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Abstract

Despite many research efforts, automatic speech recognition (ASR) is still not widely used

in embedded systems. One of the reasons for this is that embedded platforms are limited

in terms of processing power and computing resources. These limitations contribute to

an increase in decoding time, which can lead to poor user experiences. As a result, a

compromise is often made between decoding speed and other performance criteria, such

as recognition accuracy and vocabulary size.

There are two main objectives in this thesis. The first objective is to develop an

embedded ASR system which is suitable for real-time applications. We focus on various

kinds of approaches that can reduce the decoding time without severe performance degra-

dation in recognition accuracy and vocabulary size. The task is a 993-word Resource

Management (RM1) task, which serves as the benchmark for command-and-control type

of applications. The target platform is an Altera Nios II softcore processor system running

at 120MHz. The system is synthesized on a Stratix II FPGA device.

Three approaches have been successfully adopted on the target platform. First, due to

lack of hardware support for floating-point arithmetic, we propose a framework for con-

verting various data types to fixed-point formats. Experimental results on the RM1 task

show that the fixed-point system is 9 times faster than the floating-point system with-

out any degradation in recognition accuracy. Second, a hardware-software co-processing

ASR system is developed. The architecture mainly consists of a Nios II processor and a

hardware accelerator. The hardware accelerator is responsible for the calculation of the

Gaussian mixture model (GMM) emission probabilities, which is the major computational

bottleneck. The co-processing system is tested on the same RM1 task. In comparison

with the pure software-based fixed-point system, the average real-time factor improves

from 1.87 to 0.62 (about 3 times speed-up). The word accuracy rate is 93.33%, which is

the same as that of the pure software-based system. Third, in order to further improve

the timing performance, an adaptive beam pruning algorithm is introduced, which ap-

plies tighter pruning when there are a large number of active hypotheses. For the same

RM1 task, the average real-time factor further reduces to 0.54. The word accuracy rate

is 93.16%.
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ABSTRACT ii

Apart from recognition accuracy, decoding speed and vocabulary size, another point

of consideration when developing a practical ASR application is the adaptability of the

system. An ASR system is more useful if it can cope with changes that are introduced

by users, for example, new words and new grammar rules. In addition, the system can

also automatically update the underlying knowledge sources, such as language model

probabilities, for better recognition accuracy. Since the knowledge sources need to be

adaptable, it is inflexible to statically combine them. It is because on-line modification

becomes difficult once all the knowledge sources have been combined into one static search

space.

The second objective of the thesis is to develop an algorithm which allows dynamic

integration of knowledge sources during decoding. In this approach, each knowledge source

is represented by a weighted finite state transducer (WFST). The knowledge source that

is subject to adaptation is factorized from the entire search space. The adapted knowledge

source is then combined with the others during decoding. In this thesis, we propose a

generalized dynamic WFST composition algorithm, which avoids the creation of non-

coaccessible paths, performs weight look-ahead and does not impose any constraints to

the topology of the WFSTs. Experimental results on Wall Street Journal (WSJ1) 20k-

word trigram task show that our proposed approach has a better word accuracy versus

real-time factor characteristics than other dynamic composition approaches.
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1
Introduction

1.1 Objectives of the thesis

Automatic speech recognition (ASR) is the process of converting a human speech signal to

a sequence of words by a computer. The use of ASR offers another path of communication

between humans and computers.

Despite many research efforts, speech recognition has not been widely used in em-

bedded systems. One of the reasons for this is that embedded platforms are limited in

terms of processing power and computing resources [45, 49]. In comparison with common

desktop processors, embedded systems generally have the following limitations.

• Slower CPU clock rate. It increases the execution time for running a program.

• Limited memory bandwidth. The speed of transferring data between memory and

a CPU is generally slower in embedded systems. It increases the time required for

accessing data from memory, which results in long periods of pipeline stalls.

• Limited CPU cache size. Compared with a desktop processor, the amount of caching

resources inside an embedded CPU is limited. This often leads to a high cache miss

rate, which increases the frequency of accessing data from memory.

• Lack of hardware support for floating-point operations. Algorithms may need to be

modified to work with limited computing resources.

1



1.1 Objectives of the thesis 2

These limiting factors contribute to an increase of the decoding time. When embedded

ASR is utilized as a human-machine interface, long response time can lead to poor user

experiences. Therefore, a compromise has to be made between decoding speed and system

performance. One possible way is to reduce the size of the vocabulary. As the number

of words in the vocabulary decreases, the size of the search space is reduced and thereby

decreasing the number of active hypotheses in the search space.

Another way is to use less precise data and/or coarser speech models. For example,

fixed-point arithmetic is used instead of floating-point arithmetic, or fewer parameters are

used for acoustic modelling and language modelling. These approximations can shorten

the decoding time; however, they may also degrade the system performance in terms of

recognition accuracy.

The first objective of the thesis is to develop a system architecture that is suitable

for embedded ASR applications. In order to achieve real-time performance, we focus

on the design of the architecture rather than other approaches that will degrade system

performance in terms of recognition accuracy and vocabulary size. An overview of different

system architectures is presented in Section 1.2. Our target application is a 1000-word

command-and-control task.

Apart from recognition accuracy, decoding speed and vocabulary size, another point of

consideration when building a practical ASR application is the adaptability of the system.

Typically, an ASR system performs speech recognition based on a group of knowledge

sources that are trained from a set of training data. These knowledge sources include but

do not limit to acoustic models, context-dependency knowledge, lexical knowledge and

language models. One way to utilize these knowledge sources is to combine them into a

static search space. The ASR system then searches for the most probable sequence of

words from the search space. This is the most efficient way for search space representa-

tion in terms of decoding speed, since the ASR system does not require to combine the

knowledge sources during decoding.

However, static search space representation is not flexible since it does not allow on-line

adaptation of the knowledge sources. It is difficult to modify the knowledge sources once

they have been combined into a unified search space. In practice, the knowledge sources

have to adapt to various types of situations during the operation of the ASR system [45].

For example, in a dialogue system, the language model (grammar) needs to change in

response to different dialog states. Also, users may want to modify the dialog system

by adjusting the grammar and/or introducing new words to the lexicon. Besides user

customization, an ASR system can also automatically update the underlying knowledge

sources for better recognition accuracy. One example is the adaptation of language model

probabilities based on the topic of the current conversation.

The second objective of the thesis is to develop an algorithm which can dynamically
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integrate different kinds of knowledge sources during decoding. In this approach, the

knowledge source that is subject to adaptation is factorized from the entire search space.

By doing this, the knowledge source can be modified and adapted to the current working

environment. The adapted knowledge source is then combined with the others during

decoding. In this thesis, our proposed algorithm will be compared with other dynamic

algorithms in terms of recognition accuracy and decoding speed.

1.2 Current embedded ASR system architectures

In many embedded ASR applications, researchers and developers have been focussing on

building a pure software-based implementation of the recognition engine on an embedded

platform [26, 9]. As the name suggests, a pure software-based system is a platform on

which developers describe the speech recognition algorithm in programming languages.

The source code is compiled and then assembled into the machine code of the target

processor. This approach enables fast development of ASR applications. Developers can

directly port the source code from a desktop environment onto an embedded platform

without any major modifications. However, this pure software-based approach cannot

take the advantage of parallelism adhered to the speech recognition algorithm. Therefore,

they often need algorithmic modification and approximation in order to meet the real-time

requirement, which leads to degradation in recognition accuracy.

At another extreme, some researchers focus on building a pure hardware-based system

[32, 33, 57]. In these systems, the entire recognition engine is built in the form of digi-

tal circuits. The recognition engine is often described in hardware description language

(HDL), which can be synthesized on some target technologies, for example, a field pro-

grammable gate array (FPGA) device. While parallelism and co-processing can be fully

employed in these systems, the development time is often more than the pure software-

based systems. In addition, it is more difficult to modify and re-structure the design in

this approach.

As a compromise, a hardware-software co-design approach seems to be attractive [31,

62]. A simple hardware-software co-processing system consists of a processor and one or

more hardware functional units. In this approach, developers identify the computationally

intensive parts of the algorithm. Hardware functional units, which are described in HDL,

are built to employ possible algorithmic parallelism in the computationally intensive parts

of the algorithm. At the same time, software developers can write source code for the

processor, which controls the hardware functional units and runs the rest of the algorithm.

This approach combines the advantages of the pure software-based and the pure hardware-

based approaches. Hardware-software co-design provides:

• Rapid prototyping of applications. The instruction set of the processor in a co-
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processing system provides abstraction of the underlying architecture. Without

knowing every detail of the underlying architecture, developers build their applica-

tions in software. It shortens the development time and cost compared with the

pure hardware-based approach.

• Faster processing time. A hardware-software co-processing system employs paral-

lelism in the following ways.

– Hardware functional units accelerate the computationally intensive parts of the

algorithm by performing independent operations in parallel.

– The entire algorithm is divided into independent sub-tasks. Each sub-task is

handled by a hardware functional unit. The sub-tasks are performed in parallel.

• Flexibility in design modification. It is generally more difficult to modify an algo-

rithm in the pure hardware-based approach since it deals with low-level structures,

such as registers and logic gates. At the other end of the spectrum, it is much easier

to make modification of the algorithm in its software form because the details of the

underlying architecture is hidden away from the developers. The hardware-software

co-processing approach is in the middle of the spectrum. While the invariant oper-

ations within the algorithm can be implemented in hardware, the part which may

need future modification can be implemented in software. It allows flexibility in

design modification and future enhancement.

• Extensibility from one application to a group of applications. Developers can spe-

cialize in building their application in a hardware functional unit. Together with its

software application programming interface (API), the functional unit can be de-

veloped as an intellectual property (IP) block, which can be re-used and integrated

with other IP blocks for building a useful group of applications. For example, a

speech-controlled intelligent environment can be built by incorporating a speech

recognition engine with various electrical appliance controllers.

In this thesis, we adopt the hardware-software co-design approach to develop an em-

bedded speech recognition system. We analyze the speech recognition algorithm and

identify where the computational bottlenecks are. We build hardware functional units in

order to accelerate the critical parts of the algorithm. Finally, the proposed system is

assessed by word accuracy rate and real-time factor.

1.3 Contributions of the thesis

The first objective of this thesis is to develop an embedded ASR system that is suitable

for real-time applications. This part of the work includes the following.



1.4 Outline of the thesis 5

• A hardware-software co-processing ASR system is proposed. With the same level of

word accuracy, the proposed system shows a better timing performance than other

reported systems. In comparison with [31, 62], which is also a hardware-software

co-processing approach, the architecture of the proposed system is more portable to

larger vocabulary tasks and different conversation topics. In addition, we present a

more detailed timing analysis showing the real-time factor of the system. On the

contrary, this timing measure is not clearly shown in [31, 62].

• An adaptive beam pruning algorithm, which limits the number of active hypotheses,

is proposed. It further improves the timing performance of the co-processing system.

In terms of implementation, the proposed algorithm is easier compared with other

similar pruning technique, such as histogram pruning [58].

• A framework for converting various data types from floating-point to fixed-point is

proposed. The decoding speed is much faster without any degradation in recogni-

tion accuracy when the fixed-point implementation of the recognizer is tested on

the target embedded platform. The proposed framework is a complete framework

covering all the data types in the ASR algorithm. Other studies focus on only a

certain part of the algorithm [22, 28, 30].

The second objective is to develop an algorithm which can dynamically integrate

different kinds of knowledge sources during decoding. In this thesis, each knowledge

source is represented by a weighted finite state transducer (WFST). This part of the work

includes the following.

• A generalized dynamic WFST composition algorithm is proposed. Compared with

other dynamic composition approaches, the proposed algorithm avoids the creation

of non-coaccessible transitions, performs weight look-ahead and does not impose

any constraints to the topology of the WFSTs. Experimental results show that the

proposed algorithm shows a better word accuracy versus real-time characteristics

than those of the other approaches.

1.4 Outline of the thesis

Chapter 2 gives an overview of the fundamentals of automatic speech recognition (ASR).

The components of a typical ASR system, such as feature extraction, acoustic modelling

and language modelling, are described. Different types of search space representations

and search algorithms are also discussed.

Chapter 3 introduced a speech recognizer called Juicer, which uses weighted finite

state transducer (WFST) for search space representation. Juicer is the underlying speech
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recognition engine of our embedded ASR system. In this chapter, the theory of WFST

is described. It also explains how each knowledge source is represented by a WFST and

how all the WFSTs are combined into a unified search space statically.

Chapter 4 to Chapter 6 describe the development process of the embedded ASR sys-

tem. In Chapter 4, a framework for converting different types of data from floating-point

to fixed-point is proposed. In the experiments, we start with a floating-point implemen-

tation of Juicer and derive a fixed-point version based on the proposed framework.

Chapter 5 describes the baseline system that is used for benchmarking purposes. The

baseline system is a pure software-based ASR system with an Altera Nios II embedded

processor implemented on a Stratix II FPGA device, which serves as the target embedded

platform. The timing performances of both the floating-point implementation and the

fixed-point implementation are examined on this platform. The computational bottleneck

of the ASR algorithm is also identified.

In Chapter 6, the system architecture of a hardware-software co-processing ASR sys-

tem is proposed. The timing performance of the proposed system is compared with that

of the pure software-based baseline system as described in Chapter 5. In addition, an

adaptive beam pruning algorithm is also introduced, which further improves the timing

performance. At the end of this chapter, a comparison between the proposed system and

other reported systems is presented.

In Chapter 7, a generalized dynamic WFST composition algorithm is proposed. The

pseudocode of the algorithm is presented. Experimental results are also shown for com-

parison with other dynamic composition approaches.

Chapter 8 summarizes the work and presents the conclusions of the thesis.



2
Fundamentals of speech recognition

2.1 The decoding problem

The goal of automatic speech recognition (ASR) is to find the most probable word se-

quence given that a sequence of acoustic feature vectors is observed. This decoding process

can be expressed mathematically by the following equation,

Ŵ = argmax
W n

1

{P (W n
1 |oT

1 , Θ)} (2.1)

where Θ are the parameters of the ASR system. The equation denotes that given a

sequence of T acoustic feature vectors, oT
1 = {o1,o2, ...,oT}, the output of the recognizer is

a sequence of n words, W n
1 , which gives the maximum posterior probability, P (W n

1 |oT
1 , Θ).

For isolated word ASR tasks, the size of the vocabulary is small. Thus, direct calculation of

(2.1) is trivial. However, for larger vocabulary tasks, the calculation becomes intractable

since all the possible word sequences need to be considered. In order to make ASR feasible,

the equation is rewritten as follows using Bayes’ rule.

Ŵ = argmax
W n

1

{
P (oT

1 |W n
1 , Θa)P (W n

1 |Θl)

P (oT
1 |Θ)

}

= argmax
W n

1

{P (oT
1 |W n

1 , Θa)P (W n
1 |Θl)} (2.2)

7
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Since P (oT
1 |Θ) is independent of W n

1 , it is omitted in the equation. Θa is referred to

as a set of parameters known as the acoustic model. Θl comprises the parameters of the

language model. An acoustic model describes the probabilistic relationship between the

acoustic feature vectors and the words, while a language model contains the linguistic

information between words.

Figure 2.1 illustrates the block diagram of a typical ASR system. Feature extraction

converts the speech samples to a sequence of acoustic feature vectors. The characteristics

of the underlying speech signal are captured by the feature vectors. Given the feature

vectors are observed, the decoder finds the most probable word sequence based on the

information from the acoustic model and the language model.

 

Feature 
extraction 

Decoder 

Acoustic 
feature 
vectors 

Word 
transcription 

Speech 
samples 

Acoustic 
models 

Language 
models 

Figure 2.1: Block diagram of a typical ASR system

2.2 Feature extraction

The purpose of feature extraction is to provide the ASR system with a sequence of acoustic

feature vectors. The first step of feature extraction is pre-emphasis. Usually, more energy

is concentrated at the low-frequency portion of a speech spectrum than the high-frequency

portion. The idea behind pre-emphasis is to emphasize the high-frequency portion of the

speech spectrum. Pre-emphasis is often realized by a first-order high-pass finite impulse

response (FIR) filter. Its transfer function in z-domain is H(z) = 1.0− αz−1, where α is

a constant with a typical value of 0.97.

Speech signal is non-stationary. Therefore, in order to analyze its characteristics, a

speech signal is segmented into a series of shorter speech signals called frames, in which

quasi-stationary is assumed. Each frame is essentially a window extracted from the speech

signal. Frame duration is typically 25ms. An acoustic feature vector consisting of a

number of coefficients is extracted from a speech frame. After extracting a feature vector,
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the frame is proceeded by a certain amount of time, typically 10ms, for the next feature

vector. Feature extraction continues until the frame reaches the end of the speech signal.

The choice of the window function is important. It is because windowing is equivalent

to multiplying the speech signal by the window function. In frequency domain, the speech

spectrum is convolved with the frequency response of the window function. In order

to reduce spectral leakage, a Hamming window is often used instead of a rectangular

window since the side lobes of the frequency response of a Hamming window have smaller

magnitudes than those of a rectangular window [55].

After Hamming-windowing, the speech frame is converted to an acoustic feature vector.

There are many different feature extraction algorithms. Some of the commonly-used

algorithms include mel frequency cepstral coefficients (MFCC) [17], perceptual linear

prediction (PLP) cepstral coefficients [23] and linear predictive coding (LPC) [34, 55]

coefficients. The following paragraphs give a brief overview of these feature extraction

algorithms.

MFCC First, the power spectrum (that is, the magnitude spectrum squared) of the

speech frame is found. Then, the power spectrum is filtered by a series of triangular-

shaped bandpass filters. These filters are spaced uniformly on a non-linear frequency

scale called the mel scale, which is a psychoacoustic measure of pitches judged by

human [59]. The mel scale is approximately linear to the linear frequency scale

below 1 kHz and logarithmic above 1 kHz. After the mel filter bank, the filter

outputs are compressed by the logarithmic function. Finally, the log filter outputs

are decorrelated by discrete cosine transform (DCT).

PLP Like MFCC, the first step is to find the power spectrum of the speech frame. Then

the power spectrum is filtered by a series of trapezoidal-shaped bandpass filters,

which are spaced uniformly on a non-linear frequency scale called the Bark scale.

The centre frequencies of these filters are approximately 1 Bark apart [23]. Un-

like MFCC where pre-emphasis is done before windowing, the Bark filter outputs

are weighed by the equal-loudness curve. After that, the filter outputs are com-

pressed by the cubic root function. Next, inverse discrete Fourier transform (IDFT)

is applied to the compressed filter outputs and the resultant sequence is treated

as the autocorrelation coefficients. The rest of the algorithm is the same as the

LPC method as discussed later. Linear predictive coefficients, which can be subse-

quently converted to cepstral coefficients by a simple recursion, are found using the

autocorrelation method [55].

LPC In contrast with MFCC and PLP, the LPC method does not find the spectrum of

the speech frame. Instead, the autocorrelation coefficients of the speech frame are

found. Using the autocorrelation method [55], a set of LPC coefficients is generated
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from the autocorrelation coefficients. The LPC coefficients are the coefficients of an

all-pole digital filter, which models the transfer function of the human vocal tract.

Typically, each feature vector consists of 12-14 coefficients. These coefficients are

known as static coefficients. In order to model the time correlation between the feature

vectors, the first and the second order temporal derivatives of the feature vectors are often

used [21]. The time trajectory of each static coefficient is modelled by a second order

polynomial [54]. The first order temporal derivatives (also known as the delta features)

and the second order temporal derivatives (also known as the delta-delta features) are

found by differentiating the regression polynomial. The static features, together with the

delta and delta-delta features, are concatenated to form a single feature vector.

To reduce the feature variability in different recording and testing environments, either

cepstral mean normalization (CMN) [5] or cepstral mean variance normalization (CMVN)

[15] is applied to the feature vectors. In CMN, the mean of each coefficient is normalized

to 0. In CMVN, the mean and the variance are normalized to 0 and 1 respectively.

2.3 Acoustic modelling

The purpose of acoustic modelling is to provide a framework for describing the relationship

between a sequence of acoustic feature vectors, oT
1 , and a sequence of words, W n

1 . In early

ASR research, template-matching technique, for example, dynamic time warping (DTW)

[56], was one of the widely-used acoustic models. However, when the recognition task

becomes more complicated, it requires to store a large number of templates, which is

infeasible for practical applications. Besides, it is difficult to use DTW to generalize

unseen data. Hence, stochastic modelling, for example, hidden Markov model (HMM),

becomes one of the most commonly-used approaches for current ASR systems.

2.3.1 Hidden Markov Model (HMM)

The topology of an HMM is a finite state machine (FSM). Figure 2.2 illustrates an HMM

example. It consists of a number of states and transitions. An HMM can be viewed as a

double-embedded stochastic process [53]. The first stochastic process is the probabilistic

model of the observations. In ASR, an acoustic feature vector is an observation. We

know (observe) what the feature vector is from feature extraction. A probabilistic model

of the observation is associated with each HMM state. The second stochastic process is

the model of the state sequence. State transitions are modelled by a probabilistic function

associated with the current state. State sequences are not observable, therefore they are

hidden. We do not know what the state sequences are. However, some probabilistic sense

of the underlying state sequence can be derived from the observation sequence.
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Figure 2.2: The topology of an HMM example. In this example, there are 3 states. The probabili-
ties of being in an HMM state at the start of a state sequence are called the initial state
probabilities. State transitions are modelled by transition probabilities. The probabilities
of the observation vectors are known as emission probabilities. Each HMM state has an
associated emission probability distribution.

