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Abstract: We address the problem of determining a complete set of extreme supported 

efficient solutions of biobjective minimum cost flow (BMCF) problems. A novel method 

improving the classical parametric method for this biobjective problem is proposed. The 

algorithm runs in O(Nn(m+nlogn)) time determining all extreme supported non-dominated 

points in the outcome space and one extreme supported efficient solution associated with each 

one of them. Here n is the number of nodes, m is the number of arcs and N is the number of 

extreme supported non-dominated points in outcome space for the BMCF problem. The 

memory space required by the algorithm is O(n+m) when the extreme supported efficient 

solutions are not required to be stored in RAM. Otherwise, the algorithm requires O(N+m) 

space. Extensive computational experiments comparing the performance of the proposed 

method and a standard parametric network simplex method are presented.  

 

Keywords Biobjective minimum cost flow problem; Extreme supported efficient solutions; 

Network flow algorithm; Parametric simplex method. 

 
1. Introduction 

In this paper we study biobjective minimum cost network flow problems. Minimum cost 

network flow (MCF) problems are widely applied network optimization models where a 

single commodity is moved through a capacitated network at minimum overall cost. Many 

algorithms to solve MCF have been proposed and tested, see [1,2]. In applications often more 

than one objective function needs to be considered leading to biobjective minimum cost 

network flow (BMCF) problems, or even to multiobjective MCF if more than two objectives 

are to be included. Two BMCF problems should be distinguished here. The first one has 

continuous variables and its set of efficient solutions consists of supported efficient solutions 

only, which can all be obtained by solving an MCF with a weighted sum objective function. 
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Secondly, flow in BMCF could be restricted to be integer-valued (problem BIMCF) in which 

case both supported and non-supported efficient solutions exist.  

Here, we propose a variation of the parametric network simplex method for BMCF that 

obtains a complete set of extreme supported efficient solutions of continuous BMCF 

problems, and of BIMCF (as long as all capacities in the problem are also integer-valued). 

Extreme supported efficient solutions are faster and easier to identify than a complete set of 

efficient solutions of BIMCF and would allow decision makers to obtain an impression of 

available solutions quickly, which is particularly important for larger, and thus 

computationally challenging, problem instances. Extreme supported efficient solutions also 

need to be identified in the first phase of a two-phase approach, as described in [3] for 

BIMCF, where they help reduce the search space when other efficient solutions are sought in 

the second phase.  

A comprehensive review of algorithms for BMCF is published in [4], where the authors 

comment on a lack of algorithms for multiobjective MCF at the time. The most promising 

methods for BMCF are applying a parametric network simplex method [3,5] or solving a 

sequence of scalarizations [6,7,8]. In [6] problems are solved by a network simplex method, 

and in [7] by an interior point method, however, the authors remark on performance problems 

in the latter case. In [8] scalarizations are applied to biobjective problems, and the resulting 

single-objective problems are solved in parallel, but only tested on shortest path problem 

instances. Out-of-kilter methods have also been proposed, see [4], but have not been shown to 

be computationally superior to network simplex methods. More recently, a primal-dual 

simplex method was developed for BMCF but the authors conclude that it generally performs 

worse than a (primal) parametric simplex method for most of their test instances [9]. In [10] 

an approach to find all supported efficient solutions of multiobjective MCF (assuming 

extreme supported solutions and corresponding weight vectors are given) is introduced, which 

is based on zero-cost cycles in the incremental graph associated with the corresponding 

weighted sum problems. Other work focuses on integer biobjective or multiobjective MCF 

where non-supported efficient solutions generally are the most challenging to identify 

[3,11,12,13]. 

Our proposed improvement of the classical parametric network simplex method extends 

ideas we first proposed in [14] for a labelling algorithm to solve biobjective shortest path 

problems. Where a parametric network simplex method has to scan all non-basic arcs as 

candidates to enter the basis associated with a current solution, we are able to show that only a 
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subset of arcs needs to be considered as their ratio changes, which we exploit in the 

formulation of a new ratio-labelling algorithm.  

The paper is organized as follows: Section 2 describes the BMCF problem and introduces 

some known results from the literature. In Section 3, BMCF is formulated as a parametric 

programming problem and details of improvements to aspects of the parametric network 

simplex method are presented when the aim is to compute all extreme supported non-

dominated points in the outcome space of the BMCF problem, and one extreme supported 

efficient solution associated with each of them. Section 4 proposes a ratio-labeling algorithm 

where the nodes have an associated ratio, instead of associating this ratio with arcs. This is 

done in order to improve the computational effort in the operations that select the entering arc 

with minimum ratio of reduced cost in each iteration. Section 4 also provides the worst-case 

time and space complexities of the proposed new algorithm. In Section 5, computational 

experiments comparing performance of the proposed algorithms and other known algorithms 

are discussed. Finally, Section 6 concludes with final comments and possible future avenues 

of investigation.  

 

2. The biobjective minimum cost flow problem. 

Given a directed network G = (V, A), let  nV ,...,1  be the set of nodes and A be the set of 

m arcs. For each node Vi , let the integer bi  be the supply/demand of the node i and for 

each arc Aji ),(  let iju  and ijl be the upper bound and the lower bound on flow through arc 

),( ji , respectively. Let v
ijc  be the cost per unit of flow on arc ),( ji  in the v-th objective 

function,  1, 2v . 

If ijx  denotes the amount of flow on an arc ),( ji ,  | ( , )i j V i j A     and 

 | ( , )i j V j i A    , the BMCF problem can be formalized in the following way: 

 

1 2 1 2Minimize    ( ) ( ( ), ( )) ,                   (1)

. :  

        ,                                                                (2
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Let X be the polyhedron defined by constraints (2)-(3) (feasible set in decision space) and 

let its image under the objective function be C = c(X) (feasible set in outcome space). The 

above problem is a biobjective version of the minimum cost flow (MCF) problem. The 

network simplex method solves the MCF problem by taking advantage of the fact that every 

basis in the MCF problem is also a spanning tree T of G (see [1,15]). A spanning tree T of G 

is a sub-graph of G with n-1 arcs that contains no cycle. We denote by ( )V T  the set of nodes 

included in a tree T and by ( )A T  the set of arcs in T. 

 

Definition 1. A feasible solution x X  is called efficient if there does not exist any x X  

with 1 1( ) ( ) c x c x  and 2 2( ) ( ) c x c x  with at least one inequality being strict. The image 

( )c x  of an efficient solution x is called non-dominated point.  

 

Definition 2. Supported efficient solutions are those efficient solutions that can be obtained as 

optimal solutions of a weighted sum problem  1 2
1 2min ( ) ( ) 




x X
c x c x  for some 1 0   and 

2 0  . All other efficient solutions are called non-supported.  

 

The supported non-dominated points lie on the lower-left boundary of the convex hull 

(conv(C)) of the feasible set C in outcome space of a biobjective optimization problem such as 

BMCF. The (continuous) BMCF problem, as stated in (1)-(3), only has supported efficient 

solutions, and C = conv(C). If problem (1)-(3) is stated with the additional requirement that 

all flow variables are integer valued, then non-supported solutions may exist which lie in the 

interior of conv(C). Both cases are illustrated in Figure 1.  
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Figure 1. Illustration of conv(C) in outcome space in continuous (left) and integer case (right). 

 

The focus of this paper is to design a fast algorithm to determine feasible solutions 

associated with extreme supported non-dominated points in the BMCF problem. Those 

feasible solutions are denoted extreme supported efficient solutions. That is, we determine 

supported efficient solutions whose images are extreme points of the convex hull of the 

supported non-dominated points. We ensure the proposed algorithm computes one extreme 

supported efficient solution for each extreme supported non-dominated point. Once those 

extreme supported efficient solutions are known, other (non-extreme) supported efficient 

solutions of BMCF can be obtained as convex combinations of extreme supported efficient 

solutions. This means we can derive a complete set of efficient solutions of BMCF from the 

obtained extreme supported efficient solutions, that is one supported efficient solution per 

supported non-dominated point in C.  

 

3. Solving the BMCF problem with an enhanced parametric programming approach. 

Instead of solving the weighted sum problem  1 2
1 2min ( ) ( )

x X
c x c x 


  with 1 20, 0   , 

the problem  1 2min ( ) ( )
x X

c x c x


  with [0, )   can be solved alternatively. For the linear 

programming formulation of BMCF, this leads to a parametric linear program.  

Solving a biobjective linear program by solving its associated parametric linear program 

works by initially obtaining a lexicographically optimal solution to the problem, that is an 

c2 

c1 

supported non-dominated 
extreme supported non-dominated 
 

C = conv(C) 

c1 
feasible, dominated 
extreme supported non-dominated 
supported non-dominated 
non-supported non-dominated 

c2 

conv(C) 



6 

efficient solution is obtained which is optimal for 0   (see [16,17]). Such a 

lexicographically optimal solution is minimal with respect to 1c , with smallest possible 2c –

value among minimizers of 1c . The parametric simplex method then solves the problem by 

iteratively pivoting variables while ensuring that all optimal solutions (again, one per optimal 

point in objective space) for increasing values of  are obtained. These solutions correspond 

to supported efficient solutions of the biobjective linear program. This process continues until 

ultimately the other lexicographically optimal point, which minimizes 2c , is reached. An 

important aspect of the parametric simplex method is that all non-basic variables need to be 

inspected in every iteration to ensure that variables that are pivoted into the basis lead to 

increasing values of  , and, most importantly, that a complete set of extreme supported 

solution is obtained. In the case of a network flow problem, a variant of the parametric 

method for network flow problems is used, the parametric network simplex method [3,5].  

In the following it is explained how a lexicographically optimal solution is first found, and a 

discussion of enhancements of the pivoting steps follows.  

 

3.1 Solving  1 2lex min ( ), ( )
x X

c x c x .  

