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ABSTRACT 

 

Thalidomide, renowned for causing birth defects in the late 1950s when used for the relief 

of morning sickness, has attracted new interest for the treatment of inflammatory 

conditions such as erythema nodosum leprosum and human malignancies such as multiple 

myeloma. Different species have different sensitivities to thalidomide that could be related 

to differences in its metabolism. In this study, methodologies using liquid chromatography-

mass spectrometry were developed to identify thalidomide metabolites formed in vivo and 

in vitro in liver microsomes from mice, rabbits and humans, firstly to seek explanations for 

inter-species differences in sensitivity, and secondly to determine whether thalidomide or 

its metabolite(s) is the active agent.  

 

Four hydrolysis products were detected in plasma and urine samples from multiple 

myeloma patients (MMPs) on thalidomide therapy, and mice and rabbits after oral 

administration of thalidomide. Six hydroxylated metabolites were detected in mice and 

rabbits, but not in plasma and urine from MMPs. In vitro studies confirmed that murine 

and rabbit liver microsomes catalysed the hydroxylation of thalidomide efficiently, but 

significant production of hydroxylation of thalidomide was not observed using human liver 

microsomes. The degree of hydroxylation both in vivo and in vitro was highest in mice and 

lowest in humans with rabbits in between.  It is unlikely that hydroxylated metabolites are 

responsible for the effects of thalidomide in the treatment of multiple myeloma, since they 

were not present in quantifiable amounts in patients who were responding to the treatment. 

The three major hydrolysis products that were detected in patients were compared with 

thalidomide for their ability to inhibit tube formation in an in vitro angiogenesis assay, to 

inhibit TNF production induced with LPS in human peripheral blood leucocytes, and to 

modulate DMXAA-induced TNF production and antitumour activity in mice. One of the 

three, N-(o-carboxybenzoyl)glutamic acid imide (CG) was found to be as active as 

thalidomide in all the assays at concentrations (1-2 µg/ml) that are achievable in MMPs. 

Since CG has been shown by other laboratories to be non-teratogenic, the studies in this 
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thesis indicate that CG would be a more favourable, non-teratogenic approach to cancer 

therapy compared with thalidomide. 
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HIV   human immunodeficiency virus 

HPBL   human peripheral blood leucocytes  

HPCD   2-hydroxypropyl-β-cyclodextrin 

HPLC   high performance liquid chromatography 

HUVEC  human umbilical vein endothelial cell 

ICAM   intercellular cell adhesion molecule 

IFN   interferon 

IGF   insulin-like growth factor 

IL   interleukin 

i.p.   intraperitoneal 

i.v.   intravenous 

KCl   potassium chloride 

KM   Michaelis-Menten constant 

kg   kilogram 

LC-MS  liquid chromatography-mass spectrometry 

LPS   lipopolysaccharide 

mAU   milli arbitrary unit(s) 

mg   milligram 

min   minute 

ml   milliliter 

mM   millimolar 

MMP   multiple myeloma patient 

MRI   magnetic resonance imaging 

MS   mass spectrometry 

MSD   mass spectral detection 

MTT   3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide 

NADPH  β-nicotinamide adenine dinucleotide phosphate reduced form 

NF-κB   nuclear factor-κB 

NMR   nuclear magnetic resonance 

PBS   phosphate buffered saline 



 xix

PG   phthaloylglutamine 

PiG   phthaloylisoglutamine 

p.o.   oral 

SEM   standard error of mean 

SIM   single ion monitoring 

t1/2   drug half-life 

Tmax   time when Cmax is achieved 

TCA    trichloroacetic acid 

Thal   thalidomide 

TIC    total ion current 

TNF   tumour necrosis factor-α 

UDPG   uridine diphosphate glucuronide 

UDPG-transferase uridine diphosphate glucuronosyl transferase 

UV   ultraviolet 

V   velocity of the reaction 

Vmax   maximum velocity of the reaction 

V/F   volume of distribution 

v/v    volume/volume 

VCAM  vascular cell adhesion molecule 

VEGF   vascular endothelial growth factor 
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