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Probabilistic Keys
Pieta Brown and Sebastian Link

Department of Computer Science, The University of Auckland, New Zealand.
E-mail: [p.brown|s.link]@auckland.ac.nz

Abstract—Probabilistic databases address well the requirements of an increasing number of modern applications that produce large
volumes of uncertain data from a variety of sources. Probabilistic keys enforce the integrity of entities in order to facilitate data
processing in probabilistic database systems. For this purpose, we establish algorithms for an agile schema- and data-driven elicitation
of the marginal probability by which keys should hold in a given application domain, and for reasoning about these keys. The efficiency
of our elicitation framework is demonstrated theoretically and experimentally.

Index Terms—H.2.1.d) Database models; H.2.3.d) Database semantics; F4.3.d) Decision problems; I.2.3.l Uncertainty, “fuzzy”, and
probabilistic reasoning; D.2.1.b) Elicitation methods

F

1 INTRODUCTION

Background. Keys are a core enabler for data man-
agement. They are fundamental for understanding the
structure and semantics of data. Given a collection of
entities, a key is a set of attributes whose values uniquely
identify an entity in the collection. For example, a key
for a relational table is a set of columns such that no
two different rows have matching values in each of the
key columns. For relational databases, keys were already
introduced in Codd’s seminal paper [1]. They form the
primary mechanism to enforce entity integrity within
database systems. Keys are essential for many other
data models, including semantic models, object models,
XML and RDF. They are fundamental in many classical
areas of data management, including data modeling,
database design, indexing, transaction processing, and
query optimization. Knowledge about keys enables us
to i) uniquely reference entities across data repositories,
ii) minimize data redundancy at schema design time to
process updates efficiently at run time, iii) provide better
selectivity estimates in cost-based query optimization,
iv) provide a query optimizer with new access paths that
can lead to substantial speedups in query processing, v)
allow the database administrator (DBA) to improve the
efficiency of data access via physical design techniques
such as data partitioning or the creation of indexes
and materialized views, vi) enable access to the deep
Web, and vii) provide new insights into application data.
Modern applications raise the importance of keys even
further. They can facilitate the data integration process
and prune schema matches since attributes that form
a key over one schema must be matched to attributes
that form a key over the other schema. Keys can further
help with the detection of duplicates and anomalies,
provide guidance in repairing and cleaning data, and
provide consistent answers to queries over dirty data.
The discovery of keys from data is one of the core
activities in data profiling.

TABLE 1
Probabilistic relation

W1 (p1 = 0.2)
rfid time zone
w1 2pm z1
w1 3pm z1
w1 3pm z2

W2 (p2 = 0.45)
rfid time zone
w1 2pm z1
w1 3pm z1
w2 3pm z2

W3 (p3 = 0.3)
rfid time zone
w1 2pm z1
w1 3pm z2
w2 3pm z2

W4 (p4 = .05)
rfid time zone
w1 3pm z1
w1 3pm z2
w2 3pm z2

Motivation. Relational databases target applications
with certain data, such as accounting, inventory and
payroll. Modern applications, such as data integration,
information extraction, and financial risk assessment
produce large volumes of uncertain data from a variety
of sources. For instance, RFID (radio frequency iden-
tification) is used to track movements of endangered
species of animals, such as wolverines. When probability
distributions are affordable to acquire, it is sensible to ap-
ply probabilistic databases. Table 1 shows a probabilistic
relation (p-relation), which is a probability distribution
over a finite set of possible worlds, each being a relation.

In the same way keys enforce entity integrity in
relational databases, we propose probabilistic keys to
enforce probabilistic entity integrity in probabilistic
databases. More precisely, keys enable database systems
to uniquely identify entities within a relation, prob-
abilistic keys enable probabilistic database systems to
identify entities within a probabilistic relation with some
probability. Extending this analogy further, knowledge
about probabilistic keys may enable us to i) uniquely
reference entities across probabilistic data repositories
with some probability, ii) minimize data redundancy
with some probability at schema design time to pro-
cess update efficiently at run time, iii) rank selectivity
estimates according to their probability in cost-based
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Fig. 1. Consistency and completeness dimensions as
controlled by keys

query optimization, iv) use the probability of keys to
rank access paths that can maximize speed ups in query
processing, v) allow the DBA to improve the efficiency of
data access by creating indexes based on keys that hold
with sufficient probability, vi) control the efficiency of
access to the deep Web, and vii) provide new insights
into probabilistic application data. Before we list the
contributions of our article, we illustrate some benefits
of probabilistic keys on our running example.

Two important goals of a database system are to i)
restrict database instances to those which are meaningful
for the application domain, and ii) permit all mean-
ingful database instances. Goal i) refers to consistency
in the sense that only meaningful database instances
can occur, while goal ii) refers to completeness in the
sense that all meaningful database instances can occur.
For goal i) we need to specify all keys that apply to
the application domain, and for goal ii) we must not
specify any key that does not apply to the application
domain. Keys are therefore a powerful tool to address
the consistency and completeness dimensions of data
quality. The ultimate aim is therefore to be consistent
and complete. This situation is depicted in Figure 1,
where the only minimal key that applies to the given
application domain is k{rfid, time}. Specifying no key
would mean that we permit any database instance, in
particular all those that are meaningful but also those
that are meaningless. Hence, specifying no key is a case
that gains completeness but not consistency. Specifying
only the key k{rfid}means that we also implicitly specify
the actual meaningful key k{rfid, time}. That is, we do
not permit any meaningless database instances, but we
also exclude some meaningful database instances from
occurring. Namely those meaningful database instances
in which k{rfid, time} is satisfied but k{rfid} is not. Hence,
specifying only the key k{rfid} is a case that gains consis-
tency but no completeness. Finally, specifying only the
key k{rfid, zone}means that we permit some meaningless
database instances and also exclude some meaningful
database instances. For example, any database instance
that satisfies k{rfid, zone} but violates k{rfid, time} is
meaningless, and any database instance that violates
k{rfid, zone} but satisfies k{rfid, time} is meaningful but
excluded. Hence, specifying only the key k{rfid, zone} is
a case that gains neither consistency nor completeness.

Due to the veracity inherent to probabilistic databases

as well as the variety of sources the data originates from,
the traditional concept of a key requires revision in this
context. In our example, for instance, there is no non-
trivial key that is satisfied by all possible worlds: the key
k1 = k{time, zone} holds in the worlds W1 and W2, k2 =
k{rfid, time} holds in W2 and W3, and k3 = k{rfid, zone}
holds in W3 and W4. One may argue to remove possible
worlds that violate a key but this would neither address
the completeness dimension of data quality nor would
it make sensible use of probabilistic databases. Instead,
we propose the concept of a probabilistic key, or p-key for
short, which stipulates a lower bound on the marginal
probability by which a traditional key holds in a proba-
bilistic database. In our example, k1, k2, and k3 have
marginal probability 0.65, 0.75, and 0.35, respectively,
which is the sum of the probabilities of those possible
worlds which satisfy the key. Indeed, the marginal prob-
ability of a key provides a control mechanism to balance
consistency and completeness targets for the quality
of data. Larger marginal probabilities represent stricter
consistency and more liberal completeness targets, while
smaller marginal probabilities represent more liberal
consistency and stricter completeness targets. Having
fixed these targets in the form of a lower bound on the
marginal probability, p-keys can be utilized to control
these data quality dimensions during updates or validate
them for static analysis purposes. For instance, p-keys
can help detect anomalous patterns of data in the form of
p-key violations, either on a given database or when new
data arrives. Such alerts can be sent out automatically
when a data set does not meet a desired lower bound on
the marginal probability of a key. In a different showcase,
p-keys can also be used to infer probabilities that query
answers are unique. In our example, we may wonder
about the chance that different wolverines are in the
same zone at the same time, indicating potential mating
behavior. We may ask