To compute an initial extreme supported efficient solution x* we solve 

 1 2lex min ( ), ( )
x X

c x c x . In this way, we obtain the strongly feasible spanning tree structure (T, 

L, U) and the node potentials 1 and 2 (dual variables) with respect to the two objective 

functions (see, for example [1] and [15]). (T, L, U) refers to the following three sets: T is the 

basis (tree), L is the set of arcs ( , ) ( )i j A T  such that *
ij ijx l  and U is the set of arcs 

( , ) ( )i j A T  such that *
ij ijx u . Any arc ),( ji  in ( )A T  satisfies *

ij ij ijl x u  . Clearly, the 

flow *x  must satisfy constraint (2). Based on node potentials 1 and 2, the reduced costs are 

defined as v v v v
ij ij i jc c      for all ( , ) ( )i j A T  and for  1, 2v . Then, a strongly feasible 

spanning tree structure (T, L, U) will be optimal for the  1 2lex min ( ), ( )
x X

c x c x  problem when 

the reduced costs and flows satisfy the following optimality conditions: 

 

1 1 2

1 1 2

1 2

0 or ( 0 and 0)  ( , )         (a)

0 or ( 0 and 0)  ( , )         (b)

0 and 0                    ( , ) ( )   (c)

    
    

   

ij ij ij

ij ij ij

ij ij

c c c i j L

c c c i j U

c c i j A T
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It is easy to adapt the network simplex method to obtain an optimal strongly feasible 

spanning tree structure (T, L, U) and node potentials 1 and 2 satisfying (a), (b) and (c), for 

the  1 2lex min ( ), ( )
x X

c x c x  problem, see for example [1]. 

 

3.2 Obtaining a complete set of extreme supported efficient solutions. 

Let x* be an extreme supported efficient solution contained in the feasible set X in decision 

space (c(x*) is an extreme supported non-dominated point of the feasible set C in objective 

space) and (T, L, U), 1 and 2 be the corresponding optimal spanning tree structure and node 

potentials obtained after solving problem  1 2lex min ( ), ( )
x X

c x c x . The next step in the 

parametric network simplex method consists of finding an extreme non-dominated point of 

the objective space that is adjacent to c(x*). Note that 1 0ijc  and 2 0ijc  for any arc 

( , ) ( )i j A T and that the arcs in L and U satisfy (a) and (b), respectively. The current optimal 

solution of the parametric linear program  1 2min ( ) ( )
x X

c x c x


  remains optimal as long as the 

reduced costs remain non-negative for the set L and non-positive for the set U. This is the case 

as long as the following remains true: 

1 2

1 2

0  ( , )

0  ( , )





   

   
ij ij

ij ij

c c i j L

c c i j U
, 

 

where the value of   must be non-negative, [0, )  . Moreover, we have 

1 2 0 for all ( , ) ( )  ij ijc c i j A T . To shorten our exposition and be able to make similar 

statements for both the arcs in L and U, we define modified reduced costs for any arc ),( ji  in 

these sets: 

    if ( , )
ˆ

  if ( , )

   

v
ijv

ij v
ij

c i j L
c

c i j U
 with  1, 2v  

 

In order to move from the current efficient solution to another efficient one the first 

objective has to worsen, or 1ˆ 0ijc , and the second one has to improve, or 2ˆ 0ijc . Note that 

the flow of the arcs in L increases and the flow of the arcs in U decreases when they are 
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introduced into T, unless in the case where there is no flow change. Therefore, structure (T, L, 

U) remains optimal for all   in the range 0    k  where  
( , )
min 


k k

iji j A
 with 

    
1 2 2ˆ ˆ ˆ/   if 0

         otherwise


 
 


k ij ij ij
ij

c c c
.    (4) 

 

That is, if 2ˆ 0ijc  the ratio associated with arc ),( ji  in iteration k (where k = 1 initially) is 

1 2ˆ ˆ/ ij ijc c ; otherwise this ratio is infinite. We refer to the interval of values of  for which an 

efficient solution remains optimal as optimality interval. To determine the (strongly feasible) 

spanning tree corresponding to the next supported non-dominated point, the next arc to be 

introduced into the basis is identified as:  

 2

( , )
ˆ( , ) arglex min ( , ) : 

 
  k k

ij ij iji j L U
x y c . 

 

That is, we must determine an arc with minimum finite ratio (4), which then enters the 

basis (tree T), and an arc from the current basis (tree T) leaves it. We call this operation pivot 

operation (see [1]). It is also possible that this pivot operation leads to the same arc entering 

and leaving the basis. In this case, the arc with minimum ratio moves from L to U or vice 

versa. If more than one arc with minimum ratio exists, we select one with smallest (or most 

negative) value of 2
îjc  (this is why lexmin appears in the above expression). Then, a pivot 

operation is performed with the entering arc ( , )x y  giving the next efficient solution with 

index k + 1. We have the following result: 

 

Theorem 1. The set of extreme supported non-dominated points of the BMCF problem can be 

determined starting from an optimal tree structure minimizing 1 2lexmin( ( ), ( ))c x c x  and 

making a sequence of pivot operations where the entering arc is ( , )x y , with 

 2

( , )
( , ) arg lex min ( , ) : 


  ij ij iji j A

x y c , until the ratio of any arc in A is +.  

 

Proof. Immediate from parametric linear programming theory (see also [3,5,18]). 

 

Now, once a pivot operation is performed with the arc ( , )x y  and the node potentials are 

updated, we know that 1  k k  from Dantzig and Thapa [18]. The process of identifying an 
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arc with minimum ratio (4) continues in the standard parametric network simplex method by 

inspecting, in each iteration, the ratio of all non-basic arcs. In our enhancement shown in the 

following it is analysed how ratios change to identify situations in which ratios do not have to 

be re-computed. For instance, in [3] it is shown that any arc ( , )u v with ratio  k k
uv  before 

the pivot operation keeps the minimum ratio value (unless it becomes ineligible to enter the 

basis), that is, 
1

2

ˆ

ˆ
  k uv

uv

c

c
 , where 1

ûvc  and 2
ûvc  are the new reduced costs for the arc ( , )u v  once 

the pivot operation is made. If ( , )u v  becomes ineligible to enter the basis, due to 1ˆ 0uvc   and 

2ˆ 0uvc   then 1   k
uv  in our definition of the ratios (4). Instead of following the standard 

steps of a parametric network simplex method from here, we further investigate how the new 

ratios for all arcs in L and U change, once a pivot operation with the entering arc ( , )x y  is 

completed.  

In order to compute the new ratios when a pivot operation is performed, we need to recall 

how the node potentials change (see page 419, [1]) once this operation is made. Let T be the 

current basis tree, ( , )x y  the entering arc and ( , )p q  the leaving arc. Assume that 

( , ) ( , )x y p q  then we update the node potentials as follows. The deletion of the arc ( , )p q  

from T partitions the tree into two subtrees, one, 1T , containing the root node and the other, 

2T , the complementary set containing nodes 1( ) ( )V T V T . Then the node potentials are 

updated according to one of two cases. We use the update process A or B when appropriate 

(this is shown later). 

 

(A)  If 1( )x V T  then v v v
i i xyc    for all 2( )i V T  with  1, 2v . If 1( )x V T  then 

  v v v
i i xyc  for all 2( )i V T  with  1, 2v . (This update procedure of 2T  is called 

process A). 

 

Alternatively, the following update of node potentials is applied.  

 

(B) If 1( )x V T  then   v v v
i i xyc  for all 1( )i V T  with  1, 2v . If 1( )x V T  then 

  v v v
i i xyc  for all 1( )i V T  with  1, 2v . (This update procedure of 1T  is called 

process B). 
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In summary, process A updates potentials of nodes 2( )i V T  by subtracting the reduced 

costs of arc ( , )x y  if 1( )x V T , and adding them if 1( )x V T , whereas process B updates 

potentials of 1( )i V T  by adding the reduced costs of arc ( , )x y  if 1( )x V T , and subtracting 

them otherwise.  

Now, we analyze the different cases of the computation of new ratios for all arcs 

( , ) ( )i j A T  when    ( ) ( ) ( , ) ( , )  A T A T p q x y  with ( , ) ( , )x y p q . From the 

calculations shown in Appendix A it can be observed under which circumstances we have 

1  k k
ij xy  for any arc ),( ji  in set L or U. Moreover, Table 1 summarizes the relationship 

between the ratio of arc ),( ji  before and after a pivot operation with the entering arc ( , )x y  is 

made. The different cases arise taking into account the membership of arcs ),( ji  and ( , )x y  

of the sets L and U. In addition, it is necessary to distinguish which set 1( )V T  or 2( )V T  

contains the nodes x, i and j. In Table 1 the node potential update process that is carried out in 

each case is also shown. 

 

Table 1. Relationship between the ratios of arc ( , )i j  before and after node potential update operation. 

Set for node x 1( )x V T  2( )x V T  

Entering arc ( , )x y L  ( , )x y U  ( , )x y L  ( , )x y U  

Update potentials process A B B A 

( , )i j L  
2( )i V T , 1( )j V T  

1  k k
ij ij  1  k k

ij ij  1  k k
ij ij  1  k k

ij ij  

1( )i V T , 2( )j V T  
1  k k

ij ij  1  k k
ij ij  1  k k

ij ij  1  k k
ij ij  

( , )i j U  
2( )i V T , 1( )j V T  

1  k k
ij ij  1  k k

ij ij  1  k k
ij ij  1  k k

ij ij  

1( )i V T , 2( )j V T  
1  k k

ij ij  1  k k
ij ij  1  k k

ij ij  1  k k
ij ij  

 

The selection of the update process A or B can be extracted from Table 1. The table also 

summarizes changes of ratios (4) after node update process A or B are applied. For example, 

for any arc ( , )i j L  such that 1  k k
ij ij  the node potential of node j was modified. 

