

Libraries and Learning Services

University of Auckland Research
Repository, ResearchSpace

Version

This is the Accepted Manuscript version of the following article. This version is
defined in the NISO recommended practice RP-8-2008
http://www.niso.org/publications/rp/

Suggested Reference

Raith, A., & Sedeño-Noda, A. (2017). Finding extreme supported solutions of
biobjective network flow problems: An enhanced parametric programming
approach. Computers and Operations Research, 82, 153-166.
doi:10.1016/j.cor.2017.01.004

Copyright

Items in ResearchSpace are protected by copyright, with all rights reserved,
unless otherwise indicated. Previously published items are made available in
accordance with the copyright policy of the publisher.

This is an open-access article distributed under the terms of the Creative
Commons Attribution-NonCommercial-NoDerivatives License.

For more information, see General copyright, Publisher copyright,
SHERPA/RoMEO.

http://www.niso.org/publications/rp/
http://dx.doi.org/10.1016/j.cor.2017.01.004
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.library.auckland.ac.nz/services/research-support/depositing-theses/copyright
https://www.elsevier.com/about/company-information/policies/sharing
http://www.sherpa.ac.uk/romeo/issn/0305-0548/

1

Finding extreme supported solutions of biobjective network flow
problems: an enhanced parametric programming approach.

ANDREA RAITH (a.raith@auckland.ac.nz)
Corresponding Author. Department of Engineering Science, The University of Auckland, Private Bag 92019,
Auckland, New Zealand. Phone +64 (9) 923 1977.

ANTONIO SEDEÑO-NODA (asedeno@ull.edu.es)
Departamento de Matemáticas, Estadística e Investigación Operativa. Universidad de La Laguna,
C.P. 38271, San Cristóbal de La Laguna, Santa cruz de Tenerife, España.

Abstract: We address the problem of determining a complete set of extreme supported

efficient solutions of biobjective minimum cost flow (BMCF) problems. A novel method

improving the classical parametric method for this biobjective problem is proposed. The

algorithm runs in O(Nn(m+nlogn)) time determining all extreme supported non-dominated

points in the outcome space and one extreme supported efficient solution associated with each

one of them. Here n is the number of nodes, m is the number of arcs and N is the number of

extreme supported non-dominated points in outcome space for the BMCF problem. The

memory space required by the algorithm is O(n+m) when the extreme supported efficient

solutions are not required to be stored in RAM. Otherwise, the algorithm requires O(N+m)

space. Extensive computational experiments comparing the performance of the proposed

method and a standard parametric network simplex method are presented.

Keywords Biobjective minimum cost flow problem; Extreme supported efficient solutions;

Network flow algorithm; Parametric simplex method.

1. Introduction

In this paper we study biobjective minimum cost network flow problems. Minimum cost

network flow (MCF) problems are widely applied network optimization models where a

single commodity is moved through a capacitated network at minimum overall cost. Many

algorithms to solve MCF have been proposed and tested, see [1,2]. In applications often more

than one objective function needs to be considered leading to biobjective minimum cost

network flow (BMCF) problems, or even to multiobjective MCF if more than two objectives

are to be included. Two BMCF problems should be distinguished here. The first one has

continuous variables and its set of efficient solutions consists of supported efficient solutions

only, which can all be obtained by solving an MCF with a weighted sum objective function.

2

Secondly, flow in BMCF could be restricted to be integer-valued (problem BIMCF) in which

case both supported and non-supported efficient solutions exist.

Here, we propose a variation of the parametric network simplex method for BMCF that

obtains a complete set of extreme supported efficient solutions of continuous BMCF

problems, and of BIMCF (as long as all capacities in the problem are also integer-valued).

Extreme supported efficient solutions are faster and easier to identify than a complete set of

efficient solutions of BIMCF and would allow decision makers to obtain an impression of

available solutions quickly, which is particularly important for larger, and thus

computationally challenging, problem instances. Extreme supported efficient solutions also

need to be identified in the first phase of a two-phase approach, as described in [3] for

BIMCF, where they help reduce the search space when other efficient solutions are sought in

the second phase.

A comprehensive review of algorithms for BMCF is published in [4], where the authors

comment on a lack of algorithms for multiobjective MCF at the time. The most promising

methods for BMCF are applying a parametric network simplex method [3,5] or solving a

sequence of scalarizations [6,7,8]. In [6] problems are solved by a network simplex method,

and in [7] by an interior point method, however, the authors remark on performance problems

in the latter case. In [8] scalarizations are applied to biobjective problems, and the resulting

single-objective problems are solved in parallel, but only tested on shortest path problem

instances. Out-of-kilter methods have also been proposed, see [4], but have not been shown to

be computationally superior to network simplex methods. More recently, a primal-dual

simplex method was developed for BMCF but the authors conclude that it generally performs

worse than a (primal) parametric simplex method for most of their test instances [9]. In [10]

an approach to find all supported efficient solutions of multiobjective MCF (assuming

extreme supported solutions and corresponding weight vectors are given) is introduced, which

is based on zero-cost cycles in the incremental graph associated with the corresponding

weighted sum problems. Other work focuses on integer biobjective or multiobjective MCF

where non-supported efficient solutions generally are the most challenging to identify

[3,11,12,13].

Our proposed improvement of the classical parametric network simplex method extends

ideas we first proposed in [14] for a labelling algorithm to solve biobjective shortest path

problems. Where a parametric network simplex method has to scan all non-basic arcs as

candidates to enter the basis associated with a current solution, we are able to show that only a

3

subset of arcs needs to be considered as their ratio changes, which we exploit in the

formulation of a new ratio-labelling algorithm.

The paper is organized as follows: Section 2 describes the BMCF problem and introduces

some known results from the literature. In Section 3, BMCF is formulated as a parametric

programming problem and details of improvements to aspects of the parametric network

simplex method are presented when the aim is to compute all extreme supported non-

dominated points in the outcome space of the BMCF problem, and one extreme supported

efficient solution associated with each of them. Section 4 proposes a ratio-labeling algorithm

where the nodes have an associated ratio, instead of associating this ratio with arcs. This is

done in order to improve the computational effort in the operations that select the entering arc

with minimum ratio of reduced cost in each iteration. Section 4 also provides the worst-case

time and space complexities of the proposed new algorithm. In Section 5, computational

experiments comparing performance of the proposed algorithms and other known algorithms

are discussed. Finally, Section 6 concludes with final comments and possible future avenues

of investigation.

2. The biobjective minimum cost flow problem.

Given a directed network G = (V, A), let nV ,...,1 be the set of nodes and A be the set of

m arcs. For each node Vi , let the integer bi be the supply/demand of the node i and for

each arc Aji),(let iju and ijl be the upper bound and the lower bound on flow through arc

),(ji , respectively. Let v
ijc be the cost per unit of flow on arc),(ji in the v-th objective

function, 1, 2v .

If ijx denotes the amount of flow on an arc),(ji , | (,)i j V i j A and

 | (,)i j V j i A , the BMCF problem can be formalized in the following way:

1 2 1 2Minimize () ((), ()) , (1)

. :

 , (2

i i

i i

ij ij ij ij
i V i Vj j

ij ji i
j j

c x c x c x c x c x

s t

x x b i V)

 , (,) (3) ij ij ijl x u i j A

4

Let X be the polyhedron defined by constraints (2)-(3) (feasible set in decision space) and

let its image under the objective function be C = c(X) (feasible set in outcome space). The

above problem is a biobjective version of the minimum cost flow (MCF) problem. The

network simplex method solves the MCF problem by taking advantage of the fact that every

basis in the MCF problem is also a spanning tree T of G (see [1,15]). A spanning tree T of G

is a sub-graph of G with n-1 arcs that contains no cycle. We denote by ()V T the set of nodes

included in a tree T and by ()A T the set of arcs in T.

Definition 1. A feasible solution x X is called efficient if there does not exist any x X

with 1 1() () c x c x and 2 2() () c x c x with at least one inequality being strict. The image

()c x of an efficient solution x is called non-dominated point.

Definition 2. Supported efficient solutions are those efficient solutions that can be obtained as

optimal solutions of a weighted sum problem 1 2
1 2min () ()

x X
c x c x for some 1 0 and

2 0 . All other efficient solutions are called non-supported.

