

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

STRUCTURE, METAMORPHISM AND MINERAL DEPOSITS IN THE DIAHOT REGION, NORTHERN NEW CALEDONIA

Thesis submitted for the degree of Doctor of Philosophy in Geology.

R.M. Briggs Geology Department, University of Auckland.

June, 1975.

		page
	Abstract	1
		4
	Acknowledgements	4
		1.1
CHAPTER 1 :	INTRODUCTION	6
	Introduction and objectives of thesis Location and access Physiography Geological setting Previous literature Methods and scope of study Field work Maps	6 7 11 14 15 15 16
	Methods	17
CHAPTER 2 :	LITHOLOGY	19
	Introduction	19
	Descriptions of rock types in the field	20
	Pelitic schists	20 24
	Calcareous schists	24
	Metacherts Metabasàlts	25
	Rhyolitic metatuffs	29
	Intermediate metaigneous rocks	30
	Basic metatuffs	31
	Green veins	32
	Glaucophanites and serpentinites	33
CHAPTER 3 :	STRUCTURE	37
	Introduction	37
	Outline of the major regional structure	37
	PART I : DESCRIPTIONS OF SMALL-SCALE STRUCTURES	38
	Explanation of terms used	39
	Macroscopic, mesoscopic and microscopic	39
1 A 1 A 1 A 1	Bedding	39
	Foliation, schistosity and cleavage	39
	Faltenspiegel (enveloping surface)	41
	Lineations	41 41
	Na-amphiboles Small-scale folds	41
	Recording of measurements	43

CHAPTER 3 : STRUCTURE ctd

1.	The section along the Ouégoa-Koumac Road	43
	Small-scale folds Joints and kinks Faults	44 56 60
2.	Small-scale structures in the Pilou Region	65
	Small-scale folds Faults	66 76
3.	Small-scale structures in the Mérétrice region	78
4.	Small-scale structures in Ouébé Stream	86
5.	Small-scale structures in the Fern- Hill region	90
6.	The region between the Diahot River and the Gendarmerie Fault	92
7.	The region north of Gendarmerie Fault extending to the main divide and west of Balade Mine	96
	Lineations and small-scale folds Faults	96 100
8.	The Col d'Amoss and the main divide west of the Col	102
	(a) The Col d'Amoss Small-scale folds Faults Quartz veins and rodding	102 102 105 106
	(b) The main divide west of the Col	108
9.	Small-scale structures in the region around Balade Mine Small-scale folds	108
	Small-scale folds Faults	109 110
	Joints and kinks	113
LO.	Small-scale structures in the region east of the Col d'Amoss along the main divide as far as Mt Kabeyanda	113
1.	Small-scale structures in the region above Ouégoa along the main divide and northeast of the Parari Fault	114
	The Ouamélé Fault	116
	Small-scale folds Faults	116 124
	Creep	124
The	fault zones in the Ouégoa area	124
	Small-scale structures associated with the fault zones	127

page

CHAPTER 3 : STRUCTURE ctd

PART II : DESCRIPTIONS OF THE LARGE-SCALE REGIONAL STRUCTURES IN THE DIAHOT REGION	
Introduction	132
1. The main structural trends in the Pilou region	134
(a) The district south of the Arama- Mérétrice Road	134
(b) The district north of the Arama- Mérétrice Road	137
2. The main structural trends in the regions around Meretrice, Fern-Hill,	141
and the Ouégoa-Koumac Road (a) The area between Forêt d'Ougne and Mérétrice Mine	141
(b) The region between Mérétrice Mine and the Ouégoa-Koumac Road	143
(c) Structural analysis of the section along the Ouégoa-Koumac Road	n 145
(d) Structural trends in the region around Boualap, the beginning of the Mérétrice Road and Fern-Hill	157
3. The main structural trends in the Balade region north of the Diahot	160
River and south of the main divide (a) The district north of the Diahot River and south of the Gendarmeria	161 e
Fault (b) The main structural trends in the region north of the Gendarmerie Fault as far as the main divide	163
and west of Balade Mine Stream (c) The main structural trends in the region around Ouamélé Creek and the lower parts of Parari Stream	170
(d) The main structural trends on the eastern ridges above the Ouamélé Fault leading to Mt Vengaya and	
the main divide east of Mt Vengay (e) The main structural trends in the Col d'Amoss region	
Late kink folding in the region north of the Gendarmerie Fault	177
Estimates of tectonic and stratigraphic thickness of the Cretaceous rocks in	178
the Diahot region Chronological analysis of metamorphic	180
crystallization and deformation	
Introduction	180
1. Pre-tectonic crystallization	181 182
 Syntectonic crystallization Post-tectonic crystallization 	184
 Crystallization along a strain- slip or s₂ schistosity (syn-s₂) 	186
Discussion	187
Summary and structural history in the	191
Diahot region	

