

Libraries and Learning Services

University of Auckland Research
Repository, ResearchSpace

Version

This is the Accepted Manuscript version of the following article. This version is
defined in the NISO recommended practice RP-8-2008
http://www.niso.org/publications/rp/

Suggested Reference

Koehler, H., & Link, S. (2017). Inclusion dependencies and their interaction with
functional dependencies in SQL. Journal of Computer and System Sciences, 85,
104-131. doi:10.1016/j.jcss.2016.11.004

Copyright

Items in ResearchSpace are protected by copyright, with all rights reserved,
unless otherwise indicated. Previously published items are made available in
accordance with the copyright policy of the publisher.

This is an open-access article distributed under the terms of the Creative
Commons Attribution-NonCommercial-NoDerivatives License.

For more information, see General copyright, Publisher copyright,
SHERPA/RoMEO.

http://www.niso.org/publications/rp/
http://dx.doi.org/10.1016/j.jcss.2016.11.004
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.library.auckland.ac.nz/services/research-support/depositing-theses/copyright
https://www.elsevier.com/about/company-information/policies/sharing
http://www.sherpa.ac.uk/romeo/issn/0022-0000/

Accepted Manuscript

Inclusion dependencies and their interaction with functional dependencies in SQL

Henning Koehler, Sebastian Link

PII: S0022-0000(16)30116-7
DOI: http://dx.doi.org/10.1016/j.jcss.2016.11.004
Reference: YJCSS 3037

To appear in: Journal of Computer and System Sciences

Received date: 17 December 2015
Revised date: 19 August 2016
Accepted date: 14 November 2016

Please cite this article in press as: H. Koehler, S. Link, Inclusion dependencies and their interaction with functional dependencies in SQL,
J. Comput. Syst. Sci. (2016), http://dx.doi.org/10.1016/j.jcss.2016.11.004

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing
this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is
published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.jcss.2016.11.004

Highlights

• Simple inclusion dependencies and NOT NULL constraints are not finitely axiomatizable.
• The new class of not null inclusion dependencies (NNINDs) subsumes simple and partial inclusion dependencies.
• The implication problem for NNINDs is finitely axiomatizable, PSPACE- complete, and fixed parameter-tractable in their arity.
• Typed acyclic NNINDs are NP-complete, and tree-like NNINDs are linear time decidable.
• Super-reducedness is an efficient condition sufficient to guarantee no interaction between functional dependencies and NNINDs.

Inclusion Dependencies and their Interaction with
Functional Dependencies in SQL

Henning Koehlera, Sebastian Linkb

aSchool of Engineering & Advanced Technology, Massey University, New Zealand
bDepartment of Computer Science, University of Auckland, New Zealand

Abstract

Driven by the SQL standard, we investigate simple and partial inclusion de-
pendencies (INDs) with not null constraints. Implication of simple INDs and
not null constraints is not finitely axiomatizable. We propose not null in-
clusion dependencies (NNINDs) that subsume simple and partial INDs, are
finitely axiomatizable and PSPACE-complete to decide. NNINDs are fixed
parameter-tractable in their arity, typed acyclic NNINDs are NP-hard, and
tree-like NNINDs are decidable in linear time. We use a chase to decide im-
plication for functional dependencies and acyclic NNINDs in exponential time,
and identify a liberal condition that guarantees no interaction between func-
tional dependencies and acyclic (NN)INDs.

Keywords: Axiomatization, Chase, Complexity, Functional dependency,
Inclusion dependency, Null, Partial semantics, Simple semantics,
Undecidability, SQL

1. Introduction

Motivation. Domain, entity and referential integrity form the three most
fundamental classes of integrity rules, already proposed by Codd in his seminal
paper [20]. Referential integrity is enforced by foreign keys and, more generally,
inclusion dependencies (INDs). INDs empower us to specify which data must be
duplicated in what relations, they can express referential integrity at the logical
level and are an invaluable tool for classical data management tasks, including
conceptual data modeling [18], schema design [28, 42, 46], and query answering
[14, 34, 51]. An IND R[X] ⊆ S[Y] with attribute sequences X = [A1, . . . , An]

Email addresses: h.koehler@massey.ac.nz (Henning Koehler), s.link@auckland.ac.nz
(Sebastian Link)

The submission is an extended version of our conference paper Inclusion dependencies
reloaded, presented at the 24th ACM International Conference on Information and Knowledge
Management (CIKM 2015), Melbourne, Australia. The research is supported by the Marsden
Fund Council from Government funding, administered by the Royal Society of New Zealand.

Corresponding author

Preprint submitted to Elsevier November 18, 2016

and Y = [B1, . . . , Bn] on relation schemata R and S, respectively, is satisfied
by a relational database with R-relation r and S-relation s, if for every R-tuple
t there is some S-tuple t′ such that for all i = 1, . . . , n, the value t(Ai) matches
the value t′(Bi). An example IND in the TPC-C schema4 is

Order[c id, d id, w id] ⊆ Customer[c id, d id, w id]

which states that every order references some customer c id who placed the
order in a district d id of a warehouse w id. As {c id, d id, w id} forms a key
over Customer, this IND is even a foreign key.

In the context of the relational model, INDs and their core computational
problem of deciding implication have received dedicated interest, see for example
[15, 21, 22, 40, 41, 49, 50]. The C-implication problem for a class C of data
dependencies is to decide whether for every given database schema and every
given set Σ ∪ {ϕ} of dependencies from C over the schema, every database
instance that satisfies all dependencies in Σ also satisfies ϕ.

The C-implication problem has always been the central problem in logic
[8], and has several important motivations in database theory and practice.
For example, solutions to the implication problem allow database designers to
decide whether some data dependency ϕ must be specified on top of the set Σ of
dependencies that have already been specified on the given database schema in
order to guarantee data integrity under updates. Similarly, they allow designers
to compute sets Σ of data dependencies in which no element ϕ ∈ Σ is enforced
redundantly, thereby ensuring a minimal overhead in enforcing data integrity.

In schema normalization, such as 3NF synthesis or BCNF decomposition, it
must be decided whether a sub-schema satisfies the given normal form condition,
which is only achieved by deciding the associated implication problem [7, 26, 42].
In query optimization, deciding implication makes it possible to eliminate super-
fluous joins or DISTINCT clauses [1, 29], for example. In database security, the
implication problem of data dependencies is central because implied data depen-
dencies enable users to bypass access control and infer confidential information
[6, 27]. Renewed interest in INDs comes from modern applications such as
data cleaning and schema matching [9, 45], data integration [10], data profiling
[4, 19, 56], as well as query answering and the semantic web [13, 29, 44, 52, 55].

Surprisingly, INDs have only received little attention in the context of the
industry standard SQL, which subsumes null-free relations as the idealized spe-
cial case where all attributes of the schema have been declared not null, that
is, the null marker ⊥ must not feature in any of the table columns. In fact,
the SQL standard proposes a ‘simple’ and a ‘partial’ semantics for INDs. Both
semantics apply the definition from the null-free relational case above, but they
differ in which tuples t they consider. For an IND R[X] ⊆p S[Y] under partial
semantics, all tuples t are considered, and t(Ai) matches t′(Bi) if and only if
t(Ai) = ⊥ or t(Ai) = t′(Bi) holds. For an IND R[X] ⊆s S[Y] under simple
semantics there is a distinction between R-tuples t which are total on X, that

4http://www.tpc.org/tpcc/

2

is, where for all i = 1, . . . , n, the value t(Ai) is different from ⊥, and R-tuples
t which are partial on X, that is, not total on X. Only X-total tuples t are
considered, and t(Ai) matches t′(Bi) if and only if t(Ai) = t′(Bi) holds. We
shall refer to INDs under simple (partial) semantics as simple (partial) INDs.

For an example, consider a database where the only tuple t of the database
occurs in the Order-relation and has projection [⊥, d1, w1] on [c id, d id, w id].
This database satisfies the simple IND

Order[c id, d id, w id] ⊆s Customer[c id, d id, w id] ,

but violates the partial IND

Order[c id, d id, w id] ⊆p Customer[c id, d id, w id] .

It is well-known that simple semantics for foreign keys is natively supported by
all SQL implementations, but partial semantics is not natively supported by
any SQL implementation [31, 48].

On the one hand, it is not surprising that the implication problems for INDs
under simple and partial semantics are different from one another. For example,
the partial IND above implies the partial IND

Order[d id, w id] ⊆p Customer[d id, w id] ,

but the simple IND above does not imply the simple IND

Order[d id, w id] ⊆s Customer[d id, w id] .

On the other hand, it is surprising that the implication problem has only
been investigated under partial semantics, and only under the assumption that
the null marker can occur in every column [38]. In fact, we will see that the
implication problem for INDs under partial semantics and not null constraints
enjoys the same axiomatization as INDs on null-free relational databases [15].
In addition, for simple INDs alone (i.e., without not null constraints) we will
establish an axiomatization that results from the axiomatization for partial INDs
by omitting the projection rule.

However, things already change dramatically when we consider simple INDs
in combination with not null constraints. In this case, we will show that the
associated implication problem is not k-ary axiomatizable for any finite k, i.e.,
cannot be axiomatized by inference rules with at most k premises, and in par-
ticular not by any finite set of rules. This result is rather discouraging for
database practice in which simple semantics is natively supported, but not par-
tial semantics [31, 48]. Concise axiomatizations aid in human understanding of
constraint interaction, and critical applications such as schema design, integrity
enforcement and query processing. We emphasize the importance of the abil-
ity to reason about simple and partial INDs under not null constraints by the
following example from database design.

Example 1. Consider the following relation schemata, in which attributes A
that do not permit null values are denoted by A[NN]:

3

• Conference(CName[NN]),

• Participant(PName[NN]),

• Chair(CName[NN],PName[NN]),

• Booking(CName,PName,Dates[NN],Room[NN]), and

• Talk(CName,PName,Title[NN]).

The designer has identified the following inclusion dependencies:

• Chair[CName] ⊆p Conference[CName],

• Chair[PName] ⊆p Participant[PName],

• Booking[CName, PName] ⊆s Chair[CName, PName],

• Talk[CName, PName] ⊆p Booking[CName, PName].

If we were able to reason about simple and partial inclusion dependencies under
not null constraints, this would allow us to detect the following:

1. The IND Talk[CName, PName] ⊆s Chair[CName, PName] is implied
by the specified INDs, indicating that talks (with no null occurrences in
CName and PName) can only be given by conference chairs, which clearly
indicates a design flaw, and

2. The IND Talk[CName] ⊆s Conference[CName] is not implied by the
specified constraints, but should hold.

The challenge. For the reasons outlined before, database research is expected
to answer the fundamental question how the semantics of INDs should be de-
fined in the context of the industry standard SQL. Ideally, the semantics can
be defined in such a way that all of the following targets are met: i) simple
and partial semantics are subsumed by the semantics as special cases, and ii)
the semantics enjoys similar computational properties to those of its idealized
special case in which all attributes are specified not null. More precisely, condi-
tion ii) means that the associated implication problem is finitely axiomatizable
and PSPACE-complete to decide [15]. Ideally, there would be some expressive
fragments whose associated implication problems are easier, potentially even
tractable, to decide.

As entity integrity is primarily enforced by keys, and more generally func-
tional dependencies (FDs), it is also important to identify decidable instances
of the implication problem for the combined class of FDs and INDs. The chal-
lenge here is that each of the finite and unrestricted implication problems for
the general combined class of functional and inclusion dependencies is already
undecidable in the special case of null-free relational databases [17, 49].
Contributions. Strongly motivated by our observations about the simple
and partial semantics of SQL inclusion dependencies, we address the challenges
above as follows.
1. We investigate the implication problem of INDs under both simple and
partial semantics, each in combination with not null constraints, as suggested
by the SQL standard. The idealized special case where all attributes are declared

4

not null yields in each case the well-known semantics [15] of INDs over null-free
relations.
2. In the presence of not null constraints, we show that partial semantics enjoys
the same finite axiomatization as traditional INDs, but simple semantics is not
k-ary axiomatizable for any finite k. The latter result already holds in the case
where all relation schemata have at most four attributes.
3. We propose the class of “not null inclusion dependencies” (NNINDs), which
exhibits a natural semantics, subsumes simple and partial semantics as special
cases, enjoys a finite axiomatization and is PSPACE-complete to decide, thereby
recovering the positive results about INDs in null-free relational databases under
the more general framework of SQL-like databases.
4. Exploiting our completeness argument of our finite axiomatization, we estab-
lish a chase procedure for NNINDs, subsuming the well-known chase for INDs
over null-free relations as an idealized special case.
5. We show that the arity of NNINDs is a parameter that, when fixed, makes
their implication problem tractable. In contrast to typed INDs over null-free
relations, implication of typed NNINDs is NP-hard and thus unlikely to be
decidable in PTIME, already in the acyclic case.
6. We investigate the interaction of NNINDs with functional dependencies
(FDs). As (finite) implication is undecidable for this combined class [49, 17],
we establish a liberal, sufficient condition that guarantees the non-interaction
[40, 47] of FDs and an acyclic set of (not null) inclusion dependencies. Non-
interaction is very desirable in database practice, as the combined implication
problem reduces to separate implication problems which may each be solved
more easily in isolation. Our sufficient condition is liberal in the sense that it
subsumes two existing sufficient conditions [40, 47] as special cases, and is also
effective as it can be decided in quadratic time. Our non-interaction result fol-
lows from a chase procedure that can be used to decide the implication problem
for FDs and any acyclic set of NNINDs. Finite and unrestricted implication
coincide in this case and can be decided in exponential time.
Organization. We summarize related work in Section 2 to differentiate our
contributions. In Section 3 we formally introduce simple and partial semantics
for INDs. The axiomatization and non-axiomatizability, respectively, of partial
and simple INDs and not null constraints is discussed in Section 4. NNINDs
are introduced in Section 5, and their implication problem is axiomatized and
shown to be PSPACE-complete. The chase and important fragments of NNINDs
are identified in Section 6. Section 7 investigates the interaction of NNINDs
and FDs. Some new results for the null-free relational model are discussed in
Section 8. We conclude in Section 9 where we also comment on future work.