The supported non-dominated points lie on the lower-left boundary of the convex hull

(conv(C)) of the feasible set C in outcome space of a biobjective optimization problem such as

BMCF. The (continuous) BMCF problem, as stated in (1)-(3), only has supported efficient

solutions, and C = conv(C). If problem (1)-(3) is stated with the additional requirement that

all flow variables are integer valued, then non-supported solutions may exist which lie in the

interior of conv(C). Both cases are illustrated in Figure 1.

5

Figure 1. Illustration of conv(C) in outcome space in continuous (left) and integer case (right).

The focus of this paper is to design a fast algorithm to determine feasible solutions

associated with extreme supported non-dominated points in the BMCF problem. Those

feasible solutions are denoted extreme supported efficient solutions. That is, we determine

supported efficient solutions whose images are extreme points of the convex hull of the

supported non-dominated points. We ensure the proposed algorithm computes one extreme

supported efficient solution for each extreme supported non-dominated point. Once those

extreme supported efficient solutions are known, other (non-extreme) supported efficient

solutions of BMCF can be obtained as convex combinations of extreme supported efficient

solutions. This means we can derive a complete set of efficient solutions of BMCF from the

obtained extreme supported efficient solutions, that is one supported efficient solution per

supported non-dominated point in C.

3. Solving the BMCF problem with an enhanced parametric programming approach.

Instead of solving the weighted sum problem 1 2
1 2min () ()

x X
c x c x

 with 1 20, 0 ,

the problem 1 2min () ()
x X

c x c x

 with [0,) can be solved alternatively. For the linear

programming formulation of BMCF, this leads to a parametric linear program.

Solving a biobjective linear program by solving its associated parametric linear program

works by initially obtaining a lexicographically optimal solution to the problem, that is an

c2

c1

supported non-dominated
extreme supported non-dominated

C = conv(C)

c1
feasible, dominated
extreme supported non-dominated
supported non-dominated
non-supported non-dominated

c2

conv(C)

6

efficient solution is obtained which is optimal for 0 (see [16,17]). Such a

lexicographically optimal solution is minimal with respect to 1c , with smallest possible 2c –

value among minimizers of 1c . The parametric simplex method then solves the problem by

iteratively pivoting variables while ensuring that all optimal solutions (again, one per optimal

point in objective space) for increasing values of are obtained. These solutions correspond

to supported efficient solutions of the biobjective linear program. This process continues until

ultimately the other lexicographically optimal point, which minimizes 2c , is reached. An

important aspect of the parametric simplex method is that all non-basic variables need to be

inspected in every iteration to ensure that variables that are pivoted into the basis lead to

increasing values of , and, most importantly, that a complete set of extreme supported

solution is obtained. In the case of a network flow problem, a variant of the parametric

method for network flow problems is used, the parametric network simplex method [3,5].

In the following it is explained how a lexicographically optimal solution is first found, and a

discussion of enhancements of the pivoting steps follows.

3.1 Solving 1 2lex min (), ()
x X

c x c x .

To compute an initial extreme supported efficient solution x* we solve

 1 2lex min (), ()
x X

c x c x . In this way, we obtain the strongly feasible spanning tree structure (T,

L, U) and the node potentials 1 and 2 (dual variables) with respect to the two objective

functions (see, for example [1] and [15]). (T, L, U) refers to the following three sets: T is the

basis (tree), L is the set of arcs (,) ()i j A T such that *
ij ijx l and U is the set of arcs

(,) ()i j A T such that *
ij ijx u . Any arc),(ji in ()A T satisfies *

ij ij ijl x u . Clearly, the

flow *x must satisfy constraint (2). Based on node potentials 1 and 2, the reduced costs are

defined as v v v v
ij ij i jc c for all (,) ()i j A T and for 1, 2v . Then, a strongly feasible

spanning tree structure (T, L, U) will be optimal for the 1 2lex min (), ()
x X

c x c x problem when

the reduced costs and flows satisfy the following optimality conditions:

1 1 2

1 1 2

1 2

0 or (0 and 0) (,) (a)

0 or (0 and 0) (,) (b)

0 and 0 (,) () (c)

ij ij ij

ij ij ij

ij ij

c c c i j L

c c c i j U

c c i j A T

7

It is easy to adapt the network simplex method to obtain an optimal strongly feasible

spanning tree structure (T, L, U) and node potentials 1 and 2 satisfying (a), (b) and (c), for

the 1 2lex min (), ()
x X

c x c x problem, see for example [1].

3.2 Obtaining a complete set of extreme supported efficient solutions.

Let x* be an extreme supported efficient solution contained in the feasible set X in decision

space (c(x*) is an extreme supported non-dominated point of the feasible set C in objective

space) and (T, L, U), 1 and 2 be the corresponding optimal spanning tree structure and node

potentials obtained after solving problem 1 2lex min (), ()
x X

c x c x . The next step in the

parametric network simplex method consists of finding an extreme non-dominated point of

the objective space that is adjacent to c(x*). Note that 1 0ijc and 2 0ijc for any arc

(,) ()i j A T and that the arcs in L and U satisfy (a) and (b), respectively. The current optimal

solution of the parametric linear program 1 2min () ()
x X

c x c x

 remains optimal as long as the

reduced costs remain non-negative for the set L and non-positive for the set U. This is the case

as long as the following remains true:

1 2

1 2

0 (,)

0 (,)

ij ij

ij ij

c c i j L

c c i j U
,

where the value of must be non-negative, [0,) . Moreover, we have

1 2 0 for all (,) () ij ijc c i j A T . To shorten our exposition and be able to make similar

statements for both the arcs in L and U, we define modified reduced costs for any arc),(ji in

these sets:

 if (,)
ˆ

 if (,)

v
ijv

ij v
ij

c i j L
c

c i j U
 with 1, 2v

In order to move from the current efficient solution to another efficient one the first

objective has to worsen, or 1ˆ 0ijc , and the second one has to improve, or 2ˆ 0ijc . Note that

the flow of the arcs in L increases and the flow of the arcs in U decreases when they are

8

introduced into T, unless in the case where there is no flow change. Therefore, structure (T, L,

U) remains optimal for all in the range 0 k where
(,)
min

k k

iji j A
 with

1 2 2ˆ ˆ ˆ/ if 0

 otherwise

k ij ij ij
ij

c c c
. (4)

That is, if 2ˆ 0ijc the ratio associated with arc),(ji in iteration k (where k = 1 initially) is

1 2ˆ ˆ/ ij ijc c ; otherwise this ratio is infinite. We refer to the interval of values of for which an

efficient solution remains optimal as optimality interval. To determine the (strongly feasible)

spanning tree corresponding to the next supported non-dominated point, the next arc to be

introduced into the basis is identified as:

 2

(,)
ˆ(,) arglex min (,) :

 k k

ij ij iji j L U
x y c .

That is, we must determine an arc with minimum finite ratio (4), which then enters the

basis (tree T), and an arc from the current basis (tree T) leaves it. We call this operation pivot

operation (see [1]). It is also possible that this pivot operation leads to the same arc entering

and leaving the basis. In this case, the arc with minimum ratio moves from L to U or vice

versa. If more than one arc with minimum ratio exists, we select one with smallest (or most

negative) value of 2
îjc (this is why lexmin appears in the above expression). Then, a pivot

operation is performed with the entering arc (,)x y giving the next efficient solution with

index k + 1. We have the following result:

Theorem 1. The set of extreme supported non-dominated points of the BMCF problem can be

determined starting from an optimal tree structure minimizing 1 2lexmin((), ())c x c x and

making a sequence of pivot operations where the entering arc is (,)x y , with

 2

(,)
(,) arg lex min (,) :

 ij ij iji j A

x y c , until the ratio of any arc in A is +.

Proof. Immediate from parametric linear programming theory (see also [3,5,18]).

