat ≡ Interval ⊓ In_Toilet ⊓ (Toilet_Seat_Is_Seated ⊔ Sitting) (6.6 ) 

According to the above definition, toileting won’t be inferred by the system if the activity is 

performed while standing because toilet seat sensor is not activated and wearable sensor is in 

the state of sitting. This uncertainty can be resolved by defining new concept definition of 

toileting as follows: 

Toileting2 ≡ Opening_Toilet_Water_Tap ⊓ ∃hasPredecessor. (Pressing_Toilet_Flush ⊓

∃hasPredecessor. (Standing_At_Toilet_Seat)) (6.7) 

where Standing_At_Toilet_Seat is defined with standing context as a constraint given as 

follows: 

 Standing_At_Toilet_Seat ≡ Interval ⊓ In_Toilet ⊓ Standing  (6.8) 

Some activities do not involve any object interaction such as wandering around in a room. 

Inferring these activities using contexts from ambient sensors only would be difficult and could 

raise uncertainty in recognition. However, with physical activity context, wandering around in 

a lounge can be described in activity ontology as follows: 

Wandering_In_Lounge ≡ Walking_In_Lounge ⊓ ∃hasPredecessor. (CloserThan3min ⊓

Walking_In_Lounge)  (6.9) 
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where Walking_In_Lounge is defined by fusing walking context and user in the lounge context 

as follows: 

 Walking_In_Lounge ⊑ Interval ⊓ In_Lounge ⊓ Walking (6.10) 

Additional information about the activity being performed in the environment can be 

inferred by fusing contexts from wearable and ambient sensors. Consider the following simple 

scenario. A resident walk into the lounge. In the first instance the lounge PIR sensors are active. 

Then, the system detects sofa sensor state is PRESENT. According to the following concept 

description, the sensor activation indicates the resident is resting on the sofa. 

 Resting_On_Sofa ≡ Sitting_On_Sofa ⊓ ∃hasPredecessor. (CloserThan5min ⊓

Sitting_On_Sofa)  (6.11) 

where Sitting_On_Sofa is defined as follows: 

 Sitting_On_Sofa ≡ Interval ⊓ In_Lounge ⊓ (Sofa_Is_Seated ⊔ Sitting) (6.12) 

However, activation of the sofa sensor does not necessarily indicate the user is sitting on the 

sofa because the user might be lying down on the sofa, thus activating the sensor. In order to 

conclude the user is actually lying down on the sofa, the physical activity context provided by 

the wearable sensor is used in combination with other contexts to infer the action of lying on 

the sofa. Then, a more precise activity definition such as resting on sofa can be composed as 

follows. 

Taking_A_Nap ≡ Lying_On_Sofa ⊓ ∃hasPredecessor. (CloserThan5min ⊓ Lying_On_Sofa)  

  (6.13) 

where Lying_On_Sofa is given as follows. 

Lying_On_Sofa ≡ Interval ⊓ In_Lounge ⊓ LyingDown ⊓ (Sofa_Is_Seated ⊔ LyingDown)  

  (6.14) 
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6.4 Experimental Results 

Two datasets, internally collected (IELAB) and OPPORTUNITY human activity dataset, are 

used to evaluate the performance of the proposed approach. The public dataset contains a set of 

complex naturalistic activities collected in a sensor rich environment [205]. In the experiments, 

we compared the accuracy of activity recognition systems without wearable sensor (AR) and 

with wearable sensor (ARW). In addition, we combine the ARW approach with OT-DS 

approach (later referred to as ARW-DS) described in Chapter 5. We evaluate the performance 

of the approaches in terms of accuracy (recall). In addition, we also calculated precision and F-

score metrics. 

6.4.1 IELAB: Intelligent Environment Lab Dataset 

The IELAB dataset is recorded in laboratory described in Section 5.7. Wearable sensor is 

attached on the right waist to capture the physical activity of the subjects. 20 persons (age: 30.2 

± 3.2 years) were requested to perform a scenario in a continuously one after another with no 

specific order of the activities. A single experiment takes about 8 min. The activities are given 

in Table 6.1. The first column lists the activities and their duration. The second column lists the 

concept definition of the activities. The third column lists the actions that fuse physical activity 

context in their definitions. We randomly chose 2 out of the 20 data to model the activity 

ontology. 

Table 6.2 shows the comparison of recognition accuracy of AR and ARW approaches. As 

can be seen in Table 6.2, AR approach performs generally well in recognizing the activities 

considered in the experiments, in which the number of correctly classified activities are above 

75% except “Washing dishes” and “Watching TV”. An accuracy rate of 80.7% is reported. 

Tracing back to the sensor dataset, the failures are due to sensor observation errors such as PIR 

is not activated when it should be and missing sensor data which resulted in the associated 

action concepts to recognize the activities are not inferred. For instance, out of the seven 

“Watching TV” activity which are not recognized due to missing data, four of them are missing 

the “TV remote control sensor” data and four are missing the “sofa sensor” data, which the 

associated actions are “taking TV remote control” and “sitting on sofa” respectively. 
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From the results, we can see that ARW approach improves the recognition accuracy, in 

which the number of correctly classified for all activities are above 15. For instance, recognition 

of “Watching TV” is improved, whereby sitting context is fused to infer the action of “sitting on 

sofa”, and a result the activity is recognized. In addition, ARW approach is also capable of 

dealing with missing data by inferring the synonym activity. This is shown in the results, 

whereby “Toileting2” activity is recognized when the activity is performed while standing 

instead of sitting. This shows that the system is able to better deal with uncertainty due to 

missing data by including physical activity contexts in the activity model. The experiments are 

also used to test and verify the capability of ARW approach in inferring additional information 

about the activities and recognizing activities which do not involve object contexts. In the 

experiments, ARW approach successfully infers additional information about “Resting on sofa” 

activity, whereby reasoning engine returns “Taking a nap” activity when lying down context is 

fused to infer the activity. ARW approach also successfully recognizes “Wandering in lounge” 

activity by fusing walking context. A success rate of 91.5% is reported (183 correctly classified 

activity out of 200). Failures are due to missing location sensor data which the proposed 

approach is not capable of dealing with since physical activity context does not provide 

information about the person’s where about in the environment. The ARW approach also failed 

to recognize the activities if the missing sensor data involves sensors that capture hand gesture 

contexts such as “plate sensor” and “TV remote sensor”.  

