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VERTEX-PRIMITIVE DIGRAPHS HAVING VERTICES WITH ALMOST EQUAL

NEIGHBOURHOODS

PABLO SPIGA, GABRIEL VERRET

Abstract. We consider vertex-primitive digraphs having two vertices with almost equal neighbourhoods (that
is, the set of vertices that are neighbours of one but not the other is small). We prove a structural result about

such digraphs and then apply it to answer a question of Araújo and Cameron about synchronising groups.

1. Introduction

All sets, digraphs and groups considered in this paper are finite. For basic definitions, see Section 2. Let Γ
be a digraph on a set Ω and suppose that Γ is vertex-primitive, that is, its automorphism group acts primitively
on Ω. It is well known and easy to see that, in this case, Γ cannot have two distinct vertices with equal
neighbourhoods, unless Γ = ∅ or Γ = Ω× Ω (see Lemma 2.3 for example).

We consider the situation when Γ has two vertices with “almost” equal neighbourhoods. Since Γ is vertex-
primitive, it is regular, of valency d, say. Let Γi be the graph on Ω with two vertices being adjacent if the
intersection of their neighbourhoods in Γ has size d− i. Our main result is the following.

Theorem 1.1. Let Γ be a vertex-primitive digraph on a set Ω with Γ 6= ∅ and Γ 6= Ω × Ω. Let n be the order
of Γ and d its valency. If κ is the smallest positive i such that Γi 6= ∅, then either

(1) Γ0 ∪ Γκ = Ω× Ω and (n− 1)(d− κ) = d(d− 1), or
(2) there exists i ∈ {κ, . . . , d− 1} such that Γi has valency at least 1 and at most κ2 + κ.

Theorem 1.1 is most powerful when κ is small. To illustrate this, we completely determine the digraphs
which occur when κ = 1 (see Corollary 4.2). We then apply this result to answer a question of Araújo and
Cameron [2, Problem 2(a)] (see Theorem 4.3) concerning synchronising groups. Finally, in Section 5, we say a
few words about the case Γ0 ∪ Γκ = Ω× Ω.

2. Preliminaries

2.1. Digraphs. Let Ω be a finite set. A digraph Γ on Ω is a binary relation on Ω, in other words, a subset of
Ω×Ω. The elements of Ω are called the vertices of Γ while the cardinality of Ω is the order of Γ. The digraph
Γ−1 is {(α, β) ∈ Ω× Ω : (β, α) ∈ Γ}. Given two digraphs Γ and Λ on Ω, we define the digraph

Γ ◦ Λ := {(α, β) ∈ Ω× Ω : there exists γ ∈ Ω with (α, γ) ∈ Γ, (γ, β) ∈ Λ}.

Let v be a vertex of Γ. The neighbourhood of v is the set {u ∈ Ω : (v, u) ∈ Γ} and is denoted Γ(v). Its
cardinality is the valency of v. If every vertex of Γ has the same valency, say d, then we say that Γ is regular
of valency d.

If Γ is a symmetric binary relation, then it is sometimes called a graph. If Ψ is a subset of Ω, then the
subgraph of Γ induced by Ψ is Γ ∩ (Ψ×Ψ) viewed as a graph on Ψ. We denote by Ω∗ the set {(v, v) : v ∈ Ω}.
The graph (Ω× Ω) \ Ω∗ is called the complete graph on Ω.

2.2. Groups. The automorphism group of Γ, denoted Aut(Γ), is the group of permutations of Ω that preserve
Γ. A permutation group G on Ω is transitive if for every x, y ∈ Ω there exists g ∈ G with xg = y, that is,
mapping x to y. A permutation group on Ω is primitive if it is transitive and preserves no nontrivial partition
of Ω. We say that Γ is vertex-transitive if Aut(Γ) is transitive.
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2.3. A few basic results.

Lemma 2.1. Let Γ be a vertex-transitive digraph on Ω. If Γ0 = Ω× Ω, then Γ = ∅ or Γ = Ω× Ω.

Proof. Suppose that Γ 6= ∅ and thus there exists (α, β) ∈ Γ. As Γ0 = Ω × Ω, all vertices of Γ have the same
neighbourhood and thus β ∈ Γ(ω) for every ω ∈ Ω but then vertex-transitivity implies that Γ = Ω× Ω. �

Lemma 2.2. Let Γ be a vertex-primitive graph on Ω. If Γ is a transitive relation on Ω and Γ 6⊆ Ω∗, then
Γ = Ω× Ω.