An HMM can be defined by the following elements.

• O - The observation alphabet. In most cases, continuous feature vectors are used.

However, if discrete feature vectors are needed, vector quantization can be used to

map a continuous feature vector to a discrete symbol.

• Ω - The number of HMM states in the model.

• A = {aij} - A transition probability matrix, where aij denotes the probability of

taking a transition from state i (at time t) to state j at (at time t + 1).

aij = P (qt+1 = j|qt = i) (2.3)

• B = {bj(ot)} - The emission probability matrix. This is the probabilistic model of

the observation associated with each HMM state. bj(ot) is the probability of the

observation given the HMM state is j at time t.

bj(ot) = P (ot|qt = j) (2.4)

• π = {πj} - The initial state probability distribution.

πj = P (q1 = j) (2.5)
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As previously mentioned in this section, an acoustic model describes the probabilistic

relationship between a sequence of features vectors and a sequence of words. Mathemati-

cally, this probabilistic relationship is denoted by P (oT
1 |W n

1 , Θa) as shown in (2.2). HMM

can be used to build the acoustic model for describing this relationship. In early ASR

research, each word is represented by an HMM. The acoustic model of a word sequence is

built by concatenating the word HMMs together. Training of a word HMM requires a suf-

ficient number of word instances in the training data. Therefore, this approach becomes

infeasible when the size of the vocabulary increases. As a result, sub-word HMMs are

introduced for acoustic modelling. Here, each word is treated as a concatenation of some

sub-word units, such as, phonemes, and each sub-word unit is modelled by an HMM. For

example, the word “cat” is a concatenation of three sub-word units: /k/, /ae/ and /t/.

These sub-word units are called context-independent sub-word units since these units are

trained without considering their surrounding sub-word units. The /ae/ unit in “cat” is

grouped in the same class as the /ae/ unit in the word “man”.

In order to model coarticulation between surrounding sub-word units, context-dependent

sub-word units are used. In this approach, the class label of a sub-word unit takes into ac-

count of its surrounding sub-word units. For example, the /ae/ phoneme of the word “cat”

is assigned to the /k−ae+t/ class where /k/ and /t/ are the left and the right contexts

respectively. Similarly, the /ae/ phoneme of “man” is given another label /m−ae+n/.

These sub-word units are also known as triphones. Some phonemes can be modelled with

their left or right context only. For example, the /k/ phoneme of “cat” is modelled with

the /ae/ phoneme only. A biphone label /k+ae/ is given to this sub-word unit. Hence,

the word “cat” is a concatenation of two biphones and one triphone: /k+ae/, /k−ae+t/

and /ae−t/. Each context-dependent sub-word unit is modelled by an HMM.

Given that each word is modelled by a series of sub-word HMMs, a word sequence is

essentially a sequence of HMM states. Thus, P (oT
1 |W n

1 , Θa) can be rewritten as follows.

P (oT
1 |W n

1 , Θa) =
∑

qT
1

P (oT
1 , qT

1 |W n
1 , Θa) (2.6)

where qT
1 is one of the possible HMM state sequences representing the word sequence W n

1 .

The evaluation of (2.6) is computationally expensive. Hence, it can be approximated

under the Viterbi criterion.

P (oT
1 |W n

1 , Θa) ≈ max
qT
1

P (oT
1 , qT

1 |W n
1 , Θa) (2.7)

where summation is replaced by the max operation. In order to use (2.6) and (2.7) for

ASR, the following three basic problems need to be solved [53]:

1. Evaluation. Given the observation sequence oT
1 , and the acoustic model Θa, how
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to evaluate P (oT
1 |W n

1 , Θa)?

2. Decoding. Given the observation sequence oT
1 , and the acoustic model Θa, how to

find the optimal HMM state sequence qT
1 , that maximizes P (oT

1 , qT
1 |W n

1 , Θa)?

3. Training. Given a set of training data, how to determine the parameters of the

acoustic model, Θa = (A,B, π) , which maximize the likelihood of the training

data?

The following sections describe briefly the solutions of the above three problems.

2.3.2 Evaluation of HMM

In this problem, we would like to evaluate P (oT
1 |W n

1 , Θa) according to (2.6). Equation

(2.6) can be expressed as follows.

P (oT
1 |W n

1 , Θa) =
∑

qT
1

P (oT
1 , qT

1 |W n
1 , Θa)

=
∑

qT
1

P (oT
1 |qT

1 ,W n
1 , Θa)P (qT

1 |W n
1 , Θa) (2.8)

To simplify the evaluation of the above equation, two assumptions are made. First, it

is assumed that the Markov chain is first-order. In other words, a state transition only

depends on the preceding state. Originally, P (qT
1 |W n

1 , Θa) in (2.8) is defined as:

P (qT
1 |W n

1 , Θa) = P (q1|W n
1 , Θa)

T∏
t=2

P (qt|qt−1
1 ,W n

1 , Θa) (2.9)

With the first-order Markov chain assumption, the equation can be rewritten as follows.

P (qT
1 |W n

1 , Θa) = P (q1|W n
1 , Θa)

T∏
t=2

P (qt|qt−1,W
n
1 , Θa)

= πq1

T∏
t=2

aqt−1,qt (2.10)

The second assumption is that an observation only depends on the current HMM state.

It is independent of other observations and other HMM states. Hence, P (oT
1 |qT

1 ,W n
1 , Θa)



2.3 Acoustic modelling 14

in (2.8) can be simplified as follows.

P (oT
1 |qT

1 ,W n
1 , Θa) =

T∏
t=1

P (ot|qt,W
n
1 , Θa)

=
T∏

t=1

bqt(ot) (2.11)

In other words, using (2.10) and (2.11), Equation (2.8) becomes:

P (oT
1 |W n

1 , Θa) =
∑

qT
1

πq1

T∏
t=2

aqt−1,qt

T∏
t=1

bqt(ot) (2.12)

To efficiently evaluate (2.12), a recursive algorithm called forward algorithm is used. The

forward probability is defined as follows.

αt(i) = P (ot
1, qt = i|W n

1 , Θa) (2.13)

The forward algorithm has the following steps.

1. Initialization

α1(i) = πibi(o1) 1 ≤ i ≤ Ω (2.14)

2. Induction for 2 ≤ t ≤ T

αt(j) =

[
Ω∑

i=1

αt−1(i)aij

]
bj(ot) 1 ≤ j ≤ Ω (2.15)

3. Termination

P (oT
1 |W n

1 , Θa) =
Ω∑

i=1

αT (i) (2.16)

where Ω is the number of states which constitute the HMM for modelling the word

sequence W n
1 . The symbols i and j are the state indices of the HMM. The forward

algorithm evaluates P (oT
1 |W n

1 , Θa) according to (2.6).

2.3.3 Decoding of HMM

In Section 2.3.2, a forward algorithm is used to evaluate the full likelihood P (oT
1 |W n

1 , Θa)

as defined in (2.6). In this section, a Viterbi algorithm [60] is presented to find the



2.3 Acoustic modelling 15

approximation of P (oT
1 |W n

1 , Θa) according to (2.7). Besides, an optimal HMM state

sequence is also found which gives this approximation.

The major difference between (2.6) and (2.7) is that the summation operation in (2.6)

is replaced by the max operation in (2.7). Like (2.6), the evaluation of (2.7) can be

carried out by a recursive algorithm. Here, a quantity called Viterbi likelihood is defined

as follows.

Vt(i) = max
qt−1
1

P (ot
1, q

t−1
1 , qt = i|W n

1 , Θa) (2.17)

The Viterbi likelihood is the greatest probability of a state sequence, which ends in state

i at time t and generates the first t observations. The Viterbi algorithm has the following

steps. Another variable, Ψt(i), is for recording the optimal state sequence.

1. Initialization

V1(i) = πibi(o1) 1 ≤ i ≤ Ω

Ψ1(i) = 0 (2.18)

2. Recursion for 2 ≤ t ≤ T

Vt(j) =

[
max
1≤i≤Ω

Vt−1(i)aij

]
bj(ot) 1 ≤ j ≤ Ω

Ψt(j) = argmax
1≤i≤Ω

Vt−1(i)aij (2.19)

3. Termination

P (oT
1 |W n

1 , Θa) ≈ max
qT
1

P (oT
1 , qT

1 |W n
1 , Θa) = max

1≤i≤Ω
VT (i)

q∗T = argmax
1≤i≤Ω

VT (i) (2.20)

4. Backtracking of the optimal state sequence

q∗t = Ψt+1(q
∗
t+1) T − 1 ≥ t ≥ 1 (2.21)

In summary, the Viterbi algorithm finds the optimal state sequence {q∗1, q∗2, ..., q∗T} which

maximizes the probability given the observation sequence oT
1 . This probability approxi-

mates the full likelihood P (oT
1 |W n

1 , Θa) according to (2.7).

2.3.4 Training of HMM

In this problem, given a set of U training utterances, the aim is to determine the parame-

ters of the acoustic model Θa = (A,B, π) which maximizes the likelihood of the training
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utterances. One common method is to use Baum-Welch algorithm, which is also called the

forward-backward algorithm [7]. It is the specific case of the expectation-maximization

(EM) algorithm [18].

To use the forward-backward algorithm, we first define some helper variables. The

first variable is the backward probability, which is defined as follows.

βt(i) = P (oT
t+1|qt = i,W n

1 , Θa) (2.22)

Similar to the forward probability, the backward probability can also be evaluated recur-

sively.

1. Initialization

βT (i) = 1 1 ≤ i ≤ Ω (2.23)

2. Induction for T − 1 ≥ t ≥ 1

βt(i) =
Ω∑

j=1

aijbj(ot+1)βt+1(j) 1 ≤ i ≤ Ω (2.24)

3. Termination

P (oT
1 |W n

1 , Θa) =
Ω∑

j=1

πjbj(o1)β1(j) (2.25)

Moreover, two more variables, γt(i) and ξt(i, j), are defined.

γt(i) = P (qt = i|oT
1 ,W n

1 , Θa)

=
αt(i)βt(i)∑Ω

j=1 αt(j)βt(j)
(2.26)

ξt(i, j) = P (qt = i, qt+1 = j|oT
1 ,W n

1 , Θa)

=
αt(i)aijbj(ot+1)βt+1(j)∑Ω

i=1

∑Ω
j=1 αt(i)aijbj(ot+1)βt+1(j)

(2.27)

In other words, γt(i) is the posterior probability of being in state i at time t, given the

observation sequence oT
1 . The variable ξt(i, j) is the posterior probability of being in state

i at time t and in state j at time t + 1, given the observation sequence. Using these two

variables, the transition probabilities and the initial state distribution can be estimated
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as follows.

āij =

∑U
u=1

∑T (u)−1
t=1 ξ

(u)
t (i, j)

∑U
u=1

∑T (u)−1
t=1 γ

(u)
t (i)

(2.28)

π̄i =

∑U
u=1 γ

(u)
1 (i)

U
(2.29)

In the equations, āij and π̄i are the re-estimated parameters for one iteration. These

parameters are used to re-calculate γ and ξ, which then re-estimate the parameters in

the next iteration until convergence. The u superscript denotes the uth utterance in the

training data.

There are two major types of emission probabilities, bj(ot), in an HMM-based ASR

system. These probabilities can be either modelled by Gaussian mixture models (GMM)

or an artificial neural network (ANN). The training methods of bj(ot) are different in these

two approaches. In the following two sections, we briefly describe these two HMM-based

systems.

2.3.5 HMM/GMM system

In an HMM/GMM ASR system, the emission probability of an HMM state, bj(ot), is

modelled by a mixture of Gaussian density functions.

bj(ot) =
M∑

m=1

cjmN (ot, µjm,Σjm)

=
M∑

m=1

cjm
1

(2π)
D
2 |Σjm| 12

exp

[
−1

2

(
ot − µjm

)T
Σ−1

jm

(
ot − µjm

)]
(2.30)

where N is a Gaussian density. µjm and Σjm are the mean vector and the covariance

matrix of the mth Gaussian respectively. D is the dimension of the observation vector.

cjm is the mixture weight of the mth Gaussian with ΣM
m=1cjm = 1.

Training of the parameters can be done by using the forward-backward algorithm.

Another variable is introduced for training the parameters.

γt(j, m) = γt(j)

[
cimN (ot,µjm,Σjm)∑M

m=1 cjmN (ot,µjm,Σjm)

]
(2.31)

where γt(j, m) is the probability of being at state j with the mth mixture at time t given

the observations. The parameters can be trained by evaluating the following equations

until convergence [8].
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c̄jm =

∑U
u=1

∑T (u)

t=1 γ
(u)
t (j, m)

∑U
u=1

∑T (u)

t=1 γ
(u)
t (j)

(2.32)

µ̄jm =

∑U
u=1

∑T (u)

t=1 γ
(u)
t (j, m)o

(u)
t∑U

u=1

∑T (u)

t=1 γ
(u)
t (j,m)

(2.33)

Σ̄jm =

∑U
u=1

∑T (u)

t=1 γ
(u)
t (j, m)

(
o

(u)
t − µjm

)(
o

(u)
t − µjm

)T

∑U
u=1

∑T (u)

t=1 γ
(u)
t (j,m)

(2.34)

The u superscript denotes the uth utterance of the training corpus consisting of U utter-

ances.

2.3.6 Hybrid HMM/ANN system

Another approach for modelling the emission probabilities of an HMM is to use an artificial

neural network (ANN). One of the common ANN architectures used in ASR is multi-layer

perceptrons (MLP) [10]. In an MLP, there is an input layer, one or more hidden layers

and an output layer. Each layer consists of nodes, which are connected to the nodes in the

next layer via weights. Each node is basically a computing unit. The following equation

expresses the mathematical operation of the nodes in an arbitrary layer.

h = F (W
T
x) (2.35)

In the equation, x = (1, x1, x2, ..., xd)
T is an input vector to the layer with an augmented

value of 1. W = {wdk} is a (d + 1)×K weight matrix and K is the number of nodes in

the layer. h = (h1, h2, ..., hK)T is the output vector of which each element is the output of

a node in the layer. F (.) is a non-linear differentiable function. In practice, the non-linear

function in the hidden layer is a sigmoid function which generates higher-order moments

of the elements in the input vector, whereas in the output layer it is a softmax function

which approximates the decision logic.

In ASR, several frames of acoustic feature vectors are concatenated to form an input

vector. Typically, an input vector consists of the current frame (at time t) with 4 preceding

and 4 succeeding feature vectors (that is, 9 frames of feature vectors). In the output

layer, each node corresponds to one context-independent sub-word unit. After training

the MLP, each node in the output layer estimates P (qt = k|ot), which is the posterior

probability of the context-independent sub-word unit k given an observation vector ot at

the current time index t. In the hybrid HMM/ANN approach, each context-independent

unit is modelled by an HMM state and qt is the HMM state (context-independent unit)

at time t.
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To incorporate the MLP outputs into the HMM framework, Bayes’ rule is applied to

P (qt = k|ot).
P (ot|qt = k)

P (ot)
=

P (qt = k|ot)

P (qt = k)
(2.36)

On the right-hand side, the MLP output is divided by P (qt = k), which is the prior

probability of state k. The left-hand side of the equation is called the scaled likelihood,

which replaces bk(ot) in the HMM framework. The denominator of the scaled likelihood

does not affect classification since it is a constant for all the sub-word units.

There are several advantages of using the hybrid HMM/ANN approach over the

HMM/GMM approach [10]. Some of them include:

• ANN provides discriminant-based training. It increases the probability of the correct

sub-word unit while at the same time decreasing the probability of the competing

sub-word units.

• It can generate any kinds of non-linear functions of the inputs.

• It does not make any assumptions on the statistical properties of the input features.

• Multiple streams of information can be combined using different ANNs trained with

different sets of features.

2.4 Language modelling

The purpose of language modelling (LM) is to provide a model for describing the linguistic

information between words. Mathematically, a language model can be formulated as the

probability of a sequence of words P (W n
1 |Θl), which can be evaluated as follows.

P (W n
1 |Θl) = P (W1,W2, ..., Wn|Θl)

=
n∏

i=1

P (Wi|W1,W2, ..., Wi−1, Θl) (2.37)

where W n
1 is a sequence of n words and Θl are the parameters of the language model.

In (2.37), it suggests that the ith word in the sequence depends on all the preced-

ing words {W1,W2, ..., Wi−1}. It makes the estimation of the conditional probability

P (Wi|W1,W2, ...,Wi−1, Θl) difficult since the sequence {W1,W2, ..., Wi} may occur only a

few times or even none in the training corpus. To deal with this issue, it is assumed that

a word is dependent on only the previous N − 1 words. This approach is referred to as
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N-gram language modelling. Under this assumption, (2.37) is rewritten as follows.

P (W n
1 |Θl) =

n∏
i=1

P (Wi|W1,W2, ..., Wi−1, Θl)

=
n∏

i=1

P (Wi|Wi−N+1,Wi−N+2, ..., Wi−1, Θl) (2.38)

where the entire word history is truncated to contain only the previous N − 1 words.

Common N-grams that are used in ASR are trigram (N = 3), bigram (N = 2) and

unigram (N = 1).

Training of the N-gram probabilities can be done by simple frequency counts. For

example, a trigram probability can be estimated by the following equation.

P (Wi|Wi−2,Wi−1) =
C(Wi−2,Wi−1,Wi)

C(Wi−2,Wi−1)
(2.39)

where C(Wi−2,Wi−1,Wi) is the number of times that the sequence {Wi−2,Wi−1,Wi} ap-

pears in the training utterances and C(Wi−2,Wi−1) is the number of appearances of the

sequence {Wi−2,Wi−1}.
Even when N is small, there could be some word sequences which are unseen in the

training data. The N-gram probabilities of these sequences are zero due to zero occurrence.

This is not useful since these word sequences could appear during recognition but they

will never be considered as possible word transcriptions. One way to resolve this issue is

to adopt a back-off language model [29]. In this method, if the occurrence of a certain

N-gram exceeds a threshold, the estimation of its N-gram probability is the same as the

usual approach as shown in (2.39). However, if the occurrence is below the threshold,

its N-gram probability is discounted. The amount of reduction in the probability mass

is re-distributed to those N-grams which have zero occurrence. Hence, an unseen N-

gram will have some probability mass depending on its lower-order N-gram probability.

For example, the probability of an unseen trigram depends on the bigram probability as

shown below.

P (Wi|Wi−2,Wi−1) = B(Wi−2,Wi−1)P (Wi|Wi−1) (2.40)

where B(Wi−2,Wi−1) is the back-off weight which ensures that the trigram probability is

properly normalized.

2.5 Decoding

In Section 2.3 and Section 2.4, acoustic modelling and language modelling are discussed.

Using Equations (2.6) and (2.7), the decoding problem as shown in Equation (2.2) can
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be written as follows.

Ŵ = argmax
W n

1

{P (oT
1 |W n

1 , Θa)P (W n
1 |Θl)}

= argmax
W n

1






∑

qT
1

P (oT
1 , qT

1 |W n
1 , Θa)


 P (W n

1 |Θl)





≈ argmax
W n

1

{[
max

qT
1

P (oT
1 , qT

1 |W n
1 , Θa)

]
P (W n

1 |Θl)

}
(2.41)

The above equation can be interpreted in the following way. The Viterbi algorithm finds

the optimal HMM state sequence which represents the word sequence W n
1 . This maximum

likelihood is scaled by the language model. Finally, the recognizer output is the best word

sequence, which gives the greatest scaled maximum likelihood out of all the possible word

sequences.

2.6 Search space representation

In Section 2.5, the mathematical formulation of the decoding problem is presented. In

order to solve the decoding problem, the recognizer needs to first represent the acoustic

model and the language model in a searchable network called the search space. Then,

the recognizer performs a search algorithm on the search space for finding the best word

sequence given the observation sequence, as expressed in (2.41).

In this section, two common approaches for representing the search space are briefly

discussed. They are re-entrant lexical tree and weighted finite state transducer (WFST).

The former approach is a dynamic expansion approach, whereas the latter approach is a

static expansion approach [6].

2.6.1 Re-entrant lexical tree

In this approach, the lexicon is organized as a tree. The root node of the tree indicates the

start of a word, while each of the leaf nodes marks the end of a word. Each arc represents

a context-dependent sub-word unit (for example, a triphone), which is substituted by a

sub-word HMM. Hence, the entire lexical tree is a network of HMM states. The leave

nodes are connected back to the root node. It allows the decoder to recognize the next

word. Language model probabilities (for example, N-gram probabilities) are incorporated

before re-entering to the tree. Figure 2.3 illustrates an example of a re-entrant lexical

tree.
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k+ae 

k-ae+t 

k-ae+n 

CAT 

m+ae 

m-ae+n 

ae-t 

ae-n 

HMM 

CAN 

MAN 
ae-n 

P(CAT | *) 

P(CAN | *) 

P(MAN | *) 

Language 
model 

Figure 2.3: A re-entrant lexical tree. Language model probabilities are incorporated into the search at
the leaf nodes of the tree. The asterisks in the langauge model probabilities denote the
word histories. For example, if the language model is trigram, the asterisks represent word
histories consisting of two words.