2. Related Work

Inclusion dependencies form one of the most prolific concepts in database
research and practice. We cannot list all the contributions made possible by
them. Some insight into their diverse application areas was already provided

5

in the introduction. Instead, we will focus on the main achievements regarding
the implication problem of inclusion dependencies and highlight the novelty of
our contributions in light of these achievements.

Inclusion dependencies generalize the notion of referential integrity, which
was known to the broader database community during the 1970s [24]. A sem-
inal paper on inclusion dependencies is [15], in which inference rules are pre-
sented, a Chase procedure is established, and the PSPACE-completeness of
the implication problem is shown. Acyclic inclusion dependencies were intro-
duced in [54], and it was shown in [21] that their implication problem is NP-
complete. For typed inclusion dependencies, i.e., inclusion dependencies of the
form R[X] ⊆ S[X] were each attribute is mapped to an attribute of the same
name, such as those found in Example 1, implication is decidable in PTIME
[16]. All of these results assume null-free relations.

Inclusion dependencies in the presence of null markers have been studied
in [38], but only for partial semantics, and without not null constraints. For
this case the authors showed that the associated implication problem enjoys the
same axiomatization as inclusion dependencies over null-free relations, and is
PSPACE-complete to decide. Indexes for enforcing partial inclusion dependen-
cies have been investigated in [48].

We conclude that previous research has not investigated the important com-
bined class of inclusion dependencies and not null constraints, neither under
simple nor partial semantics as recommended by the SQL standard. Only the
special cases in which either all or no attributes may contain null values have
been studied, and the former only for partial semantics. Our result that the
combined class of simple inclusion dependencies and not null constraints is not
k-ary axiomatizable for any finite k is surprising and discouraging for current
database practice. It is surprising since: i) in both idealized special cases in-
clusion dependencies are axiomatizable, and ii) under the ‘no information’ se-
mantics of null markers [43], previous research [2, 33] has not seen cases in
which adding not null constraints to other axiomatizable classes of equality- or
tuple-generating constraints results in their non-axiomatizability. The result is
discouraging for current database practice, because implementations of database
systems natively support simple, but not partial semantics of INDs [31, 48].

In [39] it is shown that for functional dependencies under possible world
semantics, no k-ary axiomatization exists. Possible world semantics captures
only the null marker interpretation ‘value exists but unknown’ but not ‘value
does not exist’. For this reason we assume the popular and SQL-compliant ‘no
information’ interpretation [3, 32, 33, 43], under which both partial and simple
semantics are sensible and their study justified.

A fundamental result for null-free relational databases concerns the unde-
cidability of each finite and unrestricted implication for the combined class of
functional and inclusion dependencies [17, 49]. It has also been shown that nei-
ther the finite nor the unrestricted implication problem for the combined class
of functional and inclusion dependencies is k-ary axiomatizable for any k, in
particular no finite axiomatization exists [15]. For the combined class of func-
tional and acyclic inclusion dependencies, finite and unrestricted implication

6

coincide, and require exponential exponential time to decide [21, 23]. Under
the assumption that all attributes permit null marker occurrences, it was shown
[38] that the implication problem for the combined class of ‘no information’
functional dependencies and inclusion dependencies under partial semantics is
EXPTIME-complete to decide.

Based on the infeasibility of the general combined implication problem of
FDs and INDs, several sufficient conditions on the structure of the given con-
straint sets have been identified that guarantee no interaction between these
fragments of the constraint classes. These include unary inclusion dependen-
cies [47, Theorem 10.20] and key-based inclusion dependencies on schemata
in Boyce-Codd normal form [47, Theorem 10.21]. In [12] the notion of non-
key-conflicting IND is introduced and used to establish a non-interaction result
between INDs and keys. Our sufficient condition extends the condition of [12] to
NNINDs and FDs over relations containing nulls and not null constraints, and
is strictly more liberal than the conditions in [47], capturing more cases that
can be handled efficiently. Levene and Loizou [40, 41] consider a stricter defi-
nition of ‘no interaction’, requiring that no subsets of the given constraint sets
interact. Our sufficient condition is closed under subsets and thus also applies
to this stricter requirement.

The results related to the individual class of (NN)INDs have been announced
in [35]. The current submission is an extension of [35] in which we present all
proofs, additional motivation and many examples that illustrate our concepts
and results. In addition, the content of Section 7 is new, that is, all results
related to the combined class of FDs and NNINDs. These include a chase
procedure for FDs and NNINDs, which can be used to decide implication for
any set of FDs and acyclic NNINDs in exponential time. In particular, the
termination of the chase means that the finite and unrestricted implication
problems coincide for FDs and acyclic NNINDs. In addition, we establish a
sufficient condition for the non-interaction of FDs and acyclic NNINDs. The
condition can be decided in quadratic time, and subsumes different sufficient
conditions from the literature [40, 41] as special cases.

3. Inclusion dependencies in SQL

In this section we give preliminary definitions and formalize the notions of
partial and simple inclusion dependencies in the context of SQL-like databases.

Let A = {A1, A2, . . .} be a countably infinite set of symbols, called at-
tributes or columns. A relation schema is a finite non-empty sequence R =
[A1, . . . , An] of distinct attributes in A. Database schemata are finite sets of
relation schemata. Each attribute A of a relation schema R is associated with
a countably infinite domain dom(A) of the possible values that can occur in
column A. To encompass partial information the domain of every attribute
contains a distinguished null marker, denoted by ⊥. Note that the null marker
⊥ is different from a domain value. The inclusion of ⊥ into the domain is purely
a syntactic convenience.

7

A tuple t over R = [A1, . . . , An] (R-tuple or simply tuple, if R is understood)
is an element of the Cartesian product dom(A1)× · · · × dom(An). A relation r
over R (R-relation or simply relation, if R is understood) is a set of R-tuples,
possibly infinite. While SQL tables may contain duplicates, these have no im-
pact on whether an IND (or later an FD, as considered in Section 7) holds, so
it suffices to study relations. Sometimes, we also write instance or table when
referring to a relation. We may also refer to a relation with null marker occur-
rences when we want to emphasize the fact that null markers can be present. We
talk of null-free relations when considering the classic case where null markers
are not permitted. When necessary we say that relations are finite.

A database assigns a relation to each of its relation schemata that are part
of the underlying database schema. For X = [Ai1 , . . . , Aim] we use t[X] (r[X])
to denote the projection of tuple t (relation r) on the attributes Ai1 , . . . , Aim .
That is, r[X] = {t[X] | t ∈ r}. For an R-tuple t (R-relation r) we say that t (r)
is X-total if for all Aij ∈ X, t[Aij] �= ⊥ (all tuples in r are X-total).

SQL permits the specification of attributes as not null. We permit this as
well, and denote the not null attributes of a relation schema R by NN(R), and
the attributes on which a tuple t is different from ⊥ by NN(t). For relations
with null markers, different extensions of inclusion dependencies over null-free
relations exist. We study the two most prominent extensions, called partial and
simple semantics, as defined by the SQL standard.

Definition 1 (less informative tuple).
Consider tuples t1, t2 over R1 = [A1, . . . , Am] and R2 = [B1, . . . , Bm]. We say
that t1 is less informative5 than t2 (or t2 is more informative than t1), written
as t1 � t2, if and only if

t1[Ai] ∈ { ⊥, t2[Bi] } for all i = 1, . . . ,m .

We write r1 � r2 to indicate that for every tuple in relation r1 there exists some
more informative tuple in relation r2.

For an illustration of less informative tuples and relations, consider an ex-
ample from an Australian tourism company [30].

Example 2. Tours in the Tour table have a tour id, for example a tour such
as the “Gold Coast Grand Tour” has tour id GCG. Tours have a fixed set of
sites they visit. Consider the following database instance:

Booking

Visitor id Tour id Site code Date

1006 BRF ⊥ Sep 19th

1001 BRT OR Nov 21st

1008 ⊥ BB Sep 5th

1012 ⊥ MV Nov 2nd

1011 RF ⊥ Oct 5th

Tour

Tour id Site code Site name
GCG OR O’Reilly’s
BRT OR O’Reilly’s
BRT MV Movie World
RF BB Binna Burra
RF OR O’Reilly’s

5While “less or equally informative” would be more accurate, “less informative” is pre-
dominant in the literature.

8

Let r1 denote the projection of Booking onto {tour id, side code} and let r2
denote the projection of Tour onto {tour id, side code}. Then r1 � r2 does
not hold, since there is no r2-tuple that is more informative than the r1-tuple
(BRF,⊥). If we remove the first tuple in r1 then r1 � r2 holds.

We will now introduce the simple and partial semantics for inclusion depen-
dencies over relations with null marker occurrences. These naturally extend the
simple and partial semantics, respectively, which are recommended for foreign
keys in the SQL standard.

Definition 2 (partial/simple IND).
Let X and Y be attribute sequences without repeating attributes over relation
schemata R and S. We call an expression of the form R[X] ⊆p S[Y] a partial
inclusion dependency, and an expression of the form R[X] ⊆s S[Y] a simple
inclusion dependency. A partial IND R[X] ⊆p S[Y] holds for tables r, s over
R,S if and only if r[X] � s[Y]. A simple IND R[X] ⊆s S[Y] holds for tables
r, s over R,S if and only if for every X-total tuple tr ∈ r there exists a tuple
ts ∈ s such that tr[X] = ts[Y].

Note that X,Y may be empty. In this case t[] is the empty tuple, and
consequently R[] ⊆p S[] and R[] ⊆s S[] are equivalent and express that s
must be non-empty if r is non-empty.

While only partial INDs have been considered in the literature [38], both
partial and simple semantics are supported in the SQL standard (for foreign
keys), and DBMSs support only simple semantics (and again only for foreign
keys) [31, 48]. This motivates a closer investigation of simple INDs, and in
particular their relationship to partial INDs.

Example 3. Consider again the use case from Example 2. The simple in-
clusion dependency Booking[tour id, site code] ⊆s Tour[tour id, site code] is
satisfied by the given database: The only total foreign key value (BRT,OR) in
the Booking table is matched in the Tour table. However, the partial in-
clusion dependency Booking[tour id, site code] ⊆p Tour[tour id, site code] is
violated by the given database: There is no r2-tuple that is more informative
than the r1-tuple (BRF,⊥).

The core computational problem in the theory of database constraints is
the implication problem. It has several motivations in practice, inclusive of
i) the ability to compute small representation systems (covers) for the sets of
constraints that are actively enforced in a database system results in time sav-
ings that increase proportionally with the volume of the data that is being
updated, and ii) the ability to decide whether a constraint is implied by a given
set empowers database systems to decide whether a constraint can be used for
optimizing a query on the fly.

For a given class C of constraints, the (finite) implication problem for C is to
decide for a given finite set Σ∪{ϕ} of constraints in C, whether Σ (finitely) im-
plies ϕ. That is, whether every (finite) database that satisfies all the constraints
in Σ also satisfies ϕ. Two sets Σ,Σ′ of constraints are semantically equivalent,

9

denoted by Σ ≡ Σ′, if either of the sets (finitely) implies all of the other set’s
constraints. For readability we will omit set brackets if Σ or Σ′ are singletons.

Whether or not finite and unrestricted implication coincide depends on the
class of constraints considered. E.g. for null-free relations it is know that they
coincide for both the class of functional dependencies and the class of inclusion
dependencies, but not for their combined class [49, 17].

Example 4. We give some more details for Example 1. For that purpose let
Σ denote the set of four inclusion dependencies from that example, and let ϕ
denote the IND Talk[CName] ⊆s Conference[CName]. We claimed in Ex-
ample 1 that Σ does not imply ϕ. This can easily be witnessed by the database
instance whose only tuple in the Talk-relation has projection (SIGMOD,⊥)
on {CName,PName}, whose only tuple in the Booking-relation has projec-
tion (SIGMOD,⊥) on {CName,PName}, and whose other relations are empty.
Clearly, all INDs are satisfied, but ϕ is violated because the CName SIGMOD
does not appear in the Conference-relation.

When talking about inclusion dependencies, we will need to identify subsets
of the left-hand-side that “match” subsets of the right-hand-side. The following
concept helps with this.

Definition 3 (induced mapping).
Let X = [A1, . . . , Am] and Y = [B1, . . . , Bm] be sequences of equal length, with
distinct Ai. The mapping induced by X and Y , denoted (X 	→ Y), is

(X 	→ Y)(Ai) = Bi

When applied to a set of values U , we obtain the images of values in U ∩X:

(X 	→ Y)(U) = {Bi | Ai ∈ U}

When applied to a sequence of values U , we obtain a sequence of images instead.

We can now express an important relationship between partial and simple
INDs precisely.

Theorem 1. Every partial IND is semantically equivalent to a set of simple
INDs, for finite as well as unrestricted implication. Specifically:

R[X] ⊆p S[Y] ≡ { R[X ′] ⊆s S[Y
′] | X ′ ⊆ X, Y ′ = (X 	→ Y)(X ′) }

Proof. It is easy to see that R[X] ⊆p S[Y] implies every R[X ′] ⊆s S[Y ′] in the
set.

To show the reverse, let r, s be instances of R,S so that every R[X ′] ⊆s S[Y
′]

holds on r, s, and t ∈ r. From R[X ′] ⊆s S[Y ′] with X ′ = NN(t) ∩X, it follows
that there exists t′ ∈ s with t[X ′] = t′[Y ′]. But this means t[X] � t′[Y], and
since such a t′ exists for all t ∈ r, R[X] ⊆p S[Y] is satisfied.

