Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
Thalidomide Metabolism and Metabolites

A thesis submitted to the University of Auckland
in fulfilment of the requirements for the degree of
Doctor of Philosophy

By

Jun Lu

Auckland Cancer Society Research Centre
Department of Molecular Medicine and Pathology
Faculty of Medical and Health Sciences
University of Auckland
Auckland, New Zealand

April 2004
Thalidomide, renowned for causing birth defects in the late 1950s when used for the relief of morning sickness, has attracted new interest for the treatment of inflammatory conditions such as erythema nodosum leprosum and human malignancies such as multiple myeloma. Different species have different sensitivities to thalidomide that could be related to differences in its metabolism. In this study, methodologies using liquid chromatography-mass spectrometry were developed to identify thalidomide metabolites formed in vivo and in vitro in liver microsomes from mice, rabbits and humans, firstly to seek explanations for inter-species differences in sensitivity, and secondly to determine whether thalidomide or its metabolite(s) is the active agent.

Four hydrolysis products were detected in plasma and urine samples from multiple myeloma patients (MMPs) on thalidomide therapy, and mice and rabbits after oral administration of thalidomide. Six hydroxylated metabolites were detected in mice and rabbits, but not in plasma and urine from MMPs. In vitro studies confirmed that murine and rabbit liver microsomes catalysed the hydroxylation of thalidomide efficiently, but significant production of hydroxylation of thalidomide was not observed using human liver microsomes. The degree of hydroxylation both in vivo and in vitro was highest in mice and lowest in humans with rabbits in between. It is unlikely that hydroxylated metabolites are responsible for the effects of thalidomide in the treatment of multiple myeloma, since they were not present in quantifiable amounts in patients who were responding to the treatment. The three major hydrolysis products that were detected in patients were compared with thalidomide for their ability to inhibit tube formation in an in vitro angiogenesis assay, to inhibit TNF production induced with LPS in human peripheral blood leucocytes, and to modulate DMXAA-induced TNF production and antitumour activity in mice. One of the three, N-(o-carboxybenzoyl)glutamic acid imide (CG) was found to be as active as thalidomide in all the assays at concentrations (1-2 µg/ml) that are achievable in MMPs. Since CG has been shown by other laboratories to be non-teratogenic, the studies in this
thesis indicate that CG would be a more favourable, non-teratogenic approach to cancer therapy compared with thalidomide.
ACKNOWLEDGMENTS

Constructing a PhD thesis is like building a house. I was very lucky to have a group of great “architects”, my supervisors, to guide me and supply me with a “blue print” and “building materials”.

I am indebted to my main supervisor, Associate Professor Lai-Ming Ching, for providing me with the opportunity to work on this project, and for her patient teaching, constant encouragement, valuable advice and technical and financial support. I’d like to thank my co-supervisor, Professor and centre Co-Director Professor Bruce Baguley, for his guidance, intelligent advice, unconditional support and ever-opening door to students. I am also indebted to my co-supervisor, Dr. Philip Kestell, for his expertise in pharmacology, technical guidance, frequent discussion, and casual chat. I also need to thank Drs. Malcolm Tingle and Nuala Helsby for their help and advice on metabolism studies of thalidomide in vitro and in rabbits. I thank Professor Peter Browett, head of Molecular Medicine and Pathology department, for providing clinical samples and outcomes of multiple myeloma patients. I need to thank Associate Professor Brian Palmer for synthesising all the authentic standards of thalidomide metabolites and support in chemistry. I thank all the patients with multiple myeloma who volunteered themselves to provide blood and urine samples; the seven volunteers in the Auckland Cancer Society Research Centre who donated blood for my TNF studies; and all the nursing staff who helped me collect blood samples. I thank Professor William A Denny for his support to students as the director of the Auckland Cancer Society Research Centre; Ms Elaine Marshall for her support and care as the manager of the centre; Rachel Sutherland for her assistance in animal surgery and other laboratory techniques; Dianne Ferry for her support in LC-MS analysis; Angela Ding for her assistant in pharmacological works; Sandy Hung and Derek Wu for assistance in cell culture experiments; Jack Zhao and Steve Wang for discussion and chats in our office; Ellen Semb and Mary Spellman for secretarial and IT support. I need to give special thanks to Francisco Chung, who has been working together with me on this project for three
years. We helped and cooperated with each other to carry out tough experiments, and produced a paper together, which has been submitted to *Clinical Cancer Research*.