As shown in Table 6.2, ARW-DS approach improves the accuracy of ARW significantly, 

in which all the activities are perfectly recognized. It successfully inferred the activities which 

are not recognized by ARW approach such as “Watching TV” which are missing the “TV 

remote sensor” data by quantifying the uncertainty while aggregating the contexts. However, 

recognition accuracies for “Taking a nap and “Wandering in lounge” are not improved in the 

experiments. This is because, the action contexts of the activities are not inferred due to the 

associated PIR sensor data is missing. The average mass of the activities recognized by ARW-

DS approach is illustrated in Figure 6.3. Most of the activities have mass over 0.6 except 

“Watching TV”, whereby the average mass is 0.5636. The activities are inferred when half or 

more of their action contexts are in active state. Overall, the ARW-DS improves the accuracy 
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by 6.0% achieving a recognition rate of 97.5%. The comparison of precision and F-score of the 

approaches are illustrated in Figure 6.4 and Figure 6.5. 
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Table 6.1: The activities and their definitions. 

Activity Activity Concept Definition Action Concept Definition 

Cooking meal 
(60s) 

Cooking_Meal ≡ (Using_Burner ⊔ Standing_Near_Burner)

⊓ ∃hasPredecessor. ((Opening_Kitchen_Water_Tap

⊔ Standing_Near_Burner)

⊓ ∃hasPredecessor. (Taking_Pot

⊓ ∃hasPredecessor. (Opening_Drawer ⊓))) 

Standing_Near_Burner
≡ Interval
⊓ Near_Burner
⊓ Standing 

Taking medicine 
(20s) 

Taking_Medicine
≡ (Opening_Kitchen_Water_Tap
⊔ Standing_Near_Kitchen_Water_Tap)
⊓ ∃hasPredecessor. (Taking_Medicine_Dispenser) 

Standing_Near_Kitchen_Water_Tap
≡ Interval ⊓ Near_Kitchen_Water_Tap
⊓ Standing 

Having meal (60s) Having_Meal ≡ Sitting_On_Dining_Chair ⊓ ∃hasPredecessor. Taking_Plate Sitting_On_Dining_Chair
≡ Interval ⊓ In_Dining_Room
⊓ (Dining_Chair_Is_Seated ⊔ Sitting) 

Washing dishes 
(60s) 

Having_Meal ≡ Returning_Plate

⊓ ∃hasPredecessor. (Returning_Pot

⊓ ∃hasPredecessor. ((Opening_Kitchen_Water_Tap

⊔ Standing_Near_Kitchen_Water_Tap))) 

Standing_Near_Kitchen_Water_Tap
≡ Interval ⊓ Near_Kitchen_Water_Tap
⊓ Standing 

Toileting1  

(30s) 

Toileting1 ≡ Opening_Toilet_Water_Tap

⊓ ∃hasPredecessor. (Pressing_Toilet_Flush

⊓ ∃hasPredecessor. (Sitting_On_Toilet_Seat)) 

Sitting_On_Toilet_Seat
≡ Interval ⊓ In_Toilet
⊓ (Toilet_Seat_Is_Seated ⊔ Sitting) 
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Toileting2  

(30s) 

Toileting2 ≡ Opening_Toilet_Water_Tap

⊓ ∃hasPredecessor. (Pressing_Toilet_Flush

⊓ ∃hasPredecessor. (Standing_At_Toilet_Seat)) 

Standing_At_Toilet_Seat
≡ Interval ⊓ In_Toilet
⊓ Standing 

Resting on sofa 
(60s) 

Resting_On_Sofa
≡ Sitting_On_Sofa
⊓ ∃hasPredecessor. (CloserThan60sec ⊓ Sitting_On_Sofa) 

Sitting_On_Sofa
≡ Interval
⊓ In_Lounge
⊓ (Sofa_Is_Seated
⊔ Sitting) 

Watching TV 
(60s) 

Watching_TV ≡ Sitting_On_Sofa ⊓ ∃hasPredecessor. Taking_TV_Remote Sitting_On_Sofa
≡ Interval
⊓ In_Lounge
⊓ (Sofa_Is_Seated
⊔ Sitting) 

Taking a nap 
(60s) 

Taking_A_Nap ≡ Lying_On_Sofa
⊓ ∃hasPredecessor. (CloserThan60sec ⊓ Lying_On_Sofa) 

Lying_On_Sofa ≡ Interval ⊓ In_Lounge
⊓ LyingDown
⊓ (Sofa_Is_Seated
⊔ LyingDown) 

Wandering in 
lounge  

(60s) 

Wandering_In_Lounge
≡ Walking_In_Lounge
⊓ ∃hasPredecessor. (CloserThan60sec
⊓ Walking_In_Lounge) 

Walking_In_Lounge
⊑ Interval
⊓ In_Lounge
⊓ Walking 
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Table 6.2: Comparison of recognition accuracy for AR and ARW approaches. 

Activity AR, % ARW, % ARW-DS, % 

Cooking meal 75.0 90.0 100.0 

Taking medicine 100.0 100.0 100.0 

Having meal 80.0 95.0 100.0 

Washing dishes 70.0 75.0 100.0 

Toileting1 75.0 95.0 100.0 

Resting on sofa 100.0 100.0 100.0 

Watching TV 65.0 85.0 100.0 

Taking a nap N.A. 85.0 85.0 

Toileting2 N.A. 100.0 100.0 

Wandering in lounge N.A. 90.0 90.0 

Overall accuracy 80.7 91.5 97.5 

 

 

Figure 6.3: Average mass for each activity for IELAB dataset. 
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Figure 6.4: Comparison of precision between AR, ARW and ARW-DS for IELAB dataset. 