10

Example 5. The partial inclusion dependency

ϕ : Booking[tour id, site code] ⊆p Tour[tour id, site code]

is semantically equivalent to the following set of four simple INDs:

• σ1: Booking[tour id, site code] ⊆s Tour[tour id, site code],

• σ2: Booking[tour id] ⊆s Tour[tour id],

• σ3: Booking[site code] ⊆s Tour[site code], and

• σ4: Booking[] ⊆s Tour[].

Note that σ4, which expresses that Tour is non-empty if Booking is non-
empty, is needed here: a nearly empty database instance, whose only tuple oc-
curs in the Booking-relation and has projection (⊥,⊥) on {tour id,site code},
violates ϕ and σ4 but satisfies σ1, σ2, and σ3.

Theorem 1 means that any DBMS which supports simple INDs indirectly
supports partial INDs as well. Note that the opposite does not hold, i.e., simple
INDs cannot be expressed by a set of partial INDs:

Example 6. Consider the schemata R = A, S = B with instances r = {(⊥)}
and s = ∅. Then the simple IND ϕ = R[A] ⊆s S[B] holds on r, s, but the
partial INDs R[] ⊆p S[] and R[A] ⊆p S[B] are violated. Similarly, ϕ holds
for the instance r = ∅ and s = {(⊥)}, where the partial INDs S[] ⊆p R[] and
S[B] ⊆p R[A] are violated. Thus ϕ implies no non-trivial partial INDs.

Nevertheless, partial INDs are valuable in that they allow constraints to
be expressed efficiently, i.e., without resorting to an exponential number of
equivalent simple INDs.

4. Axiomatization

As mentioned earlier, concise axiomatizations aid in human understanding
of constraint interaction, with critical applications in algorithm and schema de-
sign, constraint enforcement, query optimization, theorem proving and more.
For example, while the connection between simple and partial inclusion depen-
dencies, as described in Theorem 1, may appear obvious in retrospect, we only
discovered it while searching for an axiomatization of NNINDs.

In this section, we will discuss axiomatizations for implication problems of
partial and simple INDs, both in isolation and combination with not null con-
straints. Unless explicitly stated otherwise, we consider the finite implication
problem. However, for all types of inclusion dependencies discussed here, taken
by themselves (i.e., not in combination with FDs), the finite and unrestricted
implication problems coincide. This will be easy to deduct from the axiomati-
zations we shall establish: they are complete for finite implication and hence for
unrestricted implication as well, so one only needs to verify that each inference
rule is still sound when relations can be infinite.

The notions of inference rules, soundness, completeness and (finite) axiom-
atization are standard [1]. We begin with a brief discussion of how not null
constraints fit into our axiom systems.

11

4.1. Not null constraints

We treat not null constraints as properties of attributes, rather than separate
integrity constraints. Essentially this means that we do not concern ourselves
with the implication of not null constraints. This simplifies things, but raises
the question of what would happen if we did consider their implication.

Not null constraints by themselves are pretty boring. If we express them as
NNC(X) for non-empty attribute sets X, they can be axiomatized by subset
and union rules NNC(XY)
 NNC(X) and NNC(X),NNC(Y)
 NNC(XY).

The more interesting question is whether NNCs together with other classes
of constraints can imply new NNCs, that are not implied by the given NNCs
alone. The following lemmas and example provide some answers to this. Here
INDs may be partial or simple, or even NNINDs as introduced in Section 5.

Lemma 1. Let ΣNNC and ΣIND be sets of NNCs and INDs, respectively, and let
σ be a NNC implied by ΣNNC ∪ ΣIND. Then ΣNNC implies σ.

Proof (sketch). Denote by NN(R) the set of all attributes in relation schema R
appearing in ΣNNC. For each relation schema R construct a relation r over R
consisting of two tuples tR, sR defined as follows:

tR[A] =

{
0 if A ∈ NN(R)

⊥ otherwise

sR = (0, . . . , 0)

Then these relations form a database which satisfies ΣNNC and ΣIND, but violates
all not null constraints not implied by ΣIND alone.

Similarly, FDs and acyclic INDs (see Section 7) taken together do not aid in
the implication of NNCs. Our proof uses NNINDs.

Lemma 2. Let ΣNNC,ΣFD,ΣIND respectively be sets of NNCs, FDs and acyclic
INDs, and let σ be a NNC implied by ΣNNC ∪ ΣFD ∪ ΣIND. Then ΣNNC implies σ.

Proof (sketch). Denote by R the relation schema to which σ applies. Consider
the initial database r which consists of a single tuple tR over R with

tR[A] =

{
0 if A ∈ NN(R)

⊥ otherwise

Clearly r violates every NNC on R not implied by ΣNNC, but it may also violate
ΣIND. To fix this, we apply the chase (Section 7, Algorithm 2) to (r,ΣFD,ΣIND).
As ΣIND is acyclic, the chase adds no tuples over schema R, so the FD-rule is
never applied on R and tR is not modified. Thus the resulting database still
violates every NNC on R not implied by ΣNNC, and satisfies ΣNNC ∪ΣFD ∪ΣIND by
Theorem 13.

12

We conclude our discussion of NNCs with an example showing that cyclic
INDs together with FDs can help to imply new NNCs. Note however that the
(finite) implication problem for INDs and FDs together is already undecidable
for null-free relations [49, 17], and thus cannot be axiomatized anyway.

Example 7. Consider the relation schema R = AB with constraints

ΣNNC = { NNC(A) } ΣFD = { A → B } ΣIND = { R[AB] ⊆p R[BA] }

To show that these imply NNC(B), assume that relation r over R satisfying
these constraints violates NNC(B), and thus contains a tuple t0 = (v0,⊥). Then
R[AB] ⊆p R[BA] ensures that r contains t1 = (v1, v0), for some value v1, and
by repeated application there must exist t2 = (v0, v1) ∈ r. From NNC(A) it
follows that v0, v1 are not null, so t0, t2 violate A → B.

4.2. Finitely axiomatizable cases

We begin by establishing axiom systems for partial inclusions dependencies
under not null constraints, and for simple inclusion dependencies without not
null constraints.

The following definition falls in the same category as “induced mapping”,
in that it aids in formalizing what it means to rearrange the attributes on both
sides of an IND “correspondingly”.

Definition 4 (Index Permutation & Projection). An index permutation &
projection function of order (k,m), or (k,m)-IPP for short, with k ≤ m, is
an injective mapping σ : {1 . . . k} → {1 . . .m}. We apply a (k,m)-IPP σ to a
list L of length m by treating lists as position → value mappings, so that IPP
application reduces to function composition L ◦ σ:

σ[A1, . . . , Am] = [Aσ(1), . . . , Aσ(k)]

Where the order (k,m) of an IPP is clear from the context, we will not mention
it explicitly. Given two lists X,Y , we denote the existence of an IPP function
mapping X to Y by X ⊆IPP Y .

Example 8. Let X denote the list [c id, d id, w id] and Y denote the list [w id,
d id]. Then Y = σ(X) for the (3,2)-IPP σ : {1, 2, 3} → {1, 2} with 3 	→ 1 and
2 	→ 2.

An axiomatization for partial INDs has been established by Levene and
Loizou in [38, Theorem 3.3], and is identical to the axiom system for INDs on
null-free relations previously established in [15]. This easily translates into an
axiomatization which includes not null constraints.

13

Theorem 2. The following axioms are sound and complete for partial inclusion
dependencies on relations with not null constraints.

Reflexivity (R):
R[X] ⊆p R[X]

Transitivity (T):
R[X] ⊆p S[Y] S[Y] ⊆p T [Z]

R[X] ⊆p T [Z]

Projection &
Permutation

(P):
R[X] ⊆p S[Y]

R[σX] ⊆p S[σY]
σ is an IPP

Proof. Soundness can easily be verified for each rule, but also follows as a con-
sequence of their soundness in the absence of not null constraints [38, Theorem
3.3], as every database instance on a schema with not null constraints is still an
instance over a schema where these constraints are omitted.

Completeness follows from [15, Theorem 3.1] which shows their completeness
in relational databases without null values. Whenever an IND cannot be derived
using the axioms, the theorem guarantees the existence of a counter-example
showing non-implication. This counter-example contains no null values, and is
still valid over a schema where null values are permitted for some columns.

Example 9. The partial IND

Order[c id, d id, w id]⊆pCustomer[c id, d id, w id]

implies the partial IND

Order[w id, d id]⊆pCustomer[w id, d id]

which results from the (3,2)-IPP defined in Example 8. Indeed, the implication
follows from the soundness of the Projection & Permutation rule for partial
INDs.

As long as we do not consider not null constraints, the axiomatization of
simple INDs is even simpler:

Theorem 3. The following axioms are sound and complete for simple inclusion
dependencies without not null constraints.

Reflexivity (R):
R[X] ⊆s R[X]

Transitivity (T):
R[X] ⊆s S[Y] S[Y] ⊆s T [Z]

R[X] ⊆s T [Z]

Permutation (P):
R[X] ⊆s S[Y]

R[σX] ⊆s S[σY]

σ is an index
permutation

14

Proof. The proof works just like the proof for Lemma 6 that will be presented
in Section 5, except that σ must be a permutation, and the null propagation
rule is not needed.

Example 10. The simple IND ϕ

Order[c id, d id, w id] ⊆s Customer[c id, d id, w id]

implies the simple IND

Order[w id, d id, c id] ⊆s Customer[w id, d id, c id]

which results from the index permutation σ = {1 	→ 3, 2 	→ 2, 3 	→ 1}. We
cannot project attributes away however – the simple IND

Order[w id, d id] ⊆s Customer[w id, d id]

resulting from the index projection σ′ = {1 	→ 1, 2 	→ 2} is not implied by ϕ,
which we already confirmed with the example in the introduction.

4.3. Non-axiomatizability

Next we consider the real-world case in which simple INDs coexist with not
null constraints. Surprisingly, while simple INDs studied in isolation possess an
elegant axiomatization (Theorem 3), it turns out that no finite axiomatization
exists in the presence of not null constraints. While that this does not preclude
the existence of non-finite axiomatizations, we have not been able to identify an
elegant one that would aid in human understanding.

Definition 5 (k-ary axiomatization).
We call an inference rule k-ary for some integer k (1-ary, 2-ary, etc.), if and
only if it has at most k premises. A set of inference rules, or axiom system, is
k-ary if and only if all its rules are k-ary.

For example, the axiom systems of Theorems 2 and 3 are both 2-ary (and
also 3-ary, 4-ary, . . .). More generally, all finite sets of rules are k-ary for some
value k, assuming our rules each take a fixed number of premises.

To establish the following non-axiomatizability result, we will construct, for
every k, an example schema where a simple IND ϕ0 is implied by k + 1 INDs,
but not by any set containing at most k implied simple INDs other than ϕ0. In
this we exploit that not null constraints for attributes on the left hand side of
an IND force not null restrictions for the matching tuple on the right hand side.
By chaining such INDs we obtain INDs where such not null restrictions hold,
and are vital for implication of ϕ0, but cannot be expressed using simple INDs
which might otherwise serve as intermediate steps in a derivation.

Theorem 4. For the implication of simple inclusion dependencies with not null
constraints, no k-ary axiomatization exists, for any k. In particular, no finite
axiomatization exists. This holds even if all relation schemata are restricted to
contain at most four attributes.

15

Proof. Consider the database schema R with relation schemata R0 = . . . =
Rk+1 = ABCD, with NN(R0) = BC, NN(Ri>0) = B. Let further Σ =
{Ri[ABC] ⊆s Ri+1[ACD] | i = 0 . . . k}. It is easy to verify that Σ � ϕ0 =
R0[A] ⊆s Rk+1[A]. We will show that ϕ0 cannot be derived using any k-ary set
of (sound) derivation rules. To do so, we first need to establish which interme-
diate INDs could be derived. In the following we only consider non-trivial INDs
with ordered LHS attributes.

Claim (*): Let ϕ = Rn[X] ⊆s Rm[Y] be an IND implied by Σ, with n > 0.
Then either ϕ ∈ Σ or we have m = n+ 1, X = AC and Y = AD.

To show this, consider an instance over R with

ri = ∅ for i < n

rn =

⎧⎨
⎩

(0, 2, 1, ∗),
(⊥, ∗, ∗, ∗),
(∗, ∗,⊥, ∗)

⎫⎬
⎭

rn+j = {(0, j + 2, j + 1, j)} for j > 0

where each * denotes a unique value. One may verify that Σ holds for this
instance. If D ∈ X then ϕ is violated by the first tuple in rn. If AC � X then
ϕ is violated by the second or third tuple in rn. This leaves X ∈ {AC,ABC}.
As value 1 only occurs in relations rn and rn+1, and ϕ is non-trivial, m = n+1.
Thus either ϕ = Rn[AC] ⊆s Rn+1[AD] or ϕ = Rn[ABC] ⊆s Rn+1[ACD] ∈ Σ.
This shows Claim (*).

Claim (**): Let ϕ = R0[X] ⊆s Rm[Y] be an IND implied by Σ. Then

ϕ ∈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

R0[ABC] ⊆s R1[ACD],
R0[AB] ⊆s R1[AC],
R0[AC] ⊆s R1[AD],
R0[AB] ⊆s R2[AD],
R0[A] ⊆s Rm[A]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

To show this, consider an instance over R with

r0 =

{
(0, 2, 1, ∗),
(⊥, ∗, ∗, ∗)

}
rj = {(0, j + 2, j + 1, j)} for j > 0

For ϕ to hold we must have D /∈ X (first tuple) and A ∈ X (second tuple).
For m > 2, neither 2 nor 1 occurs in rm, so we must have X = Y = A. For
m = 2 only 2 occurs in r2, so we must have X = Y = A or X = AB, Y = AD.
For m = 1 the options X ∈ {A,AB,AC,ABC} remain. These are exactly the
options listed in Claim (**).