As a “trainee builder”, a PhD student, I am very grateful that I was paid. I’d like to express my sincere gratitude to the Marsden Fund of the Royal Society of New Zealand, which supplied me with a fellowship to enable me to finish my PhD without sacrificing my financial integrity. The generous support of the Marsden Fund was instrumental to the achievement of this work. I also would like to express my acknowledgment to the University of Auckland Research Committee and Auckland Cancer Society for their travel grants, which enabled me to attend the 94th Annual Meeting of American Association for Cancer Research in Washington D.C., USA in 2003. A poster of my work has been presented at the conference.

Finally, I’d like to thank my parents, Jinlin Lu and Qindi Zhang, for their moral support and encouragement. I need to thank my wife, Liang-Ni Liu, for her contribution to my life and her understanding of my work. My son, Si-Cong Lu, although you are too young to know this, this is for you.
ABSTRACT .. I
ACKNOWLEDGMENTS .. IV
TABLE OF CONTENTS .. VI
LIST OF FIGURES ... X
LIST OF TABLES ... XVI
LIST OF TABLES ... XVI
LIST OF ABBREVIATIONS .. XVII
CHAPTER 1. GENERAL INTRODUCTION .. 1
1.1. THE HISTORY OF THALIDOMIDE AND ITS ROLE IN CANCER THERAPY 1
1.2. THALIDOMIDE AS AN ANTI-CANCER AGENT .. 4
 1.2.1. Pre-clinical Studies ... 4
 1.2.2. Clinical Studies ... 5
 1.2.2.1. Thalidomide in Solid Tumours .. 5
 1.2.2.2. Thalidomide in Haematological Malignancies 6
1.3. MECHANISM OF ACTION IN CANCER TREATMENT .. 10
 1.3.1. Anti-angiogenesis ... 10
 1.3.2. Cytokine Modulation ... 11
 1.3.3. Inhibition of Adhesion Molecule Expression .. 14
 1.3.4. Stimulation of Lymphocytes and Natural Killer Cells 15
 1.3.5. Induction of Apoptosis .. 16
1.4. PHARMACOKINETICS, METABOLISM AND METABOLITES 18
 1.4.1. Pharmacokinetics and Pharmacokinetic Interaction with Other Drugs 18
 1.4.1.1. Pharmacokinetics ... 18
 1.4.1.2. Pharmacokinetic Interactions with Other Drugs 20
 1.4.2. Metabolism and Metabolites .. 20
1.5. SUMMARY OF THE REVIEW .. 23
CHAPTER 2. DETECTION AND IDENTIFICATION OF THALIDOMIDE METABOLITES IN MICE

2.1. INTRODUCTION
2.2. METHODS
 2.2.1. Mice and Tumour
 2.2.2. Drug Administration
 2.2.3. Metabolite Detection Using LC-MS and HPLC
 2.2.3.1. Preparation of Murine Plasma and Urine Samples
 2.2.3.2. LC-MS Analysis
 2.2.3.3. Resolution of Phthaloylglutamine (PG) and Phthaloylisoglutamine (PiG) by HPLC
 2.2.5.8. Thalidomide Glucuronide Identification
 2.3. RESULTS
 2.3.1. Detection of Metabolites
 2.3.2. Identification of Metabolites
 2.4. DISCUSSION

CHAPTER 3. IDENTIFICATION OF THALIDOMIDE METABOLITES IN MULTIPLE MYELOMA PATIENTS

3.1. INTRODUCTION
3.2. METHODS
 3.2.1. Preparation of Urine and Plasma Samples
 3.2.2. Metabolite Detection and Identification
 3.3. RESULTS
 3.3.1. Detection and Identification of Metabolites in MMPs
 3.3.2. Intra-patient Metabolite Detection Study
 3.4. DISCUSSION