Now, once a pivot operation is performed with the arc (,)x y and the node potentials are

updated, we know that 1 k k from Dantzig and Thapa [18]. The process of identifying an

9

arc with minimum ratio (4) continues in the standard parametric network simplex method by

inspecting, in each iteration, the ratio of all non-basic arcs. In our enhancement shown in the

following it is analysed how ratios change to identify situations in which ratios do not have to

be re-computed. For instance, in [3] it is shown that any arc (,)u v with ratio k k
uv before

the pivot operation keeps the minimum ratio value (unless it becomes ineligible to enter the

basis), that is,
1

2

ˆ

ˆ
 k uv

uv

c

c
 , where 1

ûvc and 2
ûvc are the new reduced costs for the arc (,)u v once

the pivot operation is made. If (,)u v becomes ineligible to enter the basis, due to 1ˆ 0uvc and

2ˆ 0uvc then 1 k
uv in our definition of the ratios (4). Instead of following the standard

steps of a parametric network simplex method from here, we further investigate how the new

ratios for all arcs in L and U change, once a pivot operation with the entering arc (,)x y is

completed.

In order to compute the new ratios when a pivot operation is performed, we need to recall

how the node potentials change (see page 419, [1]) once this operation is made. Let T be the

current basis tree, (,)x y the entering arc and (,)p q the leaving arc. Assume that

(,) (,)x y p q then we update the node potentials as follows. The deletion of the arc (,)p q

from T partitions the tree into two subtrees, one, 1T , containing the root node and the other,

2T , the complementary set containing nodes 1() ()V T V T . Then the node potentials are

updated according to one of two cases. We use the update process A or B when appropriate

(this is shown later).

(A) If 1()x V T then v v v
i i xyc for all 2()i V T with 1, 2v . If 1()x V T then

 v v v
i i xyc for all 2()i V T with 1, 2v . (This update procedure of 2T is called

process A).

Alternatively, the following update of node potentials is applied.

(B) If 1()x V T then v v v
i i xyc for all 1()i V T with 1, 2v . If 1()x V T then

 v v v
i i xyc for all 1()i V T with 1, 2v . (This update procedure of 1T is called

process B).

10

In summary, process A updates potentials of nodes 2()i V T by subtracting the reduced

costs of arc (,)x y if 1()x V T , and adding them if 1()x V T , whereas process B updates

potentials of 1()i V T by adding the reduced costs of arc (,)x y if 1()x V T , and subtracting

them otherwise.

Now, we analyze the different cases of the computation of new ratios for all arcs

(,) ()i j A T when () () (,) (,) A T A T p q x y with (,) (,)x y p q . From the

calculations shown in Appendix A it can be observed under which circumstances we have

1 k k
ij xy for any arc),(ji in set L or U. Moreover, Table 1 summarizes the relationship

between the ratio of arc),(ji before and after a pivot operation with the entering arc (,)x y is

made. The different cases arise taking into account the membership of arcs),(ji and (,)x y

of the sets L and U. In addition, it is necessary to distinguish which set 1()V T or 2()V T

contains the nodes x, i and j. In Table 1 the node potential update process that is carried out in

each case is also shown.

Table 1. Relationship between the ratios of arc (,)i j before and after node potential update operation.

Set for node x 1()x V T 2()x V T

Entering arc (,)x y L (,)x y U (,)x y L (,)x y U

Update potentials process A B B A

(,)i j L
2()i V T , 1()j V T

1 k k
ij ij 1 k k

ij ij 1 k k
ij ij 1 k k

ij ij

1()i V T , 2()j V T
1 k k

ij ij 1 k k
ij ij 1 k k

ij ij 1 k k
ij ij

(,)i j U
2()i V T , 1()j V T

1 k k
ij ij 1 k k

ij ij 1 k k
ij ij 1 k k

ij ij

1()i V T , 2()j V T
1 k k

ij ij 1 k k
ij ij 1 k k

ij ij 1 k k
ij ij

The selection of the update process A or B can be extracted from Table 1. The table also

summarizes changes of ratios (4) after node update process A or B are applied. For example,

for any arc (,)i j L such that 1 k k
ij ij the node potential of node j was modified.

Additionally, for any arc (,)i j U such that 1 k k
ij ij the node potential of node i was

modified. The new ratios for the remaining arcs keep their previous value or decrease. The

observations listed in Table 1 will allow us to identify for each node i of V a subset of non-

tree arcs that must be explored whenever the node potential of node i changes, and others that

do not need to be considered (as their ratio only increases). This relation will be used in

11

Algorithm 1 introduced in Section 4 to limit the number of ratios associated with arcs that

need to be computed in each iteration.

4. A ratio-labeling algorithm for BMCF problem.

Assume an optimal solution (T, L, U) of the lexicographic optimization problem and the

associated node potentials 1 and 2 with respect to the two objective functions are given. The

previous results allow us to develop Algorithm 1, which is introduced in detail below.

Let (,) (,) iA j i L i j U be the set of incoming arcs at node i in the set L plus

the set of outgoing arcs from node i in the set U. That is, iA contains the set of non-tree arcs

that can carry flow to node i when a pivot operation is made with this arc as entering arc. This

set allows to associate the following label with any node i in V:

 2 2

(,)
ˆ ˆ, lex min ,

i
i i uv uv

u v A
c c

This label i indicates the current minimum ratio of any arc in set iA associated with node

i. Remember that 1 2ˆ ˆ/ uv uv uvc c is the ratio of the arc (u,v) and takes a finite value if and only

if 2ˆ 0uvc . The implementation of Algorithm 1 uses a heap H to store the labels of each node i

in V. That is, the algorithm stores in H the minimum ratio i attained for the arcs in iA , for

any node i. Here 2 2ˆ ˆi uvc c for the arc (,)u v in iA that has the minimum ratio, that is, with

 i uv . In case that two or more arcs in iA have the same value of i , the algorithm stores

the ratio of an arc with smallest value of the second reduced cost, that is,

 2 2

(,)
ˆ ˆmin :

i
i uv uv i

u v A
c c . The key of each element in H is the pair of values (i , 2

îc).

Additionally, the algorithm tracks for each candidate node i the following information: the

ratio i , the reduced costs 1 2ˆ ˆ ˆ(,)i i ic c c , the candidate predecessor iJ (to identify the entering

arc) and the label iLow indicating if the minimum is attained in an arc in set L (iLow = True)

or in an arc in set U (iLow = False) to be able to update labels easily. The following heap

operations are needed in our algorithm (see [19]): CreateHeap(H), Insert({label}, H), Find-

min(H), Decrease-key({label}, H), and Delete-min(H).

The Ratio-Labeling BMCF (RLBMCF) algorithm (Algorithm 1) maintains a heap with

minimum ratio associated with each node. When a new entering variable (arc) is selected in

each iteration, it is not necessary to compute the arc’s ratio for every arc as in the standard

12

parametric network simplex method. Instead a minimum label is extracted from the heap

representing the node (and associated arc) with minimum ratio. Since we identified which

arcs need updating as their ratio could increase in the previous section this can be exploited

when node labels are updated in each iteration. This leads to fewer ratio calculations (or the

same number of them). The algorithm is outlined in the following, and pseudo-code is shown

below.

The RLBMCF algorithm (Algorithm 1) starts by solving the lexmin problem (line (1)). The

image of this first extreme supported efficient solution is stored in the variables 1c and 2c .

This solution is printed on the screen (or stored), although its optimality interval (or at least its

upper limit) remains unknown. We use the variable lastratio to store the lower limit of the

optimality interval of the current solution x . Initially, lastratio is zero. Next, the heap H is

created and the labels for all nodes i in V are calculated by calling Procedure 1

ComputeLabels (Lines (2), (4) and (5)). Now, the algorithm starts a loop that ends when the

heap H is empty. In each iteration, the node i with minimum ratio is extracted from the heap.

This operation allows to identify the entering arc (,)x y (Line (8)). The leaving arc (,)p q and

the maximum amount of flow that can be sent along the cycle () (,)A T x y are identified in

Line (9), a standard operation in a network simplex method. Next, the current flow x and the

structure (T, L, U) are modified by a standard pivot operation (lines (10) and (11)). At this

point, we know the image of the next supported efficient solution but it does not have to be an

extreme supported efficient solution. If the ratio i is greater than lastratio and the value of

is greater than 0, the algorithm has identified the next extreme supported efficient solution x

and the upper limit of the optimality interval of the previous extreme solution is i . Lines

(13) and (14) print (or store) this information. If the entering arc equals the leaving arc, only a

new label for the candidate node i extracted from the heap needs to be computed (line (15)).