Lemma 2.3. Let Γ be a vertex-primitive digraph on Ω. If ∅ 6= Γ 6= Ω× Ω, then Γ0 = Ω∗.

Proof. Clearly, Ω∗ ⊆ Γ0. If Γ0 6⊆ Ω∗, then Lemma 2.2 implies that Γ0 = Ω×Ω but this contradicts Lemma 2.1.
�

3. Proof of Theorem 1.1

Since ∅ 6= Γ 6= Ω × Ω, we have n ≥ 2 and Lemma 2.1 implies that Γ0 6= Ω × Ω and thus κ is well-defined.
Since Γ is vertex-primitive, it is regular, of valency d, say. By minimality of κ, Γi = ∅ for i ∈ {1, . . . , κ − 1}
but Γκ 6= ∅. Note that, for every integer i, Aut(Γ) ≤ Aut(Γi) hence Γi is also vertex-primitive and regular, of
valency di, say. By Lemma 2.3, we have Γ0 = Ω∗ and thus

(1) d0 = 1.

Moreover, it is easy to see that

(2)
⋃

i∈{0,...,d−1}

Γi = Γ ◦ Γ−1.

We now show that, for every i ≥ 0, we have

(3) Γi ◦ Γκ ⊆ Γ0 ∪ Γ1 ∪ · · · ∪ Γi+κ.

Let (u, v) ∈ Γi ◦ Γκ. By definition, there exists w ∈ Ω such that (u,w) ∈ Γi and (w, v) ∈ Γκ. In particular,
|Γ(u) ∩ Γ(w)| = d − i while |Γ(v) ∩ Γ(w)| = d − κ and thus Γ(u) \ Γ(w) = i and Γ(w) \ Γ(v) = κ but
Γ(u)\Γ(v) ⊆ (Γ(u)\Γ(w))∪(Γ(w)\Γ(v)). This implies that |Γ(u)\Γ(v)| ≤ i+κ hence (u, v) ∈ Γ0∪Γ1∪· · ·∪Γi+κ,
which concludes the proof of (3). Let

(4) ` := min{i ≥ κ : Γi+1 = Γi+2 = · · · = Γi+κ = ∅}.

By definition, we have ` ≥ κ. Recall that Γi = ∅ for every i ≥ d+ 1 hence

(5) κ ≤ ` ≤ d.

Let Γκ be the transitive closure of the relation Γκ. (That is, the minimal transitive relation containing Γκ.) By
Lemma 2.2, we have Γκ = Ω× Ω. Let

Λ := Γ0 ∪ Γ1 ∪ · · · ∪ Γ`.

Note that

Λ ◦ Γκ = (Γ0 ◦ Γκ) ∪ (Γ1 ◦ Γκ) ∪ · · · ∪ (Γ` ◦ Γκ)
(3)
⊆ Γ0 ∪ Γ1 ∪ · · · ∪ Γκ+`

(4)
= Γ0 ∪ Γ1 ∪ · · · ∪ Γ` = Λ.

As Γκ ⊆ Λ, it follows by induction that Γκ ⊆ Λ and thus

Λ = Ω× Ω.

This implies that

(6) n =
∑̀
i=0

di = 1 + d1 + · · ·+ d`.

We now consider two cases, according to whether ` = κ or ` ≥ κ+ 1.
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3.1. ` = κ. If ` = κ, then the minimality of κ implies Λ = Γ0 ∪ Γκ and hence Γ0 ∪ Γκ = Ω × Ω. Let
B := {Γ(α) | α ∈ Ω} and let

S := {(α, b, b′) | α ∈ Ω, b, b′ ∈ B, α ∈ b ∩ b′, b 6= b′}.

Now,

|S| =
∑
α∈Ω

|{(b, b′) | α ∈ b ∩ b′, b 6= b′}| =
∑
α∈Ω

d(d− 1) = nd(d− 1).

On the other hand, observe that |b ∩ b′| = d− κ for every b, b′ ∈ B with b 6= b′ and thus

|S| =
∑
b,b′∈B
b 6=b′

|b ∩ b′| =
∑
b,b′∈B
b6=b′

(d− κ) = n(n− 1)(d− κ).