CHAPTER 4. COMPARISON OF THALIDOMIDE METABOLITE FORMATION IN MICE, RABBITS AND MULTIPLE MYELOMA PATIENTS

vii
4.1. INTRODUCTION .. 58

4.2. METHODS .. 59
 4.2.1. Murine Studies ... 59
 4.2.2. Rabbit Studies ... 59
 4.2.3. Clinical Studies ... 60
 4.2.4. Metabolite Detection and Identification ... 60

4.3. RESULTS .. 61
 4.3.1. Thalidomide Metabolite Profile in Mice ... 61
 4.3.2. Thalidomide metabolites in rabbits ... 66
 4.3.3. Thalidomide Metabolites in Patients .. 66

4.4. DISCUSSION ... 73

CHAPTER 5. IN VITRO METABOLISM OF THALIDOMIDE IN MURINE, RABBIT AND HUMAN LIVER MICROSONES .. 75

 5.1. INTRODUCTION ... 75
 5.2. METHODS .. 76
 5.2.1. Liver Microsome Preparation .. 76
 5.2.2. Bicinchoninic Acid (BCA) Protein Assay ... 76
 5.2.3. In Vitro Metabolism ... 77
 5.2.4. Detection of Metabolites Formed in vitro .. 77
 5.2.5. Assay of 5-OH Th ... 78

5.3. RESULTS .. 79
 5.3.1. Detection of Metabolites .. 79
 5.3.2. Relative Abundance of Metabolites ... 84
 5.3.3. Rate of Metabolism of Thalidomide to 5-OH Th ... 84

5.4. DISCUSSION ... 96

CHAPTER 6. BIOLOGICAL ACTIVITY OF THALIDOMIDE’S HYDROLYSIS METABOLITES ... 99

 6.1. INTRODUCTION ... 99
 6.2. METHODS .. 100
 6.2.1. Tumour Growth Delay Determinations... 100
6.2.2. Modulation of TNF Production in Mice .. 101
6.2.3. Modulation of TNF Production In vitro .. 101
6.2.4. TNF Assay ... 102
6.2.5. Inhibition of Tube Formation In vitro ... 102
6.2.6. Cytotoxicity Assay ... 103
6.2.7. Stability and Plasma Concentrations of CG ... 103
 6.2.7.1. Calibration Curves and Quality Controls ... 103
 6.2.7.2. Determination of CG Stability in vitro ... 104
 6.2.7.3. Calculation of Plasma C_{\text{max}}, T_{\text{max}}, AUC and t_{\text{1/2}} of CG in MMPs 104
6.3. RESULTS .. 105
 6.3.1. Potentiation of Anti-tumour Activity of DMXAA in Mice by Thalidomide, PG,
 PiG and CG ... 105
 6.3.2. Effects of Thalidomide, PG, PiG and CG on DMXAA-Induced TNF Production
 in Mice .. 108
 6.3.3. Effects of Thalidomide, PG, PiG and CG on LPS-induced TNF Production by
 HPBL in Culture .. 108
 6.3.4. Inhibition of Tube Formation in Matrigel .. 112
 6.3.5. Stability of CG at Different pHs .. 112
 6.3.6. Plasma concentrations of CG in MMPs .. 117
6.4. DISCUSSION ... 119

CHAPTER 7. GENERAL DISCUSSION .. 121

 7.1. INTER-SPECIES DIFFERENCES IN THALIDOMIDE METABOLISM 121
 7.2. THE ACTIVE AGENT IN THALIDOMIDE THERAPY .. 122
 7.3. DEVELOPMENT OF CG AS A CLINICAL AGENT ... 123