Otherwise, we must identify the set S that contains the nodes whose node potentials need to

be modified. Note that S is 2()V T or 1()V T when process A or process B, respectively, must

be applied. The identification of this set (in the pseudo-code) follows the characterization in

Table 1 (see Lines (17)-(19)). We also show an alternative approach to identifying S in

Procedure 2 IdentifyS. Once the set S is identified, the node potential of any node in this set

decreases by îc (line (20)).

13

Algorithm 1 Ratio-Labeling BMCF (RLBMCF)

(1) Let x , (T, L,U), 1 2(,) be the information of the optimal solution of 1 2lex min (), ()
x X

c x c x

;

(2) CreateHeap(H); lastratio = 0; 1 1()c c x ; 2 2()c c x ;

(3) Print the current flow x with objective 1 2,c c as an extreme supported efficient flow;

(4) Set ; 0; ; for all i i iJ Low True i V ;

(5) For all i V do ComputeLabels(i, 1 2ˆ ˆ, , , ,i i i i ic c J Low ,H);

(6) While (H) do

(7) 2ˆ, ,i ic i = Find-min(H); Delete-min(H);

(8) If (iLow True) then (,)x y = (,)ii J Else (,) (,)ix y J i ;

(9)
Let (p,q) be the leaving arc and the maximum amount of flow that can be sent along the

cycle () (,)AT x y ;

(10) 1 1 1
îc c c ; 2 2 2

îc c c ;

(11) ()AT = ()AT – (p, q) + (x, y); Update L, U; // Make a pivot operation

(12) If (i lastratio) and (> 0) then

(13) Print the optimal interval of the current flow is [lastratio, i]; lastratio = i ;

(14) Print the current flow x with objective 1 2,c c as an extreme supported efficient flow;

(15) If ((,) (,)x y p q) then ComputeLabels(i, 1 2ˆ ˆ, , , ,i i i i ic c J Low ,H);

(16) Else

(17) Identify 1T and 2T in (,)T p q ;

(18)
If (((1()x V T) and (iLow False)) or ((2()x V T) and(iLow True))) then S

= 1()V T ;

(19) Else S = 2()V T ;

(20) For all k S do ˆk k ic ;

(21) For all k S do ComputeLabels(k, 1 2ˆ ˆ, , , ,k k k k kc c J Low ,H);

(22) For all k S do

(23) For all ()kj V S do

(24) If ((,)k j L) and (2 0kjc) and (1 0kjc)) then

(25) If ((1 2/kj kj jc c) or ((1 2/kj kj jc c) and (2 2
¨̂kj jc c))) then

(26) If (0jJ) Then Insert({ 1 2 2/ ,kj kj kjc c c , j}, H);

(27) Else Decrease-key({ 1 2 2/ ,kj kj kjc c c , j}, H);

(28) 1 2 ˆ/ ; ; ; ;j kj kj j kj j jc c c c J k Low True

(29) For all ()kj V S do

(30) If ((,)j k U) and (2 0jkc) and (1 0jkc)) then

(31) If ((1 2/jk jk jc c) or ((1 2/jk jk jc c) and (2 2
¨̂jk jc c))) then

(32) If (0jJ) Then Insert({ 1 2 2/ ,jk jk jkc c c , j}, H);

(33) Else Decrease-key({ 1 2 2/ ,jk jk jkc c c , j}, H);

(34) 1 2 ˆ/ ; ; ; ;j jk jk j jk j jc c c c J k Low False

(35) Print the optimal interval of the current flow is [lastratio,];

14

Next, Procedure 1 ComputeLabels computes the minimum ratio and the corresponding

label for a node k whenever the value of its node potential changed (line (21)). Note that the

new ratio for each node k in S keeps its previous value or increases following the arguments in

Section 3.2. If the label changes, we need to make a delete operation in the heap to delete

node k (and the label of node k) whenever node k is in the heap. This operation is

implemented as the two operations in Line (2) of Procedure 1 ComputeLabels. The lines (22)

to (34) of the RLBMCF algorithm check if the ratios of the nodes j V S decrease when

the arcs (k, j) and (j, k) are investigated for all k in S, again taking into account the

characterization summarized in Table 1. In this case, the corresponding Insert({label, j}, H)

or Decrease-key({label, j}, H) operation must be performed. Finally, once the heap is empty,

the algorithm prints (or stores) the last optimality interval (line (35)).

Procedure 1 ComputeLabels(i, 1 2ˆ ˆ, , , ,i i i i ic c J Low ,H);

(1) If (0iJ) then // since the ratio of node i must be re-computed, it must be deleted from H;

(2) Decrease-key(1, 0,i ,H); Delete-min(H);

(3) ; 0;i iJ

(4) For all ij do

(5) If ((,)j i L) and (2 0jic) and (1 0jic)) then

(6) If ((1 2/ji ji ic c) or ((1 2/ji ji ic c) and (2 2ˆij ic c))) then

(7) 1 2 ˆ/ ; ; ; ;i ji ji i ji i jc c c c J j Low True

(8) For all
i

j do

(9) If ((,)i j U) and (2 0ijc) and (1 0ijc)) then

(10) If ((1 2/ij ij ic c) or ((1 2/ij ij ic c) and (2 2ˆji ic c))) then

(11) 1 2 ˆ/ ; ; ; ;i ij ij i ij i jc c c c J j Low False

(12) If (0iJ) then Insert(2ˆ, ,i ic i ,H);

In the implementation of the RLBMCF algorithm, the operations in line (21) and lines

(22)-(34) are performed concurrently so that the sets of successor and predecessor nodes of

any node k in S are examined only once. Also, the operation modifying potentials is

implemented together with the operation identifying the set 1()V T or 2()V T (set S in general).

In other words, lines (17)-(20) in the algorithm are implemented simultaneously. The scheme

uses Procedure 2 IdentifyS based on a Depth-First Search (DFS) approach (see [1]) with a

vector InS which takes the value 1 in position k if and only if node k belongs to S.

15

Procedure 2 IdentifyS(k, end , change);

(1) 1kInS ; k k change ;

(2) For all (,) ()k j AT do If ((0jInS) and (j end)) Then IdentifyS(j, end, change);

(3) For all (,) ()j k AT do If ((0jInS) and (j end)) Then IdentifyS(j, end, change);

The pivot process swapping the entering arc (,)x y and the leaving arc (,)p q appears in

line (11) of Algorithm 1. The algorithm keeps depth labels for the current tree T. These labels

inform us of the depth of each node from the root node in the new tree. For example, if

depth[x] < depth[y], we know the node y will be situated in the subtree of node x in the new

tree. The depth and Low labels (iLow of the candidate node i where i could be x or y) are used

to identify whether the process A or B must be applied, following the cases in Table 1. Table

2 summarizes the cases. The first two rows of Table 2 show the relationship between the cases

in Table 1 and the corresponding values of Low and depth labels. The third row in Table 2

shows how Procedure 2 IdentifyS is called in each case.

Table 2. Summary of how the procedure IdentifyS must be called to determine the set S.

1()x V T and (,)x y L

update process is A
1()x V T and (,)x y U

update process is B
2()x V T and (,)x y L

update process is B
2()x V T and (,)x y U

update process is A
Lowy = True

and depth[x] < depth[y]
in T

Lowx = False and
depth[x] < depth[y]

in T

Lowy = True and
depth[x] > depth[y]

in T

Lowx = False
and depth[x] > depth[y]

in T
IdentifyS(root, y, change)

Finds S = V(T1)
IdentifyS(y, x, change)

Finds S = V(T2)
IdentifyS(x, y, change)

Finds S = V(T2)
IdentifyS(root, x, change)

Finds S = V(T1)

Procedure 2 IdentifyS is called following the scheme of Table 2 where the appropriate

choice of arguments k and end is given in the function call of IdentifyS. The node end and the

nodes in the subtree of node end are never reached in the search process. The parameter

change refers to 1 2ˆ ˆ ˆ(,)i i ic c c . Any other variable used in this procedure is a global variable

(such as T, InS, and the node potentials).