	page				
CHAPTER 4 : REGIONAL METAMORPHIC ZONATION	200				
Introduction	200				
Regional metamorphic zonation	200				
Regional distribution of isograds	207				
CHAPTER 5 : NOTES ON MINERALOGY	215				
Albite	215				
Microcline	215				
Lawsonite	210				
Epidote	220				
Clinozoisite	220				
Pumpellyite	222				
Amphiboles	225				
Pyroxenes	229				
Garnet	232				
White micas	234				
Pyrophyllite	237				
Stilpnomelane	239				
Chlorite	241				
Vermiculite	243				
Chloritoid	243				
Carbonates	245				
Accessory minerals					
Sphene	248				
Apatite	249				
Zircon	249				
Opal	249				
Tourmaline	250				
Jarosite	250				
Unknown fibrous mineral	251				
Opaque minerals	253				
Relict minerals					
Relict plagioclase	255				
Relict pyroxenes	258				
Relict amphiboles	260				
Norroo ampiriooroo	200				
CHAPTER 6 : MINERAL DEPOSITS	265				
1. Introduction	265				
2. Previous mining activity and re	esearch 265				
	Anton and Ar				
3. Mode of occurrence of mineral of					
(1) Mérétrice Mine	276				
Lithologies and structure	279				
(a) Carbonaceous phyllites					

- (b) Rhyolitic metatuffs
 (c) Metabasalts
 (2) Pilou Mine Lithologies and structure 285 288 289 291

CHAPTER 6 : MINERAL DEPOSITS ctd

4.

	(a) Phyllites	292		
	(b) Rhyolitic metatuffs	294		
	(c) Metabasalts	295		
(3)	Fern-Hill Mine	296		
	Structure	298		
	Lithologies	300		
	(a) Rhyolitic metatuffs	300		
	(b) Siliceous schists	301		
(4)		302		
	Lithologies and structure	304		
(5)	Ao Mine	318		
(6)	Mineral showings in the Diahot	319		
	Region			
	(A) Showings in the Pilou region			
	Tourris	320		
	Pilou Creek	320		
	Pilou West	321		
	Tchiengane	322		
	Lilas	322		
	(B) Showings in the Mérétrice			
	region			
	Moyen Tchimbo	323		
	Bas Tchimbo	323		
	Espoir	324		
	La Folle	324		
	Sommet 206	325		
		325		
	Djavel	326		
	Banianou	326		
	Henri			
	Boualap	327		
	(C) Showings in the Fern-Hill			
	region	207		
	Euréka	327		
	Jack	327		
	Tirima	328		
	(D) Showings in the area around			
	Balade Mine			
	Delaveuve	328		
		329		
	26e Soldat	330		
		330		
	Bruat	330		
Compo	osition and texture of mineral	331		
	osits			
	Mérétrice Mine	331		
	Pilou Mine	345 349		
	Fern-Hill Mine			
	Balade Mine			
	Murat Mine	363		
(6)	Ao Mine	368		