APPENDICES ... 126

 APPENDIX 1. CHEMICALS AND REAGENTS .. 126
 APPENDIX 2. PUBLICATIONS DERIVED FROM THIS THESIS 127

REFERENCES .. 128
LIST OF FIGURES

Figure 1.1 Chemical structures of racemic thalidomide and its stereoisomers. 1

Figure 1.2 A model for the role of TNF in pathophysiology of multiple myeloma (MM). TNF secreted from MM cells induces modest proliferation, as well as MEK/MAPK and NF-κB activation, in MM cells. It also augments IL-6 secretion, as well as activates MEK/MAPK and NF-κB, in BMSCs. Importantly, TNF upregulates expression of CD49d (VLA-4), CD11a (LFA-1), and Muc-1 on MM-1S cells, as well as CD54 (ICAM-1) and CD106 (VCAM-1) on BMSCs, which is mediated via NF-κB activation. Adapted from Hideshima et al., 2001b.. 12

Figure 1.3 Possible role of thalidomide on multiple myeloma (MM) cells’ and BMSCs’ microenvironment in vivo. (A) Thalidomide directly inhibits myeloma cell growth. (B) Thalidomide inhibits MM cell adhesion to BMSCs. (C) thalidomide blocks IL-6, TNF and IL1β secretion from BMSCs. (D) Thalidomide blocks the ability of VEGF and bFGF to stimulate neovascularisation of bone marrow. (E) Thalidomide induces IL-2 and IFN-γ secretion from T-cells. Adapted from Richardson et al., 2002.. 17

Figure 1.4 Hydrolysis pathway of thalidomide (Adapted from Schumacher et al., 1965b). ... 17

Figure 2.1 UV-detected chromatograms of urine samples from mice without treatment (dotted lines) and up to 4 h following oral administration of thalidomide (Thal) (50 mg/kg, solid lines). ... 22

Figure 2.2 (A) Total ion MS-detected (Signal 1) chromatogram of urine from mice without treatment (dotted line) and up to 4 h following oral administration of Thal (50 mg/kg, solid line). (B) Mass spectrum of Peak 6 using negative ion-scan mode showing an [M-H]- mass of 273 amu. (C) Mass spectrum at the retention time corresponding to Peak 6 in untreated mouse urine................................. 35

Figure 2.3 (A) Negative SIM mode (Signal 3) MS-detected chromatogram of urine from mice without treatment (dotted line) and up to 4 h following p.o. of Thal (50...
mg/kg, solid line). (B) Mass spectrum using negative single-ion monitoring mode of Peak 6 showing a [M-H]⁻ response of 273 amu. Note: Peaks 5 & 7 also corresponded to [M-H]⁻ of 273 amu, while Peaks 1 & 4 corresponded to [M-H]⁻ of 275 amu, Peak 2 corresponded to [M-H]⁻ of 291 amu and Peak 3 corresponded to [M-H]⁻ of 449 amu (spectrum not shown).

Figure 2.4 LC-MS chromatograms of urine samples from Colon 38 tumour-bearing mice up to 4 h following oral administration of Thal (50 mg/kg). (A) UV-detected chromatogram, and (B) SIM mode (Signal 3) MS-detected chromatogram.

Figure 2.5 UV spectra of metabolite peaks (dotted lines) compared with UV spectra of corresponding authentic standards (solid lines). (A) Peak 1 and CG. (B) Peak 5 and cis-5′-OH Th. (C) Peak 6 and trans-5′-OH Th. (D) Peak 7 and 5-OH Th.

Figure 2.6 (A) UV-detected chromatogram of Peak 3 following treatment with β-glucuronidase (solid line) and without treatment (dotted line). (B) Mass spectrum of the Peak II formed following β-glucuronidase treatment showing an [M-H]⁻ mass of 273 amu corresponding to 5-OH Th. (C) Mass spectrum at the retention time corresponding to Peak II in the untreated control.

Figure 2.7 HPLC chromatograms using mobile phase containing cetyltrimethyl-ammonium bromide and 1-octanesulfonic acid showing complete separation of: (A) PG and PiG authentic standards; and (B) separation of the Peak 4 fraction from mouse urine into two peaks showing the presence of both PG and PiG.