4.1 Worst-case complexity of the RLBMCF algorithm.

We consider that any heap operation takes constant time with the exception of the Delete-

min operation which requires O(logn) time when a Fibonacci heap is used (see [19]). The

worst-case complexity of Procedure 1 ComputeLabels is (log) i iO n time since it

performs one Delete-min operation and examines the set of the predecessor and the successor

nodes of node i. Also, the complexity of Procedure 2 IdentifyS is O(n) time, because in the

16

worst-case all nodes are considered and the number of arcs in ()A T is n-1. Now, if we denote

by N the number of extreme supported non-dominated points in the outcome space of the

BMCF problem we obtain Theorem 2.

Theorem 2. The RLBMCF algorithm runs in O(MCF+ Nn(m+nlogn)) time and uses O(n+m)

space.

Proof. The solution of the 1 2lex min (), ()
x X

c x c x problem requires the same time as solving

the MCF problem using a state-of-the-art algorithm (see [1,2]). We denote this effort by

O(MCF). Note that the size of the heap H in the RLBMCF algorithm is at most n as the label

associated with a node is contained in the heap at most once at any point during the

algorithm’s execution. The number of iterations performed by the algorithm is O(Nn) since

the ratio of a node can take, in the worst-case, N different minimum values, that is, as many

values as the number of different extreme supported non-dominated points in the outcome

space. All pivot operations require O(n) time. Therefore, the greatest time employed in an

iteration is due to the execution of Lines (21)-(34). This corresponds to

((log))

 k k
k S

O n n , where the log n term corresponds to the Delete-min operations

in Procedure 1 ComputeLabels. We have mentioned that in the implementation the execution

of line (21) and Lines (22)-(34) is done simultaneously. The term O(n) is the time spent in

lines (9), (11), (17) and (20). Remember that Procedure 2 IdentifyS performs (17) and (20),

simultaneously. The time (())

 k k
k S

O corresponds to the effort to scan the arcs leaving

from and arriving at any node k in S (including the effort in Procedure 1 ComputeLabels). In

each iteration, the algorithm requires an additional O(m) time to print the flows. Thus, in the

worst-case, the complexity of the algorithm is
1

(((log)))

nN

k k
iter k S

O m n n .

Therefore, the worst-case time complexity of the algorithm is O(MCF+ Nn(m+nlogn)) since

S < n in any iteration. Finally, it is easy to observe that the space used by the algorithm is

O(n+m) since only the current extreme supported efficient flow x is stored. □

Often, in practice, the size of the set S is much smaller than n. Note that our algorithm

scans all the arcs in the network twice when S is close to n, that is, it takes 2m effort in the

operations in Lines (21)-(34). However, the classical parametric method always performs m

17

operations when it examines all arcs to find the minimum reduced cost ratio. In a particular

iteration, whenever S is small compared to n, the proposed algorithm requires O(n) time

(here we are not considering the time to print the flow). In this case, the proposed method has

an advantage compared to the parametric method. For this reason, Lines (21)-(34) are

performed when S < n/8 in the implementation of the RLBMCF algorithm. Otherwise, the

whole set of entering arcs is considered once following the procedure applied by the

parametric method.

5. Computational Results

In this section, we examine the performance of the presented RLMCF algorithm.

5.1 Problem Instances

Test instances were generated based on the single-objective minimum cost flow (MCF)

problems used in [2]. This extensive computational comparison of MCF algorithms considers

many different algorithms and implementations (a total of 15 solvers), and tests these on a

large set of problem instances of varying characteristics and size, enabling the analysis of

asymptotic behavior. A main conclusion is that cost-scaling algorithms and the primal

network simplex method perform best in general (with exceptions for special network types).

Test problems are generated using standard generators, namely NETGEN, GRIDGEN,

GOTO, GRIDGRAPH, and other networks are also tested in [2]. Test problems are available

online* and form the basis of our computational analysis. All instances involve solely integer

data.

Problem instance characteristics from [2] are summarized in Table 3. In the instances

either the number of nodes n or the number of arcs m varies. A certain number of nodes acts

as supply and demand nodes, shown as #supp in the table. For GRIDGRAPH instances the

number of rows (W) and the number of columns (L) of the grid are listed. The overall supply

in the network is Supp. The network generators select costs and capacities randomly and

uniformly between 1 and the maximum cost and capacity listed in Table 3. There are five

randomly generated instances per set of problem parameters.

The original problem instances from [2] have a single objective function. We generate

biobjective problems as follows. From the five instances for each set of parameters, denoted

a, b, c, d and e we generate biobjective instances by combining the costs of pairs of the

* http://lemon.cs.elte.hu/trac/lemon/wiki/MinCostFlowData

18

original instances: We combine an original instance, say instance a, with the costs from

another instance, say instance b, obtaining one new biobjective instance, instance ab in this

case. We obtain five new instances with combined cost coefficients for each set of problem

parameters: ab, bc, cd, de, and ea. We use a much broader set of test instances than is usually

applied to test BMCF algorithms where most researchers use NETGEN instances only.

Table 3. Summary of problem instance characteristics from [2].

 n m #supp Supp
Max
cost

Max
cap

type

NETGEN-8 2 , 8,...,15in = i 8n n 103 104 103 sparse

NETGEN-SR 2 , 8,...,12in = i n n n 103 104 103 dense

NETGEN-LO-
8 2 , 8,...,15in = i 8n n 10 104 103

low
supply

NETGEN-LO-
SR 2 , 8,...,12in = i n n n 10 104 103

low
supply

NETGEN-DEG 4,096 4n to 2n n 103 104 103
increasi

ng
density

GRIDGEN-8 2 , 8,...,15in = i , m= 8n n 103 104 103 sparse

GRIDGEN-SR 2 , 8,...,13in = i n n n 103 104 103 dense

GRIDGEN-
DEG

4,096 4n to 2n n 103 104 103
increasi

ng
density

GOTO-8 2 , 8,...,15in = i 8n 1
Increase with n:

~60,000-
210,000

104 103 sparse

GOTO-SR† 2 , 8,...,12in = i n n 1
Increase with n:

~10,000-
1,750,000

104 103 dense

GRIDGRAPH-
WIDE

2n WL ;
L = 16;

16 2 , 0,1,...,1iW i

~2n 1
Increase with
W: ~3,000 to
~4,230,000

104 103
wide;
very

sparse

GRIDGRAPH-
LONG

2n WL ;
W = 16

16 2 , 0,1,...,13iL i

~2n 1

Decrease with
L: ~3,000

(smallest) to
~16 (largest)

104 103
long;
very

sparse

GRIDGRAPH-
SQUARE

2n WL ;

L = W WL for
W, L as other

GRIDGRAPH
instances

~2n 1
Increases with L
= W; ~3,000 to

~70,000
104 103

square;
very

sparse

ROAD 01-04
9,559 / 49,109 /

116,920 / 261,155
29,766 / 120,576 /
265,402 / 620,924

6 - 50
~10,000 -
~45,000

105‡ 103
Real;
very

sparse

To include more problem instances based on real-world network data to the computational

experiments, we adapt some of the social network datasets from the Stanford Large Network

† Note that the overall supply for all GOTO-SR instances was scaled by a factor of 1/10.
‡ Both physical distance and transit time are available for ROAD networks from [20], these two arc

costs are used in our biobjective instances, and there is only one network instance for each of the four road
networks. For each road network five sets of instances are considered each with different supply and demand.

19

Dataset Collection [23]. The social network datasets for facebook and wikipedia votes are

used in the following. As these instances only describe the network structure, the arc

capacities, arc costs and node supply / demand must be created. Capacities are uniformly

distributed between 0 and 100. Supply and demand is randomly assigned to nodes, and we

vary the total supply in the network to be 100, 500, 1,000, 2,500, 5,000 and 10,000. The first

arc cost component is always uniformly distributed between 0 and 100. We create three types

of cost instances: random (both costs uniformly distributed), correlated and anti-correlated.

For the correlated instances the second cost is normally distributed with mean c1 and standard

deviation 10, whereas the mean is 100 - c1 in the anti-correlated instances. We create 5

problem instances per set of problem parameters with the same network but capacities, costs

and flow balances are randomly generated for each instance. To ensure feasibility of instances

we also add a cycle connecting all the nodes in the network with capacity 10,000 and costs

10,000 to penalize their use. The WIKI-VOTE network is directed, but the FACEBOOK

network is undirected. We hence convert FACEBOOK to a directed network by creating two

directed arcs for each undirected one. Table 4 lists instance characteristics, where #supp is the

average number of supply nodes.

