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The authors are congratulated for this significant and detailed contribution, which ex-

tends the exceedingly popular GAM technique to higher realms of generality and function-

ality. It is interesting to see how GAMs have developed over the last two decades or so.

Not surprisingly, as authors have become more ambitious, the level of sophistication has

escalated and this paper is no exception. For a given model, the paper conveys the substan-

tial amount of work needed to implement automatic smoothing parameter selection based

on LAML—these involve fourth-order derivatives, unremitting attention to the numerical

analysis of computations, and careful programming—so that the code runs robustly and

efficiently on real data. Inference and asymptotic properties are also considered here, as

well as a framework that allows a rich variety of smoothing based on low-rank penalized

splines. It is unfortunate that the vast majority of researchers in the statistical sciences are

still content with pen and paper (or word processor), and do not offer the ‘full service’ of

developing new methodology from beginning to end, which includes a user-friendly software

implementation that people can use straightaway.

Early work starting in the mid-1980s led by Hastie and Tibshirani developed GAMs

based on backfitting, and were largely confined to the exponential family. Smoothing

parameter selection was difficult for this. Over the last 11
2

decades the first author has led

the charge of automating smoothing parameter selection (and dispensing of backfitting),

resulting in several methods such as UBRE/GCV optimization in conjunction with PIRLS,

ML- and REML-based methods, and now refined LAML-based methods. However, these

works were also largely confined to the exponential family, bar the present paper. In my

own work I have, in the large part, had the strong conviction of breaking out of the shackles

of the exponential family from the outset, and the handling of multiple linear predictors.

Doing so really does open one up to a lot more of the statistical universe. Current work

with C. Somchit and C. Wild on developing automatic smoothing parameter selection for
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the vector generalized additive model (VGAM) class, which is very general, is very briefly

described in Section 1.1 and a working implementation should hopefully appear within the

next 12 months. This means that we have attempted to reach one of the goals of the present

paper (hereafter referred to as ‘WPS’), albeit, approaching from a different direction.

The comments below are shared between the paper and some selected supplementary

appendices.

1 GENERAL COMMENTS

The authors have done a valiant job developing LAML estimation for general settings

and implementing several important regression models. Some computational tricks and

inferential by-products have been found along the way. With the possibility to handle

multiple additive predictors ηj now, is it possible to constrain some of these linearly? For

example, in the case of two of them, can one fit η1 = a+b η2 where a and b are estimated too?

There are several reasons for pursuing this idea. This is a special case of a reduced-rank

regression where the overall regression coefficients are subject to a rank restriction. There

are several benefits, such as a lower computational cost, increased parsimony of parameters,

interpretation in terms of latent variables, and low-dimensional views in the case of a rank-2

model. Some particularly useful regression models arise as special cases, such as a negative

binomial regression with variance function µ+δ1µ
δ2 (known as the NB-P model in the count

literature). In the case of the multinomial logit model, when the number of classes and

number of explanatory variables is even moderate then the number of regression coefficients

becomes sizeable, hence some form of dimension reduction becomes warranted. Such a

model was called the stereotype model by Anderson (1984). Additionally, it would be very

useful if ηj = fj(ν) were developed for regular models, where ν = cTx is an optimal linear
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combination of the explanatory variables. For this the exponential family case is referred

to as a single-index model and it is a special case of a generalized additive index model

(GAIM; Chen & Samworth 2016). Some of these ideas are described in Yee (2015).

Section 6 raises the issue of cost–benefit when some simulation results show that occa-

sionally the new method gives only a small improvement in statistical performance relative

to some less complicated methods. I have found that some prudence is required when

deciding whether a certain complex procedure is worth implementing, especially when it

involves a large expenditure of effort. There is a parallel to be seen from the 1980s and

1990s when smoothing was a very active field and yet it’s probably safe to say that only

a very small fraction of this work is seen to be used nowadays. My opinion is that mgcv

would have a greater impact per unit effort if more families were added rather than develop-

ing further techniques for automatic smoothing parameter selection. An exception to this

would be techniques that are surprisingly simple, such as the Fellner–Schall method (Wood

& Fasiolo 2016) [personal communication] which only requires the first two derivatives.

