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Abstract. This paper discusses the detection of moving objects (being
a crucial part of driver assistance systems) using monocular or stereo-
scopic computer vision. In both cases, object detection is based on motion
analysis of individually tracked image points (optical flow), providing a
motion metric which corresponds to the likelihood that the tracked point
is moving. Based on this metric, points are segmented into objects by
employing a globally optimal graph-cut algorithm. Both approaches are
comparatively evaluated using real-world vehicle image sequences.
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1 Introduction

Kinesthesia, the sensation or perception of motion, is an important part of human
perception. It encompasses both the perception of motion of one’s own body
and a spectators perception of the motion of a scene. In vehicle applications
these two steps refer to ego-motion and the detection of other moving traffic
participants. Visual kinesthesia is done by using the sense of sight to observe the
effect of scene motion. In this paper, we model such perception of motion using
computer vision.

Detecting moving objects is a major issue for driver assistance and road
safety. The detection of moving traffic participants is an important step toward
attention-based environment perception. In this paper, we investigate methods
and limitations of both monocular and binocular camera systems for motion
detectability. It is evident that a monocular system is cheaper, uses less installa-
tion space, and suffers less decalibration issues, compared to the stereo system.
However, a stereo system yields direct range measurement estimates, but the
orientation between the two cameras needs to be known accurately, and decal-
ibration can cause major issues. This paper provides insight into the difference
between monocular and stereo camera performance.

The key idea behind our approach of detecting independently moving ob-
jects is to distinguish between motion in the images caused by the ego-motion
of the ego-vehicle (static objects) and motion caused by dynamic objects in the
scene. The motion of the ego-vehicle greatly complicates the problem of motion
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detection because simple background subtraction of successive images yields no
result. This paper presents and investigates techniques to distinguish between
stationary and non-stationary points. They are based on tracking feature points
in sequential images. As a result, feature points on independently moving ob-
jects are detected as moving. These features, however, are sparse and do not
characterize the whole image. In a second step, moving objects are segmented in
the images using these sparse features as seeds for segmentation. We make use of
the globally optimal graph-cut segmentation algorithm [6] to reject outliers and
to find image regions with an accumulation of image features lying on moving
objects. The proposed algorithm is able to find both rigid objects such as cars
and non-rigid objects such as moving pedestrians.

The paper is organized as follows. Section 2 investigates the motion analysis
techniques. Section 3 deals with the segmentation of the objects. In the result of
Section 4 different scenarios are presented, confirming the practicality of com-
puter vision for the sensation and perception of motion. Differences between
monocular and binocular motion detection are discussed and segmentation re-
sults for moving objects are presented. A concluding section on future work and
obtained insights closes this paper.

2 Motion Analysis

The detection of moving objects is based on motion analysis of individual tracked
image features, using the KLT tracker [20]. Tracked features are then recon-
structed into 3D coordinates. The stereoscopic approach accomplishes this using
a pair of stereo images by estimating the disparity and using triangulation,
where as the monocular approach accomplishes this using sequential images and
evaluating the optical flow. The monocular approach additionally requires the
knowledge about the ego-motion of the camera which can be obtained either by
an inertial measurement unit (IMU) [7] or based on optical flow [2, 14].

There is a fundamental difference between the monocular and the stereo-
scopic reconstruction. Moving points cannot be correctly reconstructed by monoc-
ular vision, except in special situations, such as using trajectory triangulation [3].
The erroneous reconstruction of moving points can be identified as erroneous if
the constraints for a static 3D point are violated. The monocular detection of
moving points relies on this fact. In Section 2.2 the constraints for static 3D
points are defined and an algorithm, evaluating them, is discussed.

In the case of stereoscopic vision, moving points are reconstructed correctly
for every stereo pair using [4, 19], by considering reconstructed 3D points over
time and integrating the results. This allows to calculate 3D velocity as well,
referred to as 6D-Vision in [9]. (The 3D velocity of a point indicates whether
the point is moving or not.) The 6D-Vision approach is discussed further in
Section 2.1.

Both approaches, monocular and stereoscopic, provide a motion metric which
is correlated to the likelihood that the point is moving. This motion metric serves
as input for the segmentation. See Figure 1.
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Fig. 1. Work flow for monocular or binocular motion segmentation.

2.1 Stereo Vision

We start with the stereo case. The displacement of image features between the
left and the right image (the disparity) is inversely related to the depth of the
corresponding 3D point. This information is accumulated in an evidence-grid,
similar to approaches such as in [18]. We refer to it as the bird-view map. This
map is usually segmented, and detected objects are tracked over time in order
to obtain their motion. The major disadvantage of this standard approach is
that the performance of the detection depends highly on the correctness of the
segmentation. Especially moving objects in front of stationary ones are often
merged and therefore not detected. This causes dangerous misinterpretations
and requires more powerful solutions.