SELECT DISTINCT rfid
FROM TRACKING
WHERE zone=‘z2’ AND time=‘2pm’

and using our p-keys enables us to derive a minimum
probability of 0.65 that a unique answer is returned,
that is, different wolverines are in zone z2 at 2pm at
most with probability 0.35. These bounds can be inferred
without accessing any portion of a potentially big data
source at all, only requiring that the key k1 has at least
marginal probability 0.65 on the given data set. As a final
showcase, the keys k2, k1, and k3 should be chosen in
this order to rank indexes that may be created for the
speedup of data access or query evaluation.
Contributions. We propose probabilistic keys to equip
the traditional notion of a key with probabilities, that
is, with the main quantitative tool to stipulate uncer-
tainty in data. While it is already challenging to identify
traditional keys which are semantically meaningful in a
given application domain, it is an even harder problem
to identify the probabilities by which keys should hold
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on quality probabilistic data. As a realistic compromise,
we stipulate lower bounds on the marginal probability
by which keys should hold. Our contributions can be
summarized as follows.

Modeling. We propose p-keys as a natural class of
semantic integrity constraints over uncertain data. P-
keys are expressions of the form kX≥p and state that
the key kX must hold at least with marginal probabil-
ity p. The special case of p-keys kX≥1 on p-relations
with just one possible world captures the notion of a
traditional key over traditional relations. The intention
of p-keys is to provide benefits to the management
of probabilistic data in the same way traditional key
benefit the management of traditional data. One main
application is to help organizations balance consistency
and completeness targets for the quality of their data.
P-keys can distinguish semantically meaningful from
meaningless patterns in large volumes of uncertain data
from a variety of sources, help quantify the probability
for unique query answers, and provide rankings of
access structures that speedup data processing.

Reasoning. We characterize the implication prob-
lem of p-keys axiomatically by a simple finite set of
Horn rules, as well as a linear time decision algo-
rithm. This enables organizations to reduce the over-
head of managing p-keys to a minimal level necessary.
For example, enforcing k{rfid}≥0.3, k{rfid,time}≥0.25, and
k{rfid,zone}≥0.35, would be redundant as the enforcement
of k{rfid,time}≥0.25 is already implicitly done by enforc-
ing k{rfid}≥0.3.

Visualization. A main inhibitor to the uptake of p-
keys is the difficulty of determining the right lower
bound on the marginal probabilities by which keys
should hold. For the schema-driven elicitation of the
lower bounds, we show how to visualize concisely any
given system of p-keys in the form of Armstrong PC-
tables. These Armstrong PC-tables are perfect semantic
summaries of all p-keys currently perceived meaningful
by the analysts. That is, the Armstrong PC-table satisfies
every key with the exact marginal probability that is per-
ceived to best represent the application domain. Data en-
gineers can use our algorithm to compute an Armstrong
PC-table which they can jointly inspect with domain
experts to identify any problems with the perceptions
they currently have about the application domain. For
example, Figure 2 shows an Armstrong PC-table for the
p-key set {k1≥0.65, k2≥0.75, k3≥0.35}. In the CD table, the
W column of a tuple shows the identifiers of possible
worlds to which the tuple belongs. The P -table shows
the probability distribution on the possible worlds. The
PC-table represents the p-relation from Table 1. Every
p-key that is not implied by the p-key set is violated
by the p-relation, in particular the keys k{rfid}, k{time}
and k{zone} all have marginal probability zero in the
p-relation. To the best of our knowledge, our article
is the first to investigate the concept of an Armstrong
database in the context of probabilistic databases. Our
results link Armstrong databases with the well-known

Fig. 2. Armstrong PC-table for {k1≥0.65, k2≥0.75, k3≥0.35}
CD table

rfid time zone W
w1 2:00pm z1 1, 2, 3
w1 3:00pm z1 1, 2, 4
w1 3:00pm z2 1, 3, 4
w2 3:00pm z2 2, 3, 4

P table
W P
1 .2
2 .45
3 .3
4 .05

Fig. 3. Profile of p-keys that hold on PC-table in Figure 2

complete representation systems of PC-tables.
Profiling. For the data-driven elicitation of p-keys we

compute the marginal probability of every key from a
given PC-table. This algorithm supports the elicitation
process because domain experts or data engineers may
want to apply some changes to the PC-table or p-relation
they inspect. After such changes have been applied, they
want to know which p-keys hold on the new data set.
The process of discovering patterns in data is also known
as data mining or data profiling. To the best of our
knowledge, our paper is the first to propose probabilistic
data profiling techniques. For example, if we want to
know the marginal probabilities by which an attribute
set forms a key in the PC-table from Figure 2, then
our algorithm would return the profile k∅≥0, k{rfid}≥0,
k{time}≥0, k{zone}≥0, k{rfid,time}≥0.75, k{rfid,zone}≥0.35,
k{time,zone}≥0.65, and k{rfid,time,zone}≥1, as visualized
in Figure 3. We apply our profiling technique to PC-
tables that results from any changes that data engineers
or domain experts have made on the Armstrong PC-
tables generated previously. In this context the number
of the possible worlds is relatively low.

Experiments. Our experiments demonstrate that our
visualization and profiling techniques work efficiently in
the context of our elicitation framework. In particular, a
strong point in our construction of Armstrong PC-tables
is the low number of possible worlds required by the p-
relation it represents. While the problem of computing an
Armstrong PC-table is shown to be precisely exponential
in the input, our experiments show that, for an average
input set of reasonable size, it takes less than a second
to compute an Armstrong PC-table with a small number
of tuples. Experiments with MapReduce further indicate
that the profiling time for p-keys scales linearly in the
underlying number of possible worlds, which we limited
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to forty within the context of our elicitation framework.
Organization. We discuss related work in Section 2. P-
keys are introduced in Section 3, and axiomatic and
linear-time algorithmic characterizations of their implica-
tion problem are established in Section 4. These lay the
foundation for the schema- and data-driven discovery
algorithms of p-keys in Section 5. Experiments with these
algorithms are presented in Section 6. We conclude and
sketch future work in Section 7.

2 RELATED WORK

Integrity constraints enforce the semantics of application
domains in database systems. They form a cornerstone
of database technology [2]. Entity integrity is one of the
three inherent integrity rules proposed by Codd [3]. Keys
and foreign keys are the only ones amongst around 100
classes of constraints [2] that enjoy built-in support by
SQL database systems. In particular, entity integrity is
enforced by primary keys [4]. Core problems investigate
reasoning [5], Armstrong databases [6], and discovery
[7], [8], [9], [10], [11]. Applications include anomaly
detection [12], consistency management [13], consistent
query answers [14], [15], data cleaning [16], exchange
[17], fusion [18], integration [19], profiling [20], quality
[21], repairs [22], and security [23], schema design [24],
query optimization [25], transaction processing [26], and
view maintenance [27]. Surrogate keys (‘auto-increment’
fields) do not help with enforcing domain semantics
or supporting applications while semantic keys do. The
important role of keys transcends beyond the relational
model of data: They have been investigated in data
models with incomplete [28], [29], [30], [31], temporal
[32], object-oriented [33], [34], XML [35], [36], [37], [38],
and RDF data [39], as well as description logics [40], but
not in probabilistic data models.