Table 4. Summary of problem instance characteristics from [23].

 n m #supp Supp
Max
cost

Max
cap

type

FACEBOOK 4,039 180,507
~2, 10,
20, 50,

100, 200

100, 500, 1,000;
2,500; 5,000;

10,000
100 100 Real;

dense

WIKI-VOTE 8,298 111,987
~2, 10,
20, 50,

100, 200

100, 500, 1,000;
2,500; 5,000;

10,000
100 100

Real;
dense

5.2 Implementation issues and computational setup

RLBMCF builds on the idea of the parametric network simplex method for biobjective

network flow problems, but reduces the number of arcs that need to be scanned to identify the

entering variable (arc) in each iteration of the parametric network simplex method. To

establish performance of RLBMCF we compare it to an implementation of the parametric

network simplex method, denoted Para in the following, implemented as described for the

Phase 1 algorithm in [3], which builds on an implementation of the single-objective network

simplex method called MCF [21]. Since a complete set of extreme supported solutions of

BMCF can also be found as solutions of a sequence of single-objective weighted sum

problems, we also explore this so-called dichotomic approach as described, for instance, in

[22]. This approach is denoted as Dicho in the following. The single-objective problems in

20

Dicho are again solved by the MCF implementation [21] with the advantage that speed-up

techniques such as partial pricing can be used. Both Para and RLBMCF do not need to store

flow solutions as the algorithm runs, instead solutions can be output or stored as soon as they

are obtained. Dicho on the other hand is required to manage solutions for later exploration in

subsequent single-objective solves which may pose additional effort.

We test two implementations of RLBMCF. RLBMCFf is the direct implementation of

the proposed algorithm using a binary heap with real-valued keys, requiring floating point

arithmetic for comparison of ratios (4). Since the costs in all our instances are integer valued,

we have implemented a version of the proposed algorithm that only applies integer arithmetic.

We denote this version as RLBMCFi. Moreover, RLBMCFi uses a vector VC of size n where

the values 1 2ˆ ˆ ˆ(,)i i ic c c associated with the minimum ratio (4) for each node i are stored. In

RLBMCFi, the comparisons of ratios are done in the following way: When we want to check

if a/b < c/d, the comparison ad < bc is performed instead. In order to select the entering arc in

each iteration, a linear search of vector VC is made. This way, all operations performed by

RLBMCFi are fixed point operations.

A computer running Ubuntu 14.04 with Intel(R) Core(TM) i7-4610 CPU @ 3.00 GHz,

and 16GB RAM was used for computational experiments. The algorithms are implemented in

C, and compiled with the gcc compiler (version 4.8.4) and –O4 compile option.

5.3 Experimental Results

In the following we discuss results of NETGEN, GRIDGEN and GOTO instances, and

briefly comment on GRIDGRAPH and ROAD type instances. We report average runtimes

and numbers of solutions found by the algorithms for each type of instance and problem size,

that is for each set of five instances with same value of i in Table 3. We list the number of

nodes (n) and arcs (m), the average cardinality of the set of extreme supported efficient

solutions obtained (#solutions), and runtimes for all four tested algorithms. In the interest of

brevity, we will refer to the number of solutions (#solutions) found by the algorithm

throughout Section 5.3 rather than (more precisely) referring to the average cardinality of the

set of extreme supported efficient solutions obtained by the algorithms. We also track the

number of times the ratio for an arc is updated or computed (#arc ops) for RLBMCFf and the

parametric network simplex method, and list the ratio of the two with the results. This

indicates how many arc operations can be saved by the proposed RLBMCFf algorithm. Note

that the number of arc operations for RLBMCFi and RLBMCFf is identical. Some instances

21

took an excessive time to solve, in which case only a single instance was solved to obtain a

sense of runtime without running the experiment for every instance. Those cases are marked

with an asterisk in Tables 5-8.

The results of the five different types of NETGEN instances are summarized in Table 5. In

general, RLBMCFi performs better than RLBMCFf, as our instances have only integer costs

and capacities, as noted above. Also, Para performs better than Dicho (unless there are few

extreme supported efficient solutions). Low density instances NETGEN_8 are solved almost

equally well by RLBMCFi and Para for small instances, but RLBMCFi works better for larger

ones. Both Dicho and RLBMCFf take longer by a factor of at least 2. The low supply version,

NETGEN_LO_8 on the other hand is best solved by a dichotomic version of the network

simplex method, also due to a fairly low number of solutions (#solutions). High density

NETGEN_SR instances are best solved with RLBMCFi which shows much better

performance than its closest competitor, Para. Due to a large number of arcs runtimes increase

dramatically from one instance to the next for these instances. For the low supply version of

the dense instances, NETGEN_LO_SR, RLBMCFi again performs best but the gap to other

algorithms is smaller. We also note that Dicho performs a lot better here than for

NETGEN_SR, due to a small number of solutions (#solutions). Finally, the NETGEN_DEG

instances, with increasing number of arcs for fixed number of nodes, show that RLBMCFi

outperforms the other approaches, and that it scales better with increasing network density

than the other algorithms.

 Table 5. NETGEN results.
 Runtime (CPU second) #arc ops

 n m #solutions RLBMCFf RLBMCFi Dicho Para RLBMCFi/Para

N
ET
G
EN

_8

256 2,048 354.6 0.0 0.0 0.0 0.0 0.54

512 4,096 671.2 0.1 0.0 0.1 0.0 0.50

1,024 8,192 1,145.0 0.7 0.2 0.3 0.2 0.44

2,048 16,384 2,011.8 2.9 1.2 1.7 0.9 0.39

4,096 32,768 3,568.4 12.3 5.3 11.1 5.1 0.35

8,192 65,536 5,818.6 78.2 25.5 53.3 30.1 0.30

16,384 131,072 9,750.8 433.0 148.1 343.1 156.8 0.27

32,768 262,144 16,529.8 3,215.9 1,023.2 1,491.2 1,053.3 0.24

N
ET

G
EN

_S
R

256 4,096 549.6 0.1 0.0 0.1 0.0 0.49

512 11,585 1,143.0 0.5 0.2 0.5 0.2 0.50

1,024 32,768 2,295.6 2.8 1.0 5.0 1.4 0.42

2,048 92,682 4,333.2 20.7 6.0 51.2 14.9 0.38

22

4,096 262,144 8,037.4 210.4 38.6 443.9 123.0 0.34

8,192 741,455 14,738.2 1,375.3 272.7 2,497.8 968.7 0.35

16,384 2,095,152 26,418.2 9,086.7* 1,826.8 3,601.0* 7,232.5* 0.34
N
ET

G
EN

_L
O
_8

256 2,048 82.2 0.0 0.0 0.0 0.0 0.35

512 4,096 137.2 0.1 0.0 0.0 0.0 0.30

1,024 8,192 202.0 0.3 0.1 0.1 0.1 0.23

2,048 16,384 293.0 1.3 0.7 0.4 0.7 0.20

4,096 32,768 456.2 6.3 3.3 2.3 4.2 0.18

8,192 65,536 631.2 36.4 15.5 8.6 24.5 0.16

16,384 131,072 929.6 199.9 90.8 51.3 135.7 0.13

32,768 262,144 1,340.4 1,477.6 608.6 168.2 726.4 0.11

N
ET

G
EN

_L
O
_S
R

256 4,096 118.4 0.0 0.0 0.0 0.0 0.31

512 11,585 204.2 0.2 0.1 0.1 0.1 0.30

1,024 32,768 350.4 1.2 0.4 0.9 1.0 0.22

2,048 92,682 553.8 9.2 2.8 9.5 10.6 0.22

4,096 262,144 895.2 97.1 16.7 76.6 91.2 0.18

8,192 741,455 1,452.2 673.3 137.3 348.7 740.5 0.17

16,384 2,095,152 2,262.6 3,554.2 829.1 1,799.6 5,618.0* NA*

N
ET
G
EN

_D
EG

4,096 8,192 616.8 0.8 0.5 0.5 0.2 0.67

4,096 16,384 1,964.2 4.5 2.3 2.2 1.2 0.37

4,096 32,768 3,568.4 12.1 5.3 10.5 5.0 0.35

4,096 65,536 5,213.0 31.3 10.4 42.3 18.2 0.34

4,096 131,072 6,275.4 83.8 19.0 175.9 49.6 0.33

4,096 262,144 8,037.4 204.4 39.0 449.3 125.5 0.34

4,096 524,288 9,589.2 539.1 84.5 1,056.0 299.4 0.33

4,096 1,048,576 10,602.2 1,152.2 165.7 2,596.0 700.4 0.34

RLBMCFi reduces the number of arc operations that need to be performed, or the number

of times the ratio for an arc is calculated, for all NETGEN instances. However, this does not

lead to a significant decrease in runtime in all instances when compared to Para. For