 

Figure 6.5: Comparison of F-score between AR, ARW and ARW-DS for IELAB dataset. 
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6.4.2 OPPORTUNITY Dataset 

The OPPORTUNITY dataset contains wearable, object and location sensor data recorded 

in a simulated studio apartment. The room has a kitchen area with a fridge, dishwasher and 3-

drawer, a living area with a deckchair and a dining area. Four subjects are involved in the 

experiments, in which each subject performs a scenario five times as follows. The scenario 

consists of five activities: relaxing (lying on the deckchair), grooming (walk around in the 

kitchen area checking the objects in 3-drawer, fridge and dishwasher door are closed properly), 

making coffee with milk and sugar, preparing sandwich and cleaning (returning the plate and 

cup in the dishwasher). The wearable sensors consist of accelerometers, gyroscopes and 

magnetometers, are attached to 17 body parts to sense physical activities and limb movements. 

Accelerometers are used to capture the user interaction with objects such as plate and cup. Reed 

switches are used to indicate the status of fridge and dishwasher doors and 3-drawer are, either 

open or closed. As for location sensors, four ultra-wideband location systems are placed at the 

corners of the room to estimate the position of the subject. The dataset is annotated, where the 

annotation not only contains information on the activity classes but also the physical activities 

(walking, standing, sitting and lying down), left and right hands gestures (opening or closing a 

door, reaching or releasing an object) and the objects being handled by the hands. For the 

purpose of this research, the states of the objects are defined as a value in the discrete set 

{PRESENT, ABSENT} and {OPEN, CLOSE} in order to easily integrate the sensor data in the 

ontology. We randomly chose 2 out of the 20 data to model the activity ontology. 

Differently from the IELAB dataset, the OPPORTUNITY dataset contains hand gestures 

contextual information in addition to physical activity. In the experiment, we also modeled the 

contexts (opening and closing with right and left hands) in the ontology to resolve the 

uncertainty due to missing data. The concepts that represent the states of the wearable sensor 

and the concept definition of right hand gesture contexts are given as follows: 

Wearable_Sensor_RightHand ⊑ Sensor 

WS_RightHand_OPEN ⊑ Wearable_Sensor_RightHand 

WS_RightHand_CLOSE ⊑ Wearable_Sensor_RightHand 
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Opening_With_RightHand ≡ ∃hasFluent. WS_RightHand_OPEN 

 Closing_With_RightHand ≡ ∃hasFluent. WS_RightHand_CLOSE (6.15) 

Similar approach is used for defining left hand gesture contexts. Then, these concepts are 

included in the corresponding action concepts such as follows: 

Closing_Drawer1

≡ Interval ⊓ At_Drawer

⊓ (Drawer1_Is_Closed ⊔ Closing_With_RightHand

⊔ Closing_With_LeftHand) 

 Opening_Drawer1 ≡ Interval ⊓ At_Drawer ⊓ (Drawer1_Is_Closed ⊔

Opening_With_RightHand ⊔ Opening_With_LeftHand) (6.16) 

The concept definition for each activity is given below. Note that, only physical activity 

(lying down) and location (in lounge) contexts are used to infer “Relaxing” activity since the 

deckchair is not installed with a sensor. 

Relaxing ≡ Lying_In_Lounge ⊓ ∃hasPredecessor. (Lying_In_Lounge ⊓ CloserThan60sec) 

Grooming ≡ Closing_Fridge_Door

⊓ ∃hasPredecessor. (Closing_Drawer3

⊓ ∃hasPredecessor. (Closing_Drawer2

⊓ ∃hasPredecessor. (Closing_Drawer1))) 

Making_Coffee

≡ Taking_Milk

⊓ ∃hasPredecessor. (Opening_Fridge_Door

⊓ ∃hasPredecessor. (Taking_Sugar ⊓ ∃hasPredecessor. (Taking_Cup))) 
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Preparing_Sandwich

≡ Taking_Bread

⊓ ∃hasPredecessor. (Opening_Drawer3

⊓ ∃hasPredecessor. (Taking_Plate

⊓ ∃hasPredecessor. (Opening_Drawer2))) 

 Cleaning ≡ Closing_Dishwasher_Door ⊓ ∃hasPredecessor. (Returning_Cup ⊓

∃hasPredecessor. (Returning_Plate ⊓

∃hasPredecessor. (Opening_Dishwasher_Door))) (6.17) 

 

Table 6.3: Comparison of recognition accuracy for AR and ARW approaches. 

Activity AR, % ARW, % ARW-DS, % 

Relaxing N.A 90.0 90.0 

Grooming 50.0 75.0 80.0 

Making coffee 80.0 90.0 95.0 

Preparing sandwich 85.0 100.0 100.0 

Cleaning 95.0 95.0 95.0 

Overall accuracy 77.5 90.0 92.0 

 

Table 6.3 shows the comparison of recognition accuracy of AR and ARW approaches. AR 

performed generally well in recognizing the activities except “Grooming” whereby only 10 out 

of 20 activities are recognized. Tracing back to the dataset, failures are mainly due to missing 

sensor data, whereby 8 of the 10 data are missing the sensor data (3-drawer or fridge door) 

associated with the activity contexts. It is also that the sequence of actions performed by 

subjects when performing the activities do not perfectly match the sequence of actions modeled 

in the ontology. As shown in Table 6.3, ARW approach successfully recognizes “Relaxing” 

activity by fusing lying down context and the associated location context. Also, it is shown that 

ARW approach improves the number of correct classifications for all activities considered. The 

recognition accuracy is improved by 12.5%. “Grooming” activity has seen the most 
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improvement whereby the hand gesture contexts are fused to infer the associated actions and as 

a result the activity is recognized. There is an additional improvement to the overall recognition 

accuracy when ARW is integrated with DS theory. The recognition accuracies of “Grooming” 

and “Making coffee” are slightly improved by 5%. From the observation, the activities are 

recognized with a mass of 0.9468 and 0.8176. As shown in Table 6.3, the overall recognition 

accuracy of ARW-DS is 92% which is 2% higher than ARW. Comparison of precision and F-

score between approaches are illustrated in Figure 6.6 and Figure 6.7. 
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Figure 6.6: Comparison of precision between AR, ARW and ARW-DS for OPPORTUNITY 

dataset. 

 

Figure 6.7: Comparison of F-score between AR, ARW and ARW-DS for OPPORTUNITY 

dataset. 
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(a) 

 

(b) 

Figure 6.8: IELAB dataset. (a) Number of individuals. (b) Reasoning time with Hermit. 

The methodology described in [174] uses OWL 2 EL which is a subset of OWL 2. OWL 2 

EL is an OWL 2 profile for which the reasoning tasks can be carried out in polynomial time. 