We can summarize claims (*) and (**) as follows: The set

Σ′ = Σ ∪ {Rn[AC] ⊆s Rn+1[AD] for n = 0 . . . k}
∪ {R0[A] ⊆s Rn+1[A] for n = 0 . . . k}
∪ {R0[AB] ⊆s R1[AC], R0[AB] ⊆s R2[AD]}

16

contains all (non-trivial) INDs implied by Σ over R.
Finally, let Σ′′ ⊂ Σ′ be any set of at most k INDs implied by Σ such that

ϕ0 /∈ Σ′′. Then for some m ∈ 1, . . . , k + 1, Σ′′ contains no IND with Rm on its
RHS. Consider the instance

ri = {(0, i+ 2, i+ 1, i)} for i < m

ri = {(0, i+ 2,⊥, i)} for m ≤ i ≤ k

rk+1 = ∅

It is easy to see that all INDs in Σ′ which might lie in Σ′′ hold for this instance,
while ϕ0 is violated. This shows that ϕ0 cannot be derived using a rule with k
or less premises. Hence no k-ary axiomatization exists.

Example 11. We illustrate the proof of Theorem 4 for the case k = 2. This
shows, in particular, that the 2-ary axiomatization for simple INDs from Theo-
rem 3 is not an axiomatization for simple INDs and not null constraints.

Let R0 = R1 = R2 = R3 = ABCD with NN(R0) = BC and NN(R1) =
NN(R2) = NN(R3) = B. The set Σ consists of

• R0[ABC] ⊆s R1[ACD],

• R1[ABC] ⊆s R2[ACD], and

• R2[ABC] ⊆s R3[ACD].

The following set Σ′ contains all non-trivial INDs implied by Σ, up to any
permutations applied to both the LHSs and RHSs:

• R0[ABC] ⊆s R1[ACD], R1[ABC] ⊆s R2[ACD], R2[ABC] ⊆s R3[ACD],

• R0[AC] ⊆s R1[AD], R1[AC] ⊆s R2[AD], R2[AC] ⊆s R3[AD],

• R0[AB] ⊆s R1[AC], R0[AB] ⊆s R2[AD],

• R0[A] ⊆s R1[A], R0[A] ⊆s R2[A], and R0[A] ⊆s R3[A].

Observe in particular that R1[A] ⊆s R2[A], R1[A] ⊆s R3[A] and R2[A] ⊆s R3[A]
are not implied by Σ, as witnessed by the database instance below:

• r0 = ∅,
• r1 = {(0, 0,⊥, 0)},
• r2 = {(1, 1,⊥, 1)}, and
• r3 = ∅.

Let now ϕ0 = R0[A] ⊆s R3[A] ∈ Σ′. One may that verify ϕ0 is not implied by
any subset Σ′′ of Σ′ \ {ϕ0} containing at most two INDs. As an example, pick
the subset Σ′′ = {R0[AB] ⊆s R2[AD], R2[AC] ⊆s R3[AD]}. Then the database
instance below satisfies Σ′′ but violates ϕ0:

• r0 = {(0, 2, 1, 0)},
• r1 = {(0, 3,⊥, 1)},
• r2 = {(0, 4,⊥, 2)}, and

17

• r3 = ∅.
Any other choice of Σ′′ will show similarly that Σ′′ does not imply ϕ0. Conse-
quently, ϕ0 cannot be derived from Σ by any sound 2-ary rule system.

We have seen that in the presence of not null constraints, partial INDs enjoy
a finite axiomatization, while simple INDs do not. As a final case, we consider
partial and simple INDs together.

Corollary 1. For the implication of partial and simple inclusion dependencies
with not null constraints, no k-ary axiomatization exists. This holds even if all
table schemas are restricted to contain at most four attributes.

Proof. Assume that such an axiomatization A existed. Then we can construct
an axiomatization A′ by replacing every rule in A with multiple corresponding
rules, in which each partial IND R[X] ⊆p S[Y] is replaced by multiple simple
INDs, as per Theorem 1, for cardinalities of X up to four. But this would make
A′ a k-ary (for some finite k) axiomatization for simple INDs over relation
schemata of size four or less, contradicting Theorem 4.

As simple INDs and not null constraints are the current reality of database
practice [31, 48], database research must answer the important question whether
there is some suitable extension of simple INDs which can be axiomized in the
presence of not null constraints, and thus reasoned about more elegantly. Ideally
such an extension would also extend partial INDs, thereby unifying the two
notions of IND currently proposed by the SQL standard.

In the next section we propose such an extension, and show that it can be
reasoned about elegantly and efficiently.

5. Not Null Inclusion Dependencies

In this section we propose not null inclusion dependencies (NNINDs) as a
new class of inclusion dependencies for SQL-like databases, where attributes
may be declared not null. The definition of NNINDs is a natural consequence of
the non-axiomatizability result for simple INDs under not null constraints. Both
simple and partial INDs are special cases of NNINDs. The name NNIND hails
from not null restrictions we impose on participating tuples (e.g. R[X] ⊆s S[Y]
requires values in X to be not null for the IND to apply).

We establish a finite axiomatization for NNINDs under not null constraints,
and the PSPACE-completeness for their implication problem. Therefore, we are
able to provide an optimal response to the challenges brought forward by the
results of the last section: NNINDs can address the recommendations of the
industry standard SQL, and retain the computational properties of its idealized
special case of INDs over null-free relations.

The central reason why simple inclusion dependencies cannot be axioma-
tized is that information about attributes being not null cannot be propagated.
Consider e.g. Example 11. Here the IND R0[AB] ⊆s R2[AD] cannot express

18

the additional requirement, implied by Σ, that the matching tuple over R2 must
not be ⊥ on attribute C. If it could, then together with R2[AC] ⊆s R3[AD] it
would imply R0[A] ⊆s R3[A], paving the way for a 2-ary axiomatization.

In the following we will define NNINDs, show how they express partial and
simple INDs as special cases, and how they facilitate the propagation of not null
restrictions. Note that NNINDs are neither a substitute for not null constraints,
nor do they aid in their implication, as discussed in Section 4.1.

Definition 6 (not null inclusion dependency).
Let R be a relation schema, r a relation over R and U ⊆ R. We denote by rU

the set of all U -total tuples in r:

rU = {t ∈ r | ∀A ∈ U. t[A] �= ⊥}

A not null inclusion dependency (NNIND) is an expression of the form

RU [X] ⊆ SV [Y]

where R,S are schemata, U, V sets (not necessarily of equal cardinality), and
X,Y sequences of equal length with U,X ⊆ R and V, Y ⊆ S. We say that such
an NNIND holds on relations r, s over R,S if and only if

rU [X] � sV [Y] ,

that is, for each projection of a U -total tuple in r on X there is some more
informative projection of some V -total tuple in s on Y .

Note that we do not consider repeated attributes in X or Y , in consistency
with partial and simple INDs. NNINDs can express both simple and partial
INDs as special cases.

Proposition 1. Partial and simple INDs can be expressed as NNINDs as fol-
lows:

R[X] ⊆p S[Y] ≡ R∅[X] ⊆ S∅[Y]

R[X] ⊆s S[Y] ≡ RX [X] ⊆ S∅[Y]

We briefly illustrate the definition on the following example.

Example 12. Consider again the database instance presented in Example 2:

Booking

Visitor id Tour id Site code Date

1006 BRF ⊥ Sep 19th

1001 BRT OR Nov 21st

1008 ⊥ BB Sep 5th

1012 ⊥ MV Nov 2nd

1011 RF ⊥ Oct 5th

Tour

Tour id Site code Site name
GCG OR O’Reilly’s
BRT OR O’Reilly’s
BRT MV Movie World
RF BB Binna Burra
RF OR O’Reilly’s

19

The partial IND

Booking[tour id, site code] ⊆p Tour[tour id, site code]

can be expressed by the NNIND

Booking
∅[tour id, site code] ⊆ Tour

∅[tour id, site code]

but is violated by the instance, as the first row in Booking has no matching
tuple in Tour. The simple IND

Booking[tour id, site code] ⊆s Tour[tour id, site code]

can be expressed by the NNIND

Booking
tour id,site code[tour id, site code] ⊆ Tour

∅[tour id, site code]

and holds on the instance. It can further be strengthened to the NNIND

Booking
site code[tour id, site code] ⊆ Tour

∅[tour id, site code]

which is still satisfied by the instance.

As we have seen, NNINDs generalize partial and simple INDs in a unified
framework. In the example above, the sets U was a subset of X, and the set V
was empty. NNINDs of this form can actually be expressed by a set of simple
INDs, generalizing Theorem 1:

Corollary 2. Every NNIND of the form RU [UX] ⊆ S∅[Y] is semantically equiv-
alent to a set of simple INDs (for both finite and unrestricted implication):

RU [UX] ⊆ S∅[Y] ≡ { R[UX ′] ⊆s S[Y
′] | X ′ ⊆ X, Y ′ = (UX 	→ Y)(UX ′) }

However, while such NNIND are sufficient to generalize both partial and
simple INDs, they are not sufficient to allow axiomatization. As we observed in
the proof of Theorem 4, we need (at the very least) the ability to express that
attributes not in Y must not be null in the matching tuple.

Our central result for this section will be a (finite) axiomatization of NNINDs.
This axiomatization is given in Table 1. The first three rules simply extend the
axioms for simple and partial INDs. Note that rule (P) allows projection, even
when dealing with NNINDs repesenting simple INDs, as the set U allows us to
maintain the not null restrictions for attributes dropped in the projection.

Rule (N) enables us to propagate not null restrictions, such as those observed
in the proof of Theorem 4. Note that (X 	→ Y)(U) is the set of attributes
matching U ∩X in S, as per Definition 3, so for any U -total tuple t over R, any
matching tuple s over S with r[X] � s[Y] must not be null on (X 	→ Y)(U).

Rule (D) captures the relationship between simple and partial INDs, as per
Theorem 1. As we will see in Lemma 6, we can avoid rule (D) if we restrict
ourselves to a subclass of NNINDs which generalize simple but not partial INDs.

We will use the symbol
 to denote derivability using the axioms in Table 1.

20

RU [X] ⊆ RV [X]
V ⊆ U ∪NN(R)

RU [X] ⊆ SV [Y] SV [Y] ⊆ TW [Z]

RU [X] ⊆ TW [Z]

Reflexivity (R) Transitivity (T)

RU [X] ⊆ SV [Y]

RU [σX] ⊆ SV [σY]
σ is an IPP

RU [X] ⊆ SV [Y]

RU [X] ⊆ SW [Y]
W = V ∪ (X 	→ Y)(U)

Projection & Permutation (P) Not Null Propagation (N)

RUA[AX] ⊆ SV [BY] RU [X] ⊆ SV [Y]

RU [AX] ⊆ SV [BY]

Tertium Non Datur (D)

Table 1: Axiomatization of not null Inclusion Dependencies

Theorem 5. The set of axioms in Table 1 is sound and complete for not null
inclusion dependencies.

To establish some results needed to prove Theorem 5, we introduce the
auxiliary notion of quasi-simple NNINDs. Quasi-simple NNINDs can be axiom-
atized without use of the Tertium Non Datur Rule, and completeness of this
axiomatization is easier to establish.

5.1. Quasi-simple Not Null Inclusion Dependencies

Inclusion dependencies with simple semantics only apply to tuples not con-
taining any null values in LHS attributes. We extend this notion to NNINDs,
and shall call such dependencies quasi-simple.

Definition 7 (quasi-simple NNIND).

We call NNINDs of the form RUX [X] ⊆ SV [Y] quasi-simple.

Example 13. The NNIND

Booking
tour id,site code[tour id, site code] ⊆ Tour

∅[tour id, site code]

is quasi-simple, while the NNIND

Booking
site code[tour id, site code] ⊆ Tour

∅[tour id, site code]

is not quasi-simple.

One may note that quasi-simple NNINDs include simple INDs. The rela-
tionship between partial and simple INDs extends to NNINDs and quasi-simple
INDs (with the difference that NNINDs include quasi-simple NNINDs, whereas
partial INDs do not include simple ones):

Theorem 6. Every NNIND is semantically equivalent to a set of quasi-simple
NNINDs. Specifically:

RU [X] ⊆ SV [Y] ≡ { RUX′
[X ′] ⊆ SV [Y ′] | X ′ ⊆ X, Y ′ = (X 	→ Y)(X ′)}

21

Proof. It is easy to see that RU [X] ⊆ SV [Y] implies every RUX′
[X ′] ⊆ SV [Y ′]

in the set.
To show the reverse, let r, s be instances of R,S so that every RUX′

[X ′] ⊆
SV [Y ′] holds on r, s, and t ∈ r be U -total. From RUX′

[X ′] ⊆ SV [Y ′] with
X ′ = NN(t)∩X, it follows that there exists a V -total t′ ∈ s with t[X ′] = t′[Y ′].
But this means t[X] � t′[Y], and since such a t′ exists for all U -total t ∈ r,
R[X] ⊆p S[Y] is satisfied.

Example 14. The NNIND

Booking
site code[tour id, site code] ⊆ Tour

∅[tour id, site code]

is not quasi-simple, but semantically equivalent to the following set of quasi-
simple NNINDs:

• Booking
tour id,site code[tour id, site code] ⊆ Tour

∅[tour id, site code],

• Booking
tour id,site code[tour id] ⊆ Tour

∅[tour id],

• Booking
site code[site code] ⊆ Tour

∅[site code], and

• Booking
site code[] ⊆ Tour

∅[].

Note that the 2nd and 4th NNIND in this list are implied by the 1st and 3rd,
respectively, and thus redundant. This reduced representation could also be ob-
tained via Corollary 2, by replacing simple INDs with quasi-simple NNINDs.

5.2. Chase for NNINDs

The Chase is often used as an efficient algorithm for deciding instances of
implication problems. Apart from being useful in its own right, we will use the
chase to show completeness of our axiomatization, and later to establish the
fixed parameter-tractability of NNINDs in their arity.