To search for the optimal state sequence (or the equivalent word sequence), a token-

passing algorithm is often used [64]. A token (also known as a hypothesis) is an entity,

which resides in an HMM state. A token stores a score and a path record. The score

of a token is basically the product of Vt(i) in (2.17) and P (W n
1 |Θl). It is the maximum

probability, which is scaled by the language model, of an HMM state sequence ended

in state i at time t. As shown in (2.41), the major operation in the decoding problem

is the Viterbi algorithm, which tries to find the optimal HMM state sequence. In the

token-passing paradigm, it is equivalent to passing a token from its residing state to the

succeeding states. When two tokens meet at a state, only the best token survives and

stays at the state. Other tokens are discarded. The path record of a token stores the

state sequence, or equivalently the word sequence, that the token has gone through.

From the definition of Vt(i) in (2.17), one point to note is that the Viterbi algorithm

compares the state sequences which have the same word history W n
1 . In other words,

tokens having different word histories are not compared when they meet at an HMM

state. It suggests that there can be more than one token in an HMM state [1]. This is

a dynamic expansion approach. Physically, there is only one lexical tree. However, since
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it is possible to have multiple tokens in an HMM state, there can be a number of virtual

tree copies in the physical tree. Each virtual tree copy is distinguished by a distinct word

history. The search space is dynamically changing according to the number of distinct

word histories amongst all the active tokens. Strictly speaking, a word history starts from

the very first word. In practice, this is infeasible and thus a word history is shortened to

include just the previous N−1 words (N-gram). Tokens having the same N-gram histories

are compared.

One of the issues in this lexical tree approach is that word identities are only known

at the leaf nodes of the tree. For example, in Figure 2.3, suppose there is a token on the

/k+ae/ arc. The identity of the next word is not known until it reaches either the “CAT”

node or the “CAN” node. It implies that it is impossible to incorporate the language

model probability on the /k+ae/ arc. Language model knowledge can only be employed

at the leaf nodes (word-end nodes). It decreases the pruning efficiency of the recognizer

(Beam pruning will be discussed in Section 2.7.1). First, many tokens remain active in the

beginning of the tree because no langauge model knowledge is employed to help discard

less promising tokens. Second, it introduces a drastic change of token scores at the leaf

nodes, which could probably eliminate many potential tokens.

A solution to this problem is to factor the language model probabilities and apply them

as early as possible. In the previous example, suppose the language model is trigram and

the word history of the token is {MAN CAN}. Although the exact identity of the next

word is not known on the /k+ae/ arc, there are only two possibilities (CAT or CAN) for

the next word. Therefore, a portion of the probabilities can be factored and employed on

this arc. Specifically, the maximum of P (CAT|MAN CAN) and P (CAN|MAN CAN) is

found and incorporated to the token score. Later, suppose the token enters the /k−ae+t/

arc. In this case, the identity of the next word can be determined since there is only one

possibility (CAT). As a portion has already been applied, it needs to only consider the

residual probability, that is, the difference between the portion and P (CAT|MAN CAN).

This technique is known as langauge model lookahead [58, 46]. It tries to smear the token

scores along the path of the tree.

2.6.2 Weighted finite state transducer (WFST)

The use of weighted finite state transducers (WFST) [36, 35] in ASR is a static expansion

approach, in which the entire search space is fully expanded. This is opposite to the re-

entrant lexical tree approach. In that approach, the search space is dynamically changing

according to the number of virtual tree copies in the physical tree. In the WFST approach,

there are no virtual copies. The WFST by itself is the entire search space. When tokens

meet at an HMM state, it is guaranteed that they have the same word history and thus

can be compared.
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Basically, a WFST is a finite state machine with a number of states and transitions.

Figure 2.4 shows an example of a WFST. For simplicity, there are only two words in the

vocabulary and the language model is bigram. In contrast with the re-entrant lexical tree

illustrated in Figure 2.3, the entire search space is fully expanded. Each transition has an

input symbol, an output symbol and an associated weight. Symbols can be real symbols or

empty symbols (ε), which are merely placeholders. Here, the input symbols are triphone

or biphone labels. The output symbols are words. The WFST weights are the language

model probabilities. Each triphone or biphone label is modelled by an HMM. Hence, the

entire WFST is essentially a network of HMM states. The transition probabilities within

the HMM can also be seen as the weights of the search network.

 

k+ae :�  /�1 

k-ae+t :CAT 
/�2 

k-ae+n :CAN 
/�4 

ae-t :�   
/�3 

ae-n :�   
/�5 

�  :�  /P(CAT) 

CAT 

CAN 

CAT 

CAN 

�  :�  /P(CAN) 

�  :�  /P(CAT|CAT) 

�  :�  /P(CAN|CAN) 

�  :�  / 
P(CAN|CAT) �  :�  / 
P(CAT|CAN) 

�  :�  /B(CAT) 

�  :�  /B(CAN) 

HMM 

Figure 2.4: Search space represented by a WFST. There are only two words in the vocabulary. The
language model is bigram. Each WFST transition x : y/ω has three attributes. x is an input
symbol representing a triphone or biphone label. y is an output label representing a word.
Labels can be ε, which are empty labels. ω is the weight representing the language model
probability P (.) or the back-off weight B(.). Each triphone or biphone label is modelled by
an HMM.

Like the lexical tree approach, token-passing can be performed during the search for

the optimal word sequence. However, since the WFST approach is a static expansion

approach, there is no need to compare the word histories when two tokens meet at an

HMM state.
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The first step for constructing the entire search space in one WFST is to represent each

knowledge source by a constituent WFST. Then, these constituent WFSTs are combined

into one integrated WFST using the composition algorithm [36, 35, 50]. The knowledge

sources include sub-word context-dependency, lexical knowledge and language model. The

fully expanded WFST can be very large, especially when the language model is complex.

Therefore, optimization algorithms, for example, determinization, weight-pushing and

minimization, are performed on the integrated WFST in order to reduce the number of

WFST states and transitions to a minimum [36, 35]. More details on these algorithms

will be presented in Chapter 3 where we introduce a WFST-based decoder called Juicer,

which is the underlying recognition engine in our proposed embedded ASR system.

There are two main advantages in the WFST approach. First, the decoder design is

simple because all the knowledge sources have been integrated into one compact WFST.

The knowledge sources are decoupled from the Viterbi search and therefore the decoder

does not need to perform any combination of knowledge sources during decoding. For

example, the decoder does not need to check the N-gram histories of the tokens during

the Viterbi search. The second advantage is that the fully integrated transducer can

be further optimized by algorithms, such as, determinization, minimization and weight-

pushing. These optimization algorithms remove redundancy, for example, redundant

HMM states, in the search space. It decreases the number of tokens residing in the search

space, which makes the recognizer run faster.

2.7 Search algorithm

With the search space represented in a network of HMM states, the speech recognizer can

now perform a search algorithm for finding the optimal word sequence. There are two

main types of search algorithms, namely time-synchronous search and time-asynchronous

search.

2.7.1 Time-synchronous search

In time-synchronous search, the decoder iterates through all the tokens in the search

space at each time step (speech frame). The tokens propagate through the search space

according to the Viterbi algorithm. All the tokens finish their propagation before entering

into the next time step. It is a breadth-first search.

In practice, it is infeasible if there is a token in every HMM state. The number of

tokens that need to be propagated would be too large for the decoder. Therefore, pruning

is essential for practical applications with the cost of introducing search errors. One of

the common pruning techniques is called beam pruning [44, 43]. At each time step, the
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maximum score amongst all the tokens is found. Then, a pruning threshold is determined

by subtracting a certain value called the pruning beamwidth from the maximum score. If

the score of a token is above the pruning threshold, the token remains active. Otherwise,

the token is discarded. This approach is called time-synchronous Viterbi beam search.

Another common pruning technique is called histogram pruning [58]. In this technique,

the number of active tokens is kept within a certain limit. At each time step, the tokens

are sorted by their scores. The decoder only allows the top N tokens to propagate. Other

tokens are deactivated.

Figure 2.5 describes the pseudocode of the time-synchronous Viterbi beam search

algorithm.

Algorithm 1 Time-synchronous Viterbi beam search

1: /* Q̃t is a set of HMM states having a token at time t */
2: Q̃1 ← Qword−start

3: scorei,1 ← 0 for all i ∈ Q̃1

4:
5: for t = 1 to T do
6: ot ← Feature extraction(Framet)
7:
8: max score ← max(scorei,t) for all i ∈ Q̃t

9: pruning threshold ← max score− pruning beamwidth
10: Q̃t+1 ← {}
11:
12: for all i ∈ Q̃t do
13: if scorei,t > pruning threshold then
14: log emis prob ← Emission prob calc(ot, i)
15: V ← V iterbi search(log emis prob, i, t)
16: Q̃t+1 ← Q̃t+1 ∪ V
17: end if
18: end for
19: end for
20:
21: Q ← Q̃T+1 ∩Qword−end

22: best token ← argmax
i∈Q

(scorei,T+1)

Figure 2.5: Pseudocode of time-synchronous Viterbi beam search

Line 2 and 3 are some initializations. In Line 2, a token is put to each HMM state

at the start of each word. Qword−start is a set of word-starting HMM states. Q̃1, which is

basically the same as Qword−start, is a set of HMM states that have a token at t = 1. The

score of each token is reset in Line 3.

After the initialization, the algorithm begins to process each frame of speech. In Line

6, an acoustic feature vector, ot, is generated by feature extraction for each speech frame.
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Then, the pruning threshold is set in Line 8 and 9.

After feature extraction and setting the pruning threshold, the algorithm iterates

through all the HMM states that have a token (Line 12 - 18). If the token stays above

the pruning threshold, the emission probability of that state is calculated (Line 14). For

computational efficiency, emission probability is calculated in the logarithmic domain.

Hence, multiplication of probabilities becomes addition of log probabilities. Once the

emission probability is calculated, Viterbi search is performed on that particular HMM

state (Line 15). Token propagation takes place during this process. It returns a set of

new HMM states, V , which contain new tokens after token-passing. The new tokens are

accumulated in another set, Q̃t+1, which is prepared for the next speech frame.

Once all the speech frames have been processed, the best token is found amongst all

the word-end HMM states denoted by Q (Line 21 - 22). The best token records its path

from which the word transcription can be determined.

Figure 2.6 shows the pseudocode of the V iterbi search() function. The for-loop it-

erates through all the succeeding states of i (Line 2 - 9). For each succeeding state,

new score is calculated by summing the score at i, the log emission probability and the

transition weight from i to i suc. The transition weight can either be the HMM transition

probability for within-HMM transitions or the WFST transition weight for cross-HMM

transitions. If new score is greater than the score at i suc, the new score will update the

score at i suc (Line 5). The path record of the original token at i suc is replaced by the

path record at i (Line 6). The function returns a set of HMM states, V , which contain

new tokens (Line 7 and 10).

Algorithm 2 V ← V iterbi search(log emis prob, i, t)

1: V ← {}
2: for all i suc states that succeeds State i do
3: new score ← scorei,t + log emis prob + trans weight(i, i suc)
4: if new score > scorei suc,t+1 then
5: scorei suc,t+1 ← new score
6: pathi suc,t+1 ← pathi,t

7: V ← V ∪ {i suc}
8: end if
9: end for

10: return V

Figure 2.6: Pseudocode of the Viterbi search function

2.7.2 Time-asynchronous search

In time-asynchronous search [27, 47], there is no need to propagate all the tokens before

entering into the next time step. The decoder maintains a stack of tokens, which are
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sorted by the scores. The most promising token is pursued until the end of the speech.

In other words, the tokens do not need to have the same time reference. It is a depth-

first approach. The advantage of this approach is that the decoder does not require to

propagate the unpromising tokens. However, the disadvantage is that it is difficult to

decide which token to propagate, since the decision also relies on the part of the speech

utterance that has not been decoded yet. Besides, pruning is non-trivial because the

tokens have path records of different lengths. As a result, the scores of the tokens cannot

be directly compared.

2.8 Performance metrics

ASR systems are evaluated mainly on two performance metrics - word accuracy and

timing performance. The accuracy of an ASR system is measured by word accuracy rate,

which is defined by the following equation [63].

Word accuracy rate (%) =
N − S −D − I

N
× 100% (2.42)

where N is the total number of words; S is the number of word substitutions; D is the

number of word deletions and I is the number of word insertions. In some literature, word

error rate is used instead of word accuracy rate.

Word error rate (%) = 100%−Word accuracy rate (%) (2.43)

The timing performance is measured by real-time factor. The following equation deter-

mines the real-time factor.

Real-time factor =
Decoding time

Speech duration
(2.44)

It can be seen that an ASR system is a faster system when its real-time factor is smaller.

A real-time factor of 1 suggests that the time required for recognition is equal to the

duration of the input speech.

2.9 Summary

In this chapter, the decoding problem is described. The building blocks of a typical

ASR system are presented. It explains different search space representation and search

strategies. This chapter also mentions the performance metrics used for system evaluation.



3
WFST-based speech recognizer

As the first step towards developing an embedded ASR system, we start with a WFST-

based speech recognizer called Juicer, which has run successfully on desktop platforms

[41, 42]. In this chapter, the theory of WFST is briefly described. It is then followed by

an overview of Juicer.

3.1 WFST theory

A weighted finite state transducer (WFST) is a finite state automaton consisting of states

and transitions [36, 35]. Each transition has an input label, an output label and an

associated weight. Figure 3.1 illustrates an example of a WFST.
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Figure 3.1: An example of a WFST
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Each transition is denoted by x : y/ω, where x is the input symbol, y is the output

symbol and ω is the transition weight. A symbol can be an ε symbol, which represents an

empty symbol. The bold circle is the initial state of the WFST, whereas the double-lined

circle is the final state. Both states have an associated weight. The following paragraph

gives the mathematical definition of a WFST [36].

Definition of WFST A weighted finite state transducer, T , over a semiring K is an

8-tuple T = (Σ, ∆, Q, I, F, E, λ, ρ), where

• Σ is the input alphabet

• ∆ is the output alphabet

• Q is a set of states

• I is a set of initial states: I ⊆ Q

• F is a set of final states: F ⊆ Q

• E is a set of transitions: E ⊆ Q× (Σ ∪ {ε})× (∆ ∪ {ε})×K×Q

• λ is the initial weight function: λ : I → K

• ρ is the final weight function: ρ : F → K.

Referring to Figure 3.1, the input alphabet consists of four symbols {a, b, c, d} and the

output alphabet has two symbols {m,n}. There are five states and seven transitions in

the WFST. State 0 is the initial state with a weight of 0.0 and State 4 is the final state

with a weight of 0.6.

In the definition of WFST, a term called semiring is mentioned. A semiring is a set

K equipped with two binary operations (⊕ and ⊗) and two identity elements (0̄ and 1̄).

A semiring satisfies the following four criteria [36].

• (K,⊕, 0̄) is a commutative monoid: For all k ∈ K, k ⊕ 0̄ = 0̄⊕ k = k.

• (K,⊗, 1̄) is a monoid: For all k ∈ K, k ⊗ 1̄ = 1̄⊗ k = k.

• ⊗ distributes over ⊕.

• 0̄ is an annihilator for ⊗: For all k ∈ K, k ⊗ 0̄ = 0̄⊗ k = 0̄.

The semiring defines a set of mathematical operations on the weights of the WFST.

Suppose there is a path, π, which starts from an initial state, i, and ends at a final state,

f , of the WFST. The path maps an input symbol sequence x ∈ Σ∗ to an output symbol

sequence y ∈ ∆∗, where the asterisks indicate that there are at least one symbols in the

sequences. Let us further assume that the path consists of N transitions denoted by
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(e1, e2, ..., eN). The path weight, w(π), is the ⊗-product of the initial state weight, the

weights of the constituent transitions and the final state weight.

w(π) = λ(i)⊗ w(e1)⊗ w(e2)⊗ ...⊗ w(eN)⊗ ρ(f) (3.1)

If there is more than one path that maps the sequence x to y, the weight of this sequence

mapping, [T ](x, y), is the ⊕-sum of all the associated paths.

[T ](x, y) =
⊕

π∈P (I,x,y,F )

w(π) (3.2)

where P (I, x, y, F ) is a set of paths, which map x to y starting from an initial state to a

final state of the WFST.

Depending on the type of the semiring, the functionality of a WFST is different.

Table 3.1 lists some common semirings used in WFST. For speech recognition, tropical

semiring is often used. The weights of the transitions represent negative log probabilities

(weight = − log(probability)). The ⊗ operation corresponds to addition of the negative

log probabilities. The ⊕ operation finds the minimum negative log probability (that is,

the maximum positive log probability), which is essentially the Viterbi operation.

Semiring K ⊕ ⊗ 0̄ 1̄

Boolean {0, 1} ∨ ∧ 0 1
Probability R+ + × 0 1
Log R ∪ {−∞, +∞} ⊕log + +∞ 0
Tropical R ∪ {−∞, +∞} min + +∞ 0

Table 3.1: Common semirings used in WFST. ∨ and ∧ are logical-or and logical-and operators respec-
tively. R denotes the real number set. ⊕log is de�ned as x⊕logy = − log(exp(−x)+exp(−y)).

One of the reasons why WFSTs are widely used in many applications is because there

exists a set of WFST algorithms that can help represent different kinds of knowledge

sources in a compact and optimal manner. Here are some of the WFST algorithms.

Composition Composition involves combination of two WFSTs into one integrated

WFST [36, 35, 50]. Suppose T1 is the first transducer mapping a sequence x to

y and T2 is the second transducer mapping the sequence y to z. The integrated

WFST after composition, denoted by T1 ◦ T2, maps the sequence x (which is the

input sequence of T1) to z (which is the output sequence of T2). The weight of the

mapping is the ⊗-product of the weights of the two constituent mappings. If there

are more than one intermediate sequences y in the mapping of x to z, the weight is
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the ⊕-sum of all the intermediate mappings.

[T1 ◦ T2](x, z) =
⊕

y

[T1](x, y)⊗ [T2](y, z) (3.3)

Figure 3.2 illustrates a graphical example of WFST composition, T1 ◦ T2, over the

tropical semiring. The states of T1 ◦ T2 are labelled with a (S1, S2) pair, where S1

and S2 are the state indices of T1 and T2 respectively. As shown in the figure, it

can be seen that the output symbols of T1 are matched with the input symbols of

T2. The weights are semiring-multiplied (⊗). For example, the transition a : e/0.2

of T1 is combined with e : m/0.2 of T2 since e is the common symbol. The weight

after composition is 0.4 because 0.2⊗ 0.2 = 0.4 for the tropical semiring.
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Figure 3.2: Composition of T1 and T2 over the tropical semiring.

Determinization A WFST is deterministic if there is only one unique initial state and

no two transitions leaving any state have the same input label [36, 35]. Determiniza-

tion, denoted by det(T ), is the algorithm which makes T deterministic. Figure 3.3

illustrates the determinization process. As shown in the figure, the transducer T is

non-deterministic since there are two transitions, which share the same input label

a, leaving the initial state. After determinization, the two transitions are replaced

by one transition. The new weight is the ⊕-sum of the two weights. If the original

weight is different from the new weight, the difference will be “pushed” backwards

towards subsequent transitions. For example, the d : ε/0.1 transition in T becomes

d : ε/0.2 since there is a remaining weight of 0.1 from a : m/0.2 after determinization.

The resultant transducer is deterministic. Determinization removes redundancy in

a non-deterministic transducer.
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Figure 3.3: Determinization of T over the tropical semiring

Weight-pushing Weight-pushing refers to the algorithm which “pushes” the transition

weights towards the initial state as much as possible [39]. There are two reasons

for performing weight-pushing. The first reason is to allow the weights to be in-

corporated as early as possible, which helps improve the pruning efficiency. This is

similar to the idea of language model lookahead as discussed in Section 2.6.1. The

second reason is that weight-pushing is an essential step before performing another

WFST optimization algorithm called minimization. Figure 3.4 shows the process of

weight-pushing over the tropical semiring. The weights of T are pushed towards the

initial state. One point to note is that weight-pushing does not change the weight

of any path. It only re-distributes the weights along a path.
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Figure 3.4: Weight-pushing of T over the tropical semiring

Minimization Minimization, denoted by min(T ), is an algorithm which reduces the

number of states and transitions of a WFST to a minimum [36, 35]. In order to

successfully perform minimization, weight-pushing is often needed to be carried

out first. After weight-pushing, any sub-paths with the same input/output symbol

sequences and weights are combined. Figure 3.5 shows the process of minimization.
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On the left-hand side, the transducer is a deterministic WFST after weight-pushing.

It can be seen that the last four transitions pointing towards the final state can

actually be combined into two pairs of transitions. Minimization further removes

redundancy in a WFST.
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Figure 3.5: Minimization of WFST

3.2 Static WFST composition

In ASR applications, each knowledge source is represented by a WFST. Table 3.2 shows

a list of knowledge sources typically used in an ASR system. Each WFST shown in the

table maps an input symbol sequence to an output symbol sequence with an associated

weight. For example, the language model WFST maps a sequence of words to the same

sequence of words with the N-gram probability as the weight of the mapping.