Additionally, for any arc ( , )i j U  such that 1  k k
ij ij  the node potential of node i was 

modified. The new ratios for the remaining arcs keep their previous value or decrease. The 

observations listed in Table 1 will allow us to identify for each node i of V a subset of non-

tree arcs that must be explored whenever the node potential of node i changes, and others that 

do not need to be considered (as their ratio only increases). This relation will be used in 
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Algorithm 1 introduced in Section 4 to limit the number of ratios associated with arcs that 

need to be computed in each iteration. 

 

4. A ratio-labeling algorithm for BMCF problem. 

Assume an optimal solution (T, L, U) of the lexicographic optimization problem and the 

associated node potentials 1 and 2 with respect to the two objective functions are given. The 

previous results allow us to develop Algorithm 1, which is introduced in detail below.  

Let     ( , ) ( , )   iA j i L i j U  be the set of incoming arcs at node i in the set L plus 

the set of outgoing arcs from node i in the set U. That is, iA  contains the set of non-tree arcs 

that can carry flow to node i when a pivot operation is made with this arc as entering arc. This 

set allows to associate the following label with any node i in V: 

    2 2

( , )
ˆ ˆ, lex min , 




i
i i uv uv

u v A
c c   

This label i  indicates the current minimum ratio of any arc in set iA  associated with node 

i. Remember that 1 2ˆ ˆ/  uv uv uvc c  is the ratio of the arc (u,v) and takes a finite value if and only 

if 2ˆ 0uvc . The implementation of Algorithm 1 uses a heap H to store the labels of each node i 

in V. That is, the algorithm stores in H the minimum ratio i  attained for the arcs in iA , for 

any node i. Here 2 2ˆ ˆi uvc c  for the arc ( , )u v  in iA  that has the minimum ratio, that is, with 

 i uv . In case that two or more arcs in iA  have the same value of i , the algorithm stores 

the ratio of an arc with smallest value of the second reduced cost, that is, 

 2 2

( , )
ˆ ˆmin : 


 

i
i uv uv i

u v A
c c . The key of each element in H is the pair of values (i , 2

îc ). 

Additionally, the algorithm tracks for each candidate node i the following information: the 

ratio i , the reduced costs 1 2ˆ ˆ ˆ( , )i i ic c c , the candidate predecessor iJ  (to identify the entering 

arc) and the label iLow  indicating if the minimum is attained in an arc in set L ( iLow  = True) 

or in an arc in set U ( iLow  = False) to be able to update labels easily. The following heap 

operations are needed in our algorithm (see [19]): CreateHeap(H), Insert({label}, H), Find-

min(H), Decrease-key({label}, H), and Delete-min(H). 

The Ratio-Labeling BMCF (RLBMCF) algorithm (Algorithm 1) maintains a heap with 

minimum ratio associated with each node. When a new entering variable (arc) is selected in 

each iteration, it is not necessary to compute the arc’s ratio for every arc as in the standard 
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parametric network simplex method. Instead a minimum label is extracted from the heap 

representing the node (and associated arc) with minimum ratio. Since we identified which 

arcs need updating as their ratio could increase in the previous section this can be exploited 

when node labels are updated in each iteration. This leads to fewer ratio calculations (or the 

same number of them). The algorithm is outlined in the following, and pseudo-code is shown 

below. 

The RLBMCF algorithm (Algorithm 1) starts by solving the lexmin problem (line (1)). The 

image of this first extreme supported efficient solution is stored in the variables 1c  and 2c . 

This solution is printed on the screen (or stored), although its optimality interval (or at least its 

upper limit) remains unknown. We use the variable lastratio to store the lower limit of the 

optimality interval of the current solution x . Initially, lastratio is zero. Next, the heap H is 

created and the labels for all nodes i in V are calculated by calling Procedure 1 

ComputeLabels (Lines (2), (4) and (5)). Now, the algorithm starts a loop that ends when the 

heap H is empty. In each iteration, the node i with minimum ratio is extracted from the heap. 

This operation allows to identify the entering arc ( , )x y  (Line (8)). The leaving arc ( , )p q  and 

the maximum amount of flow  that can be sent along the cycle ( ) ( , )A T x y  are identified in 

Line (9), a standard operation in a network simplex method. Next, the current flow x  and the 

structure (T, L, U) are modified by a standard pivot operation (lines (10) and (11)). At this 

point, we know the image of the next supported efficient solution but it does not have to be an 

extreme supported efficient solution. If the ratio i  is greater than lastratio and the value of  

is greater than 0, the algorithm has identified the next extreme supported efficient solution x  

and the upper limit of the optimality interval of the previous extreme solution is i . Lines 

(13) and (14) print (or store) this information. If the entering arc equals the leaving arc, only a 

new label for the candidate node i extracted from the heap needs to be computed (line (15)). 

Otherwise, we must identify the set S that contains the nodes whose node potentials need to 

be modified. Note that S is 2( )V T  or 1( )V T  when process A or process B, respectively, must 

be applied. The identification of this set (in the pseudo-code) follows the characterization in 

Table 1 (see Lines (17)-(19)). We also show an alternative approach to identifying S in 

Procedure 2 IdentifyS. Once the set S is identified, the node potential of any node in this set 

decreases by îc  (line (20)). 
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Algorithm 1 Ratio-Labeling BMCF (RLBMCF) 

(1) Let x , (T, L,U), 1 2( , )    be the information of the optimal solution of  1 2lex min ( ), ( )
x X

c x c x


; 

(2) CreateHeap(H); lastratio = 0; 1 1( )c c x ; 2 2( )c c x ; 

(3) Print the current flow x  with objective  1 2,c c as an extreme supported efficient flow; 

(4) Set ; 0; ;  for all i i iJ Low True i V      ;  

(5) For all i V  do ComputeLabels(i, 1 2ˆ ˆ, , , ,i i i i ic c J Low ,H);  

(6) While (H   ) do 

(7)   2ˆ, ,i ic i  = Find-min(H); Delete-min(H); 

(8) If ( iLow True ) then ( , )x y  = ( , )ii J  Else ( , ) ( , )ix y J i ; 

(9) 
Let (p,q) be the leaving arc and  the maximum amount of flow that can be sent along the 

cycle ( ) ( , )AT x y ; 

(10)  1 1 1
îc c c ;  2 2 2

îc c c ; 

(11) ( )AT = ( )AT – (p, q) + (x, y); Update L, U; // Make a pivot operation 

(12) If ( i lastratio  ) and ( > 0) then 

(13) Print the optimal interval of the current flow is [lastratio, i ]; lastratio = i ; 

(14) Print the current flow x  with objective  1 2,c c as an extreme supported efficient flow; 

(15) If ( ( , ) ( , )x y p q ) then ComputeLabels(i, 1 2ˆ ˆ, , , ,i i i i ic c J Low ,H);  

(16) Else  

(17) Identify 1T  and 2T  in ( , )T p q ; 

(18) 
If ((( 1( )x V T ) and ( iLow False )) or (( 2( )x V T ) and( iLow True ))) then S 

= 1( )V T ;  

(19) Else S = 2( )V T ; 

(20) For all k S  do ˆk k ic   ; 

(21) For all k S  do ComputeLabels(k, 1 2ˆ ˆ, , , ,k k k k kc c J Low ,H); 

(22) For all k S  do 

(23) For all ( )kj V S    do 

(24) If (( , )k j L ) and ( 2 0kjc  ) and ( 1 0kjc  )) then 

(25) If (( 1 2/kj kj jc c   ) or (( 1 2/kj kj jc c   ) and ( 2 2
¨̂kj jc c ))) then 

(26) If ( 0jJ  ) Then Insert({ 1 2 2/ ,kj kj kjc c c , j}, H);  

(27) Else Decrease-key({ 1 2 2/ ,kj kj kjc c c , j}, H); 

(28) 1 2 ˆ/ ; ; ; ;j kj kj j kj j jc c c c J k Low True       

(29) For all ( )kj V S    do 

(30) If (( , )j k U ) and ( 2 0jkc  ) and ( 1 0jkc  )) then 

(31) If (( 1 2/jk jk jc c   ) or (( 1 2/jk jk jc c   ) and ( 2 2
¨̂jk jc c  ))) then 

(32) If ( 0jJ  ) Then Insert({ 1 2 2/ ,jk jk jkc c c  , j}, H); 

(33) Else Decrease-key({ 1 2 2/ ,jk jk jkc c c  , j}, H); 

(34) 1 2 ˆ/ ; ; ; ;j jk jk j jk j jc c c c J k Low False        

(35) Print the optimal interval of the current flow is [lastratio,  ]; 
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Next, Procedure 1 ComputeLabels computes the minimum ratio and the corresponding 

label for a node k whenever the value of its node potential changed (line (21)). Note that the 

new ratio for each node k in S keeps its previous value or increases following the arguments in 

Section 3.2. If the label changes, we need to make a delete operation in the heap to delete 

node k (and the label of node k) whenever node k is in the heap. This operation is 

implemented as the two operations in Line (2) of Procedure 1 ComputeLabels. The lines (22) 

to (34) of the RLBMCF algorithm check if the ratios of the nodes  j V S  decrease when 

the arcs (k, j) and (j, k) are investigated for all k in S, again taking into account the 

characterization summarized in Table 1. In this case, the corresponding Insert({label, j}, H) 

or Decrease-key({label, j}, H) operation must be performed. Finally, once the heap is empty, 

the algorithm prints (or stores) the last optimality interval (line (35)). 