Our contributions extend results on keys from tradi-
tional relations, covered by our framework as the special
case where the p-relation consists of one possible world
only. Extensions include work on the classical implica-
tion problem [41], [29], Armstrong relations [42], [43],
[6], [29], [44] and the discovery of keys from relations
[45], [7], [9]. In fact, our axiomatic and algorithmic
characterizations of the implication problem as well
as the schema- and data-driven discovery of the right
probabilities of keys are novel. Specifically, Armstrong
databases and data profiling have not been studied
yet for probabilistic data. For traditional relations and
relations with incomplete information there is empirical
evidence that Armstrong databases help with the elici-
tation of meaningful business rules [46]. Our techniques
will make it possible to conduct such empirical studies
for p-keys in the future.

There is a large body of work on the discovery of
“approximate” business rules, such as keys, functional
and inclusion dependencies [47], [48], [9]. Approximate
means here that not all tuples satisfy the given rule, but
some exceptions are tolerable. Our constraints are not

approximate since they are either satisfied or violated
by the given p-relation or the PC-table that represents
it. Again, it is future work to investigate approximate
versions of probabilistic keys.

Closest to our approach is the work on possibilistic
keys [49], where tuples are attributed some degree of
possibility and keys some degree of certainty saying to
which tuples they apply. In general, possibility theory
can offer a qualitative approach, while probability theory
is a quantitative approach to uncertainty. This research
thereby complements the qualitative approach to keys in
[49] by a quantitative approach. In the same possibilis-
tic model, follow-up work has investigated possibilistic
functional dependencies [50], [51], cardinality constraints
[52], [53], normal forms and normalization [54], as well
as non-invasive data cleaning [55].

Keys have also been included in description logic re-
search [40], but we are unaware of any work concerning
keys on probabilistic data.

PC-tables are well-known systems that can represent
every probabilistic database [56]. Instead of computing
p-relations that are Armstrong for a given set of prob-
abilistic keys, it is natural to represent these p-relations
as PC-tables. After all, Armstrong databases are meant
to provide semantic summaries of a small size. It makes
therefore sense to apply these representation systems to
decrease the size of the summary further.

The results of this article have been announced in
[57]. The current article has been extended in different
directions. Firstly, we have included all the proofs, which
provide the actual insight into our results. Secondly, the
overall presentation of the results has been extended, in-
cluding a more detailed justification for the new concept
of probabilistic keys, and additional examples that illus-
trate our concepts and results. Thirdly, we have included
a new characterization of the implication problem for
probabilistic keys in terms of the implication problem
for traditional keys. The characterization allows us to
apply our well-developed understanding of traditional
keys to the new concept of probabilistic keys. Finally, we
have included additional experiments illustrating that
the discovery of probabilistic keys from probabilistic
relations scales linearly in the number of possible worlds
required by our elicitation framework.

In follow-up work of the present article, different
extensions of probabilistic keys have been investigated.
These include probabilistic keys that stipulate upper
bounds on the marginal probability by which keys hold
on a probabilistic database as well as probabilistic keys
that stipulate lower and upper bounds [58], and prob-
abilistic cardinality constraints which stipulate upper
bounds on the marginal probability by which cardinality
constraints hold on a probabilistic database [59].

3 PROBABILISTIC KEYS

We introduce preliminary concepts from probabilistic
databases and the new notion of a probabilistic key.
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A relation schema is a finite set R of attributes A.
Each attribute A is associated with a domain dom(A) of
values. A tuple t over R is a function that assigns to
each attribute A of R an element t(A) from the domain
dom(A). A relation over R is a finite set of tuples over
R. Relations over R are also called possible worlds of R
here. An expression kX over R with X ⊆ R is called
a key. A key kX is said to hold in a possible world
W of R, denoted by W |= kX , if and only if there
are no two tuples t1, t2 ∈ W such that t1 6= t2 and
t1(X) = t2(X). A probabilistic relation (p-relation) over
R is a pair r = (W, P ) of a finite non-empty set W of
possible worlds over R and a probability distribution
P :W → (0, 1] such that

∑
W∈W P (W ) = 1 holds.

Example 1: Table 1 shows a probabilistic relation over
relation schema WOLVERINE={rfid,time,zone}. World
W2, for example, satisfies the keys k{rfid, time} and
k{zone, time}, but violates the key k{rfid, zone}.

The marginal probability of a key kX in the p-
relation r = (W, P ) over relation schema R, denoted
by mkX,r is the sum of the probabilities of those
possible worlds in r which satisfy the key, that is,
mkX,r =

∑
W∈W,W |=kX P (W ).

Example 2: Let r denote the p-relation from
Table 1, k1 = k{time, zone}, k2 = k{rfid, time}, and
k3 = k{rfid, zone}. The marginal probabilities of the keys
k1, k2, and k3 in r are mk1,r = P (W1) + P (W2) = 0.65,
mk2,r = P (W2) + P (W3) = 0.75, and
mk3,r = P (W3) + P (W4) = 0.35.

Next we define the central notion of our article.

Definition 1: A probabilistic key, or p-key for short, over
relation schema R is an expression kX≥p where X ⊆ R
and p ∈ [0, 1]. The p-key kX≥p over R is satisfied by, or
said to hold in, the p-relation r over R if and only if
the marginal probability of kX in r is at least p, that is,
mkX,r ≥ p.

Example 3: In our running example over relation
schema WOLVERINE, the p-relation from Table 1 satisfies
the p-keys k{rfid, time}≥0.75 and k{rfid, zone}≥0.35, but vi-
olates the p-keys k{rfid, time}≥0.9 and k{rfid, zone}≥0.351.

4 REASONING TOOLS

When using sets of p-keys to manage the integrity of
entities in probabilistic databases, it is important that
their overhead is reduced to a minimal level necessary.
In practice, this requires us to reason about p-keys effi-
ciently. It is the goal of this section to establish basic tools
to understand the interaction of p-keys and to efficiently
reason about them. This will help us compute in linear
time the largest probability by which a given key is
implied by a given set of p-keys. Finally, we show how to

decide instances of the implication problem for p-keys
by instances of the implication problem for traditional
keys. This allows humans to apply their well-developed
understanding about the interaction of traditional keys
to the new concept of probabilistic keys. The results
will also help us develop our elicitation framework in
Section 5.

4.1 Implication and Inference Problems

Let Σ ∪ {ϕ} denote a set of constraints over relation
schema R. We say Σ implies ϕ, denoted by Σ |= ϕ, if
every p-relation r over R that satisfies Σ, also satisfies
ϕ. We use Σ∗ = {ϕ : Σ |= ϕ} to denote the semantic
closure of Σ. For a class C of constraints, the C-implication
problem is to decide for a given relation schema R and
a given set Σ∪{ϕ} of constraints in C over R, whether Σ
implies ϕ. Our goal is to characterize the C-implication
problem for the class of p-keys axiomatically by a simple
finite set of Horn rules, and algorithmically by a linear
time algorithm.