Knowledge source Input symbol Output symbol Weight

Language model /
Word Word

N-gram
grammar (G) probability

Lexicon (L)
Context-independent

Word
Pronunciation

sub-word unit probability
Context- Context-dependent Context-independent

-
dependency (C) sub-word unit sub-word unit
HMM HMM state Context-dependent HMM transition
topology (H) emission distribution sub-word unit probability

Table 3.2: Knowledge sources in a typical ASR system. Negative log probabilities are used as weights
if the semiring is log or tropical.

These knowledge sources are integrated into one WFST by the composition algorithm.

The integrated transducer is further optimized by determinization, weight-pushing and

minimization to generate a compact search space. As discussed in Section 2.6.2, this
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approach is a static approach since the search space is fully expanded offline. There is

no need to further expand the search space during decoding. Static integration of the

WFSTs can be expressed as follows [38].

T = πε(min(det(H̃ ◦ det(C̃ ◦ det(L̃ ◦G))))) (3.4)

In the equation, the .̃ symbol means that the WFST is augmented with auxiliary symbols

which are necessary for the success of determinization. Generally, if the L transducer

contains homophones, L ◦ G is not determinizable. Homophones are words with the

same sequence of context-independent (CI) sub-word units. For example, both “red” and

“read” have the same CI sequence /r eh d/. In order to distinguish them, a distinct

auxiliary symbol is added to each of the homophones. In this example, the CI sequences

of “red” and “read” become /r eh d #0/ and /r eh d #1/ respectively. The other two

WFSTs, C and H, are also modified to accept the newly-introduced auxiliary symbols.

After composition and optimization, the πε operation replaces the auxiliary symbols by ε

symbols. The final transducer T is a fully integrated transducer, which maps HMM state

sequences to word sequences.

In some decoder implementation, the H transducer is not composed with the other

WFSTs. Instead, only C, L and G are composed [40, 19].

T = πε(min(det(C̃ ◦ det(L̃ ◦G)))) (3.5)

where T maps a sequence of context-dependent (CD) sub-word units to a sequence of

words. During decoding, a CD symbol is substituted by its corresponding HMM, as

previously shown in Figure 2.4.

3.3 Overview of Juicer

Juicer is a software package consisting of two main parts [41, 42]. The first part is for

WFST generation. Specifically, the software tools provided by the Juicer package generate

three WFSTs (C, L and G) from various knowledge sources, which include HMM defini-

tion (for generating C), pronunciation dictionary (for generating L) and language model

(for generating G). Based on Equation (3.5), the three constituent WFSTs are composed

into one fully-integrated WFST, which is further optimized by determinization, weight-

pushing and minimization. For WFST composition and optimization, Juicer relies on

third-party tools such as AT&T FSM Library [37] and MIT FST Toolkit [24]. The second

part of the software package is a WFST-based time-synchronous speech recognizer. At

the initialization stage, the fully-integrated WFST search space and the HMM definition

are loaded into the recognizer. During decoding, acoustic features are inputted to the
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recognizer.

In the original implementation of Juicer, the recognizer decodes speech utterances

based on acoustic features that are obtained from third-party tools, such as Hidden

Markov Model Toolkit (HTK) [63]. In order to develop a complete ASR system, we have

implemented a feature extraction module that works with the Juicer recognizer. The

feature extraction module converts audio speech samples to a sequence of mel frequency

cepstral coefficients (MFCC).

3.4 Summary

In this chapter, we introduce a WFST-based speech recognizer called Juicer, which has

run successfully in many ASR experiments on the desktop environment. The theory of

WFST is discussed. We also briefly describe how Juicer generates the WFST search space

for decoding. In the following chapters, we will develop an embedded ASR system based

on Juicer. We will investigate any enhancements required for building an ASR system on

the target embedded platform.



4
Fixed-point speech recognition system

For desktop applications, speech recognition algorithm often uses floating-point arith-

metic. However, in many embedded systems, a hardware floating-point processing unit

is absent. Hence, it is necessary to consider a fixed-point implementation of the speech

recognizer and evaluate its performance in terms of recognition accuracy and decoding

speed.

A typical speech recognition system involves processing numerical data with different

dynamic ranges. In order to minimize the quantization error, it is essential to assign differ-

ent precision formats to different data types. In this chapter, we propose a framework for

converting data formats from floating-point to fixed-point. The speech recognition algo-

rithm is partitioned into three sub-tasks, namely, feature extraction, emission probability

calculation and Viterbi search. The algorithm of each sub-task is presented, followed by

a framework for data format conversion.

4.1 Feature extraction

4.1.1 Algorithm

The purpose of feature extraction is to transform a speech signal into a sequence of

acoustic feature vectors. One of the commonly used feature extraction algorithms is mel

frequency cepstral coefficients (MFCC) [17]. Figure 4.1 shows the flow diagram of the

37
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MFCC algorithm.
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Figure 4.1: Flow diagram of MFCC

The individual parts of the MFCC algorithm are described as follows.

Pre-emphasis Raw speech samples are filtered by a pre-emphasis filter, which is a high-

pass FIR filter. In (4.1), s̆t+1 and st are the filtered speech sample and the raw

speech sample at time t + 1 and t respectively. α is the filter coefficient. Typical

value of α is 0.97.

s̆t+1 = 1.0− αst (4.1)

Hamming windowing A speech frame of N samples is extracted from the filtered sig-

nal. The speech frame is multiplied by a Hamming window function. Equation

(4.2) shows the process of Hamming windowing at time t. In the equations, s̃t+n is

the Hamming-windowed speech sample and hn is the Hamming window weighting

coefficient. The duration of the Hamming window is the same as the speech frame.

s̃t+n = hns̆t+n 0 ≤ n < N

hn = 0.54− 0.46 cos

(
2πn

N

)
0 ≤ n < N (4.2)
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FFT The frequency spectrum, Sk, is found by performing FFT on the windowed speech

frame, s̃t+n, where 0 ≤ k < K and K is the number of FFT points. The frame is

zero-padded if N < K. The basic operations of FFT are multiplication by twiddle

factors, Wtwiddle, and summation of intermediate results [51].

Power spectrum The frequency spectrum is squared to obtain the power spectrum, Yk,

for 0 ≤ k < K
2
.

Yk = |Sk|2 0 ≤ k <
K

2
(4.3)

Mel filter bank The power spectrum is filtered by a series of triangular filters located

logarithmically along the frequency axis. The output of the mth mel filter, Xm, is

expressed in (4.4), where Fm,k is the frequency response of the mth filter at frequency

index k. The total number of mel filters in the filter bank is M . Typical value of

M is 26.

Xm =

K
2
−1∑

k=0

Fm,kYk 0 ≤ m < M (4.4)

Logarithm The logarithms of the mel filter outputs, log Xm for 0 ≤ m < M , are taken.

DCT and Liftering DCT is performed on the log mel filter outputs, which are subse-

quently weighted by the liftering coefficients. The final results are Dstatic MFCC

coefficients. Typically, 13 coefficients (Dstatic = 13) are calculated. Equations (4.5)

to (4.7) demonstrate the DCT and liftering operations. In the equations, o(d) is the

dth MFCC coefficient, ld is the liftering coefficient and L is a constant with a typical

value of 22. The weighting coefficients, wm,d, combines the liftering coefficient with

the DCT coefficient.

o(d) =
M−1∑
m=0

log(Xm)wm,d 0 ≤ d < Dstatic (4.5)

wm,d = ld

√
2

M
cos

[
πd

M
(m + 0.5)

]
0 ≤ d < Dstatic; 0 ≤ m < M (4.6)

ld = 1 +
L

2
sin

(
πd

L

)
0 ≤ d < Dstatic (4.7)

The MFCC coefficients calculated from the above procedure are known as static co-

efficients. Temporal correlation between static features is modelled by first-order and

second-order dynamic features. As discussed in Section 2.2, delta and delta-delta coeffi-

cients are concatenated with the static coefficients to constitute a feature vector, which
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is denoted by the following expression.

ot =
[
o
(0)
t , o

(1)
t , ..., o

(D−1)
t

]
(4.8)

where D is the dimension of the feature vector. Typically, a feature vector consists of

39 coefficients (D = 39). Amongst the 39 coefficients, there are 13 static, 13 delta and

13 delta-delta coefficients. The t subscript in (4.8) indicates the time index at which

the feature vector is calculated. The final stage of feature extraction is cepstral mean

variance normalization (CMVN), where the mean and the variance of each coefficient are

normalized to 0 and 1 respectively.

4.1.2 Feature extraction with fixed-point formats

Table 4.1 shows the data types and their fixed-point formats within the feature extraction

sub-task.

Stage Data type Notation Fixed-point format

Pre-emphasis Raw speech st Q15.0
Pre-emphasis filter coefficient α Q0.15
Pre-emphasized speech s̆t Q16.15

Hamming Hamming window function hn Q1.14
windowing Hamming-windowed speech s̃t Q(31-f ).f
FFT Twiddle factor Wtwiddle Q1.14

Frequency spectrum Sk Q(31-f ).f
Power spectrum Power spectrum Yk Q(63-2f ).2f
Mel filter bank Mel filter frequency response Fm,k Q1.f

Mel filter output Xm Q(63-2f +5).(2f -5)
Logarithm Logarithm of mel filter outputs log Xm Q5.10
DCT and Combined DCT and liftering coeff. wm,d Q2.13

Liftering MFCC features o
(d)
t Q11.20

Table 4.1: Fixed-point formats of various data types in the MFCC algorithm

The following paragraphs describe how the fixed-point formats are derived.

Pre-emphasis The raw speech samples in this study are 16-bit signed integers. Thus,

their formats are Q15.0. The filter coefficient, α, is 0.97. We express α in 16-bit

Q0.15 format. The raw speech sample is multiplied by α. Therefore, the filtered

speech samples are in 32-bit Q16.15 formats.

Hamming windowing The range of the Hamming window function, hn, is between

0.08 and 1.00 inclusive. Hence, its format is Q1.14. According to (4.2), the pre-

emphasized speech samples are multiplied by the Hamming window function. As a
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result, the Hamming-windowed speech samples are in Q18.29 formats. To reduce

the number of bits involved in subsequent computation, these speech samples are

truncated to 32 bits. Experiments are performed to decide how many bits can be

truncated in order to demonstrate the least degradation in recognition accuracy.

The results are shown in Section 4.4. In the general form, the Hamming-windowed

speech samples are in Q(31-f ).f formats, where f is the number of fractional bits

after truncation.

FFT The real and imaginary parts of the twiddle factors are between -1 and 1 inclusive

and thus Q1.14 formats are used. Multiplication by the twiddle factors increases

the number of fractional bits by 14. In order to keep the frequency spectrum,

Sk, in 32-bit Q(31-f ).f format, the least significant 14 bits are truncated from the

intermediate product after each multiplication operation.

Power spectrum Squaring the frequency spectrum doubles the number of fractional

bits. The power spectrum is therefore in 64-bit Q(63-2f ).2f format.

Mel filter bank As shown in (4.4), the power spectrum is multiplied by the frequency

response of the mel filter. To keep the product, Fm,kYk, in 64-bit, the least significant

f bits of Yk are first truncated before multiplication. Since Fm,k are in Q1.f formats,

the formats of Fm,kYk are the same as those of Yk. The summation in (4.4) can

increase a maximum of 5 integer bits (see Appendix A). Hence, before summation,

the least significant 5 bits of Fm,kYk are truncated to leave enough bits in order

to avoid possible overflows. The final mel filter outputs, Xm, are in 64-bit Q(63-

2f +5).(2f -5) formats.

Logarithm The logarithm of Xm, log(Xm), is represented by a 16-bit Q5.10 number,

which is wide enough to cover the range of Xm after the logarithm is taken.

DCT and Liftering The range of wm,d can be determined by considering the ranges of

ld,
√

2/M and cos(.), which are about (2.57, 12.00), 0.28 and (-1, 1) respectively.

Combining all these together, the range of wm,d is (-3.36, 3.36), which can be rep-

resented by a 16-bit Q2.13 format. The format of the product, log(Xm)wm,d, is

therefore Q8.23. Summation in Equation (4.5) can increase at most 3 more integer

bits (see Appendix B). To avoid possible overflows, the least significant 3 fractional

bits of the intermediate products, log(Xm)wm,d, are truncated before summation.

The formats of the MFCC features, o(d), have 3 fewer fractional bits and thus in

32-bit Q11.20 formats.

The final two stages of feature extraction are finding the dynamic features and CMVN.

The precision formats of the delta and delta-delta coefficients after CMVN are kept the
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same as the static coefficients. All the coefficients in a feature vector are in 32-bit Q11.20

formats.

4.2 Emission probability calculation

4.2.1 Algorithm

In our implementation, Gaussian mixture models (GMM) are used for modelling the emis-

sion probability distributions. In Section 2.3.5, HMM/GMM ASR systems have already

been discussed. In this section, the details on implementation are presented. Given an

observation feature vector ot, the emission probability function in an HMM state j is

modelled by a sum of weighted Gaussian mixtures.

bj(ot) =
M∑

m=1

bjm(ot)

=
M∑

m=1

cjmN (ot, µjm,Σjm)

=
M∑

m=1

cjm
1

(2π)
D
2 |Σjm| 12

exp

[
−1

2

(
ot − µjm

)T
Σ−1

jm

(
ot − µjm

)]
(4.9)

where bjm(ot) is the probability density function of the weighted mth Gaussian mixture.

The mean vector and the co-variance matrix of the Gaussian mixture are denoted by

µjm and Σjm respectively. Since the coefficients of a feature vector are assumed to be

independent, Σjm is a diagonal matrix. The total number of Gaussian mixtures is M per

HMM state. The weight of the mth Gaussian mixture is cjm.

In practice, it is more convenient to express bjm(ot) and bj(ot) in their logarithmic

forms since multiplication of probabilities becomes addition in the logarithmic domain.

Due to the assumption that the co-variance matrix is diagonal, the logarithm of a weighted

Gaussian mixture can be expressed by the following equation.

log bjm(ot) = Cjm + gjm +
D−1∑

d=0

(
o
(d)
t − µ

(d)
jm

)2

v
(d)
jm (4.10)

where µ
(d)
jm is the dth dimension of the µjm mean vector. Cjm, v

(d)
jm and g

(d)
jm are constants

defined as follows.

Cjm = log cjm (4.11)
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v
(d)
jm =

−1

2
(
σ

(d)
jm

)2 (4.12)

gjm = −1

2

(
D log(2π) +

D−1∑

d=0

log
(
σ

(d)
jm

)2
)

(4.13)

The symbol
(
σ

(d)
jm

)2

is the dth feature variance, which is the dth diagonal element of the

co-variance matrix.

The log emission probability, log bj(ot), can be evaluated recursively by the following

equation.

log bj(ot) = ((log bj1(ot)⊕ log bj2(ot))⊕ log bj3(ot))⊕ ...⊕ log bjM(ot) (4.14)

where the ⊕ symbol represents the log-add operator having the following definition.

x⊕ y = log(exp(x) + exp(y)) (4.15)

4.2.2 Emission probability with fixed-point formats

Table 4.2 shows the various data types and their fixed-point formats during the calculation

of the emission probabilities.

As discussed in Section 4.1.2, the MFCC features are in 32-bit Q11.20 formats. In

order to reduce the number of bits in subsequent calculations, each feature coefficient is

truncated to 16 bits. Since the dynamic range of each coefficient is different, a separate

quantizer is built for each coefficient [9]. As shown in (4.10), the Gaussian mixture mean

is subtracted from the MFCC features. Therefore, they have the same fixed-point format.

The dynamic range of each mean component, denoted by Rµ(d) , is expressed as follows.

Rµ(d) =

(
min

j∈Q,1≤m≤M
µ

(d)
jm, max

j∈Q,1≤m≤M
µ

(d)
jm

)
0 ≤ d < D (4.16)

Each Gaussian mixture in the entire set of HMM states, Q, is examined for determining

the dynamic ranges of the mean components. A 16-bit fixed-point format is found for

each Rµ(d) . The fixed-point formats should have a maximum number of fractional bits.

Additionally, they should be able to accommodate their corresponding Rµ(d) dynamic

ranges. The fixed-point formats are represented by Q(15-ed).ed, where ed is the number

of fractional bits for the dth mean component.

Similarly, the dynamic ranges of v
(d)
jm are found for each dimension. The fixed-point

formats are represented by Q(15-id).id, where id is the number of fractional bits for the
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Data type Notation Fixed-point format

MFCC features
o
(d)
t Q11.20

(before truncation)
MFCC features

o
(d)
t Q(15-ed).ed(after truncation)

Mixture mean µ
(d)
jm Q(15-ed).ed

Constant v
(d)
jm Q(15-id).id

Distance from mean o
(d)
t − µ

(d)
jm Q(15-ed).ed

Squared distance from mean (
o
(d)
t − µ

(d)
jm

)2
Q(31-2ed).2ed(before truncation)

Squared distance from mean (
o
(d)
t − µ

(d)
jm

)2
Q(31-2ed).(2ed − 16)

(after truncation)
Scaled squared distance (

o
(d)
t − µ

(d)
jm

)2

v
(d)
jm

Q(47-2ed − id).(2ed + id − 16)
(before truncation)
Scaled squared distance (

o
(d)
t − µ

(d)
jm

)2

v
(d)
jm

Q(15-p).p
(after truncation)

Log Gaussian mixture weight Cjm Q(15-p).p

Constant gjm Q(15-p).p

Log weighted Gaussian mixture log bjm(ot) Q(15-p).p

Log emission probability log bj(ot) Q(15-p).p

Table 4.2: Fixed-point formats of various data types in the GMM emission probability calculation

dth component.

Rv(d) =

(
min

j∈Q,1≤m≤M
v

(d)
jm, max

j∈Q,1≤m≤M
v

(d)
jm

)
0 ≤ d < D (4.17)

Table 4.3 shows the fixed-point formats of µ
(d)
jm (also applied to o

(d)
t ) and v

(d)
jm for each

of the 39 dimensions. These formats are determined by examining all the HMM states

trained using the training data set of the Resource Management (RM1) corpus [52].

Since the fixed-point formats of o
(d)
t and µ

(d)
jm are the same, they share the same formats

as
(
o
(d)
t − µ

(d)
jm

)
. Squaring

(
o
(d)
t − µ

(d)
jm

)
doubles the number of fractional bits. To keep

it in 16-bit, the least significant 16 bits are truncated. After that, multiplication by v
(d)
jm

increases the number of the fractional bits by id. Each
(
o
(d)
t − µ

(d)
jm

)2

v
(d)
jm term has its own
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d
µ

(d)
jm v

(d)
jm

Q(15-ed).ed Q(15-id).id

0 Q6.9 Q0.15
1 Q6.9 Q0.15
2 Q6.9 Q0.15
3 Q6.9 Q0.15
4 Q6.9 Q0.15
5 Q6.9 Q0.15
6 Q6.9 Q0.15
7 Q6.9 Q0.15
8 Q6.9 Q0.15
9 Q5.10 Q0.15
10 Q5.10 Q0.15
11 Q5.10 Q0.15
12 Q7.8 Q0.15
13 Q5.10 Q2.13
14 Q4.11 Q2.13
15 Q4.11 Q2.13
16 Q4.11 Q2.13
17 Q4.11 Q2.13
18 Q4.11 Q2.13
19 Q4.11 Q2.13

d
µ

(d)
jm v

(d)
jm

Q(15-ed).ed Q(15-id).id

20 Q4.11 Q2.13
21 Q4.11 Q2.13
22 Q4.11 Q2.13
23 Q4.11 Q2.13
24 Q3.12 Q3.12
25 Q5.10 Q2.13
26 Q3.12 Q5.10
27 Q3.12 Q5.10
28 Q3.12 Q5.10
29 Q3.12 Q5.10
30 Q3.12 Q5.10
31 Q3.12 Q5.10
32 Q3.12 Q5.10
33 Q3.12 Q4.11
34 Q3.12 Q5.10
35 Q3.12 Q5.10
36 Q2.13 Q5.10
37 Q2.13 Q5.10
38 Q3.12 Q4.11

Table 4.3: Fixed-point formats of µ
(d)
jm and v

(d)
jm for each of the 39 dimensions. These formats are

determined by examining all the HMM states trained using the RM1 corpus.

fixed-point format denoted by Q(47 − 2ed − id).(2ed + id − 16), which are 32-bit. It is

required to convert each term to the same fixed-point format before summation as shown

in Equation (4.10). It is also obvious from the equation that the same fixed-point format

should be adopted to Cjm, gjm and log bjm(ot) since the arithmetic operation is addition.