Figure 2.8 Comparison of UV-detected chromatograms of urine from mice administered Thal p.o. (solid line) or i.p. (dotted line).

Figure 2.9 Comparison of UV-detected chromatograms of urine (solid line) or plasma (dotted line) from mice given Thal (50 mg/kg) p.o.

Figure 2.10 Proposed pathways of biotransformation of thalidomide in mice. Unconfirmed steps or metabolites are shown in dashed lines.

Figure 3.1 LC-MS chromatograms of urine from MMP1 on Thal therapy (100 mg/day, solid lines) and from a healthy volunteer (dotted lines) recorded by: (A) UV at 230 nm, (B) MS at negative TIC mode (Signal 1), (C) MS at positive SIM mode (Signal 2), (D) MS at negative SIM mode (Signal 3).
Figure 3.2 UV chromatograms of urine samples of MMPs on thalidomide therapy (solid lines) and before treatment (dotted line). A-F correspond to Patients 2-7 respectively... 51

Figure 3.3 HPLC chromatograms using mobile phase containing cetyltrimethylammonium bromide and 1-octanesulfonic acid showing complete separation of: (A) PG and PiG authentic standards; and (B) separation of the Peak 4 fraction from MMPs’ urine into two peaks showing the presence of both PG and PiG. 52

Figure 3.4 UV chromatograms of urine samples of Patient 1 collected on three occasions after Thal therapy. (A) one month, (B) two months, (C) three months. 53

Figure 3.5 Comparison of UV-detected chromatograms of urine (solid lines) or plasma (dotted lines) from (A) mice given Thal (50 mg/kg, p.o.); and (B) patient 1 approximately 15 h after a prior dose of Thal (100 mg/day p.o.). 54

Figure 4.1 Chromatograms of urine from mice without treatment (dotted lines) and up to 4 h following oral administration of Thal (2 mg/kg, solid lines) recorded by: (A) UV at 230 nm, (B) MS at negative TIC mode (Signal 1), (C) MS at positive SIM mode (Signal 2), (D) MS at negative SIM mode (Signal 3).......................... 62

Figure 4.2 Negative SIM mode (Signal 3) MS-detected chromatograms of mouse plasma samples collected before (dotted lines) and after (solid lines) p.o. treatment of Thal (2 mg/kg). (A) 5 min, (B) 30 min, (C) 4 h. .. 64

Figure 4.3 Negative SIM mode (Signal 3) MS-detected chromatograms of mouse plasma samples collected before (dotted lines) and after (solid lines) i.v. treatment of Thal (2 mg/kg). (A) 1 h, (B) 2 h, (C) 4 h... 65

Figure 4.4 Negative SIM mode (Signal 3) MS-detected chromatograms of rabbit plasma samples collected before (dotted lines) and after p.o. treatment (solid lines). (A) 30 min, (B) 2h, (C) 6 h... 67

Figure 4.5 Negative SIM mode (Signal 3) MS-detected chromatograms of rabbit urine samples collected before (dotted lines) and after treatment (solid lines). (A) 3 h after p.o. administration, (B) 3 h after i.v. injection ... 68

Figure 4.6 Negative SIM mode (Signal 3) MS-detected chromatograms of rabbit plasma samples collected before (dotted lines) and after i.v. treatment (solid lines). (A) 30 min, (B) 2h, (C) 4 h... 69
Figure 4.7 Negative SIM mode (Signal 3) MS-detected chromatograms of MMP plasma samples collected before (dotted lines) and after treatment (solid lines). (A) 1 h, from MMP 8, (B) 4 h, from MMP 10, (C) 24 h, from MMP 11 70

Figure 4.8 Negative SIM mode (Signal 3) MS-detected chromatograms of MMP 12 urine samples collected before (dotted lines) and after treatment (solid lines). (A) 4 h, (B) 8 h, (C) 24 h. .. 71