However, logical disjunction operator which is used in the proposed methodology is not 

supported by OWL 2 EL in order to guarantee the reasoning problems can be decided in 

polynomial time. Therefore, we investigate the proposed system performance to determine its 
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feasibility. Figure 6.8 illustrates the behavior of the system during an experiment with the 

IELAB dataset. Figure 6.8(a) reports the number of individuals in the ontology (ABox) versus 

time. After 456s, the number of individuals (instances) is about 400. Figure 6.8(b) reports the 

corresponding reasoning time on a machine with Core i7 processor. The horizontal line 

indicates the average of reasoning time (1.1s). As shown in Figure 6.8(b), the reasoning time is 

significantly increased above 15s when the number of individuals reaches 350. Otherwise, the 

reasoning time always lower than 7s. It should also be noticed that similar behavior is observed 

in [174], in which the reasoning time ranges from 20 to 50s when the number of individuals is 

about 600. A solution is proposed by [174] to improve the reasoning time by removing the 

intervals which are not an instance of an activity concept after some time. This is assuming the 

intervals are not relevant anymore for future classifications. Reasoning performance can also 

be improved as described in [206], in which the approach specifically addresses the problem of 

disjunction operation. Parallel OWL reasoning approach is proposed in [207], enhancing the 

overall performance by a factor of 4. 

6.5 Conclusions 

In this chapter, we have proposed an ontology-based sensor fusion activity recognition system 

that fuses contexts from wearable and ambient sensors. It uses contextual information provided 

by both sensor approaches to infer activities of a subject (person) in the environment. In our 

study, the activities were performed by different subjects with no specific order. The subjects 

performed the activities with different styles and pace. In addition, a public dataset generated 

using different set of sensors containing different types of contexts is used. It was observed that 

the proposed approach can handle uncertainty due to missing object sensor data. The system 

can also infer activities more precisely and activities which do not involve object interaction. 

The overall recognition accuracy is 91.5% and 90% when tested on the internal and public 

datasets respectively. One limitation is that the proposed approach will not be able to deal with 

uncertainty due to missing location sensor data. This is because physical activity context 

provides some clues about the object interaction of the user, but not the user’s whereabouts in 

the environment. One possible solution is indoor positioning/tracking system based on the use 
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of wearable sensors such as accelerometers which could provide location of the user inside a 

building. In addition, the performance of ARW with uncertainty handling (ARW-DS) is 

evaluated. The results showed that ARW-DS further improves the recognition accuracy by 6% 

and 2% on the internal and public datasets respectively. 
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7 
Conclusions

This thesis presents a number of robust and comprehensive context-aware activity recognition 

approaches and systems for elderly healthcare using wearable sensor and sensors embedded in 

environment. The systems are designed to harness the power of a wearable sensor (i.e. an 

accelerometer) that provides the physical activity context of the user, and then combines it with 

user-object interaction and location contexts provided by sensors in the environment. It 

achieves this through the development of a robust physical activity recognition methodology 

based on using a single wearable sensor (tri-axial accelerometer) which processes and classifies 

the body acceleration signals using machine learning techniques. A single wearable sensor is 

used to avoid attachment of multiple sensors to the body that can impede subject’s daily 

activities. To achieve a robust physical activity recognition system, a novel adaptive sliding 

window approach is proposed to overcome the limitation of fixed-size sliding window 

approach. In addition, a physical activity transition model is proposed to model the temporal 

dependence of a sequence of physical activity to support the classification process. Given the 

advantages of ontology over other knowledge-based approaches, ontology-based modeling is 
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used to encode domain knowledge by specifying and organizing the contextual information in 

a hierarchical structure (activity ontology). To overcome the limitation of ontology-based 

activity recognition in dealing with missing sensor data, an uncertainty handling technique 

using DS theory is integrated into the ontological reasoning process to enhance the performance 

of activity recognition. Furthermore, a sensor fusion methodology is proposed for activity 

recognition. The proposed methodology exploits contextual information from both user and 

environment to resolve uncertainty and achieve more precise inference of activities. 

The proposed context-aware activity recognition system could be applied to various 

domains such as healthcare monitoring and home automation systems. In healthcare monitoring 

system, activity recognition can provide physicians with long-term information on human 

activities through continuous monitoring to assess and diagnose patients rather than data 

obtained from a single medical appointment. Chronic diseases which often the main reason of 

many deaths around the world could be prevented by changing certain behaviors related to 

physical activity and diet [208]. In this situation, activity recognition can be used to help 

physicians monitoring patients who are under exercise and diet programs. Home automation 

systems have to assist inhabitant especially elderly people in their daily living activities. An 

important aspect of home automation system is to monitor the behavior of the inhabitant in their 

ADL. This is to allow the home automation system to control the home appliances in order to 

facilitate the life of the inhabitants and also to optimize energy usage. 

There are a number of challenges that must be considered when implementing the proposed 

system. In general, wearable devices are battery-powered and they are expected to last for a 

significant period of time. However, in wearable sensor-based activity recognition, the raw data 

is generated at a high rate and the processing unit is required to process and classify the data 

into different activities. Therefore, it is necessary to optimize the processing unit’s power 

consumption to prolong the life time of the system. Energy can be harvested from ambient 

sources such as vibration, radio frequency radiation and sound to prolong the battery life. 

Another challenge faced in implementing the proposed system is the signal propagation and 

attenuation between the sensors and base station. Besides walls and corridors, human body can 

be an obstacle itself for the signal propagation. In this case, approaches such as multiple input 

multiple output and novel transceiver architecture could be used to ensure data quality is not 
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compromised. Form factor or the size of the wearable devices is also a critical factor in the 

feasibility of the proposed system. The wearable devices must be comfortable to wear by the 

user since it will be used for a long period of time. Lastly, the online execution of ontological 

reasoning is computationally expensive, especially when the reasoning tasks have high 

complexity. This is true in a real-life setup in which, a large number of activities and sensors 

are installed in the environment. In the following section, we summarize our achievements and 

results presented in the thesis, and discuss future directions for our research. 