Furthermore, log bj(ot) and log bjm(ot) should follow the same format because they are log

probabilities. The common fixed-point format of these parameters is denoted by Q(15-

p).p, where p is determined from experiments in order to achieve minimum degradation

in recognition accuracy. The experimental results are shown in Section 4.4. Table 4.2

summarizes the fixed-point formats discussed in this section.
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4.3 Viterbi search

4.3.1 Algorithm

The Viterbi search algorithm has already been discussed in Section 2.3.3. In this section,

we focus on the implementation details of the algorithm. In practice, probabilities are

converted to their logarithmic forms since multiplication of probabilities becomes addition

in the logarithmic domain. The Viterbi likelihood as defined in Equation (2.17) can be

expressed as follows in the logarithmic domain.

log Vt(i) = max
qt−1
1

log P (ot
1, q

t−1
1 , qt = i|W n

1 , Θa) (4.18)

Similarly, the initialization and the recursion of the Viterbi algorithm as shown in Equa-

tions (2.18) and (2.19) can be converted to their logarithmic forms.

log V1(i) = log πi + log bi(o1) 1 ≤ i ≤ Ω (4.19)

log Vt(j) = max
1≤i≤Ω

[log Vt−1(i) + log aij] + log bj(ot) 1 ≤ j ≤ Ω (4.20)

In our implementation of the speech recognizer, a WFST transition is a higher level repre-

sentation of a sub-word HMM, as discussed in Section 2.6.2. Language model probabilities

are incorporated into the search network as WFST transition weights. When a token is

leaving from a sub-word HMM and entering into a new sub-word HMM, it is the same as

entering into a new WFST transition under the WFST paradigm. The log weight of the

new transition is added to the Viterbi likelihood.

log Vt(j) = max
1≤i≤Ω

[log Vt−1(i) + log zij] + log bj(ot) 1 ≤ j ≤ Ω (4.21)

where zij is the WFST weight of the new transition. State j is the first state of the HMM

on the new WFST transition, whereas State i is the last state of the HMM on the previous

WFST transition.

4.3.2 Viterbi search with fixed-point formats

Table 4.4 shows the fixed-point formats of the various data types in the Viterbi algorithm.

As shown in (4.19), (4.20) and (4.21), the arithmetic operations on these data types

are additions. Therefore, they share the same fixed-point formats as the log emission

probability.
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Data type Notation Fixed-point format

Log emission probability log bj(ot) Q(15-p).p
Log initial state probability log πi Q(15-p).p
Log HMM transition probability log aij Q(15-p).p
Log WFST transition weight log zij Q(15-p).p
Log Viterbi likelihood log Vt(i) Q(15-p).p

Table 4.4: Fixed-point formats of various data types in the Viterbi search

4.4 Recognition accuracy

The framework of floating-point to fixed-point conversion has been presented in the pre-

vious sections. In the framework, there are two design variables. They are:

• Fixed-point format of the Hamming-windowed speech samples in feature extraction.

The format is 32-bit Q(31-f).f . See Table 4.1.

• Fixed-point format of the log probabilities, which include the log emission probabil-

ities, log HMM transition probabilities, log WFST weights and other related terms,

etc. The format is denoted by 16-bit Q(15-p).p. See Table 4.2 and 4.4.

The values of the design variables are determined empirically by experiments. The

task under test is the Resource Management (RM1) task [52]. The number of words in

the vocabulary is 993. Triphone or biphone HMM models with 3 emitting states and 4

Gaussian mixtures per emitting state are trained on 2880 utterances. Acoustic features

are 39-dimensional MFCCs with the zeroth coefficient plus their delta and delta-delta

coefficients. The features are extracted from 25ms speech frames with 10ms frame shift.

The language model is word-pair grammar (bigram). The recognizer is tested using 1200

utterances. Both floating-point and fixed-point implementations of Juicer are tested.

Table 4.5 shows the word accuracy rate over a range of f and p. By examining the

average accuracy in the rightmost column, it shows that the fixed-point system achieves a

higher average word accuracy rate when f is between 11 and 13. Similarly, in the bottom

row, the average word accuracy rate is higher than the others when p is either 3 or 4.

The maximum word accuracy rate achieved is 93.33% when (f, p) is (13, 3) or (11, 3). For

this task, the fixed-point system does not show any degradation in recognition accuracy.

In fact, the maximum word accuracy rate of the fixed-point system is slightly greater

than the floating-point system. We choose (f, p) = (13, 3) as the precision formats of the

fixed-point system.

The framework proposed in this chapter can be applied to other speech recognition

tasks. The two design variables, namely f and p, can be determined empirically from

the test set of a particular speech recognition task. The optimal values of these variables
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Fixed-point system
Q(31-f).f Q(15-p).p

Q10.5 Q11.4 Q12.3 Q13.2 Q14.1 Average
Q16.15 92.78 92.86 92.82 92.74 92.76 92.79
Q17.14 93.23 93.23 93.26 93.21 93.12 93.21
Q18.13 93.28 93.29 93.33 93.22 93.20 93.26
Q19.12 93.26 93.31 93.26 93.15 93.27 93.25
Q20.11 93.28 93.30 93.33 93.22 93.15 93.26
Average 93.17 93.20 93.20 93.11 93.10

Floating-point (32-bit) system: 93.09%

Table 4.5: Word accuracy rate (%) versus the two design variables, f and p, of the �xed-point imple-
mentation of Juicer. The word accuracy rate of the �oating-point implementation is also
shown. The test set consists of 1200 utterances from the RM1 corpus.

can be found by choosing the combination which demonstrates the greatest word accuracy

rate. When these variables are chosen, the fixed-point formats of all the data types can be

determined subsequently according to the framework. Specifically, one can follow Table

4.1 to 4.4 to determine the precision format of all the data types in the ASR algorithm.

4.5 Summary

In this chapter, we start from a floating-point implementation of the speech recognizer

called Juicer, which normally runs on a desktop platform. Since many embedded platforms

do not have a floating-point processing unit, a performance analysis on a fixed-point

speech recognizer is necessary. A framework of floating-point to fixed-point conversion

is proposed. There are two design variables, which determine the precision of the data

types in the framework. The two design variables are found empirically by performing an

experiment on the RM1 task. The combination of the design variables with the highest

word accuracy rate is chosen. For the RM1 task, the fixed-point implementation does

not show any degradation in recognition accuracy. In fact, the word accuracy rate of the

fixed-point system is slightly higher than that of the floating-point system. The proposed

framework for finding the fixed-point precision format can be applied to other speech

recognition tasks.



5
Pure software-based system

To evaluate the real-time performance of different implementations, a pure software-based

speech recognizer is developed as the baseline system. The recognizer software is directly

ported onto the target platform. Both the floating-point and the fixed-point versions of

the recognizer are considered. In this chapter, the architecture of the embedded target

platform is first introduced. It is then followed by a timing profile of the speech recognizer.

5.1 Target platform - Altera Nios II processor

The target platform is based on Altera Nios II processor, which is a softcore embedded

processor [3]. In contrary to a hardcore processor, a softcore processor allows designers to

configure the processor core to suit their application needs. A softcore processor is often

described in hardware description language (HDL), which can be synthesized on an FPGA

device. In addition, the softcore processor-based approach enables designers to develop

the entire system by integrating the processor core with various types of peripherals

on a programmable chip (system-on-a-programmable-chip or SOPC). Besides standard

peripherals, custom peripherals can also be built. Therefore, a softcore processor-based

system offers a flexible platform for hardware-software co-design.

The development board used in this study is Altera Nios II Development Board, Stratix

II Edition [2]. The FPGA device is Stratix II EP2S60F672C5ES. The board includes 1MB

SRAM and 16MB SDRAM for off-chip memory storage. The system clock frequency is

49
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120MHz.

5.2 System architecture

Figure 5.1 illustrates the architecture of the embedded platform for the pure software

baseline system. It is a simple system consisting of a Nios II processor, an SRAM interface

and an SDRAM controller, which are connected to the Avalon bus [4]. These intellectual

property (IP) blocks are instantiated and downloaded onto the FPGA device.

 

Avalon bus 

Nios II 

processor 

SRAM SDRAM 

SRAM 

interface 

SDRAM 

controller 

FPGA 

Off-chip 
components 

Figure 5.1: Architecture of the embedded platform for implementing the pure software-based speech
recognizer

Off-chip memories, for example, SRAM and SDRAM, are connected to their corre-

sponding interfaces. The Nios II processor accesses the external memories by first com-

municating with the memory interfaces via the Avalon bus. The memory interfaces then

generate all the necessary signals for transferring data to and from the external memory

chips.

The machine code of the recognizer and all the data structures including the HMM

parameters, WFST topology and weights, etc, are stored in the off-chip memories. There

are two main reasons for this configuration. First, the size of the internal memory on

the FPGA device is simply insufficient for storing all the data structures. Second, this

architecture is flexible and extendable to larger vocabulary tasks. If the recognizer requires

more memory for larger vocabulary tasks, a simpler and more economical way is to connect

larger off-chip memories around the FPGA instead of replacing the original FPGA with a

larger device. The underlying architecture and the IP blocks of the system on the FPGA

need not to be changed.
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5.3 Timing profile

The aim of building a timing profile is to find out where the timing bottleneck is in the

speech recognition algorithm. The source code of the speech recognizer is compiled and

downloaded to the target platform. The source code is the same as the one tested on

the desktop system as described in Chapter 4. It does not use any specialized machine

instructions or software routines of the target processor. This ensures that the timing

profile obtained here applies to other embedded platforms as well.

A speech utterance from the RM1 corpus is chosen for profiling. The speech recognition

algorithm is partitioned into three sub-tasks, namely, feature extraction, GMM emission

probability calculation and Viterbi search. The amount of elapsed time in each sub-

task is recorded. Table 5.1 shows the timing profile of the pure software-based speech

recognizer running on the Nios II platform. Both the floating-point and the fixed-point

implementations of the recognizer software are tested on Nios II. The duration of the

speech utterance is 2.515s.

Floating-point Fixed-point
Time(s) % Time(s) %

MFCC feature extraction 1.88 4.45 0.34 7.23
GMM calculation 34.29 81.24 3.24 68.94
Viterbi search 6.04 14.31 1.12 23.83
Total time 42.21 100.00 4.70 100.00
Real-time factor 16.78 1.87

Table 5.1: Timing pro�le of running the pure software-based speech recognizer on the Nios II platform.
Both the �oating-point and the �xed-point versions are considered. The speech utterance
duration is 2.515s.

The first point to note from the timing profile is that decoding is much faster in

the fixed-point system than the floating-point system. According to the timing profile,

the float-point system requires 42.21s for decoding the speech utterance, whereas the

fixed-point system only requires 4.70s. The fixed-point system is about 9 times faster

than the floating-point system. The timing profile shows that GMM emission probability

computation is the major computational bottleneck. For the fixed-point system, about

69% of the decoding time is spent on GMM computation. Viterbi search accounts for

about 24% of the total decoding time. Feature extraction is the least computationally

intensive. About 7% of the decoding time is spent on it. Thus, design effort should focus

on reducing the time spent on GMM computation.

An extended experiment is carried out to examine the timing performance of the fixed-

point speech recognizer. In this experiment, the entire test set of the RM1 corpus, which

consists of 1200 utterances, is tested on the Nios II platform. The real-time factor of each
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speech utterance is found. Figure 5.2 shows the experimental result. From the figure, it

can be seen that the real-time factor of most of the speech utterances is above 1. The

average real-time factor is 1.874, which suggests that the decoding time is about 1.874

times the speech duration on average. This fixed-point pure software-based system does

not meet the real-time constraint.
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Figure 5.2: Real-time factor of 1200 utterances in the pure software-based �xed-point system. The
utterances are from the test set of the RM1 corpus. Pruning beamwidth = 170.

To further analyze the experimental results, another timing measure is introduced. It

is called time delay, which is the time difference between the speech duration and the

decoding time.

Time delay = Decoding time− Speech duration (5.1)

A positive time delay means that the decoding time is longer than the speech duration.

Its magnitude is the amount of time needed to wait for the recognizer output after the

speech is uttered. For practical applications, it is desirable to build a system, which can

generate the word transcription instantly after the speech is uttered. Therefore, a system

is a better system when the time delay is getting closer to 0. A negative time delay means

that the decoding time is shorter than the speech duration. It suggests that the word

transcription can be generated instantly after the speech is uttered. Figure 5.3 depicts the
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time delay of each utterance. Most of the speech utterances have a positive time delay.

The average time delay is 2.889s. There is a need for further improvement to achieve

real-time performance.
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Figure 5.3: Time delay (in seconds) of 1200 utterances in the pure software-based �xed-point system.
Pruning beamwidth = 170.

5.4 Summary

In this chapter, a pure software-based speech recognizer is developed on the Nios II

platform. The first part of this study is to compare the timing performance between

the floating-point implementation and the fixed-point implementation. The experimental

results on the RM1 task show that the fixed-point system is about 9 times faster than the

floating-point system. The second part of this study is to build a timing profile for the

fixed-point system. The results indicate that the pure software-based approach cannot

meet the real-time constraints. For the same RM1 task, the real-time factors of most of the

speech utterances are greater than 1. Another observation from the timing profile is that

the most computationally intensive part of the algorithm is the GMM computation. In

order to achieve real-time performance, it is necessary to speed up the GMM computation.



6
Hardware-software co-processing

system

To reduce the decoding time, the computation of GMM emission probabilities is separated

from the software and implemented in a hardware accelerator.

6.1 System architecture

Figure 6.1 illustrates the architecture of the hardware-software co-processing system. A

GMM hardware accelerator is included in the architecture. The hardware accelerator is

connected to the Avalon bus. The communication protocol between the accelerator and

other modules in the system follows the Avalon bus specification [4]. Hence, the hardware

accelerator is a portable IP block, which can be instantiated in other Nios II systems. The

accelerator is described in VHDL.

The Nios II processor acts as the control unit of the entire co-processing system.

The algorithms of feature extraction and Viterbi search are described in software and

run by the Nios II processor. When the system needs to perform an emission probability

calculation, the processor instructs the hardware accelerator to carry out the computation.

Once the calculation has finished, the processor retrieves the result from the hardware

accelerator.

54
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Figure 6.1: System architecture of the hardware-software co-processing recognizer with the GMM
hardware accelerator

6.2 GMM emission probability hardware accelerator

6.2.1 Datapath

The GMM hardware accelerator calculates the log emission probability of an observation

vector given an HMM state. The algorithm has been discussed in Section 4.2.1. The log

emission probability of an observation vector given the mth Gaussian mixture of an HMM

state j is shown below.

log bjm(ot) = Cjm + gjm +
D−1∑

d=0

(
o
(d)
t − µ

(d)
jm

)2

v
(d)
jm (6.1)

In the equation, o
(d)
t is the dth dimension of the observation vector at time t. D is

the dimension of the observation vector, which is typically equal to 39. µ
(d)
jm is the dth

dimension of the µjm mean vector. Cjm, v
(d)
jm and gjm are constants defined as follows.

Cjm = log cjm (6.2)

v
(d)
jm =

−1

2
(
σ

(d)
jm

)2 (6.3)

gjm = −1

2

(
D log(2π) +

D−1∑

d=0

log
(
σ

(d)
jm

)2
)

(6.4)

where cjm is the mixture weight of the mth Gaussian. The symbol
(
σ

(d)
jm

)2

is the dth

feature variance, which is the dth diagonal element of the co-variance matrix.

The log emission probability, log bj(ot), can be evaluated recursively by the following
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equation.

log bj(ot) = ((log bj1(ot)⊕ log bj2(ot))⊕ log bj3(ot))⊕ ...⊕ log bjM(ot) (6.5)

The ⊕ symbol represents the log-add operator, which has the following definition and

approximation.

x⊕ y = log(exp(x) + exp(y))

≈





y z < −16

y + log(1 + exp(z)) −16 ≤ z < 0

x + log(1 + exp(−z)) 0 ≤ z < 16

x z ≥ 16

(6.6)

where z = x − y. The number 16 in the above equation serves as a threshold, which

is determined empirically by experiments. This approximation does not decrease the

recognition accuracy. When |z| is greater than the threshold, the difference between

exp(x) and exp(y) is large enough to just consider only the greater number. The log(1 +

exp(.)) function can be calculated off-line and stored in a look-up table. The |z| value can

be used as the look-up index of the table.

Figure 6.2 illustrates the implementation of the arithmetic unit. At the top, there

are 39 parallel computation units. Each one is responsible for one dimension of the

observation vector. The results from the 39 units are summed by the parallel adder

block. To ensure a large degree of parallelism, the structure of the parallel adder block

is similar to an inverted binary tree. After that, gjm and Cjm are added to the sum,

which gives log bjm(ot) as expressed in (6.1). The accelerator is designed in a pipelined

fashion with pipeline registers in between each arithmetic operation. This design allows

the GMM parameters (µ
(d)
jm, v

(d)
jm, gjm and Cjm) to be “pumped” into the datapath in

consecutive clock cycles. As a result, the log bjm(ot) of each individual Gaussian mixture

is outputted consecutively. The log-add unit collects all the log bjm(ot) and calculates

log bj(ot) according to (6.5) and (6.6).

Figure 6.3 shows the datapath of the log-add unit. The first stage is to find the absolute

difference between the two operands. In the second stage, the look-up table stores the

value of the log(1 + exp(.)) function, which is indexed by the absolute difference. It is

found that the look-up table requires only 128 16-bit entries. The number of entries is

determined as follows. It is shown in Equation (6.6) that the threshold is 16. Since the

precision format of the log probability is Q12.3 as discussed in Section 4.4, it only needs

to store 16×23 = 128 entries. If the absolute difference is greater than or equal to 16, the

most significant 8 bits (Bit 15 to 7) will not be all zeros. In this case, the multiplexer selects
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Figure 6.2: Arithmetic unit of the GMM hardware accelerator. The GMM parameters (µ(d)
jm, v

(d)
jm, gjm

and Cjm) are �pumped� into the datapath in consecutive clock cycles. The log emission
probability of each Gaussian mixture, log bjm(ot), is passed to the log-add unit consecu-
tively. The �nal output of the log-add unit is log bj(ot). Number of clock cycles at each
stage is also shown.

the constant zero instead of the look-up value. Otherwise, the value of the log(1+exp(.))

function is retrieved from the table and passed to the third stage, where the final output

is the log-add sum of the two operands. This unit receives log bjm(ot) from the previous

datapath and accumulates the log-add sum of all the Gaussian mixtures.

The number of clock cycles required in each stage of operation is shown in Figure 6.2

and 6.3. Since the inputs of the log-add unit are registered, it takes 4 cycles for each log-

add operation. For 4 Gaussian mixtures, the log-add unit performs 3 log-add operations

and therefore requires 12 cycles. The total number of clock cycles required for calculating

bj(ot) is 23.

Memory bandwidth is one of the major issues in an embedded system. As shown in

Figure 6.2, the parameters of a Gaussian mixture (µ
(d)
jm, v

(d)
jm, gjm and Cjm) need to be pre-

sented to the datapath in each clock cycle in order to avoid any pipeline stalls. Given that

the parameters are 16-bit data, it requires to transfer 160 bytes of data to the hardware

accelerator per clock cycle. Two main techniques for reducing the memory bandwidth
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Figure 6.3: Datapath of the log-add unit. It performs the x ⊕ y operation, where ⊕ is the log-add
operator. The result can be passed back to one of the input operands for recursive log-add
operations. This unit accumulates the log probability of each Gaussian mixture, log bjm(ot),
and computes the log probability of all the Gaussian mixtures, log bj(ot).

requirement have been suggested in other literature [31, 62]. The first technique is to

adopt a cache inside the hardware accelerator. The purpose of the cache is to store the

recently-used model parameters on the FPGA chip instead of reading them from the slow

off-chip memory. The disadvantage of this technique is that it requires a large cache in

order to observe any useful caching. According to [62], caching only starts to take place

when the cache size is increased to 256KB, which is about 40% of the total amount of

acoustic parameters. The high percentage of acoustic data that is needed to be cached

on the FPGA chip makes the design infeasible for larger vocabulary tasks.

Another technique is to store the acoustic parameters of the N most probable HMM

states inside the hardware accelerator [62]. An offline profiling is carried out on the

test speech data for finding the N most probable HMM states. This technique suffers

similar drawbacks as the first technique. It still requires to store a relatively large amount

of acoustic parameters on the FPGA device. Furthermore, the HMM state occupancy

statistics is based on the test speech data. In practice, access pattern of the HMM states

is highly dependent on the topic of the dialogue. Thus, the statistics collected from the

test speech data is not highly representative.

In our proposed system, the acoustic parameters are stored in the off-chip memory

modules (SRAM and SDRAM). The hardware accelerator retrieves the parameters from

these memory modules when a calculation is requested. To alleviate the memory band-

width problem, the hardware accelerator adopts a double-buffering scheme. Figure 6.4
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illustrates the hardware accelerator with double-buffering. There are two buffers for stor-

ing the HMM parameters inside the accelerator. Each buffer contains the acoustic pa-

rameters of an HMM state. While the arithmetic unit is reading data from one of the

buffers, another buffer is receiving the acoustic parameters of the next HMM state that

is needed for calculation from the off-chip memories. By using this scheme, data retrieval

and arithmetic operations are running in parallel. In addition, the hardware accelerator

only needs to store the parameters of two HMM states, which are about 1280 bytes on the

FPGA chip. Observation vector only needs to be loaded once for each speech frame. The

size of the observation vector buffer is 78 bytes. Compared with [62], this architecture is

independent of the total amount of acoustic parameters in the entire system. It makes

the hardware accelerator a portable IP block that can be included in other systems for

different vocabulary tasks. Moreover, in our proposed system, there is no assumption on

the HMM state occupancy statistics. There is no need to perform any offline profiling.
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Figure 6.4: Double-buffering inside the GMM hardware accelerator. The arithmetic unit is reading from
one buffer while another buffer is retrieving HMM parameters from off-chip memories.