NETGEN_8 instances there is only a slight runtime advantage for RLBMCFi throughout the

different instances. Comparing the two for low supply instances NETGEN_LO_8 we observe

a slightly higher advantage of RLBMCFi compared to Para, although neither is the best

performing algorithm for these instances. The effect of reducing the number of arc operations

is best seen for high density instances NETGEN_SR, NETGEN_LO_SR and NETGEN_DEG

where the reduction in arc operations in RLBMCFi leads to much improved runtimes.

NETGEN_DEG illustrates this point well, where all instances have the same number of nodes

but the number of arcs doubles from one instance to the next. Here, the number of arc

operations in RLBMCFi drops to about a third of those needed in Para, and the fraction of

23

runtime reduction increases from each instance to the next. To summarize we show the

number of arc operations needed by Para and RLBMCF for each type of NETGEN instances

in Table 6, where we focus on the instance groups with 4,096 nodes, and we choose the

instance with most arcs for NETGEN_DEG. The table shows that a reduction of arc

operations to about a third has a different impact for NETGEN_8 (only ~491 million arc

operations) compared to NETGEN_SR (almost 11 billion arc operations) and NETGEN_DEG

(almost 63 billion arc operations) and this is reflected in runtime reduction.

Table 6. Average number of arc operations for NETGEN instances with n = 4,096.
 Runtime # arc ops

NETGEN

Type

m

#solutions

RLBMCi

Para

RLBMCi

Para

ratio

8 32,768 3,568.4 5.3 5.1 170,146,148.8 490,933,373.4 0.35

SR 262,144 8,037.4 38.6 123.0 3,761,309,899.0 10,967,657,331.4 0.34

LO_8 32,768 456.2 3.3 4.2 75,057,960.6 406,305,521.4 0.18

LO_SR 262,144 895.2 16.7 91.2 1,471,151,770.4 8,253,646,447.0 0.18

DEG 1,048,576 10,602.2 165.7 700.4 21,544,262,682.8 62,912,017,449.6 0.34

In Figure 2 we give one example of runtimes for each of the instances solved for the

NETGEN_DEG problem class. In the figure runtimes for the smallest instances (1-5) are not

shown as they are < 0.1s. The figure shows that runtimes for sets of five instances with the

same number of nodes and arcs are similar, and that they increase with problem size. This is

generally the case for all problem instances we test and we hence only report on averages in

the remainder of this section.

Figure 2. Runtimes (in seconds on logarithmic scale) of different algorithms per NETGEN_DEG instance.

24

Next, we consider the three sets of GRIDGEN instances. The observations shown in Table

7 are similar to those made for NETGEN instances above. For the low density instances,

GRIDGEN_8, RLBMCFi shows best performance, especially as instances grow in size. For

high density instances GRIDGEN_SR and GRIDGEN_DEG, RLBMCFi shows superior

performance throughout the instances with biggest gains for larger instances.

Table 7. GRIDGEN results.
 Runtime (CPU second) #arc ops

 n m #solutions RLBMCFf RLBMCFi Dicho Para RLBMCFi/Para

G
R
ID
G
EN

_8

257 2,056 375.4 0.0 0.0 0.0 0.0 0.55

507 4,056 651.4 0.1 0.0 0.1 0.0 0.46

1,025 8,200 1,234.2 0.6 0.2 0.4 0.2 0.44

2,071 16,568 2,195.6 2.8 1.2 2.2 1.0 0.38

4,097 32,776 3,556.6 12.8 5.4 11.9 5.4 0.34

8,191 65,528 6,212.0 77.6 26.0 61.0 32.4 0.31

16,385 131,080 9,566.6 407.8 144.5 347.8 179.0 0.25

32,762 262,096 16,745.0 2,268.2 942.8 1,597.0 1,036.3 0.23

G
R
ID
G
EN

_S
R

257 4,112 604.2 0.1 0.0 0.1 0.0 0.54

507 11,661 1,163.4 0.5 0.2 0.5 0.2 0.48

1,025 32,800 2,255.8 3.3 1.1 5.4 1.8 0.40

2,071 93,195 4,207.2 26.5 6.9 58.1 19.4 0.36

4,097 262,208 7,825.4 279.1 44.3 435.0 171.6 0.32

8,191 745,381 14,848.2 1,989.8 324.5 2,740.8 1,399.7 0.29

G
R
ID
G
EN

_D
EG

4,097 16,388 707.0 1.0 0.7 0.7 0.4 0.20

4,097 32,776 3,556.6 12.5 5.4 11.5 5.7 0.34

4,097 65,552 5,035.0 33.5 10.9 45.4 23.2 0.32

4,097 131,104 6,499.6 103.6 21.8 191.4 68.5 0.32

4,097 262,208 7,825.4 289.8 45.1 451.2 182.8 0.32

4,097 524,416 9,516.4 725.1 97.7 1,180.1 417.1 0.33

4,097 1,046,632 10,968.8 1,691.2 208.4 2,675.6 975.1 0.34

Results for GOTO instances are shown in Table 8. For the lower density instances,

GOTO_8 with node degree 8, Para performs best, and we note that RLBMCF is only able to

reduce the number of arc operations to 65-94%, the smallest reduction seen in computational

experiments so far. This is likely due to a combination of network structure and the total

supply of the instances, which is significantly higher than the supply in NETGEN and

GRIDGEN instances. Consistent with results for NETGEN and GRIDGEN instances,

25

RLBMCFi performs best for the higher density instances GOTO_SR where it is able to solve

the largest problems considered within an hour, which the other approaches are unable to do.

GOTO instances also have solutions (#solutions) which means that Dicho struggles with these

instances as they grow larger.

Table 8. GOTO results.
 Runtime (CPU second) #arc ops

 n m #solutions RLBMCFf RLBMCFi Dicho Para RLBMCFi/Para

G
O
TO

_8

256 2,048 328.4 0.0 0.0 0.0 0.0 0.65

512 4,096 818.2 0.1 0.0 0.1 0.0 0.67

1,024 8,192 1,511.0 0.2 0.1 0.3 0.1 0.69

2,048 16,384 2,909.8 1.0 0.4 1.9 0.2 0.70

4,096 32,768 10,211.0 10.0 4.2 21.6 2.7 0.74

8,192 65,536 10,757.6 30.0 8.1 52.2 6.1 0.74

16,384 131,072 19,070.4 143.3 52.1 282.4 28.5 0.78

32,768 262,144 59,417.4 2,447.9 906.1 3,254.4 302.5 0.94

G
O
TO

_S
R

256 4,096 2,460.0 0.1 0.1 0.2 0.1 0.62

512 11,585 7,719.4 1.2 0.5 3.3 0.6 0.65

1,024 32,768 23,668.6 10.3 4.6 46.6 7.5 0.70

2,048 92,682 66,687.4 112.9 36.2 558.6 73.4 0.75

4,096 262,144 223,657.8 1,423.3 456.7 7,173.0* 784.5 0.59

8,192 741,455 518,105.8 > 3,600* 3,529.2 > 3,600* > 3,600* NA*

For GRIDGRAPH networks we briefly report on the results without listing details in a

table. GRIDGRAPH instances have very low density with an average node degree of two (see

Table 3). Many solutions (#solutions) are found for most GRIDGRAPH instances. Consistent

with our previous results (Tables 5-8), low density instances with many solutions (#solutions)

are best solved using Para, as the Dicho simplex method does not work well when #solutions

is large, and versions of RLBMCF perform best for high density networks making the latter

two approaches less suitable for GRIDGRAPH instances. It can be observed that LONG

instances are generally easiest with fewest solutions (#solutions), and SQUARE and WIDE

instances are increasingly difficult to solve with more solutions (#solutions). For

GRIDGRAPH instances, the reduction of arc operations achieved by RLBMCF is at best a

reduction to 80-90% for the more difficult square and wide instances.