As implication of an NNIND reduces to implication of a set of quasi-simple
NNINDs (of bounded cardinality for NNINDs of bounded arity) by Theorem 6,
we will only consider a chase for quasi-simple NNINDs.

Algorithm 1 (Chase for quasi-simple NNINDs).
Input: A database schema (R,Σ) with R = (R1, . . . , Rk) and a finite database
r = (r1, . . . , rk) over R.
Output: A modified database chase(r,Σ).
Method: Apply the following rule as long as possible:

NNIND: If Σ contains a NNIND RU [X] ⊆ SV [Y] and for some U -total tuple tR
over R there does not exist a V -total tuple tS over S with tR[X] � tS [Y],
then add the following tuple tS over S:

tS [Bi ∈ Y] =

{
0 if tR[Ai] = ⊥ and Bi ∈ V ∪NN(S)

tR[Ai] otherwise

tS [B /∈ Y] =

{
0 if B ∈ V ∪NN(S)

⊥ otherwise

22

Here we use the notation Ai = (Y 	→ X)(Bi) for readability, and say that tS
was added as a result of RU [X] ⊆ SV [Y] applied to tR.

Lemma 3. Algorithm 1 terminates, and Σ holds on chase(r,Σ).

Proof. As the initial database r is finite, the set A0 of attribute values occurring
in r is finite. Application of rule NNIND introduces at most two new attribute
values, 0 and ⊥, so the set A = A0 ∪ {0,⊥} of attribute values occurring in any
intermediate database is finite as well.

It follows that the set of databases over R containing only values from alpha-
bet A is finite. As each application of rule NNIND strictly increases the number
of tuples in the database, only a finite number of rule applications is possible,
so Algorithm 1 terminates.

The resulting database satisfies Σ, as otherwise rule NNIND could be applied
again, contrary to our termination criterion.

While the chase can be applied to arbitrary input databases, we will want to
pick our input database in such a way that the result allows us to reason about
the implication of a given quasi-simple NNIND ϕ.

Definition 8 (Chase for (ϕ,Σ)).
Let Σ be a set of NNINDs over R, and ϕ = RUX [X] ⊆ SV [Y] be a quasi-simple
NNIND over R. We write chase(ϕ,Σ) to denote chase(r,Σ), where the initial
database r consist of a single tuple t0 over R with

t0[X] = (1, . . . ,m) where m = |X|

t0[A /∈ X] =

{
0 for A ∈ U ∪NN(R)

⊥ otherwise

Lemma 4. Let Σ, ϕ, t0 be as in Definition 8. If chase(ϕ,Σ) contains a tuple t
over Rj with t0[X] = t[E] for some sequence E over Rj, then

RUX [X] ⊆ Rj
NN(t)[E]

can be derived from Σ using the first four axioms of Table 1.

Proof. We proceed by induction on the sequence of tuple additions.
For t = t0 derivability follows by the reflexivity axiom. So let t be added as

a result of φ = Ri
U∗

[X∗] ⊆ Rj
V ∗

[Y ∗] applied to t′. By construction this means

NN(t) = V ∗ ∪NN(Rj) ∪ (X∗ 	→ Y ∗)(NN(t′))

From t0[X] = t[E] it follows that E ⊆ Y ∗, as all values in t outside Y ∗

are 0 or ⊥. Hence there exists an IPP σ such that E = σY ∗. We thus obtain
t0[X] = t[E] = t[σY ∗] = t′[σX∗]. Thus by induction hypothesis, we have

Σ
 RUX [X] ⊆ Ri
NN(t′)[σX∗]

23

Recall that
 denotes derivability using the axioms of Table 1, and in this
instance using only the first four axioms.

Furthermore, as rule NNIND was applicable, we must have U∗ ⊆ NN(t′). We
can thus derive

...

RUX [X] ⊆ Ri
NN(t′)[σX∗]

Ri
U∗

[X∗] ⊆ Rj
V ∗

[Y ∗]
(R+T)

Ri
NN(t′)[X∗] ⊆ Rj

V ∗
[Y ∗]

(R+T)
Ri

NN(t′)[X∗] ⊆ Rj
V ∗∪NN(Rj)[Y ∗]

(N)
Ri

NN(t′)[X∗] ⊆ Rj
NN(t)[Y ∗]

(P)
Ri

NN(t′)[σX∗] ⊆ Rj
NN(t)[σY ∗]

(T)
RUX [X] ⊆ Rj

NN(t)[σY ∗]

As E = σY ∗, this completes the proof.

As shown next, the chase can be used to decide implication of quasi-simple
NNINDs (by a set of arbitrary NNINDs) algorithmically.

Lemma 5. Let Σ, ϕ, t0 be as in Definition 8. Then Σ � ϕ if and only if
chase(ϕ,Σ) contains a V -total tuple tS over S with t0[X] = tS [Y].

Proof. If such a tuple tS exists, then by Lemma 4 we can derive ϕ from Σ using
the first four axioms of Table 1. Since these are sound (as one may easily verify),
this shows Σ � ϕ.

If no such tuple tS exists, then chase(ϕ,Σ) violates ϕ. By Lemma 3 Σ holds
on chase(ϕ,Σ), showing that Σ does not imply ϕ.

As mentioned earlier, we can also apply Algorithm 1 to decide the implication
problem for general NNINDs, by employing the relationship between general
NNINDs and quasi-simple NNINDs established in Theorem 6.

We illustrate the chase on one of our running examples.

Example 15. In Example 1 we claimed that the simple INDs

ϕ : Talk[CName,PName] ⊆s Chair[CName,PName]

is implied by the partial and simple INDs

ϕ1 : Chair[CName] ⊆p Conference[CName]

ϕ2 : Chair[PName] ⊆p Participant[PName]

ϕ3 : Booking[CName,PName] ⊆s Chair[CName,PName]

ϕ4 : Talk[CName,PName] ⊆p Booking[CName,PName]

24

We shall test this claim using Lemma 5, representing simple/partial INDs
as NNINDs, and abbreviating attributes by their first character:

ϕ : TalkCP [CP] ⊆ Chair
∅[CP]

ϕ1 : Chair
∅[C] ⊆ Conference

∅[C]

ϕ2 : Chair
∅[P] ⊆ Participant

∅[P]

ϕ3 : Booking
CP [CP] ⊆ Chair

∅[CP]

ϕ4 : Talk∅[CP] ⊆ Booking
∅[CP]

To compute chase(ϕ, {ϕ1, ϕ2, ϕ3, ϕ4}) we start with the initial database contain-
ing only a single tuple t0 = (1, 2, 0) over Talk. Applying Algorithm 1 to this
database results in

Talk

C P T[NN]

1 2 0

Booking

C P D[NN] R[NN]

1 2 0 0

Chair

C[NN] P[NN]

1 2

Conference

C[NN]

1

Participant

P[NN]

2

As Chair contains tuple (1, 2), our claim holds by Lemma 5.
We further claimed in Example 1 that (using NNIND representation)

ϕ′ : TalkC [C] ⊆ Conference
∅[C]

is not implied by {ϕ1, ϕ2, ϕ3, ϕ4} under the not null constraints specified. Again
we can test this using Lemma 5, starting with the initial database containing
only a single tuple t0 = (1,⊥, 0) over Talk. Applying Algorithm 1 to this
database results in

Talk

C P T[NN]

1 ⊥ 0

Booking

C P D[NN] R[NN]

1 ⊥ 0 0

Chair

C[NN] P[NN]

Conference

C[NN]

Participant

P[NN]

Since Conference does not contain the tuple t = (1), it follows by Lemma 5
that ϕ′ is not implied, as claimed.

For partial INDs and INDs over null-free relations, specialized chase algo-
rithms can be found in [1, 38].

5.3. Completeness Proofs

We now have the necessary foundations to show that our axiomatization
is complete. We first show completeness for quasi-simple NNINDs, and then
extend this to general NNINDs.

25

Lemma 6. The first four rules of Table 1 are sound, and complete for the
derivation of quasi-simple NNINDs.

Proof. It is easy to verify that the axioms are sounds.
Our proof that any implied quasi-simple NNIND can be derived proceeds

along the lines of that for standard INDs [15, Theorem 3.1].
Let Σ, ϕ, t0 be as in Definition 8, with Σ � ϕ = RU [X] ⊆ SV [Y]. Then by

Lemma 5 chase(ϕ,Σ) contains a V -total tuple tS over S with t0[X] = tS [Y].
From this it follows by Lemma 4 that ϕ′ = RUX [X] ⊆ SNN(tS)[Y] can be derived
from Σ using the first four axioms. As V ⊆ NN(tS) we can derive ϕ from ϕ′

with another application of reflexivity and transitivity axioms.

We illustrate the use of our inference rules by proving again the first claim of
Examples 1. Note that non-implication of (NN)INDs, in particular the second
claim of Example 1, cannot be shown this way.

Example 16. In Example 1 we claimed that the simple IND

ϕ : Talk[CName, PName] ⊆s Chair[CName, PName]

is implied by the given set Σ and the not null constraints. We now provide an
inference to substantiate the claim, using the first four rules of Table 1. The
attributes involved are abbreviated by their first letters.

(R)
Talk

CP [CP] ⊆ Talk
∅[CP] Talk

∅[CP] ⊆ Booking
∅[CP]

(T)
Talk

CP [CP] ⊆ Booking
∅[CP]

(N)
Talk

CP [CP] ⊆ Booking
CP [CP] Booking

CP [CP] ⊆ Chair
∅[CP]

(T)
Talk

CP [CP] ⊆ Chair
∅[CP]

The final NNIND in this example can be rewritten as the simple IND ϕ.

We are now ready to show Theorem 5.

Proof of Theorem 5. Soundness of Tertium Non Datur (D) may not be obvious,
so we provide a brief proof. Consider any U -total tuple tR over R.

If t[A] �= ⊥ then existence of a V -total tS over S with tR[AX] � tS [BY]
follows from RUA[AX] ⊆ SV [BY].

If tR[A] = ⊥ then by RU [X] ⊆ SV [Y] there exists a V -total tS over S with
tR[X] � tS [Y]. With tR[A] = ⊥ it follows that tR[AX] � tS [BY].

To show completeness, denote again our relation schemata by R1, . . . , Rn.
Let Σ be a set of NNINDs, and

ϕ = RU [X] ⊆ SV [Y]

some NNIND with Σ � ϕ. We show that for all IPP σ and W ⊆ σX we have

Σ
 ϕW
σ = RU(σX\W)[σX] ⊆ SV [σY] (1)

We proceed by induction on the cardinality of W .

26

Let |W | = 0. Then Σ � ϕ � ϕ∅
σ, and our claim follows by Lemma 6.

So assume (1) holds for all |W | ≤ n, and let |W ′| = n+ 1 and σ some IPP.
Pick A ∈ W ′ so that W ′ = AW with |W | = n, and let σA be derived from σ by
“dropping” A. By (1) we have Σ
 ϕW

σ and Σ
 ϕW
σA

. From

ϕW
σ = RU(σX\W ′)A[σX] ⊆ SV [σY] and

ϕW
σA

= RU(σX\W ′)[σAX] ⊆ SV [σAY]

we can derive, using Tertium Non Datur (plus Permutation to make A the first
attribute):

ϕW ′
σ = RU(σX\W ′)[σX] ⊆ SV [σY] .

This shows (1) which includes Σ
 ϕ as a special case.

The following example illustrates the Tertium Non Datur rule.

Example 17. The database instance from Example 2 satisfies the NNIND

Booking
site code[tour id, site code] ⊆ Tour

∅[tour id, site code]

but violates the NNIND (partial IND)

Booking
∅[tour id, site code] ⊆ Tour

∅[tour id, site code] .

Soundness of the Tertium Non Datur rule implies, in particular, that

Booking
∅[tour id] ⊆ Tour

∅[tour id]

must also be violated by the database instance. Indeed, the tour id-value BRF
occurs in the Booking-table, but not in the Tour-table.

By Lemma 6, the Tertium Non Datur rule is not needed to derive simple
INDs. Nor is it required to derive partial INDs from a set of partial INDs, as
per Theorem 2. While it is necessary for completeness using our definition of
NNINDs, one may thus wonder whether it could be avoided by using a more
conservative generalisation of partial and simple INDs. Theorem 1 suggests
that this is not possible, and the following example confirms this (it is of course
possible to replace it by some other rule, though we suspect that any replacement
rule would be very similar and not simpler).

Example 18. Let R = AB, S = CD be relation schemata without not null
constraints, and

Σ = { RA[A] ⊆ S [C], R[B] ⊆ S [D] }
a set containing only simple and partial INDs. Then Σ implies the partial IND
R[A] ⊆ S [C], as shown below:

RA[A] ⊆ S [C]

R[B] ⊆ S [D]
(P)

R[] ⊆ S []
(D)

R[A] ⊆ S [C]

One may verify that R[A] ⊆ S [C] cannot be derived without use of rule (D).
Note that R[] ⊆ S [] is non-trivial, and expresses that S is non-empty if R is
non-empty.

27

5.4. Hardness of Implication

It has been shown in [15, Theorem 3.3] that implication of INDs for null-
free relations is PSPACE-complete. As NNINDs extend INDs over null-free
relations, implication between NNINDs is at least PSPACE-hard. We will show
that it lies in PSPACE next.

The following lemma matches [15, Theorem 3.3], and shows PSPACE-com-
putability for quasi-simple NNINDs.

Lemma 7. Let Σ be a set of (general) NNINDs and ϕ = RUX [X] ⊆ SV [Y] a
quasi-simple NNIND. Then Σ � ϕ iff there exists a sequence

RUX [X] = SU0
0 [X0], . . . , S

Un
n [Xn] = SV [Y]

where Si are relation schemata, and Ui, Xi ⊆ Si such that for each 0 ≤ i < n
the NNIND

Si
Ui [Xi] ⊆ Si+1

Ui+1 [Xi+1]

is either an instance of the reflexivity axiom (R) or can be derived (non-deter-
ministically in linear space) from a single NNIND in Σ.