Therefore (n− 1)(d− κ) = d(d− 1) and the theorem follows.

3.2. ` ≥ κ+ 1. We assume that ` ≥ κ+1. By minimality of `, we have Γ` 6= ∅ and thus there exist two vertices
of Γ whose neighbourhoods intersect in d− ` vertices hence, considering the union of their neighbourhoods, we
obtain

(7) n ≥ d+ `.

Let α ∈ Ω and let

S(α) := {(β, γ) ∈ Ω× Ω : β ∈ Γ(α) ∩ Γ(γ)}.
Clearly,

(8) |S(α)| =
∑

β∈Γ(α)

|{γ ∈ Ω : γ ∈ Γ−1(β)}| =
∑

β∈Γ(α)

d = d2.

On the other hand,

|S(α)| =
∑

γ∈(Γ◦Γ−1)(α)

|Γ(α) ∩ Γ(γ)|

(2)
=

d−1∑
i=0

∑
γ∈Γi(α)

|Γ(α) ∩ Γ(γ)| =
d−1∑
i=0

∑
γ∈Γi(α)

(d− i) =

d∑
i=0

di(d− i)

(5)
≥

∑̀
i=0

di(d− i)

(1)
= d+

∑̀
i=1

di(d− i)

(6)
= d+

(
n− 1−

`−1∑
i=1

di

)
(d− `) +

`−1∑
i=1

di(d− i)

= d+ (n− 1)(d− `) +

`−1∑
i=1

di(`− i)

(7)
≥ d2 − `(`− 1) +

`−1∑
i=1

di(`− i).

Combining this with (8), we have

`(`− 1) ≥
`−1∑
i=1

di(`− i).

Let I := {i ∈ {1, . . . , `− 1} : di 6= 0} and d∗ := min{di : i ∈ I}. We have

(9) `(`− 1) ≥ d∗
∑
i∈I

(`− i).
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Since ` ≥ κ+ 1, κ is the minimum element of I. Note also that (`− i) is decreasing with respect to i and, by
definition of `, any two elements of I are at most κ apart. Let

σ :=

⌊
`− 1

κ

⌋
.

Then ∑
i∈I

(`− i) ≥ (`− κ) + (`− 2κ) + · · ·+ (`− σκ)

= σ`− κσ(σ + 1)

2
.

Combining this with (9), we find

(10) `(`− 1) ≥ d∗
(
σ`− κσ(σ + 1)

2

)
.

Write ` := σκ+ r, with r ∈ {1, . . . , κ}. Now, (10) gives

(11)
2(σκ+ r)(σκ+ r − 1)

σ(σκ+ 2r − κ)
≥ d∗.

Calculating the derivative of the left side with respect to σ, one finds

−
2
(
σ2κ2(κ− 1) + r(r − 1)((2σ − 1)κ+ 2r)

)
(σ(σκ+ 2r − κ))2

,

which is clearly nonpositive since r, κ, σ ≥ 1. It follows that the maximum of the left side of (11) is attained
when σ = 1, hence

(12)
(κ+ r)(κ+ r − 1)

r
≥ d∗.

If r = κ, then the left side of (12) is 4κ− 2 and an easy computation shows that 4κ− 2 ≤ κ2 + κ. If r ≤ κ− 1,
then another easy computation yields that the left side of (12) is a decreasing function of r, hence the minimum
is attained when r = 1 and κ2 + κ ≥ d∗. This completes the proof. �

Remark 3.1. The upper bound κ2 + κ in Theorem 1.1 (2) is actually tight (see some of the examples in
Section 4). However, the proof of Theorem 1.1 reveals that when more information about Γ is available, this
upper bound can be drastically improved. For instance, following the argument in the last part of the proof,
one finds that if σ ≥ 2, then d∗ ≤ (4κ2 + 2κ)/(κ + 2) ≤ 4κ − 2 and hence there exists i ∈ {κ, . . . , d − 1} such
that Γi has nonzero valency bounded by a linear function of κ.

4. The case κ = 1 and an application to synchronising groups

We now completely determine the digraphs that arise when κ = 1 in Theorem 1.1. Let p be a prime, let
d ∈ Z with 0 ≤ d ≤ p and let x ∈ Zp. We define ∆p,x,d to be the Cayley digraph on Zp with connection set
{x+ 1, x+ 2, . . . , x+ d}. (That is, (u, v) ∈ ∆p,x,d if and only if v − u ∈ {x+ 1, x+ 2, . . . , x+ d}.) We will need
the following easy lemma.