7.1 Achievements and Contributions 

The following list highlights the major contributions of this thesis: 

Chapter 3 

 We developed a robust physical activity recognition system using a single tri-axial 

accelerometer. The approach includes a novel adaptive sliding window technique for 

segmentation of activity signal acquired from tri-axial accelerometer to overcome the 

limitations of fixed-size sliding window used in existing works. The technique 

adaptively adjusts the size of segmentation window according to the probability of the 

signal belongs to a particular activity. As a result, the window contains the right 

information when performing classification. In the experiments, we showed that the 

approach effectively segments activity signals resulting in better classification accuracy 

in a wide range of activities. 

Chapter 4 

 We proposed a transition model of physical activity to model the temporal dependence 

of the physical activities. The activity transition diagram is a part of the state validator 

of the activity recognition system. The state validator performs validation of activity 

transition for every window classification based on the proposed activity transition 

model and notifies the classification system to re-perform classification in the case an 

invalid transition is detected. In the experiments, we showed that the integration of state 

validator in the classification system improves the overall recognition accuracy. 
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Chapter 5 

 We developed a robust ontology-based activity recognition capable of handling 

uncertainty. The approach includes a novel reasoning algorithm to support ontological 

reasoning with Dempster-Shafer theory of evidence. The algorithm utilizes ontological 

reasoning mechanisms of description logic and overcomes the limitation of ontology 

based models in terms of their inability to handle missing sensor data. The associated 

concepts are aggregated and the degree of belief is computed to make decision whether 

the corresponding activity has been performed or not. In addition, a four-layered activity 

ontology, which incorporates the representation of evidential parameters, is proposed. 

In the experiments, we showed that the reasoning algorithm is able to deal with missing 

sensor data and improves the recognition accuracy of traditional ontological reasoning. 

In addition, we showed that the performance is comparable to data-driven approach 

without requiring a large amount of data. 

Chapter 6 

 We proposed an ontology-based sensor fusion that fuses context information from 

wearable and ambient sensors for activity recognition. The approach comes with three 

advantages. First, it can resolve the uncertainty of imperfect observation due to sensor 

errors. For example, sitting on a chair can be recognized by considering the body posture 

of the user even if the chair sensor data is not available. Second, the approach allows 

additional and more precise inference of information about the activity being recognized 

because it fuses contextual information from both sensing approaches. Third, the 

approach can recognize activities which do not involve user-object interaction context. 

In the experiments, we showed the aforementioned advantages of the approach on 

internal and public datasets. 
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7.2 Future Work 

There is still room for improvement in our work which can be addressed from two different 

perspectives, the physical activity recognition system and the ontology-based activity 

recognition system. First, there is the issue of fixed position of the accelerometer on the waist, 

the limitation of the adaptive sliding window and the implementation of the algorithm on a real-

time platform. Second, the use of physiological sensors in activity recognition, the ideas on how 

to deal with concurrent and collective activity recognition and real-time performance issue. In 

this section, we focus on these aspects and propose them as future research directions: 

 Although it has been shown that it is possible to achieve a robust physical activity 

recognition, it will be interesting to evaluate its performance if more physical activities 

such as walking up and downstairs and running are to be recognized. Also, the use of 

accelerometer only is limiting the information gathered from the user for activity 

classification especially when some activities would generate similar patterns of signals 

such as between walking and walking up or downstairs. The proposed physical activity 

recognition system is specific to be used with a waist-mounted accelerometer. Although 

this position allows some degree of variability it is important to explore the attachment 

of the accelerometer to different body parts. Wearable devices such as smartwatches 

with embedded inertial sensors are becoming increasingly popular, it is interesting to 

investigate the performance of the system if the accelerometer is attached to the wrist. 

Next, we plan to explore effects of additional mechanism in which the size of the 

window could be also reduced dynamically to capture short activity signals and further 

improve classification accuracy. We also plan to analyze the applicability of the adaptive 

sliding window for use in real-time scenarios. This will include the detailed analysis of 

computational complexity and their effect on real-time properties of the algorithms and 

the lifetime of the battery. 

 Activity recognition in a smart environment often involves multiple users performing 

concurrent activities. We plan to investigate the segmentation mechanism to segment 

the sequence of sensor observations that generated by multiple users performing 

activities simultaneously. This also includes a single user performing interleaved 
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activities. In addition, multiple users may cooperate to perform activities. Therefore, it 

is important to model the user-user interaction context in order to recognize the 

collective activity. Next, we plan to fuse context information from physiological sensors 

to further improve the recognition accuracy. Although physiological sensors are mainly 

used to detect the health status of the users, they can also be used in the domain of 

activity recognition. For instance, heart rate measurement can be used to identify 

activities such as sleeping and exercising. We also plan to investigate the applicability 

of online execution of ontological reasoning in real-time scenarios. This includes 

distributed ontological reasoning and resource-aware scheduling algorithm. 
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A
Adaptive Sliding Window 

classdef actRecProcCls 
properties (SetAccess = protected) 

w = 1   % integer for recognition process counter 
s = 1   % integer for start window 
e = 1   % integer for end window 
winCnt = 1  % integer for window being evaluated counter 
initState 
incorrectTransition = 0; 
gausClassifierFeat = 1; 
mvgParamNumber 
debug 

end 
methods 
 
function OBJ = actRecProcCls(debug) 

OBJ.debug = debug; 
end 

         

function run(OBJ, DAT, WIN, DTR, MVN, STD, RES, enable, publicDataset, 
mvgParamNumber) 

tstart = datestr(now,'HH:MM:SS:FFF'); 
debug = OBJ.debug; 
OBJ.mvgParamNumber = mvgParamNumber; 

             

while OBJ.w ~= WIN.getTotalWin()  
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OBJ.e = OBJ.s + WIN.getWinSize() - 1;  
if OBJ.e > DAT.getDataLength() 

break; 
end     
DAT.calcFeatures(OBJ.s, OBJ.e); 
% evaluate window if it is transitional window 
DTR.evalTransitionalWindow(DAT); 
if DTR.getTrFlag == false 

% signals are moving, idling or small moving activities 
fprintf('Eval (Fix)\n'); 
WIN.incrDynaWinCnt(); 
DTR.evalDynamicStatic(DAT, STD); 
STD.setWinSzSeq(WIN.getDynaWinCnt()); 

  