6.2.2 Timing profile

Table 6.1 shows the timing profile of a speech utterance tested on both the pure software-

based system and the hardware-software co-processing system. The speech utterance is

the same utterance that has been tested previously in Section 5.3. Only the fixed-point

implementation is considered since the decoding time is much shorter than the floating-

point implementation.

The GMM hardware accelerator greatly shortens the time for GMM computation. It

reduces from 3.24s in the pure software-based system to 0.03s in the co-processing system.

The speed-up is about 108 times. The total decoding time reduces from 4.70s to 1.49s.

The real-time factor improves from 1.87 to 0.59, which is well below 1.00.
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Pure SW-based HW-SW
co-processing

Time(s) % Time(s) %
MFCC feature extraction 0.34 7.23 0.34 22.82
GMM calculation 3.24 68.94 0.03 2.01
Viterbi search 1.12 23.83 1.12 75.17
Total time 4.70 100.00 1.49 100.00
Real-time factor 1.87 0.59

Table 6.1: Timing pro�le of the pure software-based and the hardware-software co-processing speech
recognizer. Data formats are �xed-point. The speech duration is 2.515s.

The hardware-software co-processing system is tested on the entire test set of the

RM1 corpus consisting of 1200 utterances. Figure 6.5 compares the real-time factor

per utterance between the pure software-based system and the hardware-software co-

processing system.
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Figure 6.5: Real-time factor of 1200 utterances in two different systems: Pure software-based system
versus Hardware-software co-processing system. Pruning beamwidth = 170.

The average real-time factor improves from 1.874 to 0.618. The speed-up is about

3.03 times. The average real-time factor of the hardware-software co-processing system is

below 1, which suggests that the decoding time is shorter than the speech duration. The

word transcription of a speech utterance can be generated instantly after the utterance

has just finished. To study the absolute time difference, the time delay of each utterance

is shown in Figure 6.6.
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Figure 6.6: Time delay (in seconds) of 1200 utterances in two different systems: Pure software-based
system versus Hardware-software co-processing system. Pruning beamwidth = 170.

The average time delay reduces from 2.889s to −1.274s. In the pure software-based

system, most of the speech utterances have a positive time delay. In contrast, most of

the utterances tested on the hardware-software co-processing system have a negative time

delay and therefore meet the real-time constraints. The co-processing system significantly

improves the timing performance.

6.2.3 Resource usage

Table 6.2 shows the resource usage of the GMM hardware accelerator. Adaptive Logic

Module (ALM) is the building block of a Stratix II FPGA device. Hardware multipliers

are also embedded on a Stratix II FPGA. The GMM accelerator consumes 44.1% of the

total available ALMs and 59.7% of all the DSP 18-bit × 18-bit multipliers.

Units %
Adaptive Logic Module (ALM) 10660 (44.1%)
DSP 18-bit×18-bit multiplier 86 (59.7%)

Table 6.2: Resource usage of the GMM hardware accelerator. The device is Stratix II
EP2S60F672C5ES FPGA.
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6.3 Adaptive pruning

In Section 6.2, a hardware-software co-processing architecture with a GMM emission

probability hardware accelerator is presented. The co-processing system demonstrates a

significant improvement on the decoding speed. Figure 6.5 and Figure 6.6 show that out

of the 1200 utterances in the RM1 corpus, about 94.08% of them have a real-time factor

of less than 1. In this section, we aim at further increasing this percentage.

In general, the real-time factor of each utterance is different. It is because the number

of active HMM states (or tokens) is different for different utterances. Beam pruning

controls the number of active states by setting a probability threshold [44, 43]. If there

are no clear winning HMM states, the active states will have similar likelihood scores.

There will be a large number of active states above the pruning threshold. The recognizer

will then need more time to iterate through the entire set of active states.

One method for lowering the number of active states is to adopt a tighter pruning

beamwidth. In this case, the number of active states above the pruning threshold will

be smaller. However, it will introduce search errors, which often decrease the recognition

accuracy. Our goal is to reduce the decoding time of those utterances that have a real-

time factor of greater than 1, while keeping the recognition accuracy of other utterances.

In order to fulfil our goal, an adaptive pruning scheme is proposed. In this scheme, the

pruning beamwidth is adaptive according to the number of active HMM states.

6.3.1 Algorithm

Figure 6.7 shows the pseudocode of the speech recognition algorithm with adaptive prun-

ing. In the beginning, the beamwidth is initialized to a value (Line 4). Before token-

passing, the algorithm modifies the pruning beamwidth according to the number of active

tokens, n(Q̃t). If the number of tokens is greater than a threshold, Nupper, it means

that the recognizer needs to go through a relatively large number of active states during

token-passing. A tighter beamwidth is necessary. The beamwidth is decreased by a certain

amount denoted by δ (Line 11 - 12). However, if the number of active tokens is smaller

than another threshold, Nlower, the workload for the recognizer is small. Therefore, if the

beamwidth is tightened previously, it will be relaxed and its value will be increased by δ

(Line 13 - 16). The rest of the algorithm is the same as the one shown in Figure 2.5.

The proposed pruning scheme is more flexible than the narrow and fixed pruning

scheme. During decoding of an utterance, the number of active tokens is time-varying.

The fixed pruning scheme applies a tight beamwidth throughout the entire utterance

regardless of the number of active tokens. On the other hand, the adaptive pruning

scheme allows relaxation of the beamwidth when the workload becomes less heavy. It

introduces fewer search errors than the narrow and fixed beam pruning scheme.



6.3 Adaptive pruning 63

In terms of implementation, the proposed scheme is simpler than another pruning

technique called histogram pruning [58]. In histogram pruning, the recognizer only allows

at most N number of active tokens to stay in the search space. If there are more tokens

than the allowable limit, the N most probable tokens will remain active. Other tokens will

be pruned. Implementing histogram pruning requires a sorted list of the token scores. For

each token, the recognizer needs to perform an insertion sort. It needs to search for the

token’s ranking in a sorted list of the previously-recorded token scores. Maintaining the

tokens in a sorted order is computationally intensive. In contrast, the adaptive pruning

scheme is simpler. It only requires to record the number of active tokens and a few

decision-making statements (if-statements) for adjusting the beamwidth at the end of

each speech frame (Line 11 - 17).
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Algorithm 3 Speech recognition algorithm with adaptive beam pruning

1: /* Q̃t is a set of HMM states having a hypothesis at time t */
2: Q̃1 ← Qword−start

3: scoreq,1 ← 0 for all q ∈ Q̃1

4: pruning beamwidth ← original pruning beamwidth
5:
6: for t = 1 to T do
7: ot ← Feature extraction(Framet)
8:
9: max score ← max(scoreq,t) for all q ∈ Q̃t

10:
11: if n(Q̃t) > Nupper then
12: pruning beamwidth ← pruning beamwidth− δ
13: else if n(Q̃t) < Nlower then
14: if pruning beamwidth < original pruning beamwidth then
15: pruning beamwidth ← pruning beamwidth + δ
16: end if
17: end if
18:
19: pruning threshold ← max score− pruning beamwidth
20: Q̃t+1 ← {}
21:
22: for all q ∈ Q̃t do
23: if scoreq,t > pruning threshold then
24: log emis prob ← Emission prob calc(ot, q)
25: V ← V iterbi search(log emis prob, q, t)
26: Q̃t+1 ← Q̃t+1 ∪ V
27: end if
28: end for
29: end for
30:
31: Q ← Q̃T+1 ∩Qword−end

32: best hypothesis ← argmax
q∈Q

(scoreq,T+1)

Figure 6.7: Speech recognition algorithm with adaptive beam pruning
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6.3.2 Timing profile

Figures 6.8 and 6.9 illustrate the real-time factor and the time delay of the co-processing

system respectively. Fixed beam pruning and adaptive beam pruning are compared. The

beamwidth is held constant at 170 for the fixed beam pruning scheme. In adaptive beam

pruning, the original beamwidth variable is also set to 170. The thresholds, Nlower and

Nupper, are 1900 and 2300 respectively. The beamwidth adjustment value is 10 (δ = 10).

These parameters are determined empirically.
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Figure 6.8: Real-time factor of 1200 utterances in Hardware-software co-processing system: Adaptive
beam pruning versus Fixed beam pruning.

Adaptive beam pruning reduces the number of utterances having a real-time factor

above 1. In the fixed beam pruning scheme, about 94.08% of the utterances have a real-

time factor below 1. When the adaptive beam pruning scheme is used, this percentage

increases to 99.75%. Only 3 out of 1200 utterances have a real-time factor above 1.

Compared with the fixed beam pruning scheme, there is a small degradation in recognition

accuracy. The word accuracy rate decreases from 93.33%, as observed in Section 4.4, to

93.16% when the adaptive pruning scheme is adopted. We have also tried to tighten the

adaptive pruning scheme by adjusting Nupper and Nlower to smaller values (Nupper = 1700,

Nlower = 1250), so that the real-time factors of all the utterances are below 1. The word

accuracy rate reduces to 92.62%.
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Figure 6.9: Time delay (in seconds) of 1200 utterances in Hardware-software co-processing system:
Adaptive beam pruning versus Fixed beam pruning.

6.4 Performance evaluation

Table 6.3 compares the performance of our proposed system with other existing systems.

Our proposed system belongs to the hardware-software co-processing system category.

Two versions of our system are shown. One version is the system with fixed beam pruning.

Another version is the one with adaptive beam pruning.

The first observation is that the clock frequency of the pure software-based systems is

higher than the systems in the other two categories. This is mainly because algorithmic

parallelism is possible in both pure hardware-based systems and hardware-software co-

processing systems. Hence, the number of clock cycles required for performing a task is

greater in pure software-based systems. As a result, a higher clock frequency is needed.

On the other hand, pure hardware-based systems and hardware-software co-processing

systems can run the same task in lower clock frequency, which is a clear advantage over

the pure software-based systems.

The first performance metric is word accuracy rate. As shown in the table, the word

accuracy rate of our proposed system is within the range of other published systems.

Our proposed system performs better than PocketSphinx [26] and In Silico Vox [32, 33]

systems. For the AT&T system [9], the recognition accuracy is slightly better than our

proposed system. However, in their publication, it shows that the acoustic features are

stored in files. The StrongARM platform accesses the acoustic feature files from a PC
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System CPU/Platform
Clock Word Real-time

frequency accuracy factor
(MHz) rate (%)

Pure software-based system
PocketSphinx [26] StrongARM 206 86.05 0.87
AT&T [9] StrongARM 206 ≈ 94 1.00
Pure hardware-based system

In Silico Vox [32, 33]
Dedicated design on

50 89.10 2.30Xilinx Virtex-II Pro
XC2VP30 FPGA

Speech Silicon [57]
Dedicated design on

100 N/A N/AXilinx Virtex-4
XCE4VSX35 FPGA

Hardware-software co-processing system

Seoul National
University [31, 62]

MicroBlaze on
100 96.201 N/AXilinx Virtex-4

XC4VSX35 FPGA
Our proposed
system with
fixed beam
pruning

Nios II on

120 93.33 0.62
Altera Stratix II

EP2S60F672C5ES
FPGA

Our proposed
system with
adaptive
beam pruning

Nios II on

120 93.16 0.54
Altera Stratix II

EP2S60F672C5ES
FPGA

1The test set contains only 300 utterances.

Table 6.3: Performance of recently developed embedded speech recognition systems and our pro-
posed systems on the 993-word RM1 task

via an Ethernet link. It suggests that the acoustic features may not be generated by

the StrongARM platform. Their timing profile may not include the time for feature

extraction. Therefore, in order to achieve a real-time factor of 1.00 including also feature

extraction, their system may need a tighter beamwidth than the one suggested in the

publication. The actual word accuracy rate will be lower if a tighter beamwidth is applied.

For the Seoul National University [31, 62] system, the word accuracy rate is higher than

other existing systems. In spite of that, the test set of their experiments contains only

300 utterances, whereas there are 1200 test utterances in our experiments. Thus, there is

no direct comparison in terms of word accuracy rate.

The second performance metric is real-time factor. From the table, it shows that

the real-time factor of our proposed system is better than other reported systems. The

average real-time factor of our system is well below 1.00. This is necessary since each

utterance has a different real-time factor. As illustrated in Figure 6.8, there is a range of
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real-time factors within the entire corpus. It is better to have an average real-time factor

well below 1.00 so that the real-time factors of most of the speech utterances are below

1.00.

Our proposed system is a hardware-software co-processing system. It is worthwhile

to compare our system with the Seoul National University system [31, 62], which is also

under the same category. Here is a list of major differences. Some of them have been

discussed in Section 6.2.

• To deal with the memory bandwidth issue, the GMM accelerator in [31, 62] uses an

internal cache to store the recently accessed HMM parameters. Their study shows

that caching only starts to take place when the cache size is increased to 256KB,

which is about 40% of the total amount of acoustic parameters. This makes the

design infeasible for larger vocabulary tasks. Our system adopts a double-buffering

scheme, in which the GMM accelerator retrieves the parameters of the next HMM

state from off-chip memory in the background while performing calculation of the

current HMM state. The amount of parameters that is required to be stored inside

the accelerator is kept to minimum. This scheme avoids any pipeline stalls and

makes the accelerator a portable IP block for larger vocabulary tasks.

• Their second solution to the memory bandwidth issue is to store the parameters

of the N most probable HMM states inside the GMM accelerator. To find the N

most probable HMM states, another experiment is carried out to record the access

pattern from the test set of the corpus. In practical applications, the access pattern

is related to the topic of the current conversation and therefore varies in different

situations. Thus, the access pattern observed from the test set can be very different

from the practical situations. In our approach, we do not make any assumptions on

the access pattern of the HMM parameters.

• In their design of the GMM accelerator, there is only one pipeline for calculating

one dimension of a Gaussian mixture. In our proposed system, we further explore

parallelism in GMM calculation and include 39 parallel pipelines for calculating the

39 dimensions of a Gaussian mixture simultaneously.

• In their system, there are two hardware accelerators - a GMM accelerator and a

Viterbi accelerator. In our system, there is only one GMM accelerator, which deals

with the most computationally intensive part of the algorithm. The timing profile

suggests that this architecture is sufficient for our target application.

• The real-time factor of their system is not shown, whereas we have shown the real-

time factor of our proposed system in detail.
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6.5 Summary

In Chapter 5, we have shown that the pure software-based fixed-point recognizer does

not meet the real-time constraint on the Nios II platform. It shows that GMM emis-

sion probability calculation is the major computational bottleneck. In this chapter, a

hardware-software co-processing system, in which a hardware accelerator is designed to

speed up the GMM computation, is proposed.

The hardware accelerator uses double-buffering to retrieve the acoustic parameters

from off-chip memory and calculates the emission probability in parallel. In the RM1

experiments, the word accuracy rate is 93.33% and the average real-time factor is 0.62,

which is about 3 times faster than the pure software-based system. About 94.08% of

all the test utterances in the RM1 corpus have a real-time factor below 1.00. To further

increase this percentage, an adaptive beam pruning algorithm is developed. The algorithm

applies tighter pruning when the number of active hypotheses exceeds a certain threshold.

For the same RM1 task, the word accuracy rate is 93.16%. The real-time factor further

reduces to 0.54. The percentage of the utterances which have a real-time factor smaller

than 1.00 increases to 99.75%.

The performance of the proposed co-processing system is compared with other reported

systems. The recognition accuracy of our system is within the range of the other systems.

In terms of the decoding speed, the real-time factor of our system is smaller (better) than

those of the other systems. In this chapter, we have also mentioned the major differences

between our proposed system and [31, 62] which also adopts a hardware-software co-

processing approach.
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Dynamic composition of WFST

7.1 Motivation

In Section 2.6.2, the weighted finite state transducer (WFST) approach for search space

representation is described. In the application of WFST in ASR, the idea is to represent

each individual knowledge source by a WFST and fully integrate them into a unified

WFST by the composition algorithm [36, 35, 50]. The search space is fully expanded.

The composition of knowledge sources is a one-off process and is done offline. Therefore

it is often referred to static composition.

There are two main advantages with the static approach. First, the decoder design

is simple because all the knowledge sources are integrated into one compact WFST. The

knowledge sources are decoupled from the Viterbi search and therefore the decoder does

not need to perform any combination of knowledge sources during decoding. The second

advantage is that the fully integrated transducer can be further optimized by algorithms,

such as, determinization, minimization and weight-pushing [36, 35].

Despite the above advantages, there are several drawbacks with the static approach.

They include:

• It does not allow on-line modification of knowledge sources once they have been

fully integrated.

• The composition and optimization of the fully integrated WFST has prohibitively

70
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high memory requirement when the constituent WFSTs are large and complex.

• The size of the fully integrated WFST can be very large, resulting in large memory

requirement during decoding.

One way of addressing these issues is to perform dynamic transducer composition dur-

ing decoding. Instead of representing the entire search space by an optimized transducer,

it is possible to factorize the search space into two or more transducers. These component

transducers are built statically and optimized separately. The combination is done dy-

namically during decoding. In this dynamic approach, on-line modification of knowledge

sources is allowed. For example, by factoring out the language model transducer from

the search space, the ASR system can update and adapt the language model probabilities

during its operation.

In this chapter, we investigate several existing dynamic composition approaches and

propose our improved algorithm, which avoids the creation of non-coaccessible transi-

tions, performs weight look-ahead and does not impose any constraints to the topology

of component WFSTs. The chapter is organized as follows. Section 7.2 briefly describes

static WFST composition and how a fully integrated WFST is generated. Section 7.3

gives a general overview on current approaches to dynamic WFST composition. Section

7.4 describes our dynamic composition algorithm. Experimental results on different com-

position methods are shown in Section 7.5. Finally, Section 7.6 summarizes the findings.

7.2 Static WFST composition in ASR

In Chapter 3, the theory of static WFST composition has already been discussed. Static

WFST composition involves integrating all the knowledge sources into one WFST. It can

be represented by the following expression [38].

T = πε(min(det(H̃ ◦ det(C̃ ◦ det(L̃ ◦G))))) (7.1)

In the above expression, H̃ represents the HMM topology; C̃ is a WFST which maps

context-dependent phones to context-independent phones; L̃ is the lexicon WFST and G

is the language model (LM) WFST. The symbol ◦ is the composition operator. Transducer

optimization algorithms, for example determinization and minimization, are represented

by det and min operators respectively. The .̃ symbol means that the WFST is augmented

with auxiliary symbols which are necessary for the success of transducer optimization.

The πε operation replaces the auxiliary symbols by ε (null) symbols. The final transducer

T is a fully integrated transducer which maps HMM state sequences to word sequences.

Figure 7.1 illustrates an example of WFST composition, L̃ ◦ G, over the tropical

semiring. The states of L̃ ◦ G are labelled with a (S1, S2) pair, where S1 and S2 are the
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state indices of L̃ and G respectively. The composition algorithm starts from the initial

states of both WFSTs. Any ε-output transitions of L̃ and any ε-input transitions of G

are treated as “free-entries”, which do not need to match with any other transitions. For

example, the two transitions from state 0 of L̃ are ε-output transitions. In G, the ε : ε/0.1

transition is an ε-input transition. Without the need to match with other transitions,

these transitions are copied to the L̃ ◦G transducer.
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Figure 7.1: Static composition of L̃ ◦ G over the tropical semiring. In L̃, #1 and #2 are the auxiliary
word-end markers.

The idea behind composition is to match the output symbols of L̃ with the input

symbols of G. Figure 7.2 shows the pseudocode of the composition algorithm. The aim

of the algorithm is to determine a set of transitions emanating from state (S1, S2) of the

composed WFST. The first step is to duplicate all the “free-entries” transitions to the

composed WFST. These transitions include ε-input transitions from S2 (Line 2-9) and

ε-output transitions from S1 (Line 11-16). The dest() function finds the destination state

of a transition. The new state variable stores the destination state of the newly composed

transition. Duplication of ε-input transitions from S2 is allowed only when S1 is an anchor

state. This avoids redundant duplication of these transitions in the composed WFST [50].