CHAPTER 6 : MINERAL DEPOSITS ctd

		5.	Metar	morphism and deformation of the eral deposits	373
			(1)	Relict structures and textures Changes in the fabric of the sulphide deposits as a result of	374
				metamorphic recrystallization	
				(a) Changes in the form or shape	376
				of sulphide minerals (b) Grain size variation of	270
				pyrite crystals with variation	378
			-20	in metamorphic grade	
			(3)	Mineralogical changes due to	
				metamorphism	a la la
2				(a) Pyrrhotite(b) Sphalerite	381
					384 389
				(d) Idaite-like minerals	389
				(e) Pyrite-arsenopyrite geothermo-	394
				meter	
			(4)	sulphides	395
			(5)	Fabrics due to remobilization of the sulphides	396
		6.	Metal	logenesis	398
				oduction	398
				Constitution	399
à			(2)	Restriction to Upper Cretaceous	401
				rocks	
			(3)	Relict sedimentary textures and the stratiform nature of the	403
				deposits	
				Significance of the black phyllite	406
				-acid volcanism association of	
ж.				the deposits south of the Gendar-	
				merie Fault	
			(5)		411
				rocks associated with the deposits north of the Gendarmerie Fault	
				Post-depositional changes	419
				othermal replacement hypothesis	422
			Stra	tiform deposits and exploration	426
			Conc	lusions	427
CHAPTER 7	: (CON	CLUSI	ONS	429
				statement	429
	2	Lit	holog	ies, mineral parageneses and age	430
				morphism	
				conditions of metamorphism	433
				implications setting for plate tectonics	442 447
	j	Dis	cussi	on	454

page

REFERENCES

APPENDIX 1 Lists of mineral assemblages

MAP POCKET Fig. 1.3 Geological map of Pilou

- 1.4 Geological map of Forêt d'Ougne-Tchimbo River
- 1.5 Geological map of Mérétrice-Fern-Hill
- 1.6 Geological map of Col de Crève Coeur
- 1.7 Geological map of Balade
- 1.8 Structural form line map of Pilou
- 1.9 Structural form line map of Mérétrice-Fern-Hill
- 1.10 Structural form line map of Balade
- 1.11 Regional distribution of metamorphic isograds
- 1.12 Geological map of Pilou Creek
- 1.13 Geological map of Balade Mine Stream
- 1.14 Geological map of the Ouégoa-Koumac Road, Part I.
- 1.15 Geological map of the Ouégoa-Koumac Road, Part II

1.16 Locality map

ABSTRACT

The area studied covers about 150 square kilometres in the northern end of New Caledonia in the lower parts of the Diahot River near Ouégoa. The rocks consist dominantly of a metamorphosed Cretaceous sedimentary-igneous sequence of carbonaceous pelites with intercalated basaltic rocks and rhyolitic tuffs. The Cretaceous sequence is flanked to the southwest by Eocene rocks consisting mainly of siliceous argillites, phtanites (massive cherts) and limestones.

High-pressure metamorphism, radiometrically dated at 38-21 m.y. (Oligocene-lowermost Miocene) by Coleman (1967), increases progressively in grade towards the northeast in a continuous sequence from lawsonite-albite facies through glaucophanitic greenschists to eclogitic glaucophanitic albite-epidote amphibolites. Lowest grade rocks occur in the southwest near the Cretaceous-Tertiary boundary and the. highest grade rocks are exposed along the east coast and as tectonically-emplaced blocks in fault zones around Ouégoa. Regional metamorphic assemblages are defined with respect to four zones in pelitic parents which in order of increasing metamorphic grade are:- (1) lowest grade rocks, (2) lawsonite zone, (3) transitional zone, (4) epidote zone. Metamorphic isograds are mapped for paraschist lawsonite, Na-amphibole, garnet and epidote; and for pumpellyite, Na-amphibole, lawsonite and omphacite in metabasalts.

In the Cretaceous rocks the regional strike of the foliation is northwest-southeast with dips to the southwest, although small-scale steeply-plunging folds are abundant. On a regional scale the major structure is an open to isoclinal, asymmetric, reclined fold with a sinistral vergence, trending southwest, and it plunges steeply down the dip of the regional foliation. This folding occurred largely synchronously with high-pressure metamorphism.