Figure 4.9 Thalidomide metabolism by hydrolysis (arrows with dashed lines) and CYP hydroxylation and UDPG transferase-mediated glucuronidation (arrows with solid lines) in mice, rabbits and MMPs. Unconfirmed metabolites are shown in dotted lines. Structures in bold are products formed via hydrolysis only. Numbers in brackets represent metabolite peak number in chromatograms... 72

Figure 5.1 LC-MS chromatograms of Thal metabolites following incubation (60 min; 37°C) of Thal (400 μM) with liver microsomes (solid lines) of (A) human HL18, (B) rabbits and (C) mice, or with boiled liver microsomes (dotted lines). Metabolites were detected by SIM mode (Signal 3) of MS as described in methods. 81

Figure 5.2 HPLC chromatograms with UV detection of Thal metabolites following incubation (60 min; 37°C) of Thal (400 μM) with (A) human HL18, (B) rabbits and (C) mice liver microsomes (solid lines), or with boiled liver microsomes (dotted lines). ... 82

Figure 5.3 LC-MS chromatograms with UV (A) or MS negative SIM (B) detection of Thal metabolites following incubation (60 min; 37°C) of Thal (400 μM) with 2 mg/ml human HL5 liver micrsomes. .. 83

Figure 5.4 Enzymatic hydrolysis of PiG by rabbit liver microsomal protein in the presence of NADPH (4mM)... 88

Figure 5.5 Concentration of 5-OH Th with different microsomal protein concentrations after incubating 400 μM of thalidomide with mouse, rabbit and human liver microsomes for 60 min... 90

Figure 5.6 Concentration of 5-OH Th at different times after incubating 400 μM of thalidomide with 2 mg/ml of mouse, rabbit and human liver microsomes.............. 91
Figure 5.7 HPLC chromatograms showing complete separation of cis-5’-OH Th, trans-5’-OH Th, 5-OH Th, Phecacetin and Thal using UV detection at (A) 220 nm or (B) 248 nm. ... 92

Figure 5.8 Formation of 5-OH Th in rabbit and mouse liver microsomes following incubation with Thal... 93

Figure 5.9 Lineweaver-Burk plots of thalidomide 5-hydroxylation by rabbit and mouse liver microsomes ... 94

Figure 5.10 Eadie-Hofsee plots of thalidomide 5-hydroxylation by rabbit and mouse liver microsomes ... 95

Figure 6.1 Tumour growth delay in mice untreated, or treated with DMXAA or DMXAA combined with Thal or hydrolysis products/metabolites of Thal. 106

Figure 6.2 Colon 38 tumour volumes 21 days after treatment in mice. “*” represents significant difference ($p < 0.05$, student’s t-test) compared with DMXAA alone treatment... 107

Figure 6.3 TNF levels in (A) serum and (B) tumour tissue of mice untreated, or treated with DMXAA alone or DMXAA combined with Thal or hydrolysis products/metabolites of Thal. “*” represents significant difference ($p < 0.05$, student’s t-test) compared with DMXAA alone treatment... 109

Figure 6.4 TNF production by HPBL from seven healthy volunteers at different concentrations of LPS. .. 110

Figure 6.5 The effect of Thal, CG, PG or PiG on LPS-induced TNF production by HPBL from healthy human volunteers. (A) average TNF activity, (B) average percentage of inhibition.. 111

Figure 6.6 Effects of Thal, CG, PG and PiG on tube formation of ECV 304 cells in Matrigel. Cells were treated with medium only, medium with vehicle only and indicated concentrations of drugs... 113

Figure 6.7 Inhibition of the tube formation of ECV 304 cells in Matrigel by Thal and CG at different concentrations. .. 114

Figure 6.8 HPLC chromatograms showing complete separation of CG, phenacetin and Thal at wavelength of (A) 220 nm or (B) 248 nm.. 115
Figure 6.9 CG and Thal concentrations in PBS solutions at different pH during 24 h of incubation at 37 °C. .. 116
Figure 6.10 Plasma concentration-time profiles of CG (from samples of three MMPs) compared with that of thalidomide (redrawn from Chung et al., 2004a) after the treatment of 200 mg oral dose of thalidomide. ... 118
Figure 7.1 Proposed analogues of CG. .. 125
LIST OF TABLES