DTR.resetEvalClassifier(); 
elseif DTR.getTrFlag == true    % 1,0 

DTR.resetTrFlag(); 
% signals are transitional activities 
fprintf('Eval (Dynamic)\n'); 
WIN.incrDynaWinCnt(); 
% local variable to count the loop until end window is detected 
tmpW = 0;  
isClassified = false; 
isMaxWin = false; 
st = OBJ.s; 
ed = OBJ.e; 
                     
maxProb = log(0); 
bestState = 0; 
bestWinSize = 1; 
% expanding windows 
preEvalState = 0; 
while isMaxWin == false 

tmpS = st - (WIN.getMagOverlap * tmpW); 
tmpE = ed; 
                         
DAT.calcFeatures(tmpS, tmpE);% evaluate (new) dynamic window 
DTR.resetEvalState(); 
DTR.evalMobilityV3(DAT, STD); 
evalState = DTR.getEvalState(); 
if preEvalState == 0 && evalState > 0 

preEvalState = evalState; 
maxWin = STD.getMaxWindow(preEvalState); 
fprintf('Assign win classification: %u\n', preEvalState); 

elseif preEvalState == 0 && evalState == 0 
isMaxWin = true; 

end                         

fprintf('%u) DTR: %u (PE: %u) | ', WIN.getDynaWinCnt(), evalState, 
preEvalState); 
if evalState > 0 && evalState == preEvalState 

[probN,~] = MVN.computePdf(DAT, evalState, 
OBJ.gausClassifierFeat, OBJ.mvgParamNumber); 
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fprintf('Prob: %e\n', probN); 
if probN > maxProb 
maxProb = probN; 
bestState = evalState; 
bestWinSize = WIN.getDynaWinCnt(); 
isClassified = true; 
else 
fprintf('End Window (Prob)\n'); 
STD.setWinSzSeq(WIN.getDynaWinCnt()-1); 
isMaxWin = true; 
end 

else 
fprintf('Classification is changed!\n'); 
 [probN,~] = MVN.computePdf(DAT, evalState, 
OBJ.gausClassifierFeat, OBJ.mvgParamNumber); 
                             
fprintf('Prob: %e\n', probN);                             
STD.setWinSzSeq(WIN.getDynaWinCnt()-1); 
isMaxWin = true; 

end 
fprintf('\n'); 
st = st + WIN.getMagExpansion(); 
ed = st + WIN.getWinSize() - 1; 
if isMaxWin == false 

WIN.incrDynaWinCnt(); 
end 
tmpW = tmpW + 1; 
if WIN.getDynaWinCnt() > maxWin 

fprintf('End Window (Limit)\n'); 
STD.setWinSzSeq(WIN.getDynaWinCnt()-1); 
isMaxWin = true; 

end 
end     % end while loop 

                         

if isClassified == true 
fprintf('State: %u, WinSize: %u (%u-%u)\n',... 
bestState, bestWinSize, OBJ.s, (OBJ.e * WIN.getDynaWinCnt())); 
DTR.setEvalState(bestState); 
WIN.setDynaWinCnt(bestWinSize); 

end 
end 
evalState = DTR.getEvalState();                    
if evalState > 0 

fprintf('Classify!\n'); 
if WIN.getDynaWinCnt() == 1 

RES.setResult(evalState, OBJ.w); 
STD.setStateSeq(evalState); 
STD.setWinSeq(OBJ.w); 
% save the features for later use by state diagram (if error 
classification) 
DAT.calcFeatures(OBJ.s, OBJ.e); 
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STD.setFeatSeq(DAT); 
else 

for i = 1:WIN.getDynaWinCnt() 
RES.setResult(evalState, OBJ.w+(i-1)); 

end 
STD.setStateSeq(evalState); 
STD.setWinSeq(OBJ.w+(WIN.getDynaWinCnt()-1));               
% save the features for later use by state diagram (if error 
classification) 
DAT.calcFeatures(OBJ.s, (OBJ.s + (WIN.getMagOverlap() * 
WIN.getDynaWinCnt()))); 
STD.setFeatSeq(DAT); 

end 
DTR.resetEvalState(); 

end % end if evalState >0 
 

stSeq = STD.getStateSeq(); 
fprintf('%u %u %u\n', stSeq(1), stSeq(2), stSeq(3)); 
error = STD.checkStateSeq(); 
if error == true && enable == true 

% Correction of classification % 
evalState = STD.classifyV1(OBJ.s, DAT, WIN, 

end 
if WIN.getDynaWinCnt() == 0 

OBJ.s = OBJ.s + WIN.getMagOverlap(); 
OBJ.w = OBJ.w + 1; 

else 
OBJ.s = OBJ.s + (WIN.getMagOverlap() * WIN.getDynaWinCnt()); 
OBJ.w = OBJ.w + WIN.getDynaWinCnt(); 
WIN.resetDynaWinCnt(); 

end 
end % end while OBJ.w ~= WIN.getTotalWin()  
tend = datestr(now,'HH:MM:SS:FFF'); 

end % function run 
end % method 

end % class 
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B
Ontological Reasoning with Uncertainty 

Handling 

contextReasoner.createReasoner(ontologyHelper.getOntology()); 
currWindowIntervals.addWindowList(ontologyHelper.getCurrentWindowIntervalsList()); 
 
List<Interval> windowList = currWindowIntervals.getWindowList(); 
Collections.reverse(windowList); 
listOfAllIntervals.addAll(0, windowList); 
 
currWindowIntervals.clearWindowList(); 
ontologyHelper.clearCurrentWindowIntervalsList(); 
 
hasLocation = false; 
isAssertPossibleADL = false; 
String inferredLocation = null; 
 
currentInferredADLs = new ArrayList<OWLClass>(); 
List<OWLNamedIndividual> intervalList = ontologyHelper.getIntervalList(); 
 
for(OWLNamedIndividual e : intervalList) { 

if(!hasLocation) { 
hasLocation = contextReasoner.locationClassifier(e); 
Set<OWLClass> locationClass = contextReasoner.getLocLeafClass(); 
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if(!locationClass.isEmpty()) { 
for(OWLClass loc : locationClass) { 

inferredLocation = loc.getIRI().getFragment(); 
} 

} 
} 

  