Lemma 4.1. Let Γ be a vertex-primitive digraph on Ω of valency 1. Then Γ = Ω∗ or Γ ∼= ∆p,0,1 for some
prime p.

Proof. If Γ ∩Ω∗ 6= ∅, then, by vertex-primitivity, Γ = Ω∗. Otherwise, Γ must be a directed cycle and, again by
vertex-primitivity, must have prime order p and hence Γ ∼= ∆p,0,1. �

Corollary 4.2. Let Γ be a vertex-primitive digraph on Ω. If Γ1 6= ∅, then one of the following occurs:

(1) Γ = Ω∗,
(2) Γ is a complete graph, or
(3) Γ ∼= ∆p,x,d, for some prime p and d ≥ 1.
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Proof. Let n be the order of Γ and d its valency. Since Γ1 6= ∅, d ≥ 1 and ∅ 6= Γ 6= Ω × Ω. If d = 1, then the
result follows by Lemma 4.1. We thus assume that d ≥ 2. Applying Theorem 1.1 with κ = 1, we get that either
(n− 1)(d− 1) = d(d− 1) and thus n = d+ 1, or there exists i ∈ {1, . . . , d− 1} such that Γi is regular of valency
at least 1 and at most 2.

Suppose first that n = d+ 1. This implies that (Ω×Ω) \Γ has valency 1. By Lemma 4.1, (Ω×Ω) \Γ = Ω∗

or (Ω × Ω) \ Γ ∼= ∆p,0,1 for some prime p. In the former case, Γ is a complete graph, while in the latter case,
Γ ∼= ∆p,1,p−1.

We may thus assume that there exists i ∈ {1, . . . , d− 1} such that Γi is regular of valency at least 1 and at
most 2. This implies that Γi must have order 2 or be a vertex-primitive cycle and thus have prime order. It
follows that Γ also has prime order and is thus a Cayley digraph on Zp for some prime p. Up to isomorphism,
we may assume that (0, 1) ∈ Γ1. Let y be the unique element of Γ(1) \ Γ(0). Now, for every s ∈ Γ(0) \ {y − 1},
we have that s + 1 ∈ Γ(1) \ {y} and thus s + 1 ∈ Γ(0). In other words, if s ∈ Γ(0), then s + 1 ∈ Γ(0), unless
s = y − 1. It follows that Γ(0) is of the form {x+ 1, x+ 2, . . . , y − 1} for some x and the result follows. �

We note that the second author asked for a proof of Corollary 4.2 on the popular MathOverflow website
(see http://mathoverflow.net/q/186682/). The question generated some interest there but no answer.

We now use Corollary 4.2 to answer Problem 2(a) in [2]. In fact, we will prove a slightly more general result.
First, we need some terminology regarding synchronising groups (see also [3]). Let G be a permutation group
and let f be a map, both with domain Ω. The kernel of f is the partition of Ω into the inverse images of points
in the image of f . The kernel type of f is the partition of |Ω| given by the sizes of the parts of its kernel. We
say that G synchronises f if the semigroup 〈G, f〉 contains a constant map, while G is said to be synchronising
if G synchronises every non-invertible map on Ω.

Theorem 4.3. Let Ω be a set, let G be a primitive permutation group on Ω and let f be a map on Ω. If f has
kernel type (p, 2, 1, . . . , 1) with p ≥ 2, then G synchronises f .

Proof. By contradiction, we assume that G does not synchronise f . Let Γ be the graph on Ω such that (v, w) ∈ Γ
if and only if there is no element of 〈G, f〉 which maps v and w to the same point.

By [2, Theorem 5(a),(b)], we have Γ 6= ∅ and G ≤ Aut(Γ) and thus Γ is vertex-primitive. Since f is not
a permutation, Γ is not complete. Transitive groups of prime degree are synchronising (see for example [6,
Corollary 2.3]) hence we may assume that |Ω| is not prime. It thus follows by Corollary 4.2 that Γ1 = ∅.

Let d be the valency of Γ and let A and B be the parts of the kernel of f with sizes 2 and p, respectively.
Let a = f(A) and b = f(B), let K = A ∪B and let Y be the subgraph of Γ induced by K. By definition, Y is
bipartite, with parts A of size 2 and B of size p. By [2, Lemma 10], every vertex of Y has degree at least one.