Problem: Implication
Input: Relation schema R

Set Σ ∪ {ϕ} of p-keys over R
Output: Yes, if Σ |= ϕ

No, otherwise

As we defined possible worlds to be finite, we are
strictly speaking about the finite implication problem.
In theory we could also allow possible worlds to be
infinite sets of tuples, and call a p-relation infinite if
it contains some infinite possible world. This would
lead to the unrestricted implication problem in which
p-relations may also be infinite. However, for the class
of p-keys, finite and unrestricted implication problems
coincide.

Proposition 1: The finite and unrestricted implication
problems for probabilistic keys coincide.

Proof: Let Σ ∪ {ϕ} denote a set of p-keys over R. If
Σ implies ϕ in the unrestricted case, then Σ also implies
ϕ in the finite case. Vice versa, assume that Σ does not
imply ϕ = kX≥p in the unrestricted case, and let r =
(W, P ) be a p-relation over R that contains at least one
possible world in W which is not finite, and where r
satisfies all elements in Σ but violates ϕ. Consequently,
there must be a finite subset W0 ⊆ W of possible worlds
in which kX is violated. Each of the possible worlds
W ∈ W0 must thus contain two tuples tW1 , tW2 such that
tW1 (X) = tW2 (X) holds. Let r′ = (W ′, P ′) result from r by
i) replacing each world W ∈ W0 by the finite world W ′ =
{tW1 , tW2 }, and each world W ∈ W −W0 by an arbitrary
singleton subset W ′ ⊆ W , and ii) defining P (W ′) :=
P (W ). It follows immediately that r′ satisfies every p-
key in Σ (subsets of possible worlds that satisfy a key
also satisfy the key) but violates ϕ (violations of kX are
maintained in the corresponding possible worlds). This
shows that Σ does also not imply ϕ in the finite case.
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TABLE 2
Axiomatization P = {T,Z,S,W}

kR≥1 kX≥0

kX≥p

kXY≥p

kX≥p+q

kX≥p

(Trivial, T) (Zero, Z) (Superkey, S) (Weakening, W)

We therefore speak of the implication problem. The
ability to decide the implication problem efficiently has
many applications in data management. For example, a
p-relation that satisfies every p-key in a given set Σ also
satisfies every p-key implied by the set. In particular, if
a p-key σ ∈ Σ is implied by Σ − {σ}, then σ is said to
be redundant because it is redundant to check whether σ
holds in the p-relation whenever it is known that every
p-key in Σ − {σ} holds in the p-relation. Consequently,
by deciding the implication problem efficiently, we can
also compute a set of non-redundant p-keys efficiently.
This minimizes overheads when p-relations are updated.
In fact, the larger p-relations are, the more time saving
result from using sets of non-redundant p-keys.

A related computational problem is to infer for a
given key kX and a given set Σ of p-keys, the largest
probability p such that Σ implies the p-key kX≥p.

Problem: Inference
Input: Relation schema R

Set Σ of p-keys over R
Key kX over R

Output: max{p | Σ |= kX≥p}

Our goal is to establish an algorithm that solves the
inference problem in time linear in the input.

4.2 Inference System

We determine the semantic closure by applying inference

rules of the form
premise

conclusion
. For a set R of inference

rules let Σ `R ϕ denote the inference of ϕ from Σ by R.
That is, there is some sequence σ1, . . . , σn such that σn =
ϕ and every σi is an element of Σ or is the conclusion that
results from an application of an inference rule in R to
some premises in {σ1, . . . , σi−1}. Let Σ+

R = {ϕ : Σ `R ϕ}
be the syntactic closure of Σ under inferences by R. R is
sound (complete) if for every relation schema R, and for
every set Σ over R, we have Σ+

R ⊆ Σ∗ (Σ∗ ⊆ Σ+
R). The

(finite) set R is a (finite) axiomatization if R is both sound
and complete.

The set P of inference rules from Table 2 forms a
finite axiomatization for the implication problem of
p-keys. In these rules, R denotes the underlying relation
schema, X and Y form attribute subsets of R, and p, q
as well as p+ q are probabilities.

Theorem 1: P forms a finite axiomatization for the
implication problem of p-keys.

Proof: The soundness is a straightforward conse-
quence of the definitions. Indeed, T is sound since every
possible world over R is a relation that cannot contain
two different tuples with matching values on all the
attributes of R. The soundness of Z is satisfied trivially.
The soundness of S follows from the fact that every
possible world that satisfies kX also satisfies kXY . The
soundness of W follows immediately from the definition
of a p-key with lower bounds.

The completeness proof uses contraposition, showing
that non-inferable p-keys are also non-implied. In fact,
for the completeness of P let R be some relation schema
and Σ ∪ {kX≥p} be a set of p-keys over R such that
kX≥p /∈ Σ+

P. We need to show that kX≥p /∈ Σ∗. From
kX≥p /∈ Σ+

P we conclude that p > 0 and R−X 6= ∅, due
to Z and S,W, respectively. Let p′ := sup{p′′ : kZ≥p′′ ∈
Σ∧Z ⊆ X}. In particular, p′ = 0, if there is no kZ≥p′′ ∈ Σ
where Z ⊆ X . We conclude that p′ < p, as otherwise the
following would apply: Since kZ≥p′ ∈ Σ we get kX≥p′ ∈
Σ+

P by S and kX≥p ∈ Σ+
P by W. We now define the

following p-relation r = (W, P ) over R:

W1 with P (W1) = 1− p′
X R−X

0 · · · 0 0 · · · 0
0 · · · 0 1 · · · 1

W2 with P (W2) = p′

X R−X
0 · · · 0 0 · · · 0

Note that W1 ∈ W and W2 ∈ W , if p′ > 0. As kX does
not hold in world W1, it follows that kX holds with
probability p′ on r. Since p′ < p, we conclude that kX≥p
does not hold on r. It remains to show that every p-
key kZ≥q ∈ Σ holds on r. If Z 6⊆ X , then kZ holds in
both worlds W1 and W2, and the probability of kZ is 1.
Consequently, kZ≥q holds on r. Otherwise, Z ⊆ X and
the probability with which kZ holds on r is p′. Moreover,
as Z ⊆ X and kZ≥q ∈ Σ we have p′ ≥ q. Consequently,
kZ≥q holds on r.

Example 4: The set Σ = {k{time}≥0.2, k{rfid}≥0.3}
imply the p-key ϕ = k{rfid, time}≥0.25, but not the p-key
ϕ′ = k{rfid, time}≥0.35. Indeed, ϕ can be inferred from
Σ by applying S to k{rfid}≥0.3 to infer k{rfid, time}≥0.3,
and applying W to k{rfid, time}≥0.3 to infer ϕ.

Example 5: The set Σ = {k{time}≥0.2, k{rfid}≥0.3} does
not imply the p-key k{rfid, time}≥0.35. We can apply the
construction in the proof of Theorem 1, which leads to
the following p-relation r = ({W1,W2}, P ):

W1 with P (W1) = 0.7
rfid time zone
0 0 0
0 0 1

W2 with P (W2) = 0.3
rfid time zone
0 0 0

.