This promising method needs full development.

The example of Section 7 is known as the proportional odds model, or cumulative

logit model, where there are parallelism constraints applied to the ηjs for each explanatory

variable bar the intercept. It is a special case of a nonparallel cumulative logit model

whereby ηj = αj + βTj x. Would an unwarranted parallelism assumption explain the less

than perfect behaviour in the lower tail of Figure 6? Alternatively, it might be remedied

by choosing a link function with a heavier tail or allowing asymmetry, such as a cauchit or

complementary log-log link.

In the fuel efficiency example of Section 8 one might wish the smooths to be mono-

tonic unless it is strongly believed that some interaction exists—this applies specifically for

Figure 8(e). Would monotonic P-splines be more suitable? And how easy would it be to
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constrain the smooths of Figure 8(a) and (d) to be equal so that their difference is some

constant? In Section 1.1 we analyze these data using some new methodology.

For a general additive model is it possible to have smoothing parameters from, e.g.,

f4(x4) and f6(x6) constrained to be equal? An application of this might be to smooth two

variables whose support are equal.

1.1 VGAMS with P-splines

Although WPS convey automatic additive smoothing to potentially a very large class of

models, a simpler alternative for most models described in the appendix is to consider them

within the VGAM framework and utilize Wood (2004). Here are some sketch details, which

makes use of the notation of Yee (2015). For the VGAM class with constraint matrices Hk,

ηi = H1 β
∗
(1) +

d∑
k=2

Hk f
∗
k(xik), (1)

where f ∗k(xk) = (f ∗(1)k(xk), . . . , f
∗
(Rk)k

(xk))
T is a Rk-vector of smooth functions of xk to be

estimated. Each vector of component functions in (1) generates several columns of the

model matrix since they are linear combinations of B-spline basis functions, therefore

ηi = H1 β
∗
(1) +

d∑
k=2

HkX
∗
[ik] β

∗
[k] (2)

for some submatrix X∗[ik]. Equation (2) can be further bolstered by allowing terms of the

form Hk

(
. . . , f ∗(j)k(xikj) . . .

)
in ηi, i.e, ηj-specific values of a covariate (known as the xij or

xij facility), but details are not given here. We are maximizing the penalized log-likelihood

`(β∗) =
n∑
i=1

`i{η1(xi), . . . , ηM(xi)} − J(λ)
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for a suitably regular model, where the penalty term is

J(λ) =
d∑

k=2

β∗T[k]
{
P∗k ⊗ diag(λ(1)k, . . . , λ(Rk)k)

}
β∗[k] = β∗T P∗ β∗

with P∗k = D∗Tk D∗k, and Dk is the matrix representation of the δth-order differencing

operator ∆δ applied to the B-spline coefficients since the knots for xk are equidistant.

For a response y, the computations are performed by augmenting y, the large model

matrix XVAM comprising blocks of X∗[ik] and the weight matrices W = diag(W1, . . . ,Wn):

y′ =

 y

0ϕ

 , XPVAM =

 XVAM

X̃

 , W′ = diag(W, Iϕ), (3)

for some dimension ϕ and where P∗ = X̃
T
X̃ with X̃ =(

O, diag
(
D∗2 ⊗ diag(λ

1/2
(1)2, . . . , λ

1/2
(R2)2

), . . . ,D∗d ⊗ diag(λ
1/2
(1)d, . . . , λ

1/2
(Rd)d

)
))

. (4)

For general responses the above can be embedded within a PIRLS algorithm that uses

working responses and working weight matrices, and then the GCV/UBRE is minimized.

This could be performed by performance-oriented iteration or by outer iteration, as de-

scribed by Wood (2006). The advantage of the above approach over WPS is its relative

simplicity and fewer requirements such as only needing second-order derivatives.

Applying an implementation of this in the VGAM R package to the fuel efficiency data

gives Figure 1. The family function binormal(zero = NULL) was used, which specifies η1 =

µ1, η2 = µ2, η3 = log σ11, η4 = log σ22, η5 = log{(1+ρ)/(1−ρ)}, so that the covariances can

be modelled with covariates (weight and hp here). There is substantial agreement between

the fitted means and Figure 8(a,b,d,e), but with the functions decreasing monotonically

here as expected. However, the plots c–e,h–j suggest that the intercept-only assumption of
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Figure 1: Fitted bivariate normal regression applied to the fuel efficiency data.

the covariances made by WPS is in doubt; the fitted component functions appear nonlinear

and, e.g., the variability decreases with increasing hp.