 

Procedure 1 ComputeLabels(i, 1 2ˆ ˆ, , , ,i i i i ic c J Low ,H); 

(1) If ( 0iJ  ) then // since the ratio of node i must be re-computed, it must be deleted from H; 

(2) Decrease-key( 1, 0,i ,H); Delete-min(H); 

(3) ; 0;i iJ     

(4) For all ij    do 

(5) If (( , )j i L ) and ( 2 0jic  ) and ( 1 0jic  )) then 

(6) If (( 1 2/ji ji ic c   ) or (( 1 2/ji ji ic c   ) and ( 2 2ˆij ic c ))) then 

(7) 1 2 ˆ/ ; ; ; ;i ji ji i ji i jc c c c J j Low True       

(8) For all  
i

j  do 

(9) If (( , )i j U ) and ( 2 0ijc  ) and ( 1 0ijc  )) then 

(10) If (( 1 2/ij ij ic c   ) or (( 1 2/ij ij ic c   ) and ( 2 2ˆji ic c  ))) then 

(11) 1 2 ˆ/ ; ; ; ;i ij ij i ij i jc c c c J j Low False        

(12) If ( 0iJ  ) then Insert(  2ˆ, ,i ic i ,H); 

 

In the implementation of the RLBMCF algorithm, the operations in line (21) and lines 

(22)-(34) are performed concurrently so that the sets of successor and predecessor nodes of 

any node k in S are examined only once. Also, the operation modifying potentials is 

implemented together with the operation identifying the set 1( )V T  or 2( )V T  (set S in general). 

In other words, lines (17)-(20) in the algorithm are implemented simultaneously. The scheme 

uses Procedure 2 IdentifyS based on a Depth-First Search (DFS) approach (see [1]) with a 

vector InS which takes the value 1 in position k if and only if node k belongs to S.  
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Procedure 2 IdentifyS(k, end , change); 

(1) 1kInS  ; k k change   ; 

(2) For all ( , ) ( )k j AT  do If (( 0jInS  ) and ( j end )) Then IdentifyS(j, end, change); 

(3) For all ( , ) ( )j k AT  do If (( 0jInS  ) and ( j end )) Then IdentifyS(j, end, change); 

 

The pivot process swapping the entering arc ( , )x y  and the leaving arc ( , )p q  appears in 

line (11) of Algorithm 1. The algorithm keeps depth labels for the current tree T. These labels 

inform us of the depth of each node from the root node in the new tree. For example, if 

depth[x] < depth[y], we know the node y will be situated in the subtree of node x in the new 

tree. The depth and Low labels ( iLow  of the candidate node i where i could be x or y) are used 

to identify whether the process A or B must be applied, following the cases in Table 1. Table 

2 summarizes the cases. The first two rows of Table 2 show the relationship between the cases 

in Table 1 and the corresponding values of Low and depth labels. The third row in Table 2 

shows how Procedure 2 IdentifyS is called in each case. 

 

Table 2. Summary of how the procedure IdentifyS must be called to determine the set S. 
 

1( )x V T and ( , )x y L  

update process is A 
1( )x V T and ( , )x y U  

update process is B 
2( )x V T and ( , )x y L  

update process is B 
2( )x V T and ( , )x y U  

update process is A 
Lowy = True  

and depth[x] < depth[y]  
in T 

Lowx = False and 
depth[x] < depth[y]  

in T 

Lowy = True and 
depth[x] > depth[y]  

in T 

Lowx = False  
and depth[x] > depth[y]  

in T 
IdentifyS(root, y, change) 

Finds S = V(T1) 
IdentifyS(y, x, change) 

Finds S = V(T2) 
IdentifyS(x, y, change) 

Finds S = V(T2) 
IdentifyS(root, x, change) 

Finds S = V(T1)
  

 

Procedure 2 IdentifyS is called following the scheme of Table 2 where the appropriate 

choice of arguments k and end is given in the function call of IdentifyS. The node end and the 

nodes in the subtree of node end are never reached in the search process. The parameter 

change refers to 1 2ˆ ˆ ˆ( , )i i ic c c . Any other variable used in this procedure is a global variable 

(such as T, InS, and the node potentials). 

 

4.1 Worst-case complexity of the RLBMCF algorithm. 

We consider that any heap operation takes constant time with the exception of the Delete-

min operation which requires O(logn) time when a Fibonacci heap is used (see [19]). The 

worst-case complexity of Procedure 1 ComputeLabels is (log )    i iO n time since it 

performs one Delete-min operation and examines the set of the predecessor and the successor 

nodes of node i. Also, the complexity of Procedure 2 IdentifyS is O(n) time, because in the 
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worst-case all nodes are considered and the number of arcs in ( )A T is n-1. Now, if we denote 

by N the number of extreme supported non-dominated points in the outcome space of the 

BMCF problem we obtain Theorem 2. 

 

Theorem 2. The RLBMCF algorithm runs in O(MCF+ Nn(m+nlogn)) time and uses O(n+m) 

space. 

Proof. The solution of the  1 2lex min ( ), ( )
x X

c x c x  problem requires the same time as solving 

the MCF problem using a state-of-the-art algorithm (see [1,2]). We denote this effort by 

O(MCF). Note that the size of the heap H in the RLBMCF algorithm is at most n as the label 

associated with a node is contained in the heap at most once at any point during the 

algorithm’s execution. The number of iterations performed by the algorithm is O(Nn) since 

the ratio of a node can take, in the worst-case, N different minimum values, that is, as many 

values as the number of different extreme supported non-dominated points in the outcome 

space. All pivot operations require O(n) time. Therefore, the greatest time employed in an 

iteration is due to the execution of Lines (21)-(34). This corresponds to 

( (log )) 



     k k
k S

O n n , where the log n term corresponds to the Delete-min operations 

in Procedure 1 ComputeLabels. We have mentioned that in the implementation the execution 

of line (21) and Lines (22)-(34) is done simultaneously. The term O(n) is the time spent in 

lines (9), (11), (17) and (20). Remember that Procedure 2 IdentifyS performs (17) and (20), 

simultaneously. The time ( ( )) 



   k k
k S

O  corresponds to the effort to scan the arcs leaving 

from and arriving at any node k in S (including the effort in Procedure 1 ComputeLabels). In 

each iteration, the algorithm requires an additional O(m) time to print the flows. Thus, in the 

worst-case, the complexity of the algorithm is 
1

( ( (log ))) 

 

      
nN

k k
iter k S

O m n n . 

Therefore, the worst-case time complexity of the algorithm is O(MCF+ Nn(m+nlogn)) since 

S  < n in any iteration. Finally, it is easy to observe that the space used by the algorithm is 

O(n+m) since only the current extreme supported efficient flow x is stored. □ 

 

Often, in practice, the size of the set S is much smaller than n. Note that our algorithm 

scans all the arcs in the network twice when S  is close to n, that is, it takes 2m effort in the 

operations in Lines (21)-(34). However, the classical parametric method always performs m 
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operations when it examines all arcs to find the minimum reduced cost ratio. In a particular 

iteration, whenever S  is small compared to n, the proposed algorithm requires O(n) time 

(here we are not considering the time to print the flow). In this case, the proposed method has 

an advantage compared to the parametric method. For this reason, Lines (21)-(34) are 

performed when S < n/8 in the implementation of the RLBMCF algorithm. Otherwise, the 

whole set of entering arcs is considered once following the procedure applied by the 

parametric method.  

 

5. Computational Results 

In this section, we examine the performance of the presented RLMCF algorithm. 

 

5.1 Problem Instances 

Test instances were generated based on the single-objective minimum cost flow (MCF) 

problems used in [2]. This extensive computational comparison of MCF algorithms considers 

many different algorithms and implementations (a total of 15 solvers), and tests these on a 

large set of problem instances of varying characteristics and size, enabling the analysis of 

asymptotic behavior. A main conclusion is that cost-scaling algorithms and the primal 

network simplex method perform best in general (with exceptions for special network types). 

Test problems are generated using standard generators, namely NETGEN, GRIDGEN, 

GOTO, GRIDGRAPH, and other networks are also tested in [2]. Test problems are available 

online* and form the basis of our computational analysis. All instances involve solely integer 

data. 

Problem instance characteristics from [2] are summarized in Table 3. In the instances 

either the number of nodes n or the number of arcs m varies. A certain number of nodes acts 

as supply and demand nodes, shown as #supp in the table. For GRIDGRAPH instances the 

number of rows (W) and the number of columns (L) of the grid are listed. The overall supply 

in the network is Supp. The network generators select costs and capacities randomly and 

uniformly between 1 and the maximum cost and capacity listed in Table 3. There are five 

randomly generated instances per set of problem parameters. 

The original problem instances from [2] have a single objective function. We generate 

biobjective problems as follows. From the five instances for each set of parameters, denoted 

a, b, c, d and e we generate biobjective instances by combining the costs of pairs of the 

                                                 
* http://lemon.cs.elte.hu/trac/lemon/wiki/MinCostFlowData  
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original instances: We combine an original instance, say instance a, with the costs from 

another instance, say instance b, obtaining one new biobjective instance, instance ab in this 

case. We obtain five new instances with combined cost coefficients for each set of problem 

parameters: ab, bc, cd, de, and ea. We use a much broader set of test instances than is usually 

applied to test BMCF algorithms where most researchers use NETGEN instances only.  