Table 1.1 List of diseases in which thalidomide has been trialed. 3
Table 1.2 Pharmacokinetic parameters of orally administered (R-, S-) racemic-thalidomide (unless stated otherwise). ... 19
Table 2.1 Metabolite peaks in UV profiles from murine urine following thalidomide treatment. .. 34
Table 3.1 Comparison of metabolites in mouse and MMP urine samples. 57
Table 4.1 Metabolite peaks in mouse urine LC-MS profiles after thalidomide oral treatment. .. 63
Table 5.1 Metabolite formed after incubating thalidomide with mouse and rabbit liver microsomes... 80
Table 5.2 Comparison of relative levels of hydroxylated metabolites formed following a 60 min incubation of Thal with liver microsomal protein (2 mg/ml). Metabolites were determined by mass spectral detection using single ion monitoring. The response of each metabolite peak produced by mouse liver microsomes was normalized to 1. 86
Table 5.3 Comparison of relative levels of hydrolysis products formed following a 60 min incubation of Thal with liver microsomal protein (2 mg/ml). Hydrolysis products were determined by mass spectral detection using single-ion monitoring. The response of each peak produced by mouse liver microsomes was normalized to 1. 87
Table 5.4 Comparison of the total products of hydrolysis and hydroxylation formed following a 60 min incubation of Thal with liver microsomal protein (2 mg/ml). 89
Table 6.1 Comparison of PK parameters of CG and Thal in MMPs. 117
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-OH Th</td>
<td>5-hydroxythalidomide</td>
</tr>
<tr>
<td>5’-OH CG</td>
<td>5’-hydroxy-N-(o-carboxybenzoyl)glutamic acid imide</td>
</tr>
<tr>
<td>5’-OH Th</td>
<td>5’-hydroxythalidomide</td>
</tr>
<tr>
<td>α-MEM</td>
<td>α-minimal essential medium</td>
</tr>
<tr>
<td>μg</td>
<td>microgram</td>
</tr>
<tr>
<td>μl</td>
<td>microlitre</td>
</tr>
<tr>
<td>μM</td>
<td>micromolar</td>
</tr>
<tr>
<td>ACN</td>
<td>acetonitrile</td>
</tr>
<tr>
<td>amu</td>
<td>atomic molecular unit</td>
</tr>
<tr>
<td>APCI</td>
<td>atmospheric pressure chemical ionisation</td>
</tr>
<tr>
<td>AU</td>
<td>arbitrary unit(s)</td>
</tr>
<tr>
<td>AUC</td>
<td>area under the concentration-time curve</td>
</tr>
<tr>
<td>bFGF</td>
<td>basic fibroblast growth factor</td>
</tr>
<tr>
<td>BMSC</td>
<td>bone marrow stromal cell</td>
</tr>
<tr>
<td>C<sub>max</sub></td>
<td>maximal drug concentration following administration</td>
</tr>
<tr>
<td>CG</td>
<td>N-(o-carboxybenzoyl)glutamic acid imide</td>
</tr>
<tr>
<td>CL<sub>int</sub></td>
<td>intrinsic clearance</td>
</tr>
<tr>
<td>Cox</td>
<td>cyclooxygenase</td>
</tr>
<tr>
<td>Cl/F</td>
<td>apparent clearance rate</td>
</tr>
<tr>
<td>CV</td>
<td>coefficient of variation</td>
</tr>
<tr>
<td>CYP</td>
<td>cytochrome P450 enzymes</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethylsulphoxide</td>
</tr>
<tr>
<td>DMXAA</td>
<td>5,6-dimethylxanthenone-4-acetic acid</td>
</tr>
<tr>
<td>ELISA</td>
<td>enzyme linked immunosorbent assay</td>
</tr>
<tr>
<td>FBS</td>