Clearly, r satisfies all p-keys in Σ and violates
k{rfid, time}≥0.35.
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Algorithm 1 Inference
Require: R,Σ, kX
Ensure: max{p : Σ |= kX≥p}

1: if X = R then
2: p← 1;
3: else
4: p← 0;
5: for all kZ≥q ∈ Σ do
6: if Z ⊆ X and q > p then
7: p← q;
8: return p;

4.3 Algorithmic Characterization

In practice, the semantic closure Σ∗ of a finite set Σ is
infinite and even though it can always be represented
finitely, it is often unnecessary to determine all implied
p-keys. In fact, the implication problem for p-keys has
as input Σ ∪ {ϕ} and the question is whether Σ implies
ϕ. Computing Σ∗ and checking whether ϕ ∈ Σ∗ is not
feasible. In fact, we will now establish a linear-time
algorithm for computing the maximum probability p,
such that kX≥p is implied by Σ. The following theorem
allows us to reduce the implication problem for p-keys
to a single scan of the input.

Theorem 2: Let Σ∪{kX≥p} denote a set of p-keys over
relation schema R. Then Σ implies kX≥p if and only if
X = R or p = 0 or there is some kZ≥q ∈ Σ such that
Z ⊆ X and q ≥ p.

Proof: The sufficiency of the three conditions will be
established using the soundness of P, while the necessity
will be established by using the completeness of P.

We show the sufficiency first. If X = R, then the
soundness of T and W imply that Σ |= kX≥p. If p = 0,
then the soundness of Z ensures that Σ |= kX≥p. If there
is kZ≥q ∈ Σ such that Z ⊆ X and q ≥ p, then the
soundness of S and W imply that Σ |= kX≥p.

It remains to show the necessity. Let R−X 6= ∅, p > 0,
and Σ such that for all Z ⊆ X we have q < p. Using the
terminology from the completeness proof of Theorem 1
it follows that p′ := sup{p′′ : kZ≥p′′ ∈ Σ ∧ Z ⊆ X} <
p. Consequently, the p-relation r from the completeness
proof of Theorem 1 shows that Σ does not imply kX≥p.

Theorem 2 enables us to design Algorithm 1, which
returns the maximum probability p by which a given
key kX is implied by a given set Σ of p-keys over R. If
X = R, then we return probability 1. Otherwise, starting
with p = 0 the algorithm scans all input keys kZ≥q and
sets p to q whenever q is larger than the current p and
X contains Z. We use |Σ| and |R| to denote the total
number of attributes that occur in Σ and R, respectively.

Theorem 3: On input (R,Σ, kX), Algorithm 1 returns

in O(|Σ| + |R|) time the maximum probability p with
which kX≥p is implied by Σ.

Proof: The correctness of Algorithm 1 follows from
Theorem 2.

Algorithm 1 returns p = 1, if X = R. Otherwise it
returns the largest probability p that results from an
input key kZ≥p where Z ⊆ X . By Theorem 2 this p is
the largest probability by which kX≥p is implied by Σ.
Thus, Algorithm 1 is correct.

The time complexity follows from having to look at
each attribute occurrence in the input once.

Given R,Σ, kX≥p as an input to the implication problem,
Algorithm 1 computes p′ := max{q : Σ |= kX≥q} and
returns an affirmative answer if and only if p′ ≥ p. We
therefore obtain the following result.

Corollary 1: The implication problem of p-keys is
decidable in linear time.

Example 6: Given Σ = {k{time}≥0.2, k{rfid}≥0.3} and
the key k{rfid, time}, Algorithm 1 returns p = 0.3. Con-
sequently, the p-key k{rfid, time}≥0.25 is implied by Σ,
but k{rfid, time}≥0.35 is not implied by Σ.

4.4 Reasoning about p-keys with traditional keys
As a final result of this section we show how any
instance I of the implication problem for p-keys can be
translated into an instance I ′ of the implication problem
for traditional keys such that I is true if and only if
I ′ is true. Considering Theorem 2, the decision about
I = (Σ, kX≥p) only relies on the p-keys kZ≥q in Σ where
q ≥ p. Indeed, if there is some kZ≥q with Z ⊆ X ,
then I is true. A special case occurs for X = R, which
always results in a true instance I . A traditional key kX
is implied by a set Σp of traditional keys if and only if
X = R or there is some key kZ ∈ Σp such that Z ⊆ X .
Therefore we define

Σp := {kX | ∃kX≥q ∈ Σ ∪ {k∅≥0} ∧ q ≥ p}

and obtain the following result.

Theorem 4: Let Σ∪{kX≥p} denote a set of p-keys over
relation schema R. Then Σ implies kX≥p if and only if
Σp |= kX .

Proof: The proof uses a combination of Theorem 2
and the algorithmic characterization of traditional keys.

We use the classical result that for a set Σp ∪ {kX} of
traditional keys, Σp implies kX if and only if X = R or
there is some kZ ∈ Σp such that Z ⊆ X [60].

By Theorem 2, Σ implies kX≥p if and only if i) X = R
or ii) p = 0 or iii) there is some kZ≥q ∈ Σ such that
Z ⊆ X and q ≥ p.

For the only if direction assume that Σ implies kX≥p. If
i) holds, then Σp implies kX . If ii) holds, then Σp contains
k∅ and the empty set ∅ is contained in every set, that
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Fig. 4. Elicitation framework

is, Σp implies kX . If iii) holds, then kZ ∈ Σp for some
Z ⊆ X . Consequently, Σp implies kX . Consequently, Σp

implies kX .
For the if direction assume that Σp implies kX . If

X = R holds, then i) holds and Σ implies kX≥p. If
there is some kZ ∈ Σp such that Z ⊆ X , then for some
q ≥ p there is some kZ≥q ∈ Σ and hence iii) holds.
Consequently, Σ implies kX≥p.

Example 7: We have seen in Example 6 that the p-
key set Σ = {k{time}≥0.2, k{rfid}≥0.3} implies the p-
key k{rfid, time}≥0.25. This can be confirmed by Theo-
rem 4 since Σ0.25 = {k{rfid}} and {rfid} is a subset of
{rfid, time}. We have also seen in Example 6 that the p-
key set Σ = implies the p-key k{rfid, time}≥0.35. This can
be confirmed by Theorem 4 since Σ0.35 = ∅ and thus
there is no key in Σ0.35 that is contained in {rfid, time}.

5 ELICITATION OF PROBABILISTIC KEYS

Applications will benefit from the ability of data engi-
neers to acquire a good lower bound for the marginal
probability by which keys hold in the domain of the
application. For that purpose, analysts should commu-
nicate with domain experts. We establish two major
tools that help engineers communicate effectively with
domain experts. We follow the framework in Figure 4.
Here, engineers use our algorithm to visualize abstract
sets Σ of p-keys in the form of some Armstrong PC-table,
which is then inspected jointly with domain experts.
In particular, the PC-table represents simultaneously for
every key kX the marginal probability that quality data
sets in the target domain should exhibit. Domain experts
may change the PC-table or supply new PC-tables to
the engineers. For that case we establish an algorithm
that profiles p-keys. That is, the algorithm computes the
marginal probability of each key in the given PC-table.
Such profiles are also useful for query optimization, for
example.