26

For ROAD instances we again have low density with an average node degree between 2

and 3, hence RLBMCF does not perform well here. As ROAD instances have relatively few

solutions (#solutions), Dicho is the fastest solution algorithm, followed by Para, see Table 9.

Table 9. ROAD results.

 Runtime (CPU second) #arc ops

 n m #solution

s

RLBMCFf RLBMCFi Dicho Para RLBMCFi/Para

R
O
A
D

9,559 29,766 64.4 2.0 1.6 0.3 0.4 0.29

49,109 120,576 133.4 64.5 55.1 6.4 10.0 0.30

116,920 265,402 300.8 483.5 430.7 34.8 54.2 0.43

261,155 620,924 325.2 2,246.1 2,214.3 92.4 190.1 0.29

The social media networks all have the same number of nodes and arcs listed in Table 4.

Since supply was varied here, we list Supp and #solutions for each instance group in Tables

10 and 11. Firstly, it can be observed that networks with anti-correlated costs lead to the

highest average numbers of #solutions, followed by networks with independent randomly

generated costs. Networks with correlated arc costs have the lowest number of #solutions.

RLBMCFi performs best for random and anti-correlated instances, particularly with lower

supplies, for both FACEBOOK and WIKI-VOTE networks. In these networks RLBMCFi

reduces the number of arc operations significantly, particularly for low supplies. While for

networks with random costs RLBMCFi and Para perform similarly (with Para only slightly

worse) for large total supply, RLBMCFi is consistently the superior approach when costs are

anti-correlated. It is interesting to note that Dicho is not the best approach to use even when

there are relatively few solutions (#solutions), due to network density which makes solving

single objective network flow problems computationally expensive. FACEBOOK-CORR

instances with supply of at least 2,500 have a ratio of arc operations exceeding 1. This is

because the parametric network simplex implementation as described in [3] does not always

have to scan all non-basic arcs. It maintains a list of all non-basic arcs with minimum ratio

found in an iteration. In the next iteration ratios for the arcs on this list are updated, and those

arcs whose ratio remains unchanged can enter the basis. It is not necessary to scan the set of

non-basic arcs in this case. With most of the instances above this makes very little difference.

For the correlated instances shown below, it has a major impact: For example, in the first

instance with supply 10,000 we have only 806 extreme supported efficient solutions, and

these are found in 8,275 iterations, hence there are many iterations that do not lead to an

27

extreme supported nondominated point, and arcs that enter the basis with the same ratio. In

6,579 of these iterations the arc to enter the basis is selected from the candidate arc list from

the previous iterations rather than by scanning all non-basic arcs. This reduces the number of

scanned arcs significantly compared to the worst-case for parametric simplex. This explains

#arc ops ratios exceeding 1 for correlated FACEBOOK instances.

Table 10. FACEBOOK results.
 Runtime (CPU second) #arc ops

 Supp #solutions RLBMCFf RLBMCFi Dicho Para RLBMCFi/Para

FA
C
EB

O
O
K
‐R
A
N
D
O
M

100 143.8 4.6 2.1 9.9 7.0 0.10

500 465.6 12.5 3.7 27.0 7.6 0.27

1,000 763.6 15.4 4.2 40.5 8.2 0.32

2,500 1575.4 26.9 6.6 71.4 9.9 0.47

5,000 2454.8 37.4 8.9 101.9 11.5 0.57

10,000 4011.8 52.4 12.1 145.8 13.1 0.72

FA
C
EB

O
O
K
‐C
O
R
R

100 71.2 1.7 0.7 4.4 0.9 0.31

500 166.8 3.3 1.0 8.9 1.0 0.56

1,000 262.8 5.6 1.3 12.9 1.1 0.86

2,500 424.6 8.6 1.9 19.0 1.4 1.13

5,000 556.8 11.2 2.3 23.6 1.5 1.33

10,000 777.8 16.9 3.2 30.8 1.9 1.62

FA
C
EB

O
O
K
‐A
N
TI

100 136.2 4.5 2.4 9.6 12.1 0.05

500 524.8 17.3 5.2 31.7 14.1 0.21

1,000 848.2 23.4 6.5 46.1 15.0 0.26

2,500 1788.6 32.7 8.7 86.3 16.8 0.34

5,000 3074.4 49.4 12.5 134.0 19.6 0.45

10,000 4926.6 65.2 16.3 189.3 22.0 0.54

Table 11. WIKI-VOTE results.

 Runtime (CPU second) #arc ops

 Supp #solutions RLBMCFf RLBMCFi Dicho Para RLBMCFi/Para

W
IK
I‐
V
O
TE
‐R
A
N
D
O
M

100 92.4 3.1 2.2 3.6 4.9 0.05

500 369.4 6.4 3.1 12.0 6.1 0.13

1,000 598.0 9.3 3.7 18.3 6.8 0.19

2,500 1,216.2 14.9 4.7 32.2 8.0 0.28

5,000 2,032.6 20.0 6.0 47.3 9.0 0.38

10,000 3,226.2 28.8 7.9 69.3 11.1 0.47

28

W
IK
I‐
V
O
TE

‐C
O
R
R

100 43.0 1.2 0.7 1.5 0.6 0.17

500 137.6 2.0 0.9 4.2 0.9 0.30

1,000 220.8 2.7 1.1 6.4 1.1 0.37

2,500 388.2 4.9 1.3 9.7 1.3 0.57

5,000 550.8 6.4 1.7 13.6 1.6 0.66

10,000 765.2 8.1 2.1 16.9 1.9 0.79

W
IK
I‐
V
O
TE
‐A
N
TI

100 83.4 4.1 3.2 3.5 8.6 0.03

500 451.0 10.4 4.8 15.8 11.0 0.11

1,000 745.6 15.1 5.7 24.0 12.2 0.15

2,500 1,763.2 24.4 7.7 46.9 14.2 0.25

5,000 2,696.4 31.6 9.1 65.9 15.6 0.31

10,000 4,390.6 44.4 11.9 98.1 18.3 0.41

In summary, we observe that RLBMCF does reduce the number of arc operations for all

problem instances tested. This is reflected in faster computation times when problem

instances have a high density. For some instance types this reduction leads to a significant

decrease of runtime by a factor of up to 4.2 / 3.6 / 5.5 / 4.7 / 3.9 / 2.0 / 5.0 / 3.6 for

NETGEN_DEG / NETGEN_SR / NETGEN_LO_SR / GRIDGEN_DEG / GRIDGEN_SR /

GOTO_SR / FACEBOOK / WIKI-VOTE instances. When RLBMCF is not the best solution

algorithm, e.g. when problems have low density, then the parametric network simplex method

generally is the best approach to choose. When dense instances have very high supply, as

demonstrated for FACEBOOK and WIKI-VOTE instances, the parametric network simplex

can be preferable, especially when costs are correlated. We also note that the parametric

simplex method is preferable to a dichotomic network simplex method when there are many

solutions (#solutions) to be found. While a dichotomic simplex method can take advantage of

speed-up techniques such as partial pricing, it has to manage problems to be solved leading to

higher memory consumption and additional runtime which an implementation of the

parametric simplex method and RLBMCF can both avoid. Finally, our computational

experiments confirm that RLBMCF is able to reduce the number of arc operations needed in

all test instances, where reductions in the number of arc operations needed by RLBMCF are

often significant when compared to the parametric network simplex method. We observe that

these reductions in arc operations lead to an advantage in terms of overall runtime especially

when the network density is high. Compared to an efficient implementation of the parametric

network simplex method, RLBMCF does need to track additional sets and data, and the

associated effort is best offset in higher density networks. For instance, for the last set of

29

NETGEN_DEG instances RLBMCFi only needs to perform a third of the arc operations

leading to an average runtime reduction by a factor of 4