In the example, the initial state of L̃ is the anchor state.
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Algorithm 4 composed trans set ← WFST composition(S1, S2)

1: composed trans set ← {}
2: if S1 is an anchor state (initial state) then
3: for all ε-input transitions, trans2, emanating from state S2 do
4: new trans ← trans2
5: new state ← (S1, dest(trans2))
6: new trans with dest ← (new trans, new state)
7: composed trans set ← composed trans set ∪ {new trans with dest}
8: end for
9: end if

10:
11: for all ε-output transitions, trans1, emanating from state S1 do
12: new trans ← trans1
13: new state ← (dest(trans1), S2)
14: new trans with dest ← (new trans, new state)
15: composed trans set ← composed trans set ∪ {new trans with dest}
16: end for
17:
18: for all non-ε-output transitions, trans1, emanating from state S1 do
19: for all non-ε-input transitions, trans2, emanating from state S2 do
20: if out sym(trans1) == in sym(trans2) then
21: new weight ← weight(trans1)⊗ weight(trans2)
22: new trans ← in sym(trans1) : out sym(trans2)/new weight
23: new state ← (dest(trans1), dest(trans2))
24: new trans with dest ← (new trans, new state)
25: composed trans set ← composed trans set ∪ {new trans with dest}
26: end if
27: end for
28: end for
29: return composed trans set

Figure 7.2: Pseudocode of the WFST composition function. S1 and S2 are the state indices of the two
constituent WFSTs which are deterministic.
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The next step is to examine all the non-ε-output transitions from S1 and all the

non-ε-input transitions from S2 (Line 18 and 19). For each pair of trans1 and trans2,

the algorithm determines whether the output symbol of trans1 matches with the input

symbol of trans2 (Line 20). If there is a match, the weight of the composed transition

is equal to the semiring-product (⊗) of the weights of trans1 and trans2 (Line 21). The

input symbol and the output symbol of the composed transition are in sym(trans1) and

out sym(trans2) respectively (Line 22). The new state is a pair of state indices, where

the first and the second indices are the destination states of trans1 and trans2 respectively

(Line 23).

7.3 Current Approaches to Dynamic WFST Compo-

sition

Several groups of researchers have proposed different approaches to dynamic WFST com-

position. They include Dolfing [20], Willett [61], Caseiro [14, 12, 11, 13] and Hori [25].

The first step of any dynamic composition algorithm is to factorize the entire search space

into two or more constituent WFSTs before decoding. Approaches include:

1. Separating the entire G from other knowledge sources, resulting in two WFSTs [14];

2. Separating only part of the G (Gi or so called the incremental LM) from other

knowledge sources. The remaining part of the LM (Gs or the smearing LM) is

statically composed with other knowledge sources, resulting in two WFSTs [20, 61];

3. Factorizing the entire search space into multiple WFSTs [25].

During decoding, the constituent WFSTs are composed on-the-fly. There are two main

approaches for combining constituent transducers dynamically, namely with no lookahead

and with lookahead.

The no lookahead approach is basically the dynamic version of static WFST compo-

sition. The term “dynamic” means that the search space is expanded on-the-fly during

decoding. The active search space is time-varying and depends on the number of distinct

word histories amongst all the active tokens. The search space is expanded only if there

are active tokens. In the previous example as illustrated in Figure 7.1, active tokens re-

side in the L̃ transducer. In order to keep a record of the word history, each of the active

tokens stores an attribute, which is basically the state index of the G transducer (that is

S2). The search space is dynamically expanded according to the location of the tokens

and their S2 state indices. For example, suppose there is a token leaving the a : ε/0.1
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transition and passing through state 1 of L̃. If the S2 attribute of the token is 0, the dy-

namic composition algorithm will try to match the symbols between state 1 of L̃ and state

0 of G. In other words, it is equivalent to calling the WFST composition(1, 0) function.

There are two problems with this approach. The first problem is the creation of non-

coaccessible transitions or so called “dead-end” transitions [14]. They are the transitions

which will not reach the final state of a transducer. In Figure 7.1, the two b : ε/0.2

transitions in L̃◦G are non-coaccessible transitions. These transitions are created because

they are ε-output transitions in L̃. Therefore, they are copied to the composite transducer.

However, the output symbol of the next L̃ transition e : t/0.6 is t, which cannot be matched

with any input symbols in G. As a result, these transitions cannot go further and become

“dead-end” transitions. The generation of these “dead-end” transitions increases the

number of redundant transitions and tokens in the search space.

The second problem is the delay of the application of transducer weights. Weights in

G are not applied to the composite transducer until there is an actual mapping between

the output symbols and the input symbols of the component transducers (Line 21 - 22 in

Figure 7.2). For pruning efficiency, it is beneficial to introduce the G weights as early as

possible before the actual mapping of symbols occurs.

The lookahead approach proposed by Caseiro [14] addresses the above problems. He

subdivides L̃ into two regions, a prefix region and a suffix region. The prefix region is

the region between the initial state of L̃ and the non-ε-output transitions. In Figure 7.3,

the prefix region is bounded by the grey rectangle. The region between the non-ε-output

transitions and the final state is the suffix region, which is bounded by the white rectangle.

A suffix region is ended with word-end transitions (#1 and #2).

A set of anticipated output symbols for each ε-output transitions is built inside the

prefix region. Anticipated symbols are all the possible output symbols that can be en-

countered eventually along the current path in the transducer. For example, the a : ε/0.1

transition in L̃ has two anticipated output symbols, r and s, since the path can go to

either c : r/0.4 or d : s/0.5, where r and s are their output symbols respectively. The

function of the anticipated symbol sets is to provide some lookahead information. An

ε-output transition in L̃ will be expanded in the composition only if there is a match

between its anticipated symbol set and the input labels of G.

Figure 7.4 shows the pseudocode of the lookahead approach. Basically, there are four

cases that need to be considered. The first case is about the ε-input transitions of G (Line

2-10). The treatment is the same as the no lookahead approach, in which these ε-input

transitions are duplicated to the composite transducer when S1 is an anchor state. The

second case is about the ε-output transitions in the prefix region of L̃ (Line 13-16). These

transitions are treated by the WFST dynamic prefix() function which will be discussed

later. The third case is about the ε-output transitions in the suffix region of L̃ (Line
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Figure 7.3: The lexicon WFST (L̃) in Caseiro's approach. The L̃ transducer is partitioned into two
regions - a pre�x region (grey rectangle) and a suf�x region (white rectangle). #1 and
#2 are word-end markers. {} indicates an anticipated output symbol set. Two constituent
WFSTs, L̃ and G, are composed using Caseiro's approach. The bold symbols and weights
in L̃ ◦G indicate the changes compared with the no lookahead approach.

18-22). In this approach, these transitions are treated as “free-entries” and duplicated in

the composite transducer (Line 19). The last case is about the non-ε-output transitions

in L̃. The WFST dynamic non eps() function, which will also be described later, deals

with these transitions.

The pseudocode of the WFST dynamic prefix() function is shown in Figure 7.5.

The first step is to decide whether there are any matches between symbols (Line 3-8).

For each transition emanating from S2 of G (that is, trans2), the algorithm examines

whether the input symbol of trans2 can be found in the anticipated output symbol set

of trans1 (Line 4). The weights of all the matched trans2 transitions are semiring-added

(⊕) to give the lookahead weight (Line 5). Over the tropical semiring, the ⊕ operation

is the min operator. Hence, it is equivalent to finding the minimum weight from all the

matched trans2 transitions.
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Algorithm 5 composed trans set ← WFST dynamic compose caseiro(S1, S2)

1: composed trans set ← {}
2: if S1 is an anchor state (initial state) then
3: for all ε-input transitions, trans2, emanating from state S2 do
4: /* ε-input trans2 */
5: new trans ← trans2
6: new state ← (S1, dest(trans2))
7: new trans with dest ← (new trans, new state)
8: composed trans set ← composed trans set ∪ {new trans with dest}
9: end for

10: end if
11:
12: for all ε-output transitions, trans1, emanating from state S1 do
13: if trans1 is in the prefix region then
14: /* ε-output trans1 in the prefix region */
15: trans set ← WFST dynamic prefix(trans1, S1, S2)
16: composed trans set ← composed trans set ∪ trans set
17: else
18: /* ε-output trans1 in the suffix region */
19: new trans ← trans1
20: new state ← (dest(trans1), S2)
21: new trans with dest ← (new trans, new state)
22: composed trans set ← composed trans set ∪ {new trans with dest}
23: end if
24: end for
25:
26: /* Non-ε-output trans1 */
27: for all non-ε-output transitions, trans1, emanating from state S1 do
28: trans set ← WFST dynamic non eps(trans1, S1, S2)
29: composed trans set ← composed trans set ∪ trans set
30: end for
31: return composed trans set

Figure 7.4: Pseudocode of the WFST dynamic compose caseiro function. S1 and S2 are the state
indices of the two constituent WFSTs which are deterministic.
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After symbol-matching, three cases are considered. In the first case, there are no

matched symbols (Line 9-11). It means that the trans1 transitions cannot match with

any trans2 transitions from S2. It is the “dead-end” situation, and therefore there is no

need to expand.

The second case is that there are more than 1 matched symbols (Line 12-20). This is

the case where the actual symbol cannot be determined; however, the lookahead weight

can be incorporated into the composite transducer. First, ∆lookahead weight is found

by semiring-division, which is opposite to the ⊗ operation (Line 14). Semiring-division

is basically substraction over the tropical semiring. Hence, it is the same as calculating

the difference between the new lookahead weight and the previous lookahead weight in

(S1, S2). This idea is similar to finding the residual probability in language model looka-

head as discussed in Section 2.6.1. The ∆lookahead weight is semiring-multiplied by the

weight of trans1 (Line 15). Accordingly, a newly-composed transition is determined (Line

16). Note that the output symbol of this composed transition is ε since the actual symbol

is indeterministic. The lookahead information is stored in a table for future reference

(Line 19-20).

The last case is that there is only 1 matched symbol (Line 22-39). In this scenario,

the output symbol can be determined. If it is the first time to obtain only 1 matched

symbol, the output symbol of the composed transition is emitted (Line 27). The weight

of the transition is found similarly as in the previous case (Line 25-26). However, if it is

not the first time, the output symbol has already been emitted. The lookahead procedure

has finished; and therefore, trans1 is duplicated to the composed transducer (Line 34).

Figure 7.6 shows the pseudocode of the WFST dynamic non eps() function, which

deals with the non-ε-output transitions in L̃. There are three differences between this

function and the WFST dynamic prefix() function. First, symbol-matching is done on

the non-ε output symbol of trans1 (Line 4) since this transition has a real output symbol

and there is no need to consider a set of anticipated symbols. Second, the outcome of

symbol-matching is either no match or only 1 match. There are no multiple matches.

Third, the S2 index of new state is changed to dest(matched trans) (Line 19 and 26).

To summarize, the lookahead approach addresses two major issues of the non-lookahead

approach. The differences between these two approaches are shown graphically in Figure

7.1 and 7.3. First, it avoids the creation of non-coaccessible transitions. Second, the

lookahead approach allows early application of G weights before encountering the actual

non-ε output symbols in L̃. This idea is similar to language model lookahead and WFST

weight-pushing.
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Algorithm 6 trans set ← WFST dynamic prefix(trans1, S1, S2)

1: new lookahead weight ← 0̄
2: matched trans ← {}
3: for all non-ε-input transitions, trans2, emanating from state S2 do
4: if in sym(trans2) ∈ anticipated out sym set(trans1) then
5: new lookahead weight ← new lookahead weight⊕ weight(trans2)
6: matched trans ← matched trans ∪ {trans2}
7: end if
8: end for
9: if matched trans == {} then

10: /* “Dead-end” transitions. Ignore. */
11: trans set ← {}
12: else if n(matched trans) > 1 then
13: /* More than 1 match */
14: ∆lookahead weight ← lookahead weight(S1, S2)

−1 ⊗ new lookahead weight
15: new weight ← ∆lookahead weight⊗ weight(trans1)
16: new trans ← in sym(trans1) : ε/new weight
17: new state ← (dest(trans1), S2)
18: trans set ← {(new trans, new state)}
19: finish lookahead(new state) ← false
20: lookahead weight(new state) ← new lookahead weight
21: else
22: /* Only 1 match */
23: if finish lookahead(S1, S2) == false then
24: /* First time to get only 1 match */
25: ∆lookahead weight ← lookahead weight(S1, S2)

−1⊗new lookahead weight
26: new weight ← ∆lookahead weight⊗ weight(trans1)
27: new trans ← in sym(trans1) : out sym(matched trans)/new weight
28: new state ← (dest(trans1), S2)
29: trans set ← {(new trans, new state)}
30: finish lookahead(new state) ← true
31: lookahead weight(new state) ← new lookahead weight
32: else
33: /* Already got only 1 match before */
34: new trans ← trans1
35: new state ← (dest(trans1), S2)
36: trans set ← {(new trans, new state)}
37: finish lookahead(new state) ← true
38: lookahead weight(new state) ← new lookahead weight
39: end if
40: end if
41: return trans set

Figure 7.5: Pseudocode of the WFST dynamic pre�x function. trans1 is one of the ε-output transitions
from S1 in the pre�x region. S2 is the state index of the second constituent transducer.
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Algorithm 7 trans set ← WFST dynamic non eps(trans1, S1, S2)

1: new lookahead weight ← 0̄
2: matched trans ← {}
3: for all non-ε-input transitions, trans2, emanating from state S2 do
4: if in sym(trans2) == out sym(trans1) then
5: new lookahead weight ← new lookahead weight⊕ weight(trans2)
6: matched trans ← matched trans ∪ {trans2}
7: end if
8: end for
9: if matched trans == {} then

10: /* “Dead-end” transitions. Ignore. */
11: trans set ← {}
12: else
13: /* Only 1 match */
14: if finish lookahead(S1, S2) == false then
15: /* First time to get only 1 match */
16: ∆lookahead weight ← lookahead weight(S1, S2)

−1⊗new lookahead weight
17: new weight ← ∆lookahead weight⊗ weight(trans1)
18: new trans ← in sym(trans1) : out sym(matched trans)/new weight
19: new state ← (dest(trans1), dest(matched trans))
20: trans set ← {(new trans, new state)}
21: finish lookahead(new state) ← true
22: lookahead weight(new state) ← new lookahead weight
23: else
24: /* Already got only 1 match before */
25: new trans ← trans1
26: new state ← (dest(trans1), dest(matched trans)))
27: trans set ← {(new trans, new state)}
28: finish lookahead(new state) ← true
29: lookahead weight(new state) ← new lookahead weight
30: end if
31: end if
32: return trans set

Figure 7.6: Pseudocode of the WFST dynamic non eps function. trans1 is one of the non-ε-output
transitions from S1. S2 is the state index of the second constituent transducer.
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7.4 Proposed Approach to Dynamic WFST Compo-

sition

We base our approach on that of Caseiro. Specifically, two component WFSTs are built:

(C̃opt ◦ L̃opt) and G, where C̃opt and L̃opt are min(det(C̃)) and min(det(L̃)) respectively.

Component transducers are combined with look-ahead, avoiding the creation of “dead-

end” transitions. Early application of G weights is also performed.

There are however two major differences between our approach and Caseiro’s ap-

proach. In [14], he presented a specialized algorithm to compose L̃ and G. He made two

assumptions (or constraints) about his approach. They are:

• L̃ is an acyclic graph, apart from the loop which connects the final state of L̃ to the

initial state (Figure 7.3)

• No weight look-ahead is performed in the suffix region.

While the first assumption holds for a typical lexicon, it is not true for an arbitrary

WFST. For example, the (C̃opt ◦ L̃opt) WFST is cyclic in general. For the second assump-

tion, no weight look-ahead is performed in the suffix region. However, in order to achieve

better pruning efficiency, weights should be distributed or “pushed” to the initial state as

far as possible. Hence, look-ahead of weights, as well as the avoidance of non-coaccessible

transitions, should also be performed in the suffix region.

In the following subsections, we describe how the anticipated output label sets are

found in the (C̃opt ◦ L̃opt) transducer. We also describe how this transducer is dynamically

composed with G during decoding [16].

7.4.1 Finding the Anticipated Output Labels

The entire (C̃opt ◦ L̃opt) transducer is subdivided into prefix regions. Each prefix region is

terminated with non-ε output symbol transitions. All the other transitions are ε-output

transitions.

Figure 7.7 illustrates an example of a cyclic (C̃opt ◦ L̃opt) transducer. For simplicity,

only the output symbols are shown. The transducer is segmented into three prefix regions.

Each of them is ended with non-ε output symbol transitions. The anticipated output label

set can be found by a simple depth-first traversal algorithm.

Symbol and weight lookahead is performed in each prefix region. Since each prefix

region is followed by another prefix region, there is no suffix region. The lookahead

algorithm always tries to distribute the weights to the initial state as far as possible.
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Figure 7.7: A (C̃opt ◦ L̃opt) WFST is segmented into pre�x regions, where symbol and weight look-
ahead is performed. For simplicity, only the output symbols are shown. Each ε-output
transition has an anticipated output symbol set which is denoted by {...}. Each transition
of the (C̃opt ◦ L̃opt) transducer is substituted by an HMM.

7.4.2 The Dynamic Composition Algorithm

The dynamic composition algorithm follows a token-passing paradigm [64]. In dynamic

composition, tokens reside in the (C̃opt ◦ L̃opt) transducer. Each WFST transition is

substituted by an HMM as illustrated in Figure 7.7. A token has the following attributes.

• token.accWeight stores the accumulated weight of a token. In the token-passing

algorithm, when two tokens meet at the same location in the search space, the one

with a lower accWeight remains 1.

• token.S1 is the state index of the (C̃opt ◦ L̃opt) transducer where the token is located.

The token is ready to be passed into the transitions emanating from S1. Depending

on the lookahead result, some of the transitions could be “dead-end”. The token

would not be passed into these “dead-end” transitions.

1Weights in WFST are negative log probabilities over both the log and tropical semirings (Weight =
-log prob). Hence, a lower weight means a greater probability.
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• token.S2 is the state index of the G transducer to which the token is referenced. It

is the word history of the token.

• token.path record stores the output symbols emitted during token-passing. Since

the output symbols of G are words, the path record attribute stores a transcription

of the recognized words.

• token.finish lookahead is a boolean attribute which indicates whether lookahead has

finished in the current prefix region.

• token.lookahead weight stores the already-applied lookahead weight.

The pseudocode of our proposed algorithm is shown in Figure 7.8. The algorithm

examines all the transitions from S1 and determines whether the transitions are “dead-

end”. Since there is no suffix region, only two cases need to be considered - ε-output

transitions (Line 4-7) and non-ε-output transitions (Line 10-13). The algorithm calls two

helper functions in Line 5 and 11.

Algorithm 8 token set ← WFST dynamic compose proposed(token)

1: token set ← {}
2: S1 ← token.S1

3: /* ε-output trans1 in the prefix region */
4: for all ε-output transitions, trans1, emanating from state S1 do
5: new token set ← WFST dynamic proposed prefix(trans1, token)
6: token set ← token set ∪ new token set
7: end for
8:
9: /* Non-ε-output trans1 */

10: for all non-ε-output transitions, trans1, emanating from state S1 do
11: new token set ← WFST dynamic proposed non eps(trans1, token)
12: token set ← token set ∪ new token set
13: end for
14: return token set

Figure 7.8: Pseudocode of our proposed algorithm. It tries to propagate a token at S1 of the (C̃opt ◦
L̃opt) transducer.

The WFST dynamic proposed prefix() function deals with ε-output transitions. It

checks whether the token can be passed to the trans1 transition. The function is sim-

ilar to Caseiro’s approach. The difference is that in our proposed approach, lookahead

information is stored in the token. The first step is symbol-matching (Line 5-10). There

are four cases: no match (Line 11-13), more than one match (Line 14-21), first time to

get one match (Line 24-32) and already got one match before (Line 34-39). The token is

passed to trans1 only if there is at least one match. The token’s accWeight is updated
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by ∆lookahead weight and weight(trans1) (Line 17, 27 and 35)2. If this is the first time

to obtain only one match, the output symbol of the matched trans2 can be enqueued to

the token’s path record (Line 30).

The second helper function is the WFST dynamic proposed non eps() function, which

deals with non-ε-output transitions. The first step is symbol-matching (Line 5-10). There

are two possibilities: no match (Line 11-13) or 1 match (Line 15-39). If there is one match,

the token’s accWeight and path record are updated depending on whether it is the first

time to obtain only 1 match (Line 16-24). In addition, the token also reaches the end of

a prefix region. This is because each prefix region is ended with non-ε-output transitions.

In order to prepare the token for the next prefix region, the lookahead attributes of the

token is reset (Line 25-26). The S2 attribute is also updated (Line 27).

The ε-input transitions of G are treated in this helper function (Line 31-39). If an

ε-input transition from S2 is found, the token is duplicated with a new S2 attribute (Line

36). The algorithm continues to check the new S2 state and duplicates the token until no

more ε-input transition is found. The accWeight of the token is updated in each iteration

(Line 32). The path record is also extended if the output symbol of the transition is non-ε

(Line 33-35).

7.5 Experimental Results

The aim of this experiment is to compare the performance and the resource requirements

of our dynamic composition algorithm with other dynamic composition approaches and

the static approach. The following list briefly describes the different approaches under

test.

Static Perform decoding on the integrated (opt(C̃opt ◦ L̃opt ◦G)).

Dynamic (Incremental, no look-ahead) Introduce unigram probabilities to build (C̃opt◦
L̃opt ◦ Guni). Dynamically compose this WFST with Gtri−uni, which is a trigram

deviation from unigram, during decoding without look-ahead (i.e. no control on

non-coaccessible paths and no weight look-ahead).