In Figure 1 it would be straightforward using VGAM to constrain plots a,b to differ by

a constant (known or unknown), and similarly for plots f,g, for example,

H1 = I5, H2 = H3 =


1 0

1 0

0 I3


in the unknown case.
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2 ON SOME APPENDICES

2.1 On Tweedie Models (Appendix J)

Some series expansions could be exploited, e.g., for large y the digamma function ψ(y) =

log y−1/(2y)−
∑∞

k=1B2k/(2ky
2k) ∼ log y−(2y)−1−(12y2)−1 where Bk is the kth Bernoulli

number. Then ∂ logWj/∂p involves the difference between two terms which can make use

of this series. Likewise for the j2 ψ′(−jα) term involving the trigamma function.

2.2 On Ordered Categorical Models (Appendix K)

While only the logit link is currently implemented for an underlying logistic distribution,

there is an argument link taking on the value "identity", which is potentially confusing

for the user. Ideally the chain rule could be applied more generally so that a variety of link

functions could be catered for. Being based on the multinomial distribution, the ordered

categorical model should share some of the computational particulars that the multinomial

distribution has.

A non-parallel cumulative link model would be worthwhile but quite challenging to

implement, and exacerbated by possible intersecting ηj(xi) that results in out-of-range

probabilities. Although the J contraction over xk technique would be utilized much to

handle the parallel case, it probably would be rather inefficient when the number of levels

of the response becomes even moderate.

2.3 On Software Implementation (Appendix M)

The first author’s mgcv R package is the most advanced state-of-the-art software for GAMs

and the author must be commended for writing and enhancing this over many years.
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WPS have made a very good start by identifying a few of the most strategic models and

implementing those first, such as the Cox model and zero-altered Poisson distribution. As

an author of another large GAM-like R package, I can identify with the mgcv developers

on the never-ending task of extending and maintaining the software. This explains why

there are currently some limitations in a few family functions (which should hopefully

be addressed in due course), for example, the negative binomial has an index parameter

(called theta in the software) that is restricted to intercept-only and/or required to have a

known value. Another example is the multivariate normal whose elements of the variance-

covariance matrix are also intercept-only (Section 1.1). Section 3.3 mentions offsets for

ηj, however mgcv currently seems unable to handle these when there are multiple linear

predictors.

At the risk of being branded as an irritant, here are some suggestions that may be

useful.

1. Prediction involving nested data-dependent terms fails, e.g., s(scale(x)). Here, a

limitation of safe prediction is exposed and one solution is smart prediction (Yee

2015, Secs.8.2.5,18.6).

2. The ability for family functions to handle multiple responses can be useful, e.g.,

gam(cbind(y1, y2) ∼ s(x2), family = poisson, pdata). However this would

entail a considerable amount of work to convert other functions to handle this feature.

3. For multinom() and ocat() objects the fitted() methods function returns the same

result as predict(). The fitted probabilities for each class are a more natural type

of fitted value.

4. Much attention is given to preserving numerical stability. There are instances where

the use of expm1() is preferable, as is for log1p() too.
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5. A specific distribution worth investigating in terms of robustness for handling sin-

gularities is the skew normal (Azzalini 1985) where for Y = λ1 + λ2 Z, with 0 < λ2

and Z ∼ SN(λ) (whose density is f(z;λ) = 2φ(z) Φ(λz) for real z and λ), the ex-

pected information matrix as a function of (λ1, λ2, λ) is singular as λ→ 0 even though

all 3 parameters remain identifiable.

6. A final question or two: using the syntax of

gam(list(y1 ~ s(x), y2 ~ s(v), y3 ~ 1, 1+3 ~ s(z)-1), family=mvn(d=3))

how might one constraint the intercepts of η1 and η2 to be equal? Likewise, how

might one constraint the intercepts of η1 to be twice the value of the intercept of η2?
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