 

Table 3. Summary of problem instance characteristics from [2]. 

 n m #supp Supp 
Max 
cost 

Max 
cap 

type 

NETGEN-8 2 , 8,...,15in = i   8n  n  103 104 103 sparse 

NETGEN-SR 2 , 8,...,12in = i   n n  n  103 104 103 dense 

NETGEN-LO-
8 2 , 8,...,15in = i   8n  n  10 104 103 

low 
supply 

NETGEN-LO-
SR 2 , 8,...,12in = i   n n  n  10 104 103 

low 
supply 

NETGEN-DEG 4,096 4n  to 2n  n  103 104 103 
increasi

ng 
density 

GRIDGEN-8 2 , 8,...,15in = i  , m= 8n  n  103 104 103 sparse 

GRIDGEN-SR 2 , 8,...,13in = i   n n  n  103 104 103 dense 

GRIDGEN-
DEG 

4,096 4n  to 2n  n  103 104 103 
increasi

ng 
density 

GOTO-8 2 , 8,...,15in = i   8n  1 
Increase with n: 

~60,000-
210,000 

104 103 sparse 

GOTO-SR† 2 , 8,...,12in = i   n n  1 
Increase with n: 

~10,000- 
1,750,000 

104 103 dense 

GRIDGRAPH-
WIDE 

2n WL  ; 
L = 16; 

16 2 , 0,1,...,1iW i  
 

~2n 1 
Increase with 
W: ~3,000 to 
~4,230,000 

104 103 
wide; 
very 

sparse 

GRIDGRAPH-
LONG 

2n WL  ; 
W = 16 

16 2 , 0,1,...,13iL i  
 

~2n 1 

Decrease with 
L: ~3,000 

(smallest) to 
~16 (largest) 

104 103 
long; 
very 

sparse 

GRIDGRAPH-
SQUARE 

2n WL  ; 

L = W WL  for 
W, L as other 

GRIDGRAPH 
instances 

~2n 1 
Increases with L 
= W; ~3,000 to 

~70,000 
104 103 

square; 
very 

sparse 

ROAD 01-04 
9,559 / 49,109 / 

116,920 / 261,155 
29,766 / 120,576 / 
265,402 / 620,924 

6 - 50 
~10,000 - 
~45,000  

105‡ 103 
Real; 
very 

sparse 

 

To include more problem instances based on real-world network data to the computational 

experiments, we adapt some of the social network datasets from the Stanford Large Network 

                                                 
† Note that the overall supply for all GOTO-SR instances was scaled by a factor of 1/10. 
‡ Both physical distance and transit time are available for ROAD networks from [20], these two arc 

costs are used in our biobjective instances, and there is only one network instance for each of the four road 
networks. For each road network five sets of instances are considered each with different supply and demand. 
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Dataset Collection [23]. The social network datasets for facebook and wikipedia votes are 

used in the following. As these instances only describe the network structure, the arc 

capacities, arc costs and node supply / demand must be created. Capacities are uniformly 

distributed between 0 and 100. Supply and demand is randomly assigned to nodes, and we 

vary the total supply in the network to be 100, 500, 1,000, 2,500, 5,000 and 10,000. The first 

arc cost component is always uniformly distributed between 0 and 100. We create three types 

of cost instances: random (both costs uniformly distributed), correlated and anti-correlated. 

For the correlated instances the second cost is normally distributed with mean c1 and standard 

deviation 10, whereas the mean is 100 - c1 in the anti-correlated instances. We create 5 

problem instances per set of problem parameters with the same network but capacities, costs 

and flow balances are randomly generated for each instance. To ensure feasibility of instances 

we also add a cycle connecting all the nodes in the network with capacity 10,000 and costs 

10,000 to penalize their use. The WIKI-VOTE network is directed, but the FACEBOOK 

network is undirected. We hence convert FACEBOOK to a directed network by creating two 

directed arcs for each undirected one. Table 4 lists instance characteristics, where #supp is the 

average number of supply nodes. 

 

Table 4. Summary of problem instance characteristics from [23]. 

 n m #supp Supp 
Max 
cost 

Max 
cap 

type 

FACEBOOK 4,039  180,507 
~2, 10, 
20, 50, 

100, 200 

100, 500, 1,000; 
2,500; 5,000; 

10,000 
100 100 Real; 

dense 

WIKI-VOTE 8,298 111,987 
~2, 10, 
20, 50, 

100, 200 

100, 500, 1,000; 
2,500; 5,000; 

10,000 
100 100 

Real; 
dense 

 

5.2 Implementation issues and computational setup 

RLBMCF builds on the idea of the parametric network simplex method for biobjective 

network flow problems, but reduces the number of arcs that need to be scanned to identify the 

entering variable (arc) in each iteration of the parametric network simplex method. To 

establish performance of RLBMCF we compare it to an implementation of the parametric 

network simplex method, denoted Para in the following, implemented as described for the 

Phase 1 algorithm in [3], which builds on an implementation of the single-objective network 

simplex method called MCF [21]. Since a complete set of extreme supported solutions of 

BMCF can also be found as solutions of a sequence of single-objective weighted sum 

problems, we also explore this so-called dichotomic approach as described, for instance, in 

[22]. This approach is denoted as Dicho in the following. The single-objective problems in 
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Dicho are again solved by the MCF implementation [21] with the advantage that speed-up 

techniques such as partial pricing can be used. Both Para and RLBMCF do not need to store 

flow solutions as the algorithm runs, instead solutions can be output or stored as soon as they 

are obtained. Dicho on the other hand is required to manage solutions for later exploration in 

subsequent single-objective solves which may pose additional effort. 

We test two implementations of RLBMCF. RLBMCFf is the direct implementation of 

the proposed algorithm using a binary heap with real-valued keys, requiring floating point 

arithmetic for comparison of ratios (4). Since the costs in all our instances are integer valued, 

we have implemented a version of the proposed algorithm that only applies integer arithmetic. 

We denote this version as RLBMCFi. Moreover, RLBMCFi uses a vector VC of size n where 

the values 1 2ˆ ˆ ˆ( , )i i ic c c  associated with the minimum ratio (4) for each node i are stored. In 

RLBMCFi, the comparisons of ratios are done in the following way: When we want to check 

if a/b < c/d, the comparison ad < bc is performed instead. In order to select the entering arc in 

each iteration, a linear search of vector VC is made. This way, all operations performed by 

RLBMCFi are fixed point operations.  

A computer running Ubuntu 14.04 with Intel(R) Core(TM) i7-4610 CPU @ 3.00 GHz, 

and 16GB RAM was used for computational experiments. The algorithms are implemented in 

C, and compiled with the gcc compiler (version 4.8.4) and –O4 compile option.   

 

5.3 Experimental Results 

In the following we discuss results of NETGEN, GRIDGEN and GOTO instances, and 

briefly comment on GRIDGRAPH and ROAD type instances. We report average runtimes 

and numbers of solutions found by the algorithms for each type of instance and problem size, 

that is for each set of five instances with same value of i in Table 3. We list the number of 

nodes (n) and arcs (m), the average cardinality of the set of extreme supported efficient 

solutions obtained (#solutions), and runtimes for all four tested algorithms. In the interest of 

brevity, we will refer to the number of solutions (#solutions) found by the algorithm 

throughout Section 5.3 rather than (more precisely) referring to the average cardinality of the 

set of extreme supported efficient solutions obtained by the algorithms. We also track the 

number of times the ratio for an arc is updated or computed (#arc ops) for RLBMCFf and the 

parametric network simplex method, and list the ratio of the two with the results. This 

indicates how many arc operations can be saved by the proposed RLBMCFf algorithm. Note 

that the number of arc operations for RLBMCFi and RLBMCFf is identical. Some instances 
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took an excessive time to solve, in which case only a single instance was solved to obtain a 

sense of runtime without running the experiment for every instance. Those cases are marked 

with an asterisk in Tables 5-8. 

The results of the five different types of NETGEN instances are summarized in Table 5. In 

general, RLBMCFi performs better than RLBMCFf, as our instances have only integer costs 

and capacities, as noted above. Also, Para performs better than Dicho (unless there are few 

extreme supported efficient solutions). Low density instances NETGEN_8 are solved almost 

equally well by RLBMCFi and Para for small instances, but RLBMCFi works better for larger 

ones. Both Dicho and RLBMCFf take longer by a factor of at least 2. The low supply version, 

NETGEN_LO_8 on the other hand is best solved by a dichotomic version of the network 

simplex method, also due to a fairly low number of solutions (#solutions). High density 

NETGEN_SR instances are best solved with RLBMCFi which shows much better 

performance than its closest competitor, Para. Due to a large number of arcs runtimes increase 

dramatically from one instance to the next for these instances. For the low supply version of 

the dense instances, NETGEN_LO_SR, RLBMCFi again performs best but the gap to other 

algorithms is smaller. We also note that Dicho performs a lot better here than for 

NETGEN_SR, due to a small number of solutions (#solutions). Finally, the NETGEN_DEG 

instances, with increasing number of arcs for fixed number of nodes, show that RLBMCFi 

outperforms the other approaches, and that it scales better with increasing network density 

than the other algorithms. 

 

 Table 5. NETGEN results. 
        Runtime (CPU second)  #arc ops 

  n  m  #solutions  RLBMCFf  RLBMCFi  Dicho  Para  RLBMCFi/Para 

N
ET
G
EN

_8
 

256 2,048 354.6 0.0 0.0 0.0 0.0 0.54 

512 4,096 671.2 0.1 0.0 0.1 0.0 0.50 

1,024 8,192 1,145.0 0.7 0.2 0.3 0.2 0.44 

2,048 16,384 2,011.8 2.9 1.2 1.7 0.9 0.39 

4,096 32,768 3,568.4 12.3 5.3 11.1 5.1 0.35 

8,192 65,536 5,818.6 78.2 25.5 53.3 30.1 0.30 

16,384 131,072 9,750.8 433.0 148.1 343.1 156.8 0.27 

32,768 262,144 16,529.8 3,215.9 1,023.2 1,491.2 1,053.3 0.24 

N
ET

G
EN

_S
R
 

 

256 4,096 549.6 0.1 0.0 0.1 0.0 0.49 

512 11,585 1,143.0 0.5 0.2 0.5 0.2 0.50 

1,024 32,768 2,295.6 2.8 1.0 5.0 1.4 0.42 

2,048 92,682 4,333.2 20.7 6.0 51.2 14.9 0.38 
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4,096 262,144 8,037.4 210.4 38.6 443.9 123.0 0.34 

8,192 741,455 14,738.2 1,375.3 272.7 2,497.8 968.7 0.35 

16,384 2,095,152 26,418.2 9,086.7* 1,826.8 3,601.0* 7,232.5* 0.34 
N
ET

G
EN

_L
O
_8

 