In order to obtain motion information directly from the images, the optical
flow has to be analysed. It gives the displacement of image features in two
consecutive images of one camera, and depends on the motion of the observer
as well as the motion of the corresponding 3D point. By combining the left and
right optical flow fields [22], or the optical flow field of one camera with the stereo
information [1, 13], the 3D scene motion relative to the observer is reconstructed.
Inconsistencies in scene motion fields are then detected as independently moving
objects.

Direct optical flow analysis provides fast detection results, but is limited with
respect to robustness and accuracy due to the immanent measurement noise. To
get more reliable results, an integration of the observations over time is necessary.
The Kalman filter solves this in an elegant manner. Each measurement is used
to improve the current estimate of the systems state. In addition, the Kalman
filter propagates the covariances of the estimated state over time, which allows
the application of stochastical methods.

The core algorithm of the stereo vision system presented here follows the
principle of fusing optical flow and stereo information given in [9]. The basic
idea is to track points with depth estimated from stereo vision over two or
more consecutive frames and to fuse the spatial and temporal information using
Kalman filters. The result is an improved accuracy of the 3D-position and an
estimation of the 3D-motion of the considered point at the same time. Taking
into account the motion information, the above mentioned segmentation problem
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can be solved much more easily and robustly. In addition, using the 3D-motion
information a prediction of the objects movement is possible. This allows a driver
assistance system to warn and react to potential collisions in time.

The fusion implies the knowledge of the ego-motion. In our system we com-
pute it from image points found to be stationary using a Kalman filter based
approach described in [19]. This allows a fast calculation using all information
already acquired by the system including inertial sensor data. We briefly discuss
the proposed Kalman filter-based fusion of optical flow and stereo information.

System Model. We use a left handed coordinate system with the origin on the
road. This coordinate system is fixed to the car, so that all estimated positions
are given in the coordinate system of the moving observer. The lateral x-axis
points to the left, the height axis y points upwards and the z-axis represents the
distance of a point straight ahead. The camera is at (x, y, z)T = (0, height, 0)T

looking along the positive z-direction.
Let pk = (x, y, z)T be an observed 3D point and vk = (ẋ, ẏ, ż)T its associated

velocity vector at the time step k. Assuming a constant motion during the time
interval ∆t the 3D position at the time step k + 1 is given by

pk+1 = Rpk + t +∆tRvk (1)

Here the rotation matrix R and the translation vector t give the motion of the
scene, that is the inverse ego-motion. The new velocity vector of the observed
point is described by

vk+1 = Rvk (2)

Combining the location pk and the velocity vk in the 6D state vector sk =
(x, y, z, ẋ, ẏ, ż)T , the time-discrete linear system model is given by

sk = Aksk−1 + bk + ω (3)

with state transition matrix

Ak =
[
Rk Rk∆t
0 Rk

]
(4)

control vector bk = [tk , 0 , 0 , 0]> and noise term ω (assumed to be Gaussian
white noise with covariance matrix Q).

Measurement Model. We measure image coordinates u and v of a tracked
feature and the disparity d delivered by stereo vision, working on rectified images.
Assuming a pinhole-type camera, the non-linear measurement equation for a
point given in the camera coordinate system is as follows:

z =

uv
d

 =
1
z

xfu

yfv

bfu

+ ν (5)
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with focal lengths fu and fv (in pixels), and baseline b (in metres). The noise
term ν is assumed to be Gaussian white noise with covariance matrix S.

As the measurement equations are non-linear, we have to apply the Extended
Kalman Filter (EKF), which is known to be sensitive to wrong initializations.
To improve the Kalman filter’s rate of convergence, a multi-filter system is used.
It consists of multiple differently initialized and parameterized Kalman filters
running in parallel. By analysing the innovation of each filter the best matching
estimation is chosen. A detailed description of this approach is given in [9].

Fig. 2. Monocular (left) and stereo (right) motion analysis for a moving pedestrian
appearing behind a stationary vehicle.

The result of a 6D-vision algorithm is illustrated in Figure 2. Images are
taken from a moving vehicle, driving at about 30 km/h. We see that, 160 ms
after the pedestrian’s head was first visible, an estimation of its motion is already
available, which allows analysis for the risk of collision. [The colour encoding on
the left corresponds to the motion metric (blue: 0 px, red: 2 px); the arrows in
the 6-D vision image on the right point to the estimated 3D position in 0.5 s,
reprojected into the current image, where the colour encoding corresponds to
estimated depth (close = red, far = green).]