Proof. The “if” direction is obvious. For the “only if” direction, consider the
derivation trees constructed in the proof of Lemma 4, copied below:

...

RUX [X] ⊆ Ri
NN(t′)[σX∗]

Ri
U∗

[X∗] ⊆ Rj
V ∗

[Y ∗]
(R+T)

Ri
NN(t′)[X∗] ⊆ Rj

V ∗
[Y ∗]

(R+T)
Ri

NN(t′)[X∗] ⊆ Rj
V ∗∪NN(Rj)[Y ∗]

(N)
Ri

NN(t′)[X∗] ⊆ Rj
NN(t)[Y ∗]

(P)
Ri

NN(t′)[σX∗] ⊆ Rj
NN(t)[σY ∗]

(T)
RUX [X] ⊆ Rj

NN(t)[σY ∗]

Our SUi
i [Xi] for i > 1 are the RHSs

. . . , R
NN(t′)
i [σX∗], RNN(t)

j [σY ∗], . . .

of the NNINDs derived, and each “connecting” NNIND

Ri
NN(t′)[σX∗] ⊆ Rj

NN(t)[σY ∗]

is derived from the respective Ri
U∗

[X∗] ⊆ Rj
V ∗

[Y ∗] ∈ Σ, in linear space.

Using the relationship between quasi-simple and general NNINDs established
in Theorem 6, we can now derive PSPACE-completeness for the latter.

Theorem 7. The implication problem for not null inclusion dependencies is
PSPACE-complete.

28

Proof. PSPACE-hardness follows from PSPACE-hardness for INDs over null-
free relations [15, Theorem 3.3].

It remains to show that it lies in PSPACE. From Lemma 7 it follows that
there exists a non-deterministic algorithm that decides derivability of quasi-
simple NNINDs in linear space. By Theorem 6 we can check implication of a
non-quasi-simple NNIND by sequentially checking quasi-simple NNINDs, again
in linear space (while the number of quasi-simple NNINDs is exponential, they
can be enumerated in linear space). This provides us with a linear space non-
deterministic algorithm. Existence of a deterministic polynomial space algo-
rithm follows from Savitch’s Theorem [53].

6. Expressive fragments of NNIND with lower complexity

In the case of null-free relations, the PSPACE-completeness result for de-
ciding the implication of INDs has motivated researchers to identify expressive
fragments whose implication problem is less complex to decide. In this section,
we pursue the same goal for NNINDs. In particular, we show that the impli-
cation problems for i) typed acyclic NNINDs, and ii) typed acyclic simple and
partial INDs with not null constraints are each NP-hard to decide, the impli-
cation problem for NNINDs is fixed parameter-tractable in their arity, and the
implication problem for tree-like NNINDs can be decided in linear time.

6.1. Intractable Subclasses

As an example of an intractable subclass of NNINDs we consider typed
NNINDs, which are commonly encountered in database practice. Interestingly,
it turns out that the complexity of the implication problem of typed NNINDs
differs from that of typed INDs over null-free relations. In [16] it was shown that
for typed INDs over null-free relations, implication can be decided in polyno-
mial time. For typed NNINDs the associated implication problem is NP-hard,
already in the case where the given set of NNINDs is acyclic.

Definition 9 (typed NNINDs).
We call an NNIND RU [X] ⊆ SV [Y] typed if and only if X = Y .

Definition 10 (acyclic NNINDs).
We call a set Σ of NNINDs acyclic if and only if the directed graph G with the
relation schemata as nodes and an edge R → S for every NNIND RU [X] ⊆
SU [Y] ∈ Σ is acyclic.

Example 19. The INDs of Example 1 are both typed and acyclic. Consider
now relation schema Employee(EmpName[NN], Manager). The IND

ϕ : Employee[Manager] ⊆s Employee[EmpName]

is untyped, and expresses that the manager of an employee must also be an
employee. The set {ϕ} is cyclic, inducing a cycle of length 1.

29

Theorem 8. The implication problem for typed acyclic NNINDs is NP-hard.

Proof. We will reduce the conjunctive normal form satisfiability problem (CNF-
SAT) to it.

Let V be a set of boolean variables and C = {c1, . . . , cm} a set of clauses over
V = {v1, . . . , vn}. We construct a schema R = {R0, . . . , Rn+1} and an acylic
set Σ = {ϕ−n, . . . , ϕn} of typed NNINDs over R as follows.

• Ri = X = {A1, . . . , Am} for i = 0, . . . , n+ 1

• ϕi = Ri−1
∅[X] ⊆ Ri

Vi [X] for i = 1, . . . , n with
Vi = {Aj | vi ∈ cj}

• ϕ−i = Ri−1
∅[X] ⊆ Ri

V−i [X] for i = 1, . . . , n with
V−i = {Aj | ¬vi ∈ cj}

• ϕ0 = Rn
X [X] ⊆ Rn+1

∅[X]

We claim that Σ implies ϕ = R0
∅[X] ⊆ Rn+1

∅[X] iff C is satisfiable.
Let S be any derivation sequence that derives ϕ from Σ. Such a sequence

would necessarily consist of exactly one of ϕi, ϕ−i for i = 1, . . . , n, followed by
ϕ0. In order for ϕ0 to be applicable, a “not null” condition must be derived
for each Aj . For this to happen, at least one ϕi or ϕ−i must occur in S with
Aj ∈ Vi or Aj ∈ V−i, respectively.

Consider now the truth assignment TS :

TS(vi) =
{
true if ϕi ∈ S
false if ϕ−i ∈ S

which satisfies a clause cj ∈ C iff ϕi ∈ S for some vi ∈ cj or ϕ−i ∈ S for some
¬vi ∈ cj . By definition of Vi and V−i we have vi ∈ cj iff Aj ∈ Vi and ¬vi ∈ cj
iff Aj ∈ V−i.

Thus, if a derivation sequence S exists showing Σ � ϕ, then TS is a truth
assignment satisfying C. Conversely, every truth assignment T satisfying C gives
rise to a derivation sequence S with T = TS showing Σ � ϕ.

While the proof of Theorem 8 uses NNINDs with non-empty sets V , this
is not strictly necessary. We could easily avoid this by replacing each ϕi �= ϕ0

with a pair of partial INDs Ri−1[X] ⊆p Si[X] and Si[X] ⊆p Ri[X] by adding an
additional schema Si with not null constraints on Vi, and respectively for ϕ−i.
This gives us the following corollary.

Corollary 3. The implication problem for typed acyclic simple and partial in-
clusion dependencies under not null constraints is NP-hard to decide.

We remark that by Corollary 3 the increased difficulty in deciding implication
of typed NNINDs cannot be blamed on our choice in defining NNINDs, but is
intrinsic to simple and partial IND in combination with not null constraints.

30

6.2. Tractable Subclasses

In [15, 22] it was shown that implication for inclusion dependencies of boun-
ded arity over null-free relations can be decided in polynomial time. As we
will show next, this result not only extends to NNINDs, but can actually be
strengthened to show fixed parameter-tractability (FPT).

Definition 11 (fixed parameter tractability, [25]).
Let n denote the size of a problem instance. A problem is fixed-parameter
tractable in parameter k if and only if it can be solved (deterministically) in
time P (n) · f(k), for some polynomial P and some function f .

Note that being fixed-parameter tractable in k is strictly stronger than being
polynomial for every fixed k. E.g. a runtime of O(nk) is polynomial for every
fixed k, but the degree of these polynomials is unbounded.

Definition 12 (arity).
The arity of a NNIND RU [X] ⊆ SV [Y] is the length of X (equivalently Y).
When we talk of implication for bounded arity, we mean implication over sub-
classes of NNINDs induced by a fixed upper bound on their arity.

One would expect INDs to have small arity in practice, making it a sensible
parameter to fix.

Theorem 9. The implication problem for NNINDs is fixed parameter-tractable
in their arity.

Proof. Let the arity of all NNINDs in Σ ∪ {ϕ} be bounded by m and consider
Algorithm 1 for quasi-simple NNINDs (i.e., where ϕ is quasi-simple). The num-
ber of distinct attribute values that may occur in tuples produced during our
chase is bounded by m+ 2.

For each tuple generated, there exists some NNIND ϕ′ = Ri
U∗

[X∗] ⊆
Rj

V ∗
[Y ∗] ∈ Σ that generates it. Consider now the tuples generated by ϕ′.

By construction they only differ on Y ∗, and thus their number is bounded by
(m+2)|Y

∗| ≤ (m+2)m. Hence the total number of tuples generated during our
chase is bounded by |Σ| · (m+2)m. Since the number of chase steps (successful
or not) is limited by |Σ| times number of tuples occurring in our chase tables,
and each chase step can be implemented to run in polynomial time, this means
that running time for our chase is bounded by P (input size) · (m+2)m for some
polynomial P .

Finally, we can decide implication of a non-quasi-simple NNIND of arity ≤ m
by checking implication of at most 2m quasi-simple NNINDs by Theorem 6. This
gives us an overall running time bounded by

P (input size) · (2m+ 4)m

which shows fixed parameter-tractability in m.

31

Another tractable class of INDs are tree-like INDs, meaning that G in Defi-
nition 10 is a tree (or forest) without duplicate edges. Implication for tree-like
INDs over null-free relations can be decided in linear time [41], and the proof
(omitted) generalizes to NNINDs over relations with not null constraints.

Theorem 10. For tree-like NNINDs the implication problem can be decided in
linear time.

Example 20. The directed graph induced by the INDs of Example 1 is a tree.
As seen in Example 15, this guarantees that Algorithm 1, if applied to an initial
database containing a single tuple, produces at most one tuple per relation.

7. On the interaction of NNINDs and functional dependencies

While inclusion dependencies provide a general framework to accommodate
referential integrity, functional dependencies (FDs) provide a general framework
to accommodate entity integrity. As both integrity rules are fundamental to data
management, the interaction of functional and inclusion dependencies is highly
interesting.

Already in null-free relational databases, unfortunately, the implication prob-
lem for the combined class of functional and inclusion dependencies is undecid-
able [49, 17]. More precisely, finite and unrestricted implication problems for
this combined class are different, and each of them is undecidable. It was further
shown that the implication of

1. typed acyclic INDs and FDs together is NP-hard [21],

2. typed INDs is possible in polynomial time [16], and

3. FDs is possible in linear time [5].

Identifying when INDs and FDs do not interact reduces their combined im-
plication problem to separate, simpler implication problems. For INDs and FDs
over null-free relations, conditions for non-interaction were given in [40, 41, 47].
In this section, we will establish a liberal sufficient condition for the non-
interaction for FDs and acyclic NNINDs, similar to the condition given in [12]
for non-interaction of keys and acyclic NNINDs, and develop a chase procedure
for deciding implication for FDs and acyclic NNINDs along the way.

Since every NNIND is logically equivalent to a set of quasi-simple NNINDs
by Theorem 6, we may assume that all NNINDs are quasi-simple. With null
markers present we need to specify the semantics of functional dependencies.
Our definition matches that of [3, 32, 33, 43], and that of possible FD in [36].

Definition 13 (functional dependency).
We say that a functional dependency R : X → Y holds on relation r over
relation schema R if and only if for every pair of X-total tuples t, t′ ∈ r with
t[X] = t′[X] we have t[Y] = t′[Y].

We illustrate the semantics of FDs from the previous definition on our run-
ning example.

32

Example 21. Extending Example 1, we may add the following FDs to the given
set Σ of INDs:

• Booking : CName,PName → Dates,Room, and

• Talk : Pname,Dates → CName.

The following Booking-relation satisfies the FD on Booking above:

Booking

CName PName Dates Room
WWW ⊥ 18-22 May 2015 VIP 1
WWW Tim 18-22 May 2015 VIP 2

The FD above is satisfied as the first tuples is not {CName,PName}-total. How-
ever, the relation violates the FD CName, Dates → PName, as both tuples are
{CName,Dates}-total but have non-matching information on PName.

As FDs and NNINDs reduce to “ordinary” FDs and IND when all attributes
are declared not null, their combined finite and unrestricted implication prob-
lems include the null-free case, which is already infeasible [49, 17].

Theorem 11. The finite and unrestricted implication problems for FDs and
NNINDs are different and both undecidable.

Our definition for ‘no interaction’ matches that of [47] for the null-free case.

Definition 14 (no interaction).
Let ΣFD and ΣIND be sets of FDs and NNINDs over some database schema R,
respectively. We say that ΣFD and ΣIND have no interaction, if and only if for
each FD τ and each NNIND ϕ over R

ΣFD ∪ ΣIND � τ ⇔ ΣFD � τ and ΣFD ∪ ΣIND � ϕ ⇔ ΣIND � ϕ .

Over null-free relations, being reduced is a necessary condition for no inter-
action [40, 41]. Sets ΣFD and ΣIND of FDs and INDs are reduced if and only if for
every IND R[X] ⊆ S[Y] ∈ ΣIND, Y contains no non-trivial FD implied by ΣFD.
However, being reduced (and acyclic) is not sufficient - see [40] for an example
where reduced sets of FDs and acyclic INDs interact. We strengthen this notion
into a condition that is sufficient (but not necessary) for acyclic NNINDs. Our
definition resembles that of non-key-conflicting [10, 11, 12], for which separabil-
ity results for inclusion dependencies and keys have been established.

Definition 15 (super-reduced).
Let ΣFD and ΣIND be sets of FDs and NNINDs. We call (ΣFD,ΣIND) super-reduced
if and only if for every non-trivial NNIND RU [X] ⊆ SV [Y] in ΣIND, V Y does
not properly contain the LHS Z of any non-trivial FD S : Z → A in ΣFD (i.e.,
we do not have Z � V Y).