5.1 Armstrong relations for keys
As Armstrong p-relations generalize the concept of Arm-
strong relations, it is worth to summarize the basics
about Armstrong relations for the class of traditional
keys. The general notion of an Armstrong relation is as
follows. For a class C of constraints, a relation schema
R, a set Σ of constraints from C over R, a relation r
over R is said to be C-Armstrong for Σ if and only if for
every constraint ϕ from C over R the following holds:
r satisfies ϕ if and only if Σ implies ϕ [61]. It is well-
known that traditional keys enjoy Armstrong relations
[60]. That is, for every relation schema R, and for every
set Σ of traditional keys over R, there is some relation r
over R that is Armstrong for Σ.

One general construction of an Armstrong relation
is to compute from the input set Σ the set Σ−1 of
anti-keys. An attribute subset X ⊆ R is an anti-key for
Σ if and only if X is maximal with the property that
kX is not implied by Σ. Having computed Σ−1, one
starts with a base tuple t0 and adds for every anti-key
X ∈ Σ−1 a tuple that agrees with t0 on every attribute
in X and has unique values on all the other attributes.

Example 8: Let Σ consist of the two keys k{time, zone}
and k{rfid, time}. Then the set Σ−1 of anti-keys for
Σ consists of {time} and {rfid, zone}. Applying the
construction above, the following relation

rfid time zone
w1 2pm z1
w3 2pm z3
w1 5pm z1

is indeed Armstrong for Σ.

5.2 Construction of Armstrong p-relations
Our goal for now is to show constructively that p-
keys enjoy Armstrong p-relations. First, we state the
definition of Armstrong databases for the class of p-keys.

Definition 2: Let Σ denote a set of p-keys over a given
relation schema R. A p-relation r = (W, P ) over R is
Armstrong for Σ if and only if for all p-keys ϕ over R, r
satisfies ϕ if and only if Σ implies ϕ.

In particular, Definition 2 captures that of traditional
Armstrong relations [61] as the special case where only
one possible world exists.

Example 9: The p-relation in Table 1 is Armstrong for
the set Σ of the following p-keys: k{time, zone}≥0.65,
k{rfid, time}≥0.75, and k{rfid, zone}≥0.35.

As a consequence of Definition 2, every Armstrong
p-relation r for Σ has the property that for every key
kX , the marginal probability mkX,r of kX in r is the
largest probability p such that kX≥p is implied by Σ. In
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other words, the availability of an Armstrong p-relation
r reduces, for all kX , the inference problem with input
(Σ, kX) to the computation of the marginal probability
mkX,r of kX in r. Given such strong semantic data
summarization properties, the existence of Armstrong
p-relations cannot be taken for granted.

Example 10: Continuing Example 9, the marginal
probabilities of all keys over WOLVERINE in the p-
relation r of Table 1 are showing in Figure 3.

The following theorem shows that every distribution
of probabilities to keys, that follows the inference rules
from Table 2, can be represented by a single p-relation
which exhibits this distribution in the form of marginal
probabilities.

Theorem 5: Let l : R → [0, 1] be a function such that
l(R) = 1 and for all X,Y ⊆ R, l(XY ) ≥ l(X) holds. Then
there is some p-relation r over R such that r satisfies
kX≥l(X), and for all X ⊆ R and for all p ∈ [0, 1] such
that p > l(X), r violates kX≥p.

Proof: The proof uses a reduction to the existence of
Armstrong relations for traditional keys.

Let {l1, . . . , ln} = {l(X) : X ⊆ R} such that l1 < l2 <
. . . < ln, and let l0 = 0. Define a probabilistic relation
r = ({W1, . . . ,Wn}, P ) as follows. For all i = 1, . . . , n, the
world Wi is an Armstrong relation for the key set Σi =
{kY : l(Y ) ≥ li}, and P (Wi) = li−li−1. For all X ⊆ R, let
l(X) = lj for j ∈ {1, . . . , n}. Then, kX holds on Wi if and
only if i ≤ j. Consequently, kX has marginal probability
l(X) with respect to r, and kX≥l(X) is satisfied. However,
r violates kX≥p for every p > l(X).

We can use the construction in the proof of Theorem 5
to provide a constructive proof that p-keys enjoy
Armstrong p-relations.

Theorem 6: Probabilistic keys enjoy Armstrong p-
relations.

Proof: Let R be some relation schema, and let Σ be
a set of p-keys over R. For all X ⊆ R, let pX := sup{p :
∃Y ⊆ X(kY≥p ∈ Σ ∪ {kR≥1})}. Then for all Z ⊆ R, Σ
implies kZ≥p if and only if p ≤ pZ . Now, let l(X) := pX .
Then l(R) = pR = 1 and l(XY ) = pXY ≥ pX = l(X). By
Theorem 5 it follows that there is some Armstrong p-
relation r, since for all Z ⊆ R and all p ∈ [0, 1], Σ implies
kZ≥p if and only if r satisfies kZ≥p.

5.3 Computation of Armstrong PC-tables
Instead of computing Armstrong p-relations as described
in the proofs above, we compute PC-tables that are
concise representations of Armstrong p-relations. We call
these Armstrong PC-tables.

Recall the following standard definition from prob-
abilistic databases [56]. A conditional table or c-table, is

Algorithm 2 Armstrong PC-table
Require: R,Σ
Ensure: Armstrong PC-table 〈CD,P 〉 for Σ

1: Let p1, . . . , pn denote the i-th smallest probabilities pi
occurring in Σ; . If pn < 1, n← n+ 1 and pn ← 1

2: p0 ← 0;
3: P ← ∅;
4: for i = 1, . . . , n do
5: P ← P ∪ {(i, pi − pi−1)};
6: Σ−1i ← Set of anti-keys for Σpi ;
7: Σ−1 ← ∅;
8: for all X ∈ Σ−11 ∪ · · · ∪ Σ−1n do
9: Σ−1 ← Σ−1 ∪ {(X, {i : X ∈ Σ−1i })};

10: for all A ∈ R do
11: t0(A)← 0;
12: CD ← {(t0, {1, . . . , n})};
13: j ← 0;
14: for all (X,W ) ∈ Σ−1 do
15: j ← j + 1;
16: for all A ∈ R do
17: tj(A)←

{
0 , if A ∈ X
j , otherwise ;

18: CD ← CD ∪ {(tj ,W )};
19: return 〈CD,P 〉;

a tuple CD = 〈r,W 〉, where r is a relation, and W
assigns to each tuple t in r a finite set Wt of positive
integers. The set of world identifiers of CD is the union
of the sets Wt for all tuples t of r. Given a world
identifier i of CD, the possible world associated with
i is Wi = {t|t ∈ r and i ∈ Wt}. The semantics of
a c-table CD = 〈r,W 〉, called representation, is the set
W of possible worlds Wi where i denotes some world
identifier of CD. A probabilistic conditional database or PC-
table, is a pair 〈CD,P 〉 where CD is a c-table, and P is a
probability distribution over the set of world identifiers
of CD. The semantics of a PC-table 〈CD,P 〉, called the
representation, is the p-relation whose set of possible
worlds is the representation of CD, and the probability
of each possible world Wi is defined as the probability
of its world identifier. A PC-table is said to be Armstrong
for a set Σ of p-keys, if the representation of the PC-table
is an Armstrong p-relation for Σ. For example, Figure 2
shows a PC-table 〈CD,P 〉 that is Armstrong for the fol-
lowing set of p-keys: k{time, zone}≥0.65, k{rfid, time}≥0.75,
and k{rfid, zone}≥0.35.