Scalar Motion Metric for Moving Object Detection. The monocular or
binocular algorithm estimates the position and velocity of independent image
features. Due to systematical measurement errors, induced for example by oc-
clusion effects or repetitive patterns, single points may be incorrect and a driver
assistance system has to deal with them accordingly. This is accomplished by
combining the estimates of multiple image features belonging to the same object,
which in turn requires an object segmentation.

In order to obtain the boundaries of all moving objects, we are first interested
in the question whether a 3D point is static or moving. As 6D vision estimates
the 3D velocity vector, we reduce this information to absolute velocity.

2.2 Monocular Vision

In this case we forbear from the usage of the second camera. This affects the
approach for the detection of moving points, since moving 3D points cannot be
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reconstructed with one camera only. A reconstruction of a moving 3D point is
erroneous. The point is detected as moving if its reconstruction is identified as
erroneous. To this end, one checks whether the reconstructed 3D point fulfills
the constraints of a static 3D point. These constraints are as follows:
Epipolar Constraint: This constraint expresses that viewing rays of a static 3D

point (lines joining projection centres and the 3D point) must meet. A mov-
ing 3D point in general induces skew viewing rays violating the constraint.

Positive Depth Constraint: The fact that all points seen by the camera must
lie in front of it is known as the positive depth constraint. It is also called
cheirality constraint. If viewing rays intersect behind the camera the actual
3D point must be moving.

Positive Height Constraint: All 3D points must lie above the road plane. If view-
ing rays intersect underneath the road the actual 3D point must be moving.
This constraint requires knowledge about normal vectors of the road surface
and the camera distance to the road surface. These entities are estimated
exploiting the optical flow on the road [16].

Trifocal Constraint: A triangulated 3D point utilizing the first two views must
triangulate to the same 3D point when the third view comes into consider-
ation. This constraint is also called trilinear constraint.

Existing motion detection schemes exploit a subset of the above constraints
either directly or indirectly. A popular scheme is the angle criterion [8, 24] which
uses the direction of optical flow vectors. When moving purely translational
toward the scene, all flow vectors are parallel to the corresponding epipolar lines
and point away from the epipole (focus of expansion). This holds true for the
entire static scene. If a measured optical flow vector deviate from this expected
flow direction (i.e., if the angle between measured and expected direction is
not zero), the corresponding 3D point is moving. This angle criterion indirectly
exploits the epipolar and the positive depth constraint.

Another popular scheme is the planar motion parallax. It is defined as the
deviation of the measured optical flow from the expected flow on the road plane.
For correspondences violating the positive height constraint, the parallax vector
points toward the epipole since the measured flow is shorter than expected. [5, 10]
evaluate the planar motion parallax. A scheme exploiting the trifocal constraint
is presented in [11]. It not only detects moving points but also clusters them.
However, the computational burden is high.

We now develop an algorithm evaluating all available constraints quantita-
tively. In the work flow diagram (Figure 1), reconstruction and detection are
shown as two separate steps. However, the actual algorithm avoids the explicit
reconstruction in favour of a reduced computational complexity and a better
statistical manageability.

The algorithm provides a motion metric measuring to which extent the con-
straints are violated. It is correlated to the likelihood that the point is moving
(i.e., higher values indicate a higher probability).

The motion metric is developed in two steps. First, the two-view constraints
are evaluated taking view one and two into account. Afterward, the trifocal
constraint is evaluated using the third view.
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Two-View Constraints. A motion metric combining the two-view constraints
has been introduced in [15]. It measures the distance of a given image point in the
first view to the closest point fulfilling all constraints (epipolar, positive depth,
and positive height constraint). For the ease of computational complexity image
points in the second view are considered noise free. We use this metric but swap
the roles of the views [i.e., we compute the error (distance) in the second view].

This is illustrated in Figure 3. We first consider the correspondence x1 ↔ x2

in views one and two. The closest point to x2, fulfilling the two-view constraints,
is xf2. It lies on the epipolar line l2 = Fx1 with F as the fundamental matrix.
Note that the vector from xf2 to x2 is not necessarily perpendicular to l2. The
distance d2 between xf2 and x2 is the error arising from the first two views. For
the computation of d2 see [15].

d2

d3

x1x2x3

e2

l2

xf2

xf3

Fig. 3. Monocular motion metric. The image of the second view is shown. The camera
moves along its optical axis observing a lateral moving point x1 ↔ x2 ↔ x3. The
closest point to x2 fulfilling the two-view constraints is xf2. The error arising from
two-views is the distance d2. Transferring the points x1 and xf2 into the third view
yields xf3. If the observed 3D point was actually static, x3 would coincide with xf3.
However, the 3D point is moving which causes the trifocal error d3. The overall error
is d = d2 + d3. Note: in general, x1 and xf3 do not lie on the epipolar line l2.