During retrogressive metamorphism, large-scale transcurrent sinistral faulting occurred, striking northwestsoutheast and dipping southwest. In the region north and east of Ouégoa these faults characteristically occur as zones up to 2 km wide occupied by high-grade ortho- and paragneisses (glaucophanites) and serpentinites, and form a complex anastomosing network. This faulting, accompanied by broad flexuring, has removed some parts of the metamorphic sequence resulting in constrictions and broad flexuring of the isograd patterns in certain areas of the field.

Small-scale kink and chevron folding has occurred late in the tectonic history and post-date both the steeply-plunging folds and the metamorphism.

Stratiform Cu-Pb-Zn mineralization with minor amounts of Au and Ag occur at five relatively major sites (Pilou, Mérétrice, Fern-Hill, Balade and Murat mines) and at numerous smaller localities throughout the field. The mineralization is restricted to definite stratigraphic horizons in the

Cretaceous sequence where black carbonaceous phyllites are associated and interbedded with rhyolitic metatuffs. The sulphide ores are well laminated, show relict sedimentary textures, and occur as layers and lenses which are conformable with the host rocks. The deposits are thought to be sedimentary-volcanic in origin and derived from acid volcanic metalliferous exhalations which have undergone chemical precipitation and sedimentation in localized black shale, euxinic environments on the sea floor. All of the deposits have been subjected to and variously modified by the metamorphism.

An attempt is made to explain the large-scale structural features observed in the Diahot region in terms of plate tectonic theory.

ACKNOWLEDGEMENTS

I would like to sincerely thank many people in the Geology Department, University of Auckland, and in the Bureau de Recherches Géologiques et Minières (B.R.G.M.), Nouméa.

In particular, I am greatly indebted to my chief supervisor, Professor A.R. Lillie, who introduced me to New Caledonian geology, spent long periods in the field with me, and who gave me great encouragement and enthusiasm. My gratitude is also equally shared with my co-supervisors, Professor R.N. Brothers and Dr H.W. Kobe for similar assistance.

I am grateful to Dr P.M. Black for the hours of help with the mineralogical work and who generously made available unpublished mineral analyses, and to Dr K.B. Spörli for company in the field and endless discussion on the structural section.

My thanks go to all these people for their advice given during the preparation of the manuscript.

Of the members of the B.R.G.M. I would particularly like to thank Dr J.J. Espirat (now of Sydney) for his part in the organisation of a generous scholarship which supported this research and also Dr R. Lille (Director of the B.R.G.M.) for his continued help and interest in the project. I am also grateful to M. B.Guérangé (Chief Geologist, B.R.G.M.) for his cooperation and advice while doing field work.

I would also like to thank M. Guyonnet of Poum for his generous hospitality when I was working from Arama, and

Calixte, Donat (of Paraoua) and Josepha (of Arama) for their assistance and cheerful companionship even in some trying situations.

This thesis has greatly benefited from the technical assistance given by many members of the Geology Department: Mr R.M. Harris for draughting, Mr T.H. Wilson for tuition and guidance with chemical analyses, Mr M. Speak for electron microprobe work, Margaret Reynolds and Elizabeth Morey for typing, Barbara Lawrence for xeroxing, Mr B.J. Curham and assistants for some thin-sections and polished sections, and many other members of staff and students in the Department from 1970 to 1975.

This thesis would hardly have commenced and certainly would not have been finished without the constant encouragement by my wife who spent eight of the nine months in the field with me and deciphered and typed the rough draft of the manuscript. Also, I am deeply indebted to my father who took so much interest in my work that he was prepared to spend a month as my field assistant.

I have worked in a field of New Caledonian geology in which many previous authors have published articles and papers and where some geologists are presently active, namely Espirat, Guérangé, Lillie, Brothers and Black, and my apologies are given to these people if I have neglected to make adequate reference to their work. If this has been the case, then it has come about because of my intimate knowledge of their ideas and geological data.