256 2,048 82.2 0.0 0.0 0.0 0.0 0.35 

512 4,096 137.2 0.1 0.0 0.0 0.0 0.30 

1,024 8,192 202.0 0.3 0.1 0.1 0.1 0.23 

2,048 16,384 293.0 1.3 0.7 0.4 0.7 0.20 

4,096 32,768 456.2 6.3 3.3 2.3 4.2 0.18 

8,192 65,536 631.2 36.4 15.5 8.6 24.5 0.16 

16,384 131,072 929.6 199.9 90.8 51.3 135.7 0.13 

32,768 262,144 1,340.4 1,477.6 608.6 168.2 726.4 0.11 

N
ET

G
EN

_L
O
_S
R
 

256 4,096 118.4 0.0 0.0 0.0 0.0 0.31 

512 11,585 204.2 0.2 0.1 0.1 0.1 0.30 

1,024 32,768 350.4 1.2 0.4 0.9 1.0 0.22 

2,048 92,682 553.8 9.2 2.8 9.5 10.6 0.22 

4,096 262,144 895.2 97.1 16.7 76.6 91.2 0.18 

8,192 741,455 1,452.2 673.3 137.3 348.7 740.5 0.17 

16,384 2,095,152 2,262.6 3,554.2 829.1 1,799.6 5,618.0* NA* 

N
ET
G
EN

_D
EG

 

4,096 8,192 616.8 0.8 0.5 0.5 0.2 0.67 

4,096 16,384 1,964.2 4.5 2.3 2.2 1.2 0.37 

4,096 32,768 3,568.4 12.1 5.3 10.5 5.0 0.35 

4,096 65,536 5,213.0 31.3 10.4 42.3 18.2 0.34 

4,096 131,072 6,275.4 83.8 19.0 175.9 49.6 0.33 

4,096 262,144 8,037.4 204.4 39.0 449.3 125.5 0.34 

4,096 524,288 9,589.2 539.1 84.5 1,056.0 299.4 0.33 

4,096 1,048,576 10,602.2 1,152.2 165.7 2,596.0 700.4 0.34 

 

RLBMCFi reduces the number of arc operations that need to be performed, or the number 

of times the ratio for an arc is calculated, for all NETGEN instances. However, this does not 

lead to a significant decrease in runtime in all instances when compared to Para. For 

NETGEN_8 instances there is only a slight runtime advantage for RLBMCFi throughout the 

different instances. Comparing the two for low supply instances NETGEN_LO_8 we observe 

a slightly higher advantage of RLBMCFi compared to Para, although neither is the best 

performing algorithm for these instances. The effect of reducing the number of arc operations 

is best seen for high density instances NETGEN_SR, NETGEN_LO_SR and NETGEN_DEG 

where the reduction in arc operations in RLBMCFi leads to much improved runtimes. 

NETGEN_DEG illustrates this point well, where all instances have the same number of nodes 

but the number of arcs doubles from one instance to the next. Here, the number of arc 

operations in RLBMCFi drops to about a third of those needed in Para, and the fraction of 
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runtime reduction increases from each instance to the next. To summarize we show the 

number of arc operations needed by Para and RLBMCF for each type of NETGEN instances 

in Table 6, where we focus on the instance groups with 4,096 nodes, and we choose the 

instance with most arcs for NETGEN_DEG. The table shows that a reduction of arc 

operations to about a third has a different impact for NETGEN_8 (only ~491 million arc 

operations) compared to NETGEN_SR (almost 11 billion arc operations) and NETGEN_DEG 

(almost 63 billion arc operations) and this is reflected in runtime reduction. 

 

Table 6. Average number of arc operations for NETGEN instances with n = 4,096. 
      Runtime  # arc ops 

NETGEN 

Type 

 

m 

 

#solutions 

 

RLBMCi 

 

Para 

 

RLBMCi 

 

Para 

 

ratio 

8 32,768 3,568.4 5.3 5.1 170,146,148.8 490,933,373.4 0.35 

SR 262,144 8,037.4 38.6 123.0 3,761,309,899.0 10,967,657,331.4 0.34 

LO_8 32,768 456.2 3.3 4.2 75,057,960.6 406,305,521.4 0.18 

LO_SR 262,144 895.2 16.7 91.2 1,471,151,770.4 8,253,646,447.0 0.18 

DEG 1,048,576 10,602.2 165.7 700.4 21,544,262,682.8 62,912,017,449.6 0.34 

 

In Figure 2 we give one example of runtimes for each of the instances solved for the 

NETGEN_DEG problem class. In the figure runtimes for the smallest instances (1-5) are not 

shown as they are < 0.1s. The figure shows that runtimes for sets of five instances with the 

same number of nodes and arcs are similar, and that they increase with problem size. This is 

generally the case for all problem instances we test and we hence only report on averages in 

the remainder of this section.  

 
Figure 2. Runtimes (in seconds on logarithmic scale) of different algorithms per NETGEN_DEG instance. 
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Next, we consider the three sets of GRIDGEN instances. The observations shown in Table 

7 are similar to those made for NETGEN instances above. For the low density instances, 

GRIDGEN_8, RLBMCFi shows best performance, especially as instances grow in size. For 

high density instances GRIDGEN_SR and GRIDGEN_DEG, RLBMCFi shows superior 

performance throughout the instances with biggest gains for larger instances.  

 

Table 7. GRIDGEN results. 
        Runtime (CPU second)  #arc ops 

  n  m  #solutions  RLBMCFf  RLBMCFi  Dicho  Para  RLBMCFi/Para 

G
R
ID
G
EN

_8
 

257 2,056 375.4 0.0 0.0 0.0 0.0 0.55 

507 4,056 651.4 0.1 0.0 0.1 0.0 0.46 

1,025 8,200 1,234.2 0.6 0.2 0.4 0.2 0.44 

2,071 16,568 2,195.6 2.8 1.2 2.2 1.0 0.38 

4,097 32,776 3,556.6 12.8 5.4 11.9 5.4 0.34 

8,191 65,528 6,212.0 77.6 26.0 61.0 32.4 0.31 

16,385 131,080 9,566.6 407.8 144.5 347.8 179.0 0.25 

32,762 262,096 16,745.0 2,268.2 942.8 1,597.0 1,036.3 0.23 

G
R
ID
G
EN

_S
R
 

 

257 4,112 604.2 0.1 0.0 0.1 0.0 0.54 

507 11,661 1,163.4 0.5 0.2 0.5 0.2 0.48 

1,025 32,800 2,255.8 3.3 1.1 5.4 1.8 0.40 

2,071 93,195 4,207.2 26.5 6.9 58.1 19.4 0.36 

4,097 262,208 7,825.4 279.1 44.3 435.0 171.6 0.32 

8,191 745,381 14,848.2 1,989.8 324.5 2,740.8 1,399.7 0.29 

G
R
ID
G
EN

_D
EG

 

4,097 16,388 707.0 1.0 0.7 0.7 0.4 0.20 

4,097 32,776 3,556.6 12.5 5.4 11.5 5.7 0.34 

4,097 65,552 5,035.0 33.5 10.9 45.4 23.2 0.32 

4,097 131,104 6,499.6 103.6 21.8 191.4 68.5 0.32 

4,097 262,208 7,825.4 289.8 45.1 451.2 182.8  0.32 

4,097 524,416 9,516.4 725.1 97.7 1,180.1 417.1 0.33  

4,097 1,046,632 10,968.8 1,691.2 208.4 2,675.6 975.1 0.34  

 

Results for GOTO instances are shown in Table 8. For the lower density instances, 

GOTO_8 with node degree 8, Para performs best, and we note that RLBMCF is only able to 

reduce the number of arc operations to 65-94%, the smallest reduction seen in computational 

experiments so far. This is likely due to a combination of network structure and the total 

supply of the instances, which is significantly higher than the supply in NETGEN and 

GRIDGEN instances. Consistent with results for NETGEN and GRIDGEN instances, 
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RLBMCFi performs best for the higher density instances GOTO_SR where it is able to solve 

the largest problems considered within an hour, which the other approaches are unable to do. 

GOTO instances also have solutions (#solutions) which means that Dicho struggles with these 

instances as they grow larger. 

 

Table 8. GOTO results. 
        Runtime (CPU second)  #arc ops 

  n  m  #solutions  RLBMCFf  RLBMCFi  Dicho  Para  RLBMCFi/Para 

G
O
TO

_8
 

256 2,048 328.4 0.0 0.0 0.0 0.0 0.65 

512 4,096 818.2 0.1 0.0 0.1 0.0 0.67 

1,024 8,192 1,511.0 0.2 0.1 0.3 0.1 0.69 

2,048 16,384 2,909.8 1.0 0.4 1.9 0.2 0.70 

4,096 32,768 10,211.0 10.0 4.2 21.6 2.7 0.74 

8,192 65,536 10,757.6 30.0 8.1 52.2 6.1 0.74 

16,384 131,072 19,070.4 143.3 52.1 282.4 28.5 0.78 

32,768 262,144 59,417.4 2,447.9 906.1 3,254.4 302.5 0.94 

G
O
TO

_S
R
 

 

256 4,096 2,460.0 0.1 0.1 0.2 0.1 0.62 

512 11,585 7,719.4 1.2 0.5 3.3 0.6 0.65 

1,024 32,768 23,668.6 10.3 4.6 46.6 7.5 0.70 

2,048 92,682 66,687.4 112.9 36.2 558.6 73.4 0.75 

4,096 262,144 223,657.8 1,423.3 456.7 7,173.0* 784.5 0.59 

8,192 741,455 518,105.8 > 3,600* 3,529.2 > 3,600* > 3,600* NA* 

 

For GRIDGRAPH networks we briefly report on the results without listing details in a 

table. GRIDGRAPH instances have very low density with an average node degree of two (see 

Table 3). Many solutions (#solutions) are found for most GRIDGRAPH instances. Consistent 

with our previous results (Tables 5-8), low density instances with many solutions (#solutions) 

are best solved using Para, as the Dicho simplex method does not work well when #solutions 

is large, and versions of RLBMCF perform best for high density networks making the latter 

two approaches less suitable for GRIDGRAPH instances. It can be observed that LONG 

instances are generally easiest with fewest solutions (#solutions), and SQUARE and WIDE 

instances are increasingly difficult to solve with more solutions (#solutions). For 

GRIDGRAPH instances, the reduction of arc operations achieved by RLBMCF is at best a 

reduction to 80-90% for the more difficult square and wide instances. 
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For ROAD instances we again have low density with an average node degree between 2 

and 3, hence RLBMCF does not perform well here. As ROAD instances have relatively few 

solutions (#solutions), Dicho is the fastest solution algorithm, followed by Para, see Table 9.  