Three-View Constraint. We now add the third view and consider the cor-
respondence x1 ↔ x2 ↔ x3. As the point xf2 is defined such that it fulfills
the two-view constraints, the reconstructed 3D point, arising from the triangu-
lation of the points Fx1 and xf2, constitutes a valid 3D point. This 3D point is
projected into the third view, yielding xf3. The measured image point x3 will
coincide with xf3 if the observed 3D point is actually static. Otherwise there
is a distance d3 (Figure 3) between them which we call trifocal error. xf3 is
computed via the point-point-point transfer using the trifocal tensor [12]. This
approach avoids the explicit triangulation of image points Fx1 and x2.

The final motion metric, combining the two-view constraints and the three-
view constraint, is d = d2 +d3. It measures the minimal required displacement in
pixel necessary to change a given correspondence into a correspondence belong-
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ing to a valid static 3D point. See Figure 3 for an example of the final motion
metric. To be exact, d is a pseudo-metric only since we may have d2 (x2,xf2) = 0
for distinct points x2 6= xf2.

3 Segmentation

In order to derive objects from individual tracked image features, the features
have to be clustered into coherent objects. Image features are usually sparse
and appropriate for ego-motion estimation, however, they are not sufficient to
describe whole objects or object boundaries. Objects could be found by cal-
culating a dense flow field in which each image pixel yields an error value. A
subsequent connected components analysis yields objects. Such dense flow cal-
culation is computationally expensive and the result needs to be post-processed
to distinguish between noise and moving objects.

We therefore find objects by segmenting the image into foreground (moving
objects) and background (stationary world) taking the motion metric values as
probabilities for the tracked image features. Image features with values above a
noise threshold vote for foreground, all other features below the threshold vote
for background. The noise in the motion metric is mainly due to the tracking and
disparity measuring inaccuracies. For monocular motion analysis we assume an
inaccuracy of σ = 0.1 px, for the stereo approach the threshold is set at 1.0 m/s.
Accumulations of such foreground seeds denote an object. Single features with a
high error metric value need to be rejected as outliers. We define an energy which
penalizes boundary length of object segments. The energy is then minimized
using a global optimal graph-cut algorithm [6]. Further speed up techniques
for flow vector segmentation can be achieved using a Multi-Resolution Graph
Cut [21].

In a first step, every image pixel x corresponds to a node in a graph with a
source node s representing the background and a sink node t for the foreground.
Pixels voting for background are connected via an (undirected) edge to the source
node, those voting for foreground to the sink node vice versa. The cost of an
edge is defined as

d(x) < σ ⇒ e(s,x) = σ − d(x) (6)
d(x) > σ ⇒ e(x, t) = min(d(x)− σ,Cmax) . (7)

where Cmax is a threshold to limit outliers. The minimum function is necessary to
limit the influence of wrong tracks (outliers) on the result. Additionally, adjacent
image pixels (here only 4-adjacency is taken into account) are connected by
edges. The costs of these edges depend on the grey-value difference of its two
end points. The cost values are defined by

e(x,y) =
Ce

‖I(x)− I(y)‖+ ε
(8)

where Ce is a constant scaling factor, used to regularize the influence of edge
costs (boundary length), and ε is a small value to prevent numerical instability.
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Fig. 4. The images on the left show the segmentation for a moving pedestrian appear-
ing behind a stationary vehicle. Outliers are rejected and the segmentation border is
accurate. The four images on the right show the influence of the edge costs on the
segmentation result (later in the sequence). While small edge costs result in segments
with only a few pixels (left), high edge costs result in small regions (such that the
number of cut edges is minimized, right). From left to right: Ce = {1.5, 50, 500, 1000}.

I(x) is the grey value of x, in our case a scalar value between 0 and 4095, as we
use 12 bit images. Equation (8) is designed such that segmentation boundaries
along high image gradients are more likely than in homogeneous regions.

Clearly, the result depends on the costs of the edges, especially on the con-
stant Ce. If Ce is too low, the segmentation only contains single pixels whereas a
high value of Ce results in only one small segment (or no segment at all) because
removing edges to the source or the sink becomes less costly than removing
those edges connecting image pixels. Both situations can be seen in Figure 4. If
the sum of all edges of a pixel is larger than Cmax, the pixel will not be cut.
Therefore we set e(x,y) = 0.5 Cmax , for all tracked points x.