<td>fetal bovine serum</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>g</td>
<td>gravity</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>HCl</td>
<td>hydrochloric acid</td>
</tr>
<tr>
<td>HIV</td>
<td>human immunodeficiency virus</td>
</tr>
<tr>
<td>HPBL</td>
<td>human peripheral blood leucocytes</td>
</tr>
<tr>
<td>HPCD</td>
<td>2-hydroxypropyl-β-cyclodextrin</td>
</tr>
<tr>
<td>HPLC</td>
<td>high performance liquid chromatography</td>
</tr>
<tr>
<td>HUVEC</td>
<td>human umbilical vein endothelial cell</td>
</tr>
<tr>
<td>ICAM</td>
<td>intercellular cell adhesion molecule</td>
</tr>
<tr>
<td>IFN</td>
<td>interferon</td>
</tr>
<tr>
<td>IGF</td>
<td>insulin-like growth factor</td>
</tr>
<tr>
<td>IL</td>
<td>interleukin</td>
</tr>
<tr>
<td>i.p.</td>
<td>intraperitoneal</td>
</tr>
<tr>
<td>i.v.</td>
<td>intravenous</td>
</tr>
<tr>
<td>KCl</td>
<td>potassium chloride</td>
</tr>
<tr>
<td>K_M</td>
<td>Michaelis-Menten constant</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
</tr>
<tr>
<td>LC-MS</td>
<td>liquid chromatography-mass spectrometry</td>
</tr>
<tr>
<td>LPS</td>
<td>lipopolysaccharide</td>
</tr>
<tr>
<td>mAU</td>
<td>milli arbitrary unit(s)</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>ml</td>
<td>milliliter</td>
</tr>
<tr>
<td>mM</td>
<td>millimolar</td>
</tr>
<tr>
<td>MMP</td>
<td>multiple myeloma patient</td>
</tr>
<tr>
<td>MRI</td>
<td>magnetic resonance imaging</td>
</tr>
<tr>
<td>MS</td>
<td>mass spectrometry</td>
</tr>
<tr>
<td>MSD</td>
<td>mass spectral detection</td>
</tr>
<tr>
<td>MTT</td>
<td>3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide</td>
</tr>
<tr>
<td>NADPH</td>
<td>β-nicotinamide adenine dinucleotide phosphate reduced form</td>
</tr>
<tr>
<td>NF-κB</td>
<td>nuclear factor-κB</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>PG</td>
<td>phthaloylglutamine</td>
</tr>
<tr>
<td>PiG</td>
<td>phthaloylisoglutamine</td>
</tr>
<tr>
<td>p.o.</td>
<td>oral</td>
</tr>
<tr>
<td>SEM</td>
<td>standard error of mean</td>
</tr>
<tr>
<td>SIM</td>
<td>single ion monitoring</td>
</tr>
<tr>
<td>t$_{1/2}$</td>
<td>drug half-life</td>
</tr>
<tr>
<td>T$_{max}$</td>
<td>time when C$_{max}$ is achieved</td>
</tr>
<tr>
<td>TCA</td>
<td>trichloroacetic acid</td>
</tr>
<tr>
<td>Thal</td>
<td>thalidomide</td>
</tr>
<tr>
<td>TIC</td>
<td>total ion current</td>
</tr>
<tr>
<td>TNF</td>
<td>tumour necrosis factor-α</td>
</tr>
<tr>
<td>UDPG</td>
<td>uridine diphosphate glucuronide</td>
</tr>
<tr>
<td>UDPG-transferase</td>
<td>uridine diphosphate glucuronosyl transferase</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
<tr>
<td>V</td>
<td>velocity of the reaction</td>
</tr>
<tr>
<td>V$_{max}$</td>
<td>maximum velocity of the reaction</td>
</tr>
<tr>
<td>V/F</td>
<td>volume of distribution</td>
</tr>
<tr>
<td>v/v</td>
<td>volume/volume</td>
</tr>
<tr>
<td>VCAM</td>
<td>vascular cell adhesion molecule</td>
</tr>
<tr>
<td>VEGF</td>
<td>vascular endothelial growth factor</td>
</tr>
</tbody>
</table>