 
Table 9. ROAD results. 

        Runtime (CPU second)  #arc ops 

  n  m  #solution

s 

RLBMCFf  RLBMCFi  Dicho  Para  RLBMCFi/Para 

R
O
A
D
 

 

9,559 29,766 64.4 2.0 1.6 0.3 0.4 0.29 

49,109 120,576 133.4 64.5 55.1 6.4 10.0 0.30 

116,920 265,402 300.8 483.5 430.7 34.8 54.2 0.43 

261,155 620,924 325.2 2,246.1 2,214.3 92.4 190.1 0.29 

 

The social media networks all have the same number of nodes and arcs listed in Table 4. 

Since supply was varied here, we list Supp and #solutions for each instance group in Tables 

10 and 11. Firstly, it can be observed that networks with anti-correlated costs lead to the 

highest average numbers of #solutions, followed by networks with independent randomly 

generated costs. Networks with correlated arc costs have the lowest number of #solutions. 

RLBMCFi performs best for random and anti-correlated instances, particularly with lower 

supplies, for both FACEBOOK and WIKI-VOTE networks. In these networks RLBMCFi 

reduces the number of arc operations significantly, particularly for low supplies. While for 

networks with random costs RLBMCFi and Para perform similarly (with Para only slightly 

worse) for large total supply, RLBMCFi is consistently the superior approach when costs are 

anti-correlated. It is interesting to note that Dicho is not the best approach to use even when 

there are relatively few solutions (#solutions), due to network density which makes solving 

single objective network flow problems computationally expensive. FACEBOOK-CORR 

instances with supply of at least 2,500 have a ratio of arc operations exceeding 1. This is 

because the parametric network simplex implementation as described in [3] does not always 

have to scan all non-basic arcs. It maintains a list of all non-basic arcs with minimum ratio 

found in an iteration. In the next iteration ratios for the arcs on this list are updated, and those 

arcs whose ratio remains unchanged can enter the basis. It is not necessary to scan the set of 

non-basic arcs in this case. With most of the instances above this makes very little difference. 

For the correlated instances shown below, it has a major impact: For example, in the first 

instance with supply 10,000 we have only 806 extreme supported efficient solutions, and 

these are found in 8,275 iterations, hence there are many iterations that do not lead to an 
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extreme supported nondominated point, and arcs that enter the basis with the same ratio. In 

6,579 of these iterations the arc to enter the basis is selected from the candidate arc list from 

the previous iterations rather than by scanning all non-basic arcs. This reduces the number of 

scanned arcs significantly compared to the worst-case for parametric simplex. This explains 

#arc ops ratios exceeding 1 for correlated FACEBOOK instances.  

 

Table 10. FACEBOOK results. 
      Runtime (CPU second)  #arc ops 

  Supp  #solutions  RLBMCFf  RLBMCFi  Dicho  Para  RLBMCFi/Para 

FA
C
EB

O
O
K
‐R
A
N
D
O
M
 

 

100 143.8 4.6 2.1 9.9 7.0 0.10 

500 465.6 12.5 3.7 27.0 7.6 0.27 

1,000 763.6 15.4 4.2 40.5 8.2 0.32 

2,500 1575.4 26.9 6.6 71.4 9.9 0.47 

5,000 2454.8 37.4 8.9 101.9 11.5 0.57 

10,000 4011.8 52.4 12.1 145.8 13.1 0.72 

FA
C
EB

O
O
K
‐C
O
R
R
 

100 71.2 1.7 0.7 4.4 0.9 0.31 

500 166.8 3.3 1.0 8.9 1.0 0.56 

1,000 262.8 5.6 1.3 12.9 1.1 0.86 

2,500 424.6 8.6 1.9 19.0 1.4 1.13 

5,000 556.8 11.2 2.3 23.6 1.5 1.33 

10,000 777.8 16.9 3.2 30.8 1.9 1.62 

FA
C
EB

O
O
K
‐A
N
TI
 

100 136.2 4.5 2.4 9.6 12.1 0.05 

500 524.8 17.3 5.2 31.7 14.1 0.21 

1,000 848.2 23.4 6.5 46.1 15.0 0.26 

2,500 1788.6 32.7 8.7 86.3 16.8 0.34 

5,000 3074.4 49.4 12.5 134.0 19.6 0.45 

10,000 4926.6 65.2 16.3 189.3 22.0 0.54 

 
 
 
 
Table 11. WIKI-VOTE results. 

      Runtime (CPU second)  #arc ops 

  Supp  #solutions  RLBMCFf  RLBMCFi  Dicho  Para  RLBMCFi/Para 

W
IK
I‐
V
O
TE
‐R
A
N
D
O
M
 

 

100 92.4 3.1 2.2 3.6 4.9 0.05 

500 369.4 6.4 3.1 12.0 6.1 0.13 

1,000 598.0 9.3 3.7 18.3 6.8 0.19 

2,500 1,216.2 14.9 4.7 32.2 8.0 0.28 

5,000 2,032.6 20.0 6.0 47.3 9.0 0.38 

10,000 3,226.2 28.8 7.9 69.3 11.1 0.47 
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W
IK
I‐
V
O
TE

‐C
O
R
R
 

100 43.0 1.2 0.7 1.5 0.6 0.17 

500 137.6 2.0 0.9 4.2 0.9 0.30 

1,000 220.8 2.7 1.1 6.4 1.1 0.37 

2,500 388.2 4.9 1.3 9.7 1.3 0.57 

5,000 550.8 6.4 1.7 13.6 1.6 0.66 

10,000 765.2 8.1 2.1 16.9 1.9 0.79 

W
IK
I‐
V
O
TE
‐A
N
TI
 

100 83.4 4.1 3.2 3.5 8.6 0.03 

500 451.0 10.4 4.8 15.8 11.0 0.11 

1,000 745.6 15.1 5.7 24.0 12.2 0.15 

2,500 1,763.2 24.4 7.7 46.9 14.2 0.25 

5,000 2,696.4 31.6 9.1 65.9 15.6 0.31 

10,000 4,390.6 44.4 11.9 98.1 18.3 0.41 

 

In summary, we observe that RLBMCF does reduce the number of arc operations for all 

problem instances tested. This is reflected in faster computation times when problem 

instances have a high density. For some instance types this reduction leads to a significant 

decrease of runtime by a factor of up to 4.2 / 3.6 / 5.5 / 4.7 / 3.9 / 2.0 / 5.0 / 3.6 for 

NETGEN_DEG / NETGEN_SR / NETGEN_LO_SR / GRIDGEN_DEG / GRIDGEN_SR / 

GOTO_SR / FACEBOOK / WIKI-VOTE instances. When RLBMCF is not the best solution 

algorithm, e.g. when problems have low density, then the parametric network simplex method 

generally is the best approach to choose. When dense instances have very high supply, as 

demonstrated for FACEBOOK and WIKI-VOTE instances, the parametric network simplex 

can be preferable, especially when costs are correlated. We also note that the parametric 

simplex method is preferable to a dichotomic network simplex method when there are many 

solutions (#solutions) to be found. While a dichotomic simplex method can take advantage of 

speed-up techniques such as partial pricing, it has to manage problems to be solved leading to 

higher memory consumption and additional runtime which an implementation of the 

parametric simplex method and RLBMCF can both avoid. Finally, our computational 

experiments confirm that RLBMCF is able to reduce the number of arc operations needed in 

all test instances, where reductions in the number of arc operations needed by RLBMCF are 

often significant when compared to the parametric network simplex method. We observe that 

these reductions in arc operations lead to an advantage in terms of overall runtime especially 

when the network density is high. Compared to an efficient implementation of the parametric 

network simplex method, RLBMCF does need to track additional sets and data, and the 

associated effort is best offset in higher density networks. For instance, for the last set of 
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NETGEN_DEG instances RLBMCFi only needs to perform a third of the arc operations 

leading to an average runtime reduction by a factor of 4.2.  

 

6. Conclusions. 

We propose a novel ratio-labeling algorithm to find a complete set of extreme supported 

efficient solutions of BMCF problems. The algorithm is based on the ideas of a parametric 

network simplex method for biobjective linear programs. The proposed method enhances this 

classical parametric method by associating, with each node, so-called ratio labels (the slope or 

trade-off of the two objective functions between two consecutive extreme supported non-

dominated points). Instead of examining the complete set of arcs to find the entering arc with 

minimum ratio, the proposed method maintains a heap from which the node that allows to 

determine this arc is extracted. To do this we investigate how the ratios of the arcs change 

when a pivot with this entering arc is performed in order to adequately update the ratio labels 

of the nodes, and details of the derivation of necessary label updates are contained in this 

paper (and Appendix A). The result is an efficient algorithm improving the parametric method 

to find a complete set of extreme supported efficient solutions to the BMCF problem. 

Moreover, the space needed by our algorithm is minimal since it does not need to store the 

flows associated with each extreme supported solution. We present extensive computational 

experiments for five different types of test networks to demonstrate the superior performance 

of the proposed ratio-labeling approach, when network density is high.  

In the future algorithms for BMCF could be further improved by exploiting potential for 

parallelization. While this is relatively straightforward for scalarization based approaches such 

as the dichotomic approach tested here, good strategies for parallelization in other methods 

are worth investigating and may lead to significant improvements in runtime. 
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Appendix A 
We analyse values of the new ratios of the arc ( , ) ( )i j A T  when 

   ( ) ( ) ( , ) ( , )  A T A T p q x y with ( , ) ( , )x y p q , that is, ( , )x y  is the entering arc and 

( , )p q  is the leaving arc in the pivot operation. Remember that  

(A1) 
1 1

2 2

ˆ ˆ

ˆ ˆ
     xy ijk k

xy ij
xy ij

c c

c c
  

is always satisfied for the following expressions. The following cases have to be considered. 