To regularize the size of the segments, especially in low-contrast regions such
as the road surface, the number of foreground pixels is penalized. This is done
by adding additional edges with constant cost e(s,x) = CBG, from every node
x to the source s.

This is equivalent to adding a background prior for every pixel in the image.
In the following results section we use constant values for the determinable pa-
rameters of the algorithm, demonstrating the adaptability of the algorithm for
different scenarios:

Cmax = 6 Ce = 150 CBG = 0.01 .

This is a usual mapping of image pixels onto a graph representation as done in [6,
23]. A cut in a graph is found by removing edges such that no more connections
between source and sink exist. The cost of a cut is the sum of its comprised
edges. The minimal cut is defined as the cut with the minimal cost out of all
possible cuts in the graph; see, for example, [21] for a diagram.

4 Experimental Results

This section applies our motion analysis and segmentation to real imagery. We
use the same set of features for monocular and binocular motion analysis. The
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first example in Figure 4 (left) shows the segmentation of the pedestrian ap-
pearing behind a stationary vehicle. The segmentation boundary proves to be
accurate keeping in mind that features are sparse in the image (compared with
Figure 2, right and left). The monocular and the stereo approach yield exactly
the same segmentation result for the lateral moving pedestrian.

(a) (b) (c) (d)

Fig. 5. Detection and segmentation results of a crossing and a preceding object. Monoc-
ular vision (a,b) performs similar to stereoscopic vision (c,d). Tracked image features
are shown on the left of each pair; they are color encoded according to the correspond-
ing motion metric. For monocular vision (a), the range is from 0 px (blue) to 7 px
(red); for stereoscopic vision (b), the range is from 0 m/s (blue) to 7 m/s (red).

Figure 5 shows a traffic scene with a crossing car and a preceding car in 31 m
distance. The speed of both cars is approximately 36 km/h. Both approaches,
monocular and stereo motion analysis, yield similar segmentation results. Look-
ing at the motion metric values, which are the driving energies for the graph-cut
segmentation, the difference between both approaches becomes visible. In the
monocular case, the energy values of features located on the preceding car are
small. This is due to the fact that the car moves longitudinal at a high distance
and the corresponding flow vectors do not differ much from those generated by
stationary objects. On the other hand, most flow vectors induced by the crossing
car deviate from any flow vectors of stationary objects, which fulfill the monoc-
ular motion constraints. However, the flow vectors in the vicinity of the horizon
are similar to those generated by stationary objects. The segmentation result
still is accurate and both moving vehicles are detected. For a more detailed
investigation of these phenomena, see [17].

The stereo approach measures the absolute 3D velocities of tracked features.
The preceding car is moving at a relatively high speed of 36 km/h while the

(a) (b) (c) (d)

Fig. 6. Detection and segmentation results of preceding and oncoming objects. Monoc-
ular vision (a,b) is only able to detect the lower parts of the preceding objects; the
oncoming object is not detected at all. Stereoscopic vision (c,d) does not suffer from
these limitations. (Color encoding as in Figure 5.)
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crossing car is moving at lower speed. This is clearly represented by the motion
metric. In contrast to the monocular approach, all features on both cars yield
correct results as the stereo approach does not suffer from the motion ambi-
guity between features on moving and stationary objects. The preceding car is
therefore fully segmented.

This situation becomes even more evident when looking at the autobahn
sequence in Figure 6. The vehicles move with a speed of 84 km/h. The monocular
approach is able to detect the car driving ahead, and the truck, being overtaken,
on the right side. But only the lower parts of the vehicles are detected, resulting
in an incomplete segmentation of the vehicles. The stereo approach not only
detects the vehicles completely, it is also able to detect oncoming traffic.

5 Conclusion

This paper investigates a monocular and a stereo approach to perceive motion in
image sequences. For each approach a motion metric was introduced measuring
the likelihood that a tracked image feature corresponds to a moving 3D point.
We applied motion metrics to traffic scenes captured by a camera installed in a
vehicle. Using image segmentation based on the investigated motion metrics we
were able to detect and segment other moving traffic participants. On average,
the stereo approach outperforms the monocular approach in terms of accuracy.
However, there is a higher computational cost for the computation of both stereo
and KLT tracks. Image sequences on highways and urban scenarios using the
same parameter sets demonstrate the practicality of this novel approach to ma-
chine sensing of motion.

Future work in this area may consist of integrating the tracking of features
in the monocular approach for a temporal integration of information. Also, the
extension of the segmentation algorithm. to distinguish between different motion
directions, is in the scope of future work, to be able to determine different objects
and obstacles.
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