We will now describe an algorithm that computes an
Armstrong PC-table for every given set Σ of p-keys.
In our construction, the number of possible worlds is
determined by the number of distinct probabilities that
occur in Σ. For that purpose, for every given set Σ of
p-keys over R and every probability p ∈ [0, 1], let

Σp = {kX : ∃kX≥q ∈ Σ ∧ q ≥ p}

denote the p-cut of Σ, i.e., the set of keys over R which
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Fig. 5. An Armstrong PC-table
CD table

rfid time zone W
w1 2pm z1 1, 2, 3, 4
w1 3pm z2 1
w2 4pm z1 1
w3 2pm z3 1, 2
w1 5pm z1 2, 3, 4
w4 2pm z1 3, 4
w1 2pm z4 4

P table
W P
1 .35
2 .3
3 .1
4 .25

have at least marginal probability p. It is possible that
Σ does not contain any p-key kX≥p where p = 1.
In this case, Algorithm 2 computes an Armstrong
PC-table for Σ that contains one more possible world
than the number of distinct probabilities occurring
in Σ. Processing the probabilities Σ from smallest
p1 to largest pn, the algorithm computes as possible
world with probability pi − pi−1 (line 5) a traditional
Armstrong relation for the pi-cut Σpi

. For this purpose,
the anti-keys are computed for each pi-cut (line 6), and
the set W of those worlds i is recorded for which X is
an anti-key with respect to Σpi (line 9). The CD-table
contains one tuple t0 which occurs in all possible worlds
(line 12), and for each anti-key X another tuple tj that
occurs in all worlds for which X is an anti-key and that
has matching values with t0 in exactly the columns of
X (lines 14-18).

Theorem 7: Let Σ denote a set of p-keys over relation
schema R, and let n denote the number of distinct
probabilities that occur in Σ. Algorithm 2 computes
an Armstrong PC-table for Σ in which the number of
possible worlds is n, if there is some p-key in Σ with
lower bound 1, and n+ 1 otherwise.

Proof: Algorithm 2 follows the proofs of Theorem 5
and Theorem 6, which construct an Armstrong PC-table
of the stated size.

We illustrate the construction on our running example.

Example 11: Recall that the p-key set Σ
contains k{rfid, time}≥0.75, k{time, zone}≥0.65, and
k{rfid, zone}≥0.35. Applying Algorithm 2 to WOLVERINE
and Σ may result in the Armstrong PC-table of Figure 5.

Finally, we derive some bounds on the time complex-
ity of finding Armstrong PC-tables. Additional insight is
given by our experiments in Section 6.

Let the size of an Armstrong PC-table be defined
as the number of tuples that it contains. In practice,
the most appealing Armstrong PC-tables for a p-key
set Σ should be of minimum size. The reason is that
a small number of tuples is easier to comprehend for
humans. Therefore, it is a practical question to ask how

many tuples a minimum-sized Armstrong PC-table
requires. An Armstrong PC-table for Σ is said to be
minimum-sized if there is no Armstrong PC-table for Σ
with fewer tuples. We recall what we mean by precisely
exponential [?]. Firstly, it means that there is an algorithm
for computing an Armstrong PC-table table, given a set
Σ of p-keys, where the running time of the algorithm is
exponential in the size of |Σ|, that is, the total number
of attribute occurrences in Σ. Secondly, it means that
there is a set Σ of p-keys in which the number of tuples
in each minimum-sized Armstrong PC-table for Σ is
exponential — thus, an exponential amount of time is
required in this case simply to write down the table.

Theorem 8: The time complexity to find an Armstrong
PC-table for a given set Σ of p-keys over relation schema
R is precisely exponential in |Σ|.

Proof: Given R and Σ as input, Algorithm 2 com-
putes an Armstrong PC-table for Σ in time at most expo-
nential in |Σ|. Indeed, an Armstrong relation for Σpi can
be computed in time at most exponential in |Σpi

| ≤ |Σ|,
and we require no more than |Σ| computations of such
relations.

There are cases where the number of tuples in any
Armstrong PC-table for Σ over R is exponential in |Σ|.
Such a case is given by Rn = {A1, . . . , A2n} and Σn =
{{Ai, Aj}≥1 | 1 ≤ i ≤ 2 · n − 1, i odd, j = i + 1} with
|Σn| = 2 · n. Every Armstrong PC-table requires 2n + 1
tuples, and there is only one possible world.

It is important to note that there are also other
extreme cases, in which the size of Armstrong PC-tables
is logarithmic in that of the given constraint set.

Theorem 9: There are sets Σ of p-keys for which Arm-
strong PC-tables exist that require a number of rows that
is logarithmic in |Σ|.

Proof: Let Rn = {A1, . . . , A2n} and Σn =
{(X1 · · ·Xn)≥1 : Xi ∈ {A2i−1, A2i} for i = 1, . . . , n} with
|Σn| = n ·2n. One Armstrong PC-table for Σ represents a
single possible world which has n+ 1 tuples that realize
the n anti-keys R− {A2i−1, A2i}.

Theorem 8 and Theorem 9 show that the represen-
tation in the form of an Armstrong PC-table does not
dominate the representation in the form of a constraint
set, or vice versa. Our recommendation is to use both
representation systems.

The computation of Armstrong PC-tables by Algo-
rithm 2 also provides us with a computation of Arm-
strong instances over any other complete representation
system of probabilistic relations, such as U -relations [56].
In fact, we may first apply Algorithm 2 to compute an
Armstrong PC-table, and then apply a standard transfor-
mation into the other representation system. The choice
of representation system may depend on its properties,
such as the closure under unions of conjunctive queries
for U -relations.
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5.4 Profiling PC-tables with P-keys

We are now turning to the other problem illustrated in
Figure 4, which is to compute the marginal probability of
every key in a p-relation that a given PC-table represents.

Problem: Profiling PC-tables with p-keys
Input: Relation schema R

PC-table that represents
p-relation p over R

Output: {(X,mkX,r) | X ⊂ R}

The profiling problem of PC-tables with p-keys sub-
sumes the profiling problem of relations with traditional
keys as the special case where the PC-table represents
a relation with just one possible world: In this case, the
marginal probability of each p-key kX is either 0 or 1,
that is, a key kX is either violated, or satisfied. Indeed,
the profiling problem of relations with traditional keys
has received much interest in the 1980s, e.g. [10], and
recently again in the context of big data [45], [7], [11],
motivated by modern applications such as data integra-
tion. However, as p-keys have only been introduced in
[57], the profiling problem of PC-tables with p-keys has
not been studied.

Our proposed solution to the profiling problem of PC-
tables with p-keys is targeted at the elicitation of p-
keys, as illustrated in Figure 4. As the computation of
Armstrong PC-tables has shown, Armstrong PC-tables
represent p-relations with a modest number of possible
worlds. The algorithm we will present now, as well as
its experimental evaluation in Section 6, show that the
profiling problem of PC-tables with p-keys can be solved
efficiently in this context, and also scales linearly in the
number of possible worlds.

