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Abstract

In insects, olfaction is mediated by a large family of integral membrane proteins, called

olfactory receptors (ORs), that mediate the transduction of odorant binding into a

neuronal signal. A functional assay for insect ORs was developed utilising calcium imaging

in Sf9 cells. The Drosophila melanogaster OR, Or22a, was expressed using transient

transfection, and its activity measured by monitoring increased intracellular calcium levels

using a calcium–sensitive dye. The interaction of the odorants ethyl butyrate, pentyl

acetate and ethyl acetate with Or22a were both dose–dependent and sensitive, with EC50

values of 1.53 x 10−11 M, 5.61 x 10−10 M and 3.72 x 10−9 M, respectively. Furthermore,

Or22a expressed in Sf9 cells has a similar response profile to a range of odorants previously

tested in vivo. This assay system will provide a useful tool for the investigation of insect

olfactory receptor structure and function.

A consensus of eleven transmembrane (TM) domain prediction algorithms suggested a

model for Or22a that contains seven TM domains, reminiscent of GPCRs. To test this

model empirically, the membrane topology of Or22a was determined using epitope–tagging

of predicted loops followed by immunochemistry. These experiments revealed that Or22a

has seven TM domains but that its orientation in the membrane is opposite to that

of GPCRs, having a cytoplasmic N–terminus. This orientation was also observed for

Epiphyas postvittana Or1, which suggests that this inverted topology may be common to

all insect ORs.

To test whether Or22a forms higher order structures, fluorescence resonance energy trans-

fer (FRET) between cyan and yellow fluorescent proteins inserted into the intracellular

loops of Or22a was employed. The third intracellular loop interacts strongly with itself
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in homo–multimers, with interactions between the first and first loops and first and third

loops also observed. These experiments show that ligand binding ORs can form multimeric

structures in heterologous cells. The co–transfection of Or83b into S2 cells had no impact

on these interactions, however Or83b is likely expressed in this cell line. Finally, models of

how a ligand binding OR interacts physically with the ion channel Or83b are presented,

and approaches that could be used to distinguish between these models are discussed.
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