Suppose that there exist b1, b2 ∈ B having valency one in Y . Then Γ(b1) \ A and Γ(b2) \ A are mapped
injectively and hence bijectively into Γ(b)\{a} hence we have Γ(b1)\A = Γ(b2)\A. This implies that (b1, b2) ∈ Γ1,
a contradiction.

Now suppose that there exist b1, b2 ∈ B having valency two in Y . Then Γ(b1)∩K = A = Γ(b2)∩K and, as
before, Γ(b1) \ A and Γ(b2) \ A are mapped injectively into Γ(b) \ {a}. Since |Γ(b1) \ A| = d − 2 = |Γ(b2) \ A|
while |Γ(b) \ {a}| = d − 1, it follows that |(Γ(b1) \ A) ∩ (Γ(b1) \ A)| ≥ d − 3 and thus |Γ(b1) ∩ Γ(b2)| ≥ d − 1,
which is again a contradiction.

Since every vertex of B has valency either one or two in Y , we conclude that |B| ≤ 2 thus p = 2 and the
result follows by [2, Theorem 3(a)]. �

Note that Theorem 4.3 was later proved independently in [1].

5. The case Γ0 ∪ Γκ = Ω× Ω

We now say a few words about part (1) of the conclusion of Theorem 1.1, that is, when Γ0 ∪ Γκ = Ω × Ω
and

(13) (n− 1)(d− κ) = d(d− 1).

Let B := {Γ(α) | α ∈ Ω}, as in Section 3.1. Note that B is a set of d-subsets of Ω. Moreover, any two
distinct elements of B intersect in d−κ elements. In particular, (Ω,B) is a symmetric 2-design with parameters
(n, d, d − κ) and with a point-primitive automorphism group. (For undefined terminology, see for example [4,
Chapter 1].)

http://mathoverflow.net/q/186682/
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Given a specific value of κ, one can often push the analysis further and determine all the possibilities for Γ.
Recall that 1 ≤ κ ≤ d. If κ = d, then, since d ≥ 1, Eq. (13) implies that d = 1 and we may apply Lemma 4.1.
The case when κ = 1 was dealt with in Corollary 4.2. From now on, we assume that

2 ≤ κ ≤ d− 1.

Observe that now Eq. (13) yields

(14) n = d+ κ+
κ(κ− 1)

d− κ
.

In particular, d− κ ≤ κ(κ− 1), that is,

(15) d ≤ κ2.

A computation using Eq. (14) also yields that, for fixed κ, n is a non-decreasing function of d. Therefore the
maximum for n (as a function of κ) is achieved when d = κ+ 1 and n ≤ κ2 + κ+ 1.

In our opinion, the most interesting situation occurs when d = κ2 or (dually) when d = κ+ 1. By Eq. (13),
we have n = κ2 +κ+ 1 and thus (Ω,B) is a symmetric 2-design with parameters (κ2 +κ+ 1, κ+ 1, 1), that is, a
finite projective plane of order κ. Note that Aut(Γ) cannot be 2-transitive and thus this is a non-Desarguesian
projective plane. By a remarkable theorem of Kantor [5, Theorem B (ii)] (which depends upon the classification
of the finite simple groups), n is prime.

We conclude by showing how, given an explicit value of κ, one can often pin down the structure of Γ.
We do this using κ := 4 as an example. By Eq. (14), we have n = d + 4 + 12/(d − 4) and hence d ∈
{5, 6, 7, 8, 10, 16}. Moreover, replacing Γ by its complement (Ω×Ω) \ Γ we may assume that 2d ≤ n. Therefore
(d, n) ∈ {(5, 21), (6, 16), (7, 15)}. The previous paragraph shows that the case (d, n) = (5, 21) does not arise
because 21 is not a prime. When (d, n) = (7, 15), a careful analysis of the primitive groups of degree 15 reveals
that Γ is isomorphic to the Kneser graph with parameters (6, 2) with a loop attached at each vertex. Finally, if
(d, n) = (6, 16), then going through the primitive groups of degree 16, one finds that Γ is isomorphic to either
the Clebsch graph with a loop added at each vertex or to the Cartesian product of two copies of a complete
graph of order 4.

Acknowledgements. We thank the anonymous referees for their valuable advice.
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