The following example illustrates this definition.

33

Example 22. Let ΣFD and ΣIND denote the sets of FDs and NNINDs from
Examples 1 and 21. Then the pair (ΣFD,ΣIND) is indeed super-reduced, because
the set {CName,PName} of the NNIND

Talk
∅[CName, PName] ⊆ Booking

∅[CName, PName]

does not properly contain the LHS of the FD Booking: CName, PName →
Dates, Room. However, if we added the FD

Chair: CName → PName

to ΣFD, then (ΣFD,ΣIND) would not be super-reduced: For the NNIND

Booking
CName,PName[CName, PName] ⊆ Chair

∅[CName, PName],

the set {CName, PName} does properly contain the LHS {CName} of the FD
Chair: CName → PName.

Note that the condition for being super-reduced could be weakened by replac-
ing V Y with (V \NN(S))∪Y , since RU [X] ⊆ SV [Y] and RU [X] ⊆ SV \NN(S)[Y]
are equivalent. While this would make the condition independent of the choice of
covers for ΣFD and ΣIND, we opted for readability. However, the condition could
not be weakened by omitting the set V completely, as the following example
demonstrates.

Example 23. Consider the sets ΣFD = {S : A → BC} and ΣIND = {RA[A] ⊆
SB [A], RA[A] ⊆ SC [A], SABC [A] ⊆ T ∅[A]}. The set A appearing as the RHS
of NNINDs in ΣIND does not properly include the LHS of a FD in ΣFD. However,
ΣFD ∪ ΣIND implies RA[A] ⊆ T ∅[A], while ΣIND alone does not.

Our main goal for this section is to show the following:

Theorem 12. Let ΣFD and ΣIND be super-reduced sets of FDs and acyclic
NNINDs. Then ΣFD and ΣIND have no interaction.

Our proof of Theorem 12 follows that of [47, Section 10.10]. We first intro-
duce a chase procedure and prove it correct, which is interesting in its own right.
By showing the non-applicability of chase rules for super-reduced ΣFD,ΣIND, we
then prove non-interaction.

Algorithm 2 (Chase for NNINDs and FDs).
Input: A database schema (R,ΣFD,ΣIND) with R = (R1, . . . , Rk) and a finite
database r = (r1, . . . , rk) over R.
Output: A modified database chase(r,ΣFD,ΣIND).
Method: Apply the following rules as long as possible:

NNIND: If ΣIND contains RU [X] ⊆ SV [Y] and for some U -total tuple tR over
R there does not exist a V -total tuple tS over S with tR[X] � tS [Y], then

34

add the following tuple tS over S:

tS [Bi ∈ Y] =

{
* if tR[Ai] = ⊥ and Bi ∈ V ∪NN(S)

tR[Ai] otherwise

tS [B /∈ Y] =

{
* if B ∈ V ∪NN(S)

⊥ otherwise

where each * denotes a unique value �= ⊥ greater than all current values
occurring in r, and Ai = (Y 	→ X)(Bi), as in Algorithm 1.

FD: If ΣFD contains a dependency Ri : X → Y and for some X-total rows
t, t′ ∈ ri it holds that t[X] = t′[X] but t[A] �= t′[A] for some A ∈ Y , then

a) if t[A] = ⊥ change t[A] to t′[A], or

b) if t′[A] = ⊥ change t′[A] to t[A], or

c) otherwise change each occurrence (in any of the relations of r) of the
larger of the values t[A] and t′[A] to be equal to the smaller one.

Next we show termination of Algorithm 2 for any given set of FDs and acyclic
NNINDs, and prove that its output instance satisfies the input constraints. Note
that Algorithm 2 does not require (ΣFD,ΣIND) to be super-reduced, and that
acyclicity of ΣIND is sufficient but not necessary for termination.

Theorem 13. The following hold:

(i) If ΣIND is acyclic, then Algorithm 2 terminates.

(ii) If Algorithm 2 terminates, chase(r,ΣFD,ΣIND) satisfies ΣFD and ΣIND.

Proof. As for the null-free case [47], omitted.

The following theorem shows how the implication problem for FDs and an
acyclic set of NNINDs can be decided with the help of the Chase procedure in
Algorithm 2.

Theorem 14. Let ΣIND be acyclic, ϕ = RUX [X] ⊆ SV [Y], and r consist of a
single tuple t0 over R with

(i) t0[UX ∪NN(R)] consisting of pairwise distinct values different from ⊥
(ii) t0[R− UX ∪NN(R)] = (⊥, . . . ,⊥)

Then ΣFD∪ΣIND (finitely) implies ϕ if and only if ϕ holds on chase(r,ΣFD,ΣIND).

Proof. The ‘only if’ direction follows from Theorem 13. The counter example
constructed is finite, which covers the case of finite implication.

For the ‘if’ direction we begin with some terminology. As we will consider
value substitutions, we shall refer to databases prior to substitution as tableaux,
and values occurring in them as variables. Denote the universal domain by U ,

35

and the variables occurring in a tableaux r by var(r). An instantiation of a set
of variables X is a mapping X → U . For any tableaux r (varying during the
chase), an instantiation I : var(r) → U induces a set I(r) of possible instances
of r, each derived by replacing in r any variable v by I(v), and any occurrence
of the ⊥ value by some arbitrary value in U ∪ {⊥}. The same terminology will
be used for tuples.

Now let r denote our tableaux at any point during the chase. Let It be
some instantiation of var(t), tI a possible instance of t w.r.t. It, and D some
database over R containing tI and satisfying ΣFD ∪ ΣIND. We claim that It can
be extended to an instantiation Ir so that for some possible instance d ∈ Ir(r)
we have d ⊆ D. We show this claim by induction on r. The base case is trivial
with d containing precisely tI , so assume it holds for r and denote by r′ the
tableaux after a single chase step.

(NNIND) Let the NNIND rule be applied, for some NNIND ϕ′ = Ri
U ′
[X ′] ⊆

Rj
V ′
[Y ′]. Denote by u the tuple to which the chase rule is applied, by uI ∈ d

its instantiation, and by u′ ∈ r′ the tuple added using the chase rule. Since D
satisfies ϕ′ ∈ I there must exist some tuple u′

I ∈ D which is V ′ ∪NN(Rj)-total
and satisfies uI [X ′] � u′

I [Y
′]. By construction, u′ contains new variables or ⊥

for any attribute outside of Y ′, and for any attribute A with u′
I [A] = ⊥ we also

have u′[A] = ⊥. Hence Ir can be extended to Ir′ (by mapping u′[A] to u′
I [A])

so that u′
I is a possible instance of u′ w.r.t. Ir′ . Adding u′

I to d thus leads to
a possible instance d′ of r′ w.r.t. Ir′ with d′ ⊆ D, as claimed.

(FD) Let the FD rule be applied, for some FD Ri : X
′ → A ∈ ΣFD. Denote

by u, v the tuples to which the rule is applied, with instantiations uI , vI ∈ d.
Then ⊥ /∈ u[X ′] = v[X ′] and thus ⊥ /∈ uI [X ′] = vI [X ′]. Since d ⊆ D satisfies
ΣFD, we must have uI [A] = vI [A] �= ⊥, with the last inequality following from
u[A] �= v[A] (recall that only ⊥ can be mapped to ⊥). If case a) or b) of
the FD rule applies, i.e., u[A] = ⊥ or v[A] = ⊥, then Ir = Ir′ and d is a
possible instance of r′. If case c) of the FD rule applies, then we must have
Ir(u[A]) = Ir(v[A]), so d is again a possible instance of r′.

This shows our claim about the existence of d. Now assume ϕ is not implied
by ΣFD ∪ΣIND. Then there must exist a database D satisfying ΣFD and ΣIND but
violating ϕ. Hence D contains a UX-total tuple tI over R, but no V -total tuple
sI over S with tI [X] = sI [Y]. Since tI is total on UX ∪NN(Ri), tI is a possible
instance of t w.r.t. some instantiation It, by definition of t. By our claim
shown earlier, there exists a database d ⊆ D which is a possible instance of
chase(r,ΣFD,ΣIND) w.r.t. some extension Ichase of It. Now, if chase(r,ΣFD,ΣIND)
were to contain some V -total tuple s on Rj with t[X] = s[Y], then d would
contain some possible instance sI of s w.r.t. Ichase. But then it would follow
that tI [X] = sI [Y], and sI is V -total since s is. Since D contains no such sI ,
chase(r,ΣFD,ΣIND) contains no such tuple s, and hence violates ϕ.

As a corollary of Theorem 14 we obtain the following property for sets of
FDs and acyclic NNINDs.

36

Theorem 15. Finite and unrestricted implication for sets of FDs and acyclic
NNINDs coincide and are decidable in exponential time.

Proof. Both implication problems coincide because the Chase via Algorithm 2
terminates according to Theorem 13.

The exponential upper bound follows from the facts that the longest chain
of NNINDs is bounded by the number of the given relation schemata, and that
every tuple in a given Ri-relation can generate at most k tuples in an Rj-relation,
where k denotes the number of different NNINDs from Ri to Rj .

The exponential upper bound of Theorem 15 cannot be improved because
of the exponential lower bound already known for the null-free case [23].

We illustrate the application of Theorem 14 and Algorithm 2 to substantiate
the claims of Example 23.

Example 24. Consider again the sets ΣFD = {σ0 = S : A → BC} and ΣIND =
{σ1 = RA[A] ⊆ SB [A], σ2 = RA[A] ⊆ SC [A], σ3 = SABC [A] ⊆ T ∅[A]} from
Example 23 on the relation schemata R = {A}, S = {A,B,C,D[NN]}, and T =
{A}; in particular, ΣIND is acyclic. In Example 23 we claimed that i) ΣFD ∪ΣIND

implies RA[A] ⊆ T ∅[A], while ii) ΣIND alone does not imply RA[A] ⊆ T ∅[A].
We now prove the statements i) and ii) by applying Theorem 14 to them. For
statement i) we start off with the following database instance.

R
A
1

S
A B C D

T
A

According to Algorithm 2, we apply σ1 and σ2 to obtain the following revised
instance.

R
A
1

S
A B C D
1 2 ⊥ 3
1 ⊥ 4 5

T
A

Next, we apply the FD σ0 to obtain the following instance.

R
A
1

S
A B C D
1 2 4 3
1 2 4 5

T
A

Finally, we apply σ3 to obtain the chased database instance chase(r,ΣFD,ΣIND).

R
A
1

S
A B C D
1 2 4 3
1 2 4 5

T
A
1

37

The instance chase(r,ΣFD,ΣIND) satisfies R
A[A] ⊆ T ∅[A], which is therefore im-

plied by ΣFD ∪ ΣIND according to Theorem 14.
For statement ii) the starting point is the same as before, namely the follow-

ing database instance.

R
A
1

S
A B C D

T
A

According to Algorithm 2, we apply σ1 and σ2 to obtain the following revised
instance.

R
A
1

S
A B C D
1 2 ⊥ 3
1 ⊥ 4 5

T
A

Note that the FD σ0 is not part of the input now. We cannot apply the NNIND
σ3 because neither of the two S-tuples is ABC-total. Consequently, the last
instance denotes chase(r, ∅,ΣIND), which violates RA[A] ⊆ T ∅[A]. According to
Theorem 14, RA[A] ⊆ T ∅[A] is not implied by ΣIND alone.

We continue our work towards the non-interaction result of Theorem 12.

Lemma 8. Let ΣFD and ΣIND be super-reduced sets of FDs and acyclic NNINDs.
Suppose the initial database r satisfies the dependencies in ΣFD. Then

(i) in computing chase(r,ΣFD,ΣIND) the FD rule is not applied, and

(ii) r ⊆ chase(r,ΣFD,ΣIND).

Proof. To show (i), assume the contrary, and consider the first application of
the FD rule, for some FD S : Z → A ∈ ΣFD. Let tS , t

′
S be the two distinct tuples

over S with ⊥ /∈ tS [Z] = t′S [Z] and tS [A] �= t′S [A]. As the original relation
satisfies ΣFD, at least one of tS , t

′
S must have been added by an application of

the NNIND rule.
Let tS be the one added later, using ϕ = RUX [X] ⊆ SV [Y] ∈ ΣIND and some

UX-total tuple tR over R. By construction, values outside of Y are unique or
⊥ by construction at the time of adding tS , and thus distinct from values in
t′S . Hence we must have Z ⊆ Y , and since (ΣFD,ΣIND) are super-reduced, V Y
cannot properly contain Z, so we must have Z = Y = V Y . But then ϕ was not
violated by tR due to t′S over S with tR[X] = tS [Y] = t′S [Y] and ⊥ /∈ t′S [V], so
the NNIND rule could not have been applied.

The inclusion r ⊆ chase(r,ΣFD,ΣIND) follows immediately, as rule NNIND does
not modify or remove existing tuples.

We are now ready to show Theorem 12.

38

Proof of Theorem 12. Consider an FD τ not implied by ΣFD, and let r be a
database satisfying ΣFD but not τ . By Lemma 8 we have r ⊆ chase(r,ΣFD,ΣIND).
Thus chase(r,ΣFD,ΣIND) satisfies ΣFD∪ΣIND but violates τ , showing ΣFD∪ΣIND � τ .

Let then ϕ = RUX [X] ⊆ SV [Y] be an arbitrary NNIND, and r be a database
containing a single tuple t0 over R of the form described in Theorem 14. Then
by Lemma 8 no FDs are applied in computing chase(r,ΣFD,ΣIND), so we have
chase(r,ΣFD,ΣIND) = chase(r, ∅,ΣIND). By Theorem 14 this means ΣFD ∪ ΣIND

implies ϕ iff ΣIND alone implies ϕ.