 

Case 1) 1( )x V T  and ( , )x y L . In this case, node potentials in 2( )V T  are updated 

following process A. Now, we distinguish the next subcases: 

1.1) ( , )i j L , 2( )i V T  and 1( )j V T . Then the reduced cost of this arc becomes 

ˆ ˆ  v v v v
ij xy ij xyc c c c  with  1, 2v . We obtain that the new ratio is 

1 1
1

2 2

ˆ ˆ

ˆ ˆ
  

 


ij xyk
ij

ij xy

c c

c c
 

whenever 2 2ˆ ˆ 0 ij xyc c  and 1 1ˆ ˆ 0 ij xyc c ; otherwise it becomes +. From (A1), we obtain 

that: 

(A2) 
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2 2

2 211 1 1 1 1
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(A3) 
 

1
2 2

2 211 1 1 1 1
1

2 2 2 2 2 2 2 2 2

ˆ
ˆ ˆ

ˆ ˆˆˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
 

 
             

  

xy
ij ij

ij xyijij xy ij ij ijk k
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(A4) If  k k
xy ij , then 1    k k k

ij xy ij  following the same arguments as in (A3). 

 

1.2) ( , )i j L , 1( )i V T  and 2( )j V T . Then the reduced cost of this arc becomes 

ˆ ˆ  v v v v
ij xy ij xyc c c c  with  1, 2v . We obtain that the new ratio is 

1 1
1

2 2

ˆ ˆ

ˆ ˆ
  

 


ij xyk
ij

ij xy

c c

c c
 

whenever 2 2ˆ ˆ 0 ij xyc c  and 1 1ˆ ˆ 0 ij xyc c ; otherwise it becomes +. From (A1), we obtain 

that:  
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(A5) 
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(A6) 
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(A7) If  k k
xy ij , then 1   k

ij , because 2 2ˆ ˆij xyc c  and 2 2ˆ ˆ 0 ij xyc c  

(A8) If   k
ij , then 1   k

ij , because if 2ˆ 0ijc  then 2 2ˆ ˆ 0 ij xyc c  or if 1ˆ 0ijc  

then 1 1ˆ ˆ 0 ij xyc c . 

1.3) ( , )i j U , 2( )i V T  and 1( )j V T . Then the reduced cost of this arc becomes 

ˆ ˆ   v v v v
ij xy ij xyc c c c  with  1, 2v . We obtain that the new ratio is 

1 1
1

2 2

ˆ ˆ( )

ˆ ˆ( )
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ij

ij xy

c c
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whenever 2 2ˆ ˆ 0 ij xyc c  and 1 1ˆ ˆ 0 ij xyc c ; otherwise it becomes +. From (A1), we obtain 

the same result as in (A5), (A6), (A7) and (A8). 

1.4) ( , )i j U , 1( )i V T  and 2( )j V T . Then the reduced cost of this arc becomes 

ˆ ˆ   v v v v
ij xy ij xyc c c c  with  1, 2v . We obtain that the new ratio is 

1 1
1

2 2
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ˆ ˆ( )
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ij

ij xy

c c

c c
 

whenever 2 2ˆ ˆ 0 ij xyc c  and 1 1ˆ ˆ 0 ij xyc c ; otherwise it becomes +. From (A1), we obtain 

the same results as in (A2), (A3) and (A4). 

 

Case 2) 1( )x V T  and ( , )x y U . In this case, the node potentials in 1( )V T  are updated 

following process B. Now, we distinguish the following subcases: 

2.1) ( , )i j L , 2( )i V T  and 1( )j V T . Then the reduced cost of this arc becomes 

ˆ ˆ  v v v v
ij xy ij xyc c c c  with  1, 2v . We obtain that the new ratio is 

1 1
1

2 2

ˆ ˆ

ˆ ˆ
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ij

ij xy

c c

c c
 

whenever 2 2ˆ ˆ 0 ij xyc c  and 1 1ˆ ˆ 0 ij xyc c ; otherwise it becomes +. From (A1), we obtain 

the same results as in (A5), (A6), (A7) and (A8).  

2.2) ( , )i j L , 1( )i V T  and 2( )j V T . Then the reduced cost of this arc becomes 

ˆ ˆ  v v v v
ij xy ij xyc c c c  with  1, 2v . We obtain that the new ratio is 

1 1
1

2 2

ˆ ˆ

ˆ ˆ
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ij

ij xy

c c

c c
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whenever 2 2ˆ ˆ 0 ij xyc c  and 1 1ˆ ˆ 0 ij xyc c ; otherwise it becomes +. From (A1), we obtain 

the same results as in (A2), (A3) and (A4). 

2.3) ( , )i j U , 2( )i V T  and 1( )j V T . Then the reduced cost of this arc becomes 

ˆ ˆ   v v v v
ij xy ij xyc c c c  with  1, 2v . We obtain that the new ratio is 

1 1
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2 2
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whenever 2 2ˆ ˆ 0 ij xyc c  and 1 1ˆ ˆ 0 ij xyc c ; otherwise it becomes +. From (A1), we obtain 

the same results as in (A2), (A3) and (A4). 

2.4) ( , )i j U , 1( )i V T  and 2( )j V T . Then the reduced cost of this arc becomes 

ˆ ˆ   v v v v
ij xy ij xyc c c c  with  1, 2v . We obtain that the new ratio is 

1 1
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2 2
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c c
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whenever 2 2ˆ ˆ 0 ij xyc c  and 1 1ˆ ˆ 0 ij xyc c ; otherwise it becomes +. From (A1), we obtain 

the same results as in (A5), (A6), (A7) and (A8). 

 

Case 3) 2( )x V T  and ( , )x y L . Node potentials in 1( )V T  are updated following process B. 

Now, we distinguish the following subcases: 

3.1) ( , )i j L , 2( )i V T  and 1( )j V T . Then the reduced cost of this arc becomes 

ˆ ˆ  v v v v
ij xy ij xyc c c c  with  1, 2v . We obtain that the new ratio is 
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whenever 2 2ˆ ˆ 0 ij xyc c  and 1 1ˆ ˆ 0 ij xyc c ; otherwise it becomes +. From (A1), we obtain 

the same results as in (A5), (A6), (A7) and (A8).  

3.2) ( , )i j L , 1( )i V T  and 2( )j V T . Then the reduced cost of this arc becomes 

ˆ ˆ  v v v v
ij xy ij xyc c c c  with  1, 2v . We obtain that the new ratio is 

1 1
1
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ˆ ˆ
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whenever 2 2ˆ ˆ 0 ij xyc c  and 1 1ˆ ˆ 0 ij xyc c ; otherwise it becomes +. From (A1), we obtain 

the same results as in (A2), (A3) and (A4). 

3.3) ( , )i j U , 2( )i V T  and 1( )j V T . Then the reduced cost of this arc becomes 

ˆ ˆ   v v v v
ij xy ij xyc c c c  with  1, 2v . We obtain that the new ratio is 

1 1
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2 2
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ˆ ˆ( )
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whenever 2 2ˆ ˆ 0 ij xyc c  and 1 1ˆ ˆ 0 ij xyc c ; otherwise it becomes +. From (A1), we obtain 

the same results as in (A2), (A3) and (A4). 
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3.4) ( , )i j U , 1( )i V T  and 2( )j V T . Then the reduced cost of this arc becomes 

ˆ ˆ   v v v v
ij xy ij xyc c c c  with  1, 2v . We obtain that the new ratio is 
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whenever 2 2ˆ ˆ 0 ij xyc c  and 1 1ˆ ˆ 0 ij xyc c ; otherwise it becomes +. From (A1), we obtain 

the same results as in (A5), (A6), (A7) and (A8). 

 

Case 4) 2( )x V T  and ( , )x y U . We suppose that the node potentials in 2( )V T  are updated 

following process A. Now, we distinguish the following subcases: 

4.1) ( , )i j L , 2( )i V T  and 1( )j V T . Then the reduced cost of this arc becomes 

ˆ ˆ  v v v v
ij xy ij xyc c c c  with  1, 2v . We obtain that the new ratio is 
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whenever 2 2ˆ ˆ 0 ij xyc c  and 1 1ˆ ˆ 0 ij xyc c ; otherwise it becomes +. From (A1), we obtain 

the same results as in (A2), (A3) and (A4). 

4.2) ( , )i j L , 1( )i V T  and 2( )j V T . Then the reduced cost of this arc becomes 

ˆ ˆ  v v v v
ij xy ij xyc c c c  with  1, 2v . We obtain that the new ratio is 
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whenever 2 2ˆ ˆ 0 ij xyc c  and 1 1ˆ ˆ 0 ij xyc c ; otherwise it becomes +. From (A1), we obtain 

the same results as in (A5), (A6), (A7) and (A8).  

4.3) ( , )i j U , 2( )i V T  and 1( )j V T . Then the reduced cost of this arc becomes 

ˆ ˆ   v v v v
ij xy ij xyc c c c  with  1, 2v . We obtain that the new ratio is 
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whenever 2 2ˆ ˆ 0 ij xyc c  and 1 1ˆ ˆ 0 ij xyc c ; otherwise it becomes +. From (A1), we obtain 

the same results as in (A5), (A6), (A7) and (A8). 

4.4) ( , )i j U , 1( )i V T  and 2( )j V T . Then the reduced cost of this arc becomes 

ˆ ˆ   v v v v
ij xy ij xyc c c c  with  1, 2v . We obtain that the new ratio is 

1 1
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whenever 2 2ˆ ˆ 0 ij xyc c  and 1 1ˆ ˆ 0 ij xyc c ; otherwise it becomes +. From (A1), we obtain 

the same results as in (A2), (A3) and (A4). 

 