Algorithm 3 assumes that the p-relation r = (W, P )
that is represented by the given PC-table is explicitly
given. If that is not the case in our context, then the
time spent on computing the p-relation is negligible in
comparison to the overall complexity of the algorithm.
For ease of notation we let pX denote mkX,r, for all X ⊆
R. The profiling problem can then be solved as follows:
For each X ⊂ R, initialize pX ← 0 (lines 1-2), and for
all worlds W ∈ W , add the probability pW = P (W ) of
W to pX , if X contains some minimal key of W (lines
3-7). Here, a traditional key kX is a minimal key of world
W , if kX is satisfied by W and kY is violated by W for
every proper subset Y of X . The computation of the set
of minimal keys of a world W is just the well-studied
profiling problem of a relation W with traditional keys,
and can be solved by any known solution. For example,
the elegant solution in [62] (line 4) computes the minimal
keys of W as the hypergraph transversals of the disagree
sets in W .

Note that the exact complexity of the hypergraph
transversal problem is still open, in particular the
existence of an algorithm that is polynomial in the
output. The exact complexity of the profiling problem
of relations with traditional keys (and that of PC-tables

Algorithm 3 Profiling
Require: P-relation r = (W, P ) over relation schema R
Ensure: {(X,mkX,r) | X ⊂ R}

1: for all X ⊂ R do
2: pX ← 0;
3: for all W ∈ W do
4: M(W )← Set of minimal keys on W ; . e.g., [62]
5: for all X ⊂ R do
6: if X contains some M ∈M(W ) then
7: pX ← pX + P (W );
8: return {(X, pX) : X ⊆ R};

with p-keys) remains therefore also open.

Theorem 10: Given a p-relation r = (W, P ) over re-
lation schema R, Algorithm 3 computes the marginal
probability of all keys over R in r.

Proof: The correctness of Algorithm 3 follows
straight from the correctness of computing the set of
minimal keys from a traditional relation.

Let us illustrate Algorithm 3 on our running example.

Example 12: We apply Algorithm 3 to the p-relation
from Table 1, which is represented by the PC-table in
Figure 2 for example. The minimal disagree sets and
the minimal keys (hypergraph transversals of the set of
minimal disagree sets) of the worlds are:

W P (W ) min disagree sets min keys
W1 0.2 {t}, {z} {t, z}
W2 0.45 {t}, {r, z} {r, t}, {t, z}
W3 0.3 {r}, {t, z} {r, t}, {r, z}
W4 0.05 {r}, {z} {r, z}

.

The marginal probability of a given key kX is now
the sum of the probabilities of those possible worlds
W in which X contains some minimal key of W . For
example, k{time, zone} = P (W1)+P (W2) = 0.65. Figure 3
illustrates the marginal probabilities of all keys.

6 EXPERIMENTS

In this section we report on some experiments regarding
the computational complexity of our algorithms for the
visualization and discovery of probabilistic keys.

6.1 Visualization
The Armstrong construction takes as input a set Σ of
randomly generated p-keys, and outputs an Armstrong
PC-table for Σ. For the random generation of Σ we firstly
sample n probabilities pn from [0, 1] and for each X ⊂ R,
we assign a probability randomly sampled from {0} ∪
{p1, p2, . . . , pn}. For our experiments, n was at most 15.

Figure 6 shows the number of tuples in the Armstrong
PC-table as a function of applying Algorithm 2 to the
exponential case from the proof of Theorem 8 (black
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Fig. 6. Size of Armstrong PC-tables

Fig. 7. Time to compute Armstrong PC-table

line), the logarithmic case from the proof of Theorem 9
(blue line), and the random generation (red line). The
figure illustrates that the average size of an Armstrong
PC-table grows linearly in the input key size. The worst-
case exponential growth occurs rarely on average. This
demonstrates that Armstrong PC-tables exhibit small
sizes on average, making them a practical tool to acquire
meaningful p-keys jointly with domain experts.

Figure 7 shows the time for computing Armstrong PC-
tables from the given sets of randomly created p-keys.
It shows that Armstrong PC-tables can be computed
efficiently for the input sizes considered. In fact, their
computation hardly ever exceeded 1 second. Figure 10
shows the graphical user interface of our visualization
tool, developed in R. The input interface is shown on
the left, and the output PC-table on the right.

6.2 Profiling
Figure 11 shows the time for profiling p-keys from
the given Armstrong PC-tables we randomly created

Fig. 8. MapReduce Performance on “Car” Data Set

previously. It illustrates that the profiling problem can be
solved efficiently for input sizes typical for our elicitation
framework, see Figure 4. Large input sizes will require
more sophisticated techniques.

6.3 MapReduce
We also applied a MapReduce implementation on a
single node machine with 40 processors to the “Car” data
set1 of the UCI Machine Learning Repository. Details
like buying price, maintenance price, number of doors,
capacity in terms of people, luggage boot size, and
estimated safety of the car are captured in six attributes.
In total, this data set has 1,728 tuples with duplicates
or missing data. We converted “Car” into a p-relation
with rising numbers of possible worlds and 500 tuples
in each world. Figure 8 shows that our algorithm for
the discovery of p-keys scales linearly in the number
of possible worlds, considering this number is relatively
low in our elicitation framework.

7 CONCLUSION AND FUTURE WORK

We have introduced probabilistic keys that stipulate
lower bounds on the marginal probability by which
keys shall hold on large volumes of uncertain data.
The marginal probability of keys provides a principled
mechanism to control the consistency and completeness
targets for the quality of data, as shown in Figure 9.

We have established axiomatic and algorithmic tools
to reason about probabilistic keys. This can minimize the
overhead in using them for data quality management
and query processing. These applications are effectively
unlocked by developing support for identifying the right
marginal probabilities by which keys should hold in a

1. http://archive.ics.uci.edu/ml/datasets/Car+Evaluation
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Fig. 9. Control mechanism p

Fig. 10. GUI for Visualization

given application domain. For this challenging problem,
we have developed schema- and data-driven algorithms
for the use by analysts to communicate more effectively
with domain experts. The schema-driven algorithm con-
verts any set of probabilistic keys into an Armstrong PC-
table that satisfies the set and violates all probabilistic
keys not implied by the set. Analysts and domain experts
can jointly inspect the Armstrong PC-table which points
out any flaws in the current perception of marginal prob-
abilities. The data-driven algorithm computes a profile
of the probabilistic keys that a given PC-table satisfies.
Such PC-tables may represent some exemplary data or
result from changes to a given Armstrong PC-table in re-
sponse to identifying some flaws during their inspection.
Experiments confirm that the computation of Armstrong
PC-tables is typically efficient, their size is small, and
profiles of probabilistic keys can be efficiently computed
from PC-tables of reasonable size.

In future research we will apply our algorithms to
investigate empirically the usefulness of our framework
for acquiring the right marginal probabilities of keys in a
given application domain. This will require us to extend
empirical measures from certain [46] to probabilistic
data sets. Intriguing is the question whether PC-tables

Fig. 11. Times for Profiling P-keys

or p-relations are more useful. It is also interesting to
raise the expressivity of probabilistic keys by allowing
the stipulation of sets of marginal probabilities by which
keys should hold on a probabilistic database, or other
features.
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[56] D. Suciu, D. Olteanu, C. Ré, and C. Koch, Probabilistic Databases,
ser. Synthesis Lectures on Data Management. Morgan & Clay-
pool Publishers, 2011.

[57] P. Brown and S. Link, “Probabilistic keys for data quality man-
agement,” in CAiSE. Springer, 2015, pp. 118–132.
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