Set<OWLClassExpression> eTypes = e.getTypes(ontologyHelper.getOntology()); 
eTypes.remove(ontologyHelper.getClass("Interval")); 
if(!eTypes.isEmpty()) { 

if(contextReasoner.adlClassifier(e)) { 
for(OWLClass inferredADL : contextReasoner.getADLLeafClass()) { 

currentInferredADLs.add(inferredADL); 
assertADL(e, inferredADL, 1.0, timestamp); 

} 
} 
findPossibleADLs(e, beginAtValue, timestamp); 

} 
} // end of for loop intervalList 

 

if(currentLocation.equals("")) { 
if(inferredLocation != null) { 

currentLocation = inferredLocation; 
} 

} else { 
if(inferredLocation != null) { 

if(!currentLocation.equals(inferredLocation)) { 
// keep previous location 
previousLocation = currentLocation; 
// update current location 
currentLocation = inferredLocation; 
isAssertPossibleADL = true; 

} 
} 

} 

 

System.out.println("isAssertPossibleADL: " + isAssertPossibleADL); 

 

if(isAssertPossibleADL) { 
List<PossibleADLModel> toBeInferredADLs = getToBeInferredPossibleADLs(); 
if(!toBeInferredADLs.isEmpty()) { 
 assertPossibleADL(toBeInferredADLs, timestamp); 
} 

} 

 

if(!evidenceReasoner.getPossibleADLs().isEmpty()) { 
System.out.println(evidenceReasoner.getPossibleADLs().size() + " possible 
activities of daily living detected."); 
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for(PossibleADLModel possibleADLModel : evidenceReasoner.getPossibleADLs()) { 
System.out.print(possibleADLModel.toString() + "(" + 
possibleADLModel.getBeliefValue() + "), "); 

} 
} 
 
 
 
 
// function to find possible ADLs 
private void findPossibleADLs(OWLNamedIndividual e, int beginAtValue, String 
timestamp) { 
 

… 
for(OWLClassExpression equivalent : possibleADLEquivalentClasses) { 

if(!equivalent.getClassesInSignature().contains(actionClass)) { 
// Definition does not contain the action. Skip... 
continue; 

}      
List<OWLClass> inferredActionsOfPossibleADL = new ArrayList<OWLClass>(); 
Map<Interval,OWLClass> inferredIntervalActionsOfPossibleADL = new 
LinkedHashMap<Interval, OWLClass>(); 
List<ContextModel> ADLContexts = 
ontologyHelper.getPossibleADLContexts(equivalent); 
// if it is not last index, action class is not the last context, get the 
following contexts 
int actionClsIndex = 0; 
for( ; actionClsIndex < ADLContexts.size(); actionClsIndex++) { 

if(ADLContexts.get(actionClsIndex).getAction().equals(actionClass)) { 
break; 

} 
} 
System.out.print(actionClsIndex); 
System.out.println(); 
 
List<ContextModel> negPropContexts = new ArrayList<ContextModel>(); 
for( int i = 0; i < actionClsIndex; i++) { 

negPropContexts.add(ADLContexts.get(i)); 
} 
 
 
for(Interval itv : listOfAllIntervals) { 

Set<OWLClassExpression> itvTypes = 
itv.getInterval().getTypes(ontologyHelper.getOntology()); 
itvTypes.remove(ontologyHelper.getClass("Interval")); 
if(itvTypes.contains(ADLContexts.get(actionClsIndex).getAction())) { 
// check if current interval's type is the same as possible ADL contexts 

boolean add = true; 
  ContextModel ctxMod = ADLContexts.get(actionClsIndex); 

Set<OWLLiteral> itvBeginAtLits = 
itv.getInterval().getDataPropertyValues(ontologyHelper.getDataPropert
y("hasBeginAt"), ontologyHelper.getOntology()); 
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OWLLiteral itvBeginAtLit = itvBeginAtLits.iterator().next(); 
int itvBeginAt = Integer.parseInt(itvBeginAtLit.getLiteral()); 
if(ctxMod.getCloserThan() != null) { 

int ctxModCloserThanVal = ctxMod.getCloserThanVal(); 
int closerThan = beginAtValue - ctxModCloserThanVal; 
// out of temporal context 
if(itvBeginAt <= closerThan) add = false;   

}      
if(ctxMod.getFartherThan() != null) { 

int ctxModFartherThanVal = ctxMod.getFartherThanVal(); 
int fartherThan = beginAtValue - ctxModFartherThanVal; 
// out of temporal context 
if(itvBeginAt >= fartherThan) add = false; 

} 
// check if current interval is predecessor of the successor interval
   
if(successorItv != null) {   

Set<OWLIndividual> successorItvPred = 
successorItv.getInterval().getObjectPropertyValues(ontologyHelper.g
etObjProperty("hasPredecessor"), ontologyHelper.getOntology()); 
if(!successorItvPred.contains(itv.getInterval())) { 

add = false; 
} 

} 
if(add) { 

inferredActionsOfPossibleADL.add(ADLContexts.get(actionClsIndex).ge
tAction()); 
inferredIntervalActionsOfPossibleADL.put(itv, 
ADLContexts.get(actionClsIndex).getAction()); 
// all contexts left in ADLContexts are uninferred actions, which 
will be used for adding uninferred masses 
contextsToBeRemoved.add(ADLContexts.get(actionClsIndex)); 
if(actionClsIndex != (sizeOfADLContexts-1)) { 

actionClsIndex++; 
} else { 

break; 
} 

} 
} 
successorItv = itv; 

} 
 
… 
for(Interval itv : inferredIntervalActionsOfPossibleADL.keySet()) { 

// assign mass to action with active state 
… 

} 
 
for(ContextModel ctx : contextsToBeRemoved) { 

ADLContexts.remove(ctx);  // remove active context 
} 
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for(ContextModel ctx : negPropContexts) { 
ADLContexts.remove(ctx);  // remove inactive contexts 

} 
       
// set masses to calculate possible ADL mass - add masses for inactive actions 
for(ContextModel ctxModel : negPropContexts) { 

evidenceReasoner.addMassOfInactiveContext(ctxModel.toString()); 
} 
       
// set masses to calculate possible ADL mass - add masses from uncertain actions 
for(ContextModel ctxModel : ADLContexts) { 

evidenceReasoner.addMassOfUncertainContext(ctxModel.toString()); 
} 
 
evidenceReasoner.combineMass(possibleADL); 

 
}//end for(OWLClassExpression equivalent : possibleADLEquivalentClasses) 

} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 





Office of the Vice-Chancellor
Finance, Ehtics and Compliance

The University of Auckland
Private Bag 92019
Auckland, New Zealand

Level 10, 49 Symonds Street
Telephone: 64 9 373 7599
Extension: 87830 / 83761
Facsimile: 64 9 373 7432

UNIVERSITY OF AUCKLAND HUMAN PARTICIPANTS ETHICS COMMITTEE (UAHPEC)

24-Nov-2016

MEMORANDUM TO:

Prof Zoran Salcic
Electrical & Computer Engineer

Re: Application for Ethics Approval (Our Ref. 018288): Approved with comment

The Committee considered your application for ethics approval for your project entitled Activity recognition
using wearable and sensors embedded in environment .