Dynamic (Caseiro) Build (C̃opt ◦ L̃opt) and G WFSTs. Dynamically compose them

during decoding. Since the topology of (C̃opt ◦ L̃opt) is different from L̃ as in his

approach, there is no direct comparison. To simulate his method, the control of

non-coaccessible paths and weight look-ahead is prohibited until the token reaches a

word-end marker inside a prefix region. This no look-ahead region can be considered

2In Line 35, it is unnecessary to semiring-multiply the accWeight by ∆lookahead weight since
∆lookahead weight must equal to 1̄.
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Algorithm 9 new token set ← WFST dynamic proposed prefix(trans1, token)

1: new lookahead weight ← 0̄
2: matched trans ← {}
3: S1 ← token.S1

4: S2 ← token.S2

5: for all non-ε-input transitions, trans2, emanating from state S2 do
6: if in sym(trans2) ∈ anticipated out sym set(trans1) then
7: new lookahead weight ← new lookahead weight⊕ weight(trans2)
8: matched trans ← matched trans ∪ {trans2}
9: end if

10: end for
11: if matched trans == {} then
12: /* “Dead-end” transitions. Ignore. */
13: new token set ← {}
14: else if n(matched trans) > 1 then
15: /* More than 1 match */
16: ∆lookahead weight ← token.lookahead weight−1 ⊗ new lookahead weight
17: token.accWeight ← token.accWeight⊗∆lookahead weight⊗weight(trans1)
18: token.finish lookahead ← false
19: token.lookahead weight ← new lookahead weight
20: Pass the token to trans1
21: new token set ← {token}
22: else
23: /* Only 1 match */
24: if token.finish lookahead == false then
25: /* First time to get only 1 match */
26: ∆lookahead weight ← token.lookahead weight−1 ⊗ new lookahead weight
27: token.accWeight ← token.accWeight ⊗ ∆lookahead weight ⊗

weight(trans1)
28: token.finish lookahead ← true
29: token.lookahead weight ← new lookahead weight
30: Enqueue out sym(matched trans) to token.path record
31: Pass the token to trans1
32: new token set ← {token}
33: else
34: /* Already got only 1 match before */
35: token.accWeight ← token.accWeight⊗ weight(trans1)
36: token.finish lookahead ← true
37: token.lookahead weight ← new lookahead weight
38: Pass the token to trans1
39: new token set ← {token}
40: end if
41: end if
42: return new token set

Figure 7.9: Pseudocode of the WFST dynamic proposed pre�x() function. It checks whether the
token can be passed to the trans1 transition.
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Algorithm 10 new token set ← WFST dynamic proposed non eps(trans1, token)

1: new lookahead weight ← 0̄
2: matched trans ← {}
3: S1 ← token.S1

4: S2 ← token.S2

5: for all non-ε-input transitions, trans2, emanating from state S2 do
6: if in sym(trans2) == out sym(trans1) then
7: new lookahead weight ← new lookahead weight⊕ weight(trans2)
8: matched trans ← matched trans ∪ {trans2}
9: end if

10: end for
11: if matched trans == {} then
12: /* “Dead-end” transitions. Ignore. */
13: new token set ← {}
14: else
15: /* Only 1 match */
16: if token.finish lookahead == false then
17: /* First time to get only 1 match */
18: ∆lookahead weight ← token.lookahead weight−1 ⊗ new lookahead weight
19: token.accWeight ← token.accWeight ⊗ ∆lookahead weight ⊗

weight(trans1)
20: Enqueue out sym(matched trans) to token.path record
21: else
22: /* Already got only 1 match before */
23: token.accWeight ← token.accWeight⊗ weight(trans1)
24: end if
25: token.finish lookahead ← false
26: token.lookahead weight ← 1̄
27: token.S2 ← dest(matched trans)
28: Pass the token to trans1
29: new token set ← {token}
30: /* Duplicate the token for ε-input transitions from the new S2 state */
31: while there is an ε-input transition, trans2, emanating from token.S2 do
32: token.accWeight ← token.accWeight⊗ weight(trans2)
33: if out sym(trans2) is non-ε then
34: Enqueue out sym(trans2) to token.path record
35: end if
36: token.S2 ← dest(trans2)
37: Pass the token to trans1
38: new token set ← new token set ∪ {token}
39: end while
40: end if
41: return new token set

Figure 7.10: Pseudocode of the WFST dynamic proposed non eps() function.
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as the suffix region as in his method. Look-ahead resumes after the token has passed

the word-end marker.

Dynamic (Our approach) Build (C̃opt ◦ L̃opt) and G WFSTs. Dynamically compose

them as described in Section 7.4.

The performance of different approaches was assessed using the Wall Street Journal

(WSJ1) corpus [48]. The number of words in the vocabulary was 20000. Cross-word

triphone HMM models were trained on the “si tr s” set of 38275 utterances using 39-

dimensional PLPs. A trigram language model, with 19979 unigrams, 3484372 bigrams

and 2949590 trigrams, was used to test the development test set “si dt 20” from WSJ1

database, consisting of 503 utterances. The experiment was carried out on a PC platform

(AMD processor running at 2GHz). The speech recognizer was Juicer.

Figure 7.11 shows the word error rate (WER) against the real-time factor (RTF)

of different approaches. Each point on the curve corresponds to the WER versus RTF

characteristics for a particular beamwidth. The WERs are similar to those obtained from

the previous studies [42]. In comparison with other dynamic composition approaches,

the curve of the proposed approach is closer to the origin of the plot, which suggests

that the proposed method shows better WER versus RTF performance. One important

observation is that the proposed method significantly outperforms the other two dynamic

approaches at narrow and moderately-wide beamwidths. For example, at the level of 17%

WER (moderately-wide beam), the RTF of our approach is about 65% and 48% of the no

look-ahead approach and Caseiro’s method respectively. This confirms that look-ahead

is necessary for good accuracy-time tradeoff in narrow and moderately-wide beamwidth

scenarios.

Comparing our approach with static composition, the WERs are similar at each prun-

ing setting. It suggests that our approach is close to the WFST optimization performed

during static composition. At the same level of 17% WER, the RTF of the proposed

approach is about 60% more than the RTF of static composition. This is due to the

overhead, for example, matching symbols in lookahead, searching tokens in a list, etc,

required during dynamic composition.

Figure 7.12 illustrates the RTF against the average number of tokens per frame. Our

approach has a steeper slope in the figure, which indicates that it requires more time to

process each token than the static case. Also it can be seen that the other two dynamic

approaches have a lot more tokens per frame than both our approach and the static

approach, which shows that the avoidance of non-coaccessible transitions in our approach

helps to reduce the number of redundant tokens.
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Figure 7.11: WER versus RTF of different approaches at various pruning beamwidths (150, 160, 180
and 200). Each data point on a curve corresponds to one particular pruning setting. The
pruning beamwidth varies from the narrowest (the leftmost data point) to the widest (the
rightmost data point).
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Figure 7.12: RTF versus Average number of tokens per frame of different approaches at various prun-
ing beamwidths (150, 160, 180 and 200).
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One of the major reasons to perform dynamic composition is the reduction in memory

requirement. Table 7.1 compares the maximum memory usage (in MB) of our approach

and the static approach. It shows a reduction of about 60% in memory usage. Since

both the incremental approach and Caseiro’s approach are also dynamic composition

algorithms, they show a similar amount of reduction in memory requirement.

Beam width Static Dynamic (Our approach) % reduction
150 1774 679 61.7
160 1775 697 60.7
180 1965 722 63.3
200 1966 762 61.2

Table 7.1: Maximum memory usage (in MB) during decoding

7.6 Summary

In static WFST composition, all the knowledge sources are integrated into one compact

WFST. The static approach allows simple decoder design and faster decoding speed since

the decoder does not need to combine various kinds of knowledge sources during decoding.

However, once all the knowledge sources have been fully integrated, on-line modification

of the knowledge sources becomes difficult. Furthermore, the size of the fully integrated

transducer can be very large in large vocabulary tasks, resulting in great memory require-

ment during decoding.

One way of addressing these issues is to perform dynamic WFST composition during

decoding. In this dynamic approach, the entire search space is factorized into two or more

constituent WFSTs. The combination of these constituent WFSTs is carried out during

decoding.

In this chapter, we have proposed a generalized dynamic WFST composition algo-

rithm, which avoids the creation of non-coaccessible transitions, performs weight look-

ahead and does not impose any constraints to the topology of the WFSTs. Experimental

results show that our weight lookahead approach gives better WER versus RTF character-

istics than other dynamic composition approaches. Comparing with static composition,

it shows a significant reduction in memory usage.



8
Conclusions

8.1 Hardware-software co-processing ASR system

The first objective of this thesis is to develop an embedded ASR system that is suitable for

real-time applications. In this thesis, a hardware-software co-processing ASR system is

proposed. As discussed in Section 1.2, this approach combines the advantages of the pure

software-based and the pure hardware-based approaches. It provides rapid prototyping

of applications, algorithmic acceleration, flexibility in design modification and system

extensibility.

The co-processing system mainly consists of an embedded processor and a hardware

accelerator which calculates the Gaussian mixture model (GMM) emission probabilities.

The embedded processor is an Altera Nios II softcore processor running at 120MHz. The

system is synthesized on an Altera Stratix II FPGA device. The target application is the

993-word Resource Management (RM1) task, which serves as a benchmark for a typical

command-and-control application. There are 1200 utterances in the test set of the corpus.

The performance of the proposed system is summarized as follows.

• The word accuracy rate is 93.33% with an average real-time factor of 0.62. Com-

pared with the pure software-based baseline system, the word accuracy rate is the

same and the decoding speed is about 3 times faster.

• As shown in Table 6.3, the word accuracy rate of our proposed system is within
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the range of other reported systems. The average real-time factor of our proposed

system is well below 1.00 and less (better) than those of other systems.

In comparison with [31, 62], which is also a hardware-software co-processing system,

our proposed system possesses the following differences.

• Our proposed system uses a double-buffering technique to alleviate the memory

bandwidth issue. The amount of acoustic parameters stored on the FPGA is kept

to minimum. On the other hand, in [31, 62], a relative large percentage of acoustic

parameters is required to be stored on the FPGA, which makes the design infeasible

for larger vocabulary tasks.

• In our approach, we do not make any assumptions on the access pattern of the

acoustic parameters. On the contrary, in order to observe a gain in timing perfor-

mance, [31, 62] relies on storing the most frequently used acoustic parameters of the

test data set on the FPGA. However, in practical applications, the access pattern

of the acoustic parameters is related to the topic of the current conversation and

varies in different situations. Therefore, the access pattern observed from the test

data set can be very different from the practical situations. This makes the system

less portable to different changing conditions.

• Our proposed GMM accelerator consists of more parallel pipelines (39 pipelines)

than [31, 62] (1 pipeline), which further employs parallelism in GMM calculation.

• The real-time factor of the entire ASR algorithm in our proposed system is presented

in detail. However, this timing measure is not clearly shown in [31, 62].

To further improve the timing performance, we propose an adaptive beam pruning

algorithm, which applies tighter pruning when the number of active hypotheses exceeds

a certain threshold. The performance of the adaptive beam pruning algorithm is summa-

rized as follows.

• For the same RM1 task, the average real-time factor further reduces to 0.54. The

percentage of the test utterances, which have a real-time factor of less than 1.00,

increases from 94.08% to 99.75%. The word accuracy rate is 93.16%.

• The adaptive beam pruning algorithm only requires to count the number of active

tokens and accordingly adjust the beamwidth. In terms of implementation, it is

simpler than histogram pruning, where an insertion sort is performed for each of

the active tokens in order to keep a sorted list of the tokens’ scores.
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In this part of the work, we also propose a framework for converting data formats from

floating-point to fixed-point. The characteristics and the performance of the proposed

framework are summarized as follows.

• For the RM1 task, the word accuracy rates of the floating-point and the fixed-

point implementations are 93.09% and 93.33% respectively. It can be seen that the

fixed-point system does not degrade the performance. In fact, for this RM1 task,

the word accuracy rate of the fixed-point system is slightly higher than that of the

floating-point system.

• The fixed-point system is about 9 times faster than the floating-point system on the

Nios II platform.

• The proposed framework is a unified framework covering the conversion of all the

data types within the ASR algorithm. On the contrary, previous studies focus on

only a certain part of the ASR algorithm. For example, [22] describes the format

conversion within MFCC feature extraction only, whereas [28, 30] focus on quanti-

zation within emission probability calculation.

• The proposed framework is tested on the 993-word RM1 task, while previous studies,

such as [22, 30], are tested on small vocabulary tasks only (about 10 to 120 words).

8.2 Dynamic composition of WFST

The second objective of the thesis is to develop a dynamic composition algorithm of

weighted finite state transducers (WFST). Specifically, the entire search space is factor-

ized into two constituent WFSTs, which are then combined during decoding. Since modi-

fication of the constituent WFSTs is much easier than that of the fully-integrated WFST,

dynamic composition allows on-line adaptation of the knowledge sources, as opposed to

static composition. Another reason for dynamic composition is that the fully-integrated

WFST in the static approach can be prohibitively huge if the knowledge sources are large

and complex, which results in huge memory requirement during decoding.

The proposed algorithm is a generalized dynamic WFST algorithm which has the

following characteristics.

• It does not impose any constraints on the topology of the constituent WFSTs. On

the other hand, in [14], the topology of the lexicon WFST, L̃, is constrained.

• Symbol and weight lookahead is performed in all parts of the constituent WFSTs.

In other studies, lookahead is only performed in certain parts of the constituent

WFSTs [14], or it is not performed at all [20, 61].
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• The proposed algorithm avoids the creation of the non-coaccessible transitions or

so called the “dead-end” transitions.

• In the Wall Street Journal (WSJ1) 20k-word task tested on the desktop environment,

the proposed algorithm has a better word accuracy rate versus real-time factor

characteristics when compared with other studies [14, 20, 61]. In other words, at

the same level of word accuracy rate, the real-time factor of our proposed algorithm

is lower with a fewer number of active tokens.

• In comparison with the static approach, the proposed algorithm requires less amount

of memory with an increase of decoding time. While the dynamic composition

approach allows on-line adaptation of the knowledge sources, the static approach

creates an optimized fully-integrated search space that permits simple decoder de-

sign and efficient decoding. It shows a trade-off between adaptability of knowledge

sources and decoding speed.

8.3 Future work

In this thesis, an ASR system architecture consisting of an embedded processor and a

hardware accelerator is proposed. The hardware accelerator serves as a co-processor

which main purpose is to reduce the decoding time in order to meet the timing con-

straints. While decoding speed is an important requirement of an ASR system, other

issues, such as resource usage and power consumption, also need to be addressed. In our

implementation, the FPGA device is large enough to accommodate the entire hardware-

software co-processing system. However, it does not stop designers from synthesizing the

system on a smaller device in order to save production cost and power consumption. The

system architecture should be flexible enough so that designers can quickly modify the

architecture to suit different timing, resource and power requirements.

With this purpose in mind, one of the possible works is to develop a mechanism which

allows easy customization of the hardware accelerator. One possible solution is to write

a program or a script that accepts a set of specification as the input and automatically

generates the hardware description of the accelerator as the output. For example, in

our implementation of the hardware accelerator as illustrated in Figure 6.2, designers

can decide the number of parallel pipelines in the datapath. The generator program

can then create the hardware description of the hardware accelerator accordingly. This

approach makes the hardware accelerator as a portable and flexible IP core which can be

implemented in different target technology with different amount of resources.

In this thesis, a dynamic WFST composition algorithm has been proposed. Another

possible future direction is to utilize the dynamic composition algorithm and develop an
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adaptable embedded ASR system. The system can include an adaptive module which

is capable of modifying the underlying knowledge sources, for example, language model

probabilities. In addition, the system can also adapt to changing knowledge sources, such

as dialogue states and dynamic vocabulary. Furthermore, the system can accept new

grammar rules and vocabulary introduced by users, which allows user involvement in the

interface design and enhances user-friendliness.



A
Mel �lter bank

The mel filter bank consists of a series of overlapping triangular bandpass filters. The

filters are spaced uniformly on a non-linear frequency scale called the mel scale [59]. Figure

A.1 illustrates the frequency response of the mel filter bank comprising M bandpass filters.

The frequency scale shown in the figure is linear.

 
 
 
 
 
 
 
 
 
 
 
 
 
 

≈ 

… 

1.0 

fNyquist f0 f1 f2 f3 f4 f5 f6 fM-1 fM-2 

Frequency (Hz) 

Filter frequency 
response 

Figure A.1: Mel �lter bank consisting of M triangular bandpass �lters. fm is the centre frequency of
the mth mel �lter. fNyquist is the Nyquist frequency.

The relationship between the mel scale and the linear frequency scale can be expressed

mathematically by the following equation.
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f (mel)
m = 1127 log

(
1 +

fm

700

)
(A.1)

where f
(mel)
m and fm are the centre frequencies of the mth filter in the mel scale and in the

linear scale respectively. To position the bandpass filters on the mel scale, their centre

frequencies are determined as follows.

f (mel)
m =

f
(mel)
Nyquist(m + 1)

M + 1
0 ≤ m < M (A.2)

which indicates that the mel filters are spaced uniformly on the mel scale.

In Section 4.1, it shows that the output of the mth mel filter, Xm, can be expressed

by the following equation.

Xm =

K
2
−1∑

k=0

Fm,kYk 0 ≤ m < M (A.3)

where Fm,k is the frequency response of the mth filter and Yk is the speech power spectrum

at frequency index k. K is the number of FFT points. It can be seen that Xm reaches the

maximum when Yk is at the maximum. Hence, the equation can be rewritten as follows.

X(max)
m = Y (max)

K
2
−1∑

k=0

Fm,k 0 ≤ m < M (A.4)

where Y (max) is the maximum allowable value of Yk. In addition, X
(max)
m is the maximum

value amongst all the possible m when
∑K

2
−1

k=0 Fm,k is the greatest. In other words, the

mel filter which is the most widely spanned in the frequency domain gives the maximum

value of X
(max)
m amongst all the possible m. This filter is essentially the one with the

highest centre frequency (the rightmost filter in Figure A.1).

In order to avoid potential overflows, it is necessary to find the maximum of
∑K

2
−1

k=0 Fm,k.

A computer program is written to calculate this value. As mentioned before, the filter

with the highest centre frequency (fM−1) is chosen for calculation. In our fixed-point

implementation, there are 26 mel filters (M = 26). The Nyquist frequency is 8kHz

(fNyquist = 8000). The number of FFT points is 512 (K = 512).

The results show that the maximum value of
∑K

2
−1

k=0 Fm,k is 23.68. It suggests that

X
(max)
m is 23.68 times the value of Y (max). Hence, as mentioned in Section 4.1.2, the least

significant 5 bits (24 < 23.68 < 25) of Fm,kYk is truncated before summation in order to

prevent possible overflows.



B
DCT and Liftering

Mel frequency cepstral coefficients (MFCC) are calculated by performing discrete cosine

transform (DCT) and liftering on the log mel filter outputs. The following equations

demonstrate the DCT and liftering operations.

o(d) =
M−1∑
m=0

log(Xm)wm,d 0 ≤ d < Dstatic (B.1)

wm,d = ld

√
2

M
cos

[
πd

M
(m + 0.5)

]
0 ≤ d < Dstatic; 0 ≤ m < M (B.2)

ld = 1 +
L

2
sin

(
πd

L

)
0 ≤ d < Dstatic (B.3)

In (B.1), o(d) is the dth MFCC coefficient. The total number of MFCC coefficients is

Dstatic. The log output of the mth mel filter is denoted by log(Xm). There are M mel

filters in the filter bank. The weighting coefficient, wm,d as defined in (B.2), combines the

effect of DCT and liftering. In (B.3), ld is the liftering coefficient and L is a constant.

In order to determine the precision format of o(d), its dynamic range needs to be

found. In (B.1), we assume that log(Xm) is either +X or −X , where X is the maximum

allowable value of log(Xm). Hence, the dynamic range of the static MFCC coefficient can

be expressed by the following equation.
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−X
M−1∑
m=0

|wm,d| ≤ o(d) ≤ X
M−1∑
m=0

|wm,d| 0 ≤ d < Dstatic (B.4)

According to the above equation, we need to evaluate the term
∑M−1

m=0 |wm,d| in order to

determine the dynamic range of the static coefficient. A computer program is written to

calculate this term for 0 ≤ d < Dstatic. The other parameters are: Dstatic = 13, M = 26

and L = 22. The results are shown in the following table.

d

M−1∑
m=0

|wm,d|

0 7.21
1 11.78
2 18.73
3 25.58
4 31.97
5 37.68
6 42.55
7 47.10
8 50.65
9 53.08
10 54.31
11 55.12
12 54.71

Table B.1: Values of
M−1∑
m=0

|wm,d| for 0 ≤ d < Dstatic. The other parameters include Dstatic = 13,

M = 26 and L = 22.

In the table, the maximum value is 55.12, which can increase the number of integer

bits by at most 6 bits. As discussed in Section 4.1.2, log(Xm) and wm,d are in Q5.10 and

Q2.13 formats respectively. In (B.1), the multiplication by wm,d increases the number of

fractional bits of log(Xm) by 13 and the summation increases the number of integer bits

by at most 6 bits. Thus, the format of o(d) becomes Q11.23. In order to keep it in 32-bit

format, the least significant 3 bits are truncated, resulting in the fixed-point format of

Q11.20.
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