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Abstract

Despite many research efforts, automatic speech recognition (ASR) is still not widely used

in embedded systems. One of the reasons for this is that embedded platforms are limited

in terms of processing power and computing resources. These limitations contribute to

an increase in decoding time, which can lead to poor user experiences. As a result, a

compromise is often made between decoding speed and other performance criteria, such

as recognition accuracy and vocabulary size.

There are two main objectives in this thesis. The first objective is to develop an

embedded ASR system which is suitable for real-time applications. We focus on various

kinds of approaches that can reduce the decoding time without severe performance degra-

dation in recognition accuracy and vocabulary size. The task is a 993-word Resource

Management (RM1) task, which serves as the benchmark for command-and-control type

of applications. The target platform is an Altera Nios II softcore processor system running

at 120MHz. The system is synthesized on a Stratix II FPGA device.

Three approaches have been successfully adopted on the target platform. First, due to

lack of hardware support for floating-point arithmetic, we propose a framework for con-

verting various data types to fixed-point formats. Experimental results on the RM1 task

show that the fixed-point system is 9 times faster than the floating-point system with-

out any degradation in recognition accuracy. Second, a hardware-software co-processing

ASR system is developed. The architecture mainly consists of a Nios II processor and a

hardware accelerator. The hardware accelerator is responsible for the calculation of the

Gaussian mixture model (GMM) emission probabilities, which is the major computational

bottleneck. The co-processing system is tested on the same RM1 task. In comparison

with the pure software-based fixed-point system, the average real-time factor improves

from 1.87 to 0.62 (about 3 times speed-up). The word accuracy rate is 93.33%, which is

the same as that of the pure software-based system. Third, in order to further improve

the timing performance, an adaptive beam pruning algorithm is introduced, which ap-

plies tighter pruning when there are a large number of active hypotheses. For the same

RM1 task, the average real-time factor further reduces to 0.54. The word accuracy rate

is 93.16%.

i



ABSTRACT ii

Apart from recognition accuracy, decoding speed and vocabulary size, another point

of consideration when developing a practical ASR application is the adaptability of the

system. An ASR system is more useful if it can cope with changes that are introduced

by users, for example, new words and new grammar rules. In addition, the system can

also automatically update the underlying knowledge sources, such as language model

probabilities, for better recognition accuracy. Since the knowledge sources need to be

adaptable, it is inflexible to statically combine them. It is because on-line modification

becomes difficult once all the knowledge sources have been combined into one static search

space.

The second objective of the thesis is to develop an algorithm which allows dynamic

integration of knowledge sources during decoding. In this approach, each knowledge source

is represented by a weighted finite state transducer (WFST). The knowledge source that

is subject to adaptation is factorized from the entire search space. The adapted knowledge

source is then combined with the others during decoding. In this thesis, we propose a

generalized dynamic WFST composition algorithm, which avoids the creation of non-

coaccessible paths, performs weight look-ahead and does not impose any constraints to

the topology of the WFSTs. Experimental results on Wall Street Journal (WSJ1) 20k-

word trigram task show that our proposed approach has a better word accuracy versus

real-time factor characteristics than other dynamic composition approaches.
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