Ethics approval was given for a period of three years with the following comment(s):

Please remove the following:
Your Head of Department has given their assurance that your participation, or lack thereof,…
And replace with:
Your Head of Department has given assurance that your participation or non-participation…

2. Email invitation
Please remove the following ‘Thank you for your participation’ as the participant has not agreed to participate at
this stage.

The expiry date for this approval is 24-Nov-2019.

If the project changes significantly you are required to resubmit a new application to UAHPEC for further
consideration.

In order that an up-to-date record can be maintained, you are requested to notify UAHPEC once your project is
completed.

The Chair and the members of UAHPEC would be happy to discuss general matters relating to ethics approvals if
you wish to do so. Contact should be made through the UAHPEC Ethics Administrators at
ro-ethics@auckland.ac.nz in the first instance.  

All communication with the UAHPEC regarding this application should include this reference number: 018288.



(This is a computer generated letter. No signature required.)

Secretary
University of Auckland Human Participants Ethics Committee

c.c. Head of Department / School, Electrical & Computer Engineer
      Dr Kevin I-Kai Wang
      Mohd Halim Mohd Noor

Additional information:
1. Should you need to make any changes to the project, write to the Committee giving full details including

revised documentation.

2. Should you require an extension, write to the Committee before the expiry date giving full details along
with revised documentation. An extension can be granted for up to three years, after which time you
must make a new application.

3. At the end of three years, or if the project is completed before the expiry, you are requested to advise
the Committee of its completion.

4. Do not forget to fill in the 'approval wording' on the Participant Information Sheets and Consent Forms,
giving the dates of approval and the reference number, before you send them out to your participants.

5. Send a copy of this approval letter to the Awards Team at the, Research Office if you have obtained
funding other than from UniServices. For UniServices contract, send a copy of the approval letter to:
Contract Manager, UniServices.

6. Please note that the Committee may from time to time conduct audits of approved projects to ensure
that the research has been carried out according to the approval that was given.


	Abstract
	Acknowledgements
	Contents
	Publications
	1 Introduction
	1.1 Aging Population
	1.2 Motivation and Objectives
	1.3 Contributions
	1.4 Thesis Outline

	2 Background Research and System Architecture
	2.1 Introduction
	2.2 Smart Homes
	2.3 Context-aware System for Elderly Healthcare
	2.4 Human Activity Sensing
	2.5 Activity Modeling and Recognition
	2.5.1 Data-driven Approaches
	2.5.2 Knowledge-driven Approaches

	2.6 Dealing with Uncertainty in Activity Recognition
	2.7 System Architecture
	2.8 Conclusions

	3 Adaptive Sliding Window for Physical Activity Recognition
	3.1 Introduction and Problem Formulation (Physical Activity)
	3.2 Related Works
	3.2.1 Existing Signal Segmentation Approaches
	3.2.2 Physical Activity Recognition Systems

	3.3 Characterization of Activity Signals
	3.4 System Overview
	3.5 Adaptive Sliding Window
	3.6 Experimental Setup for Physical Activity Recognition
	3.6.1 Device and Data Collection
	3.6.2 Pre-processing and Feature Selection
	3.6.3 Physical Activity Recognition

	3.7 Results and Discussion
	3.7.1 IELAB: Intelligent Environment Lab Dataset
	3.7.2 SBHAR: Smartphone-based HAR Dataset

	3.8 Conclusions

	4 Physical Activity Transition Model
	4.1 Introduction
	4.2 Related Works
	4.3 Integration of Activity Recognition with Transition Model
	4.4 Activity Transition Diagram
	4.5 Results and Discussion
	4.5.1 IELAB: Intelligent Environment Lab Dataset
	4.5.2 SBHAR: Smartphone-based HAR Dataset

	4.6 Conclusions

	5 Ontological Reasoning with Uncertainty for Activity Recognition
	5.1 Introduction
	5.2 Related Works
	5.2.1 Ontologies for Activity Recognition
	5.2.2 Reasoning under Uncertainty

	5.3 Ontological Reasoning with Uncertainty
	5.3.1 Modeling Uncertainty in Ontological Reasoning
	5.3.2 Evidential Operations

	5.4 Activity Model
	5.4.1 Activity Ontology
	5.4.2 Representation of Evidential Parameters

	5.5 Activity Recognition Algorithm
	5.5.1 Ontological Reasoning with Uncertainty
	5.5.2 Determination of Action Concept States
	5.5.3 Propagation of Masses and Calculation of Belief

	5.6 Scenario of Activity Recognition with Uncertainty
	5.7 Experimental Setup for Activity Recognition
	5.8 Results and Discussion
	5.8.1 Comparison with Traditional Ontological Reasoning
	5.8.2 Comparison with Data-driven Approach

	5.9 Conclusions

	6 Ontology-based Sensor Fusion Activity Recognition
	6.1 Introduction
	6.2 Related Works
	6.3 Ontology-based Sensor Fusion
	6.4 Experimental Results
	6.4.1 IELAB: Intelligent Environment Lab Dataset
	6.4.2 OPPORTUNITY Dataset

	6.5 Conclusions

	7 Conclusions
	7.1 Achievements and Contributions
	7.2 Future Work

	References
	A Adaptive Sliding Window
	B Ontological Reasoning with Uncertainty Handling
	coversheet.pdf
	General copyright and disclaimer