We remark that although we assumed all NNINDs to be quasi-simple, a set
ΣIND of general NNINDs is acyclic and super-reduced, with respect to some set
of FDs ΣFD, if and only if the equivalent set Σ′

IND of quasi-simple NNINDs, as
obtained by Theorem 6, is acyclic and super-reduced.

For acyclicity recall Definition 10: ΣIND and Σ′
IND induce the same directed

graph, so either both are acyclic or neither. For being super-reduced, recall
Definition 16: V Y must not properly contain the LHS of any non-trivial FD
in ΣFD. For each NNIND RU [X] ⊆ SV [Y] in ΣIND the equivalent quasi-simple
NNINDs RUX′

[X ′] ⊆ SV [Y ′] in Σ′
IND cover all cases of Y ′ ⊆ Y , so either the set

V Y properly contains the LHS of a FD, or none of its subsets does.

8. Results for null-free relations

In this section we review some of our results for the important special case of
relational databases not permitting null values. Firstly, our sufficient condition
for the non-interaction between NNINDs and FDs improves on criteria in [47].
While not surprising in light of similar separability results for INDs and keys [10,
11, 12], it is worth mentioning. Secondly, we remark that the fixed parameter-
tractability of NNINDs in their arity is already a new result in the case of
null-free relations.

8.1. No interaction between FDs and INDs

Studying the non-interaction between FDs and INDs for null-free relations
has the same motivation as before. In general, the (finite) implication problem
is undecidable, but acyclic INDs by themselves can be decided in NP-time, while
implication of FDs can be decided in linear time.

Our results about the non-interaction between NNINDs and FDs reduce to
the following definition and theorem for null-free relations.

Definition 16 (super-reduced).
Let ΣFD and ΣIND be sets of FDs and INDs. We call (ΣFD,ΣIND) super-reduced if
and only if for every non-trivial IND R[X] ⊆ S[Y] in ΣIND, Y does not properly
contain the LHS Z of any non-trivial FD S : Z → A in ΣFD (i.e., we do not
have Z � Y).

Theorem 16. Let ΣFD and ΣIND be super-reduced sets of FDs and acyclic INDs.
Then ΣFD and ΣIND have no interaction.

39

Note that Theorem 16 includes both cases mentioned by Mannila and Räihä
in [47]: unary inclusion dependencies6 (Theorem 10.20), and key-based inclusion
dependencies on schemata in Boyce-Codd normal form (Theorem 10.21).

Note further that Levene and Loizou [40, 41] consider a stricter definition
of ‘no interaction’, requiring that no subsets of ΣFD and ΣIND interact. Since
subsets of super-reduced sets are again super-reduced (and dito for acyclicity),
Theorems 12 and 16 still hold with respect to ‘no subset interaction’. The same
argument could be made for unary inclusion dependencies, but not for key-based
INDs on schemata in Boyce-Codd normal form.

8.2. INDs with Bounded Arity

It is well-known [15, 22] that implication for inclusion dependencies of boun-
ded arity can be decided in PTIME. However, Theorem 9 has established the
stronger result that NNINDs are fixed parameter-tractable in their arity. This
is new, already in the special case of null-free relations.

Theorem 17. The implication problem for inclusion dependencies is fixed pa-
rameter-tractable in their arity.

9. Conclusion and Future Work

SQL will continue to dominate database practice in the foreseeable future.
Domain, entity and referential integrity are therefore fundamental rules that
important real-world data is and will be governed by.

Motivated by this, we have studied inclusion dependencies under null marker
occurrences, not null constraints, simple and partial semantics. We showed the
surprising result that simple INDs and not null constraints together cannot
be finitely axiomatized. This prompts the challenging question whether INDs
can be defined, in the context of SQL-like databases, such that simple and
partial semantics can both be expressed and the good computational properties
of INDs from null-free relations are retained. We demonstrated that not null
inclusion dependencies (NNINDs) provide an affirmative answer. Indeed, we
have established a finite axiomatization, a chase procedure for their implication
problem, and that this implication problem is PSPACE-complete. We also
showed that implication of NNINDs is fixed parameter-tractable in their arity,
and that implication for typed acyclic NNINDs is NP-hard.

Finally, we investigated the interaction of NNINDs with FDs, whose finite
and unrestricted implication problems are each undecidable. Finite and unre-
stricted implication coincide for the combined class of FDs and acyclic NNINDs,
and can be decided in exponential time, which we showed by introducing a sec-
ond chase procedure. In addition, we established a liberal sufficient condition
that guarantees the non-interaction of functional dependencies and an acyclic
set of (not null) INDs, thereby simplifying computation. The liberal condition

6With standard FDs, i.e., for Z → A, Z must be non-empty.

40

is also effective as it can be verified in quadratic time. Our results provide first
insight how to efficiently manage Codd’s combined set of rules for domain, entity
and referential integrity in SQL.

We already mentioned some open problems that warrant future research,
but it is worth mentioning additional problems. Mitchell established an elegant
axiomatization for the finite implication of FDs and INDs [49, 50] that is not
k-ary for any k. Finite and unrestricted implication of FDs and unary INDs
are different problems but each axiomatizable and decidable in PTIME [22]. A
seminal paper in query optimization is [34], which exploited a chase for FDs
and INDs to characterize containment between conjunctive queries. A seminal
paper in schema design is [42] which provides justifications for the inclusion
dependency normal form over relational databases. These results would all be
interesting to investigate in the real-world context of SQL. It would also be
interesting to combine NNINDs with the possible and certain keys introduced
in [37], and with the possible and certain FD studied in [36].

Acknowledgement

This research is supported by the Marsden Fund Council from New Zealand
Government funding, and by the Natural Science Foundation of China (Grant
No. 61472263).

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-
Wesley, 1995.

[2] P. Atzeni and N. M. Morfuni. Functional dependencies in relations with
null values. Inf. Process. Lett., 18(4):233–238, 1984.

[3] P. Atzeni and N. M. Morfuni. Functional dependencies and constraints
on null values in database relations. Information and Control, 70(1):1–31,
1986.

[4] J. Bauckmann, Z. Abedjan, U. Leser, H. Müller, and F. Naumann. Dis-
covering conditional inclusion dependencies. In CIKM, pages 2094–2098,
2012.

[5] C. Beeri and P. A. Bernstein. Computational problems related to the design
of normal form relational schemas. ACM Trans. Database Syst., 4(1):30–59,
1979.

[6] J. Biskup and P. A. Bonatti. Controlled query evaluation for enforcing
confidentiality in complete information systems. Int. J. Inf. Sec., 3(1):14–
27, 2004.

[7] J. Biskup, U. Dayal, and P. A. Bernstein. Synthesizing independent
database schemas. In SIGMOD, pages 143–151, 1979.

41

[8] E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision Problem.
Springer, 1997.

[9] L. Cabibbo. On keys, foreign keys and nullable attributes in relational
mapping systems. In EDBT, pages 263–274, 2009.

[10] A. Cal̀ı, D. Calvanese, and M. Lenzerini. Data integration under integrity
constraints. In Seminal Contributions to Information Systems Engineering,
pages 335–352. Springer, 2013.

[11] A. Cal̀ı, G. Gottlob, and T. Lukasiewicz. A general datalog-based frame-
work for tractable query answering over ontologies. In PODS, pages 77–86,
2009.

[12] A. Cal̀ı, D. Lembo, and R. Rosati. On the decidability and complexity
of query answering over inconsistent and incomplete databases. In PODS,
pages 260–271, 2003.

[13] D. Calvanese, W. Fischl, R. Pichler, E. Sallinger, and M. Simkus. Capturing
relational schemas and functional dependencies in RDFS. In AAAI, pages
1003–1011, 2014.

[14] D. Calvanese and R. Rosati. Anwering recursive queries under keys and
foreign keys is undecidable. In KRDB, 2003.

[15] M. Casanova, R. Fagin, and C. Papadimitriou. Inclusion dependencies
and their interaction with functional dependencies. J. Comput. Syst. Sci.,
28(1):29–59, 1984.

[16] M. Casanova and V. Vidal. Towards a sound view integration methodology.
In PODS, pages 36–47, 1983.

[17] A. Chandra and M. Vardi. The implication problem for functional and
inclusion dependencies is undecidable. SIAM J. Comput., 14(3):671–677,
1985.

[18] P. Chen. The entity-relationship model - toward a unified view of data.
ACM Trans. Database Syst., 1(1):9–36, 1976.

[19] Z. Chen, V. Narasayya, and S. Chaudhuri. Fast foreign-key detection in
Microsoft SQL Server PowerPivot for Excel. PVLDB, 7(13):1417–1428,
2014.

[20] E. Codd. A relational model of data for large shared data banks. Commun.
ACM, 13(6):377–387, 1970.

[21] S. Cosmadakis and P. Kanellakis. Functional and inclusion dependencies:
A graph theoretic approach. In PODS, pages 29–37, 1984.

[22] S. Cosmadakis, P. Kanellakis, and M. Vardi. Polynomial-time implication
problems for unary inclusion dependencies. J. ACM, 37(1):15–46, 1990.

42

[23] S. S. Cosmadakis and P. C. Kanellakis. Equational theories and database
constraints. In STOC, pages 273–284, 1985.

[24] C. J. Date. Referential integrity. In VLDB, pages 2–12, 1981.

[25] R. G. Downey and M. R. Fellows. Parameterized Complexity. Monographs
in Computer Science. Springer, 1999.

[26] R. Fagin. Multivalued dependencies and a new normal form for relational
databases. ACM Trans. Database Syst., 2(3):262–278, 1977.

[27] C. Farkas and S. Jajodia. The inference problem: A survey. SIGKDD
Explorations, 4(2):6–11, 2002.

[28] G. Gottlob, R. Pichler, and F. Wei. Tractable database design and datalog
abduction through bounded treewidth. Inf. Syst., 35(3):278–298, 2010.

[29] J. Gryz. Query folding with inclusion dependencies. In ICDE, pages 126–
133, 1998.

[30] T. A. Halpin and T. Morgan. Information modeling and relational databases
(2. ed.). Morgan Kaufmann, 2008.

[31] T. Härder and J. Reinert. Access path support for referential integrity in
SQL2. VLDB J., 5(3):196–214, 1996.

[32] S. Hartmann, M. Kirchberg, and S. Link. Design by example for SQL table
definitions with functional dependencies. VLDB J., 21(1):121–144, 2012.

[33] S. Hartmann and S. Link. The implication problem of data dependencies
over SQL table definitions. ACM Trans. Database Syst., 37(2):13, 2012.

[34] D. Johnson and A. Klug. Testing containment of conjunctive queries under
functional and inclusion dependencies. JCSS, 28(1):167–189, 1984.

[35] H. Köhler and S. Link. Inclusion dependencies reloaded. In CIKM, pages
1361–1370, 2015.

[36] H. Köhler and S. Link. SQL schema design: Foundations, normal forms,
and normalization. In SIGMOD, pages 267–279, 2016.

[37] H. Köhler, S. Link, and X. Zhou. Possible and certain SQL keys. PVLDB,
8(11):1118–1129, 2015.

[38] M. Levene and G. Loizou. Null inclusion dependencies in relational
databases. Inf. Comput., 136(2):67–108, 1997.

[39] M. Levene and G. Loizou. Axiomatisation of functional dependencies in
incomplete relations. Theor. Comput. Sci., 206(1-2):283–300, 1998.

[40] M. Levene and G. Loizou. How to prevent interaction of functional and
inclusion dependencies. Inf. Process. Lett., 71(3-4):115–125, 1999.

43

[41] M. Levene and G. Loizou. Guaranteeing no interaction between functional
dependencies and tree-like inclusion dependencies. Theor. Comput. Sci.,
254(1-2):683–690, 2001.

[42] M. Levene and M. Vincent. Justification for inclusion dependency normal
form. IEEE Trans. Knowl. Data Eng., 12(2):281–291, 2000.

[43] E. Lien. On the equivalence of database models. J. ACM, 29(2):333–362,
1982.

[44] C. Lutz, C. Areces, I. Horrocks, and U. Sattler. Keys, nominals, and
concrete domains. J. Artif. Intell. Res. (JAIR), 23:667–726, 2005.

[45] S. Ma, W. Fan, and L. Bravo. Extending inclusion dependencies with
conditions. Theor. Comput. Sci., 515:64–95, 2014.

[46] H. Mannila and K. Räihä. Inclusion dependencies in database design. In
ICDE, pages 713–718, 1986.

[47] H. Mannila and K. Räihä. The Design of Relational Databases. Addison-
Wesley, 1992.

[48] M. Memari and S. Link. Index design for enforcing partial referential in-
tegrity efficiently. In EDBT, pages 217–228. OpenProceedings.org, 2015.

[49] J. Mitchell. The implication problem for functional and inclusion depen-
dencies. Information and Control, 56(3):154–173, 1983.

[50] J. Mitchell. Inference rules for functional and inclusion dependencies. In
PODS, pages 58–69, 1983.

[51] C. Molinaro and S. Greco. Polynomial time queries over inconsistent
databases with functional dependencies and foreign keys. Data Knowl.
Eng., 69(7):709–722, 2010.

[52] R. Pichler, A. Polleres, S. Skritek, and S. Woltran. Complexity of redun-
dancy detection on RDF graphs in the presence of rules, constraints, and
queries. Semantic Web, 4(4):351–393, 2013.

[53] W. J. Savitch. Relationships between nondeterministic and deterministic
tape complexities. J. Comput. Syst. Sci., 4(2):177–192, 1970.

[54] E. Sciore. Inclusion dependencies and the universal instance. In PODS,
pages 48–57, 1983.

[55] D. Toman and G. Weddell. On keys and functional dependencies as first-
class citizens in description logics. J. Autom. Reasoning, 40(2-3):117–132,
2008.

[56] M. Zhang, M. Hadjieleftheriou, B. Ooi, C. Procopiuc, and D. Srivastava.
On multi-column foreign key discovery. PVLDB, 3(1):805–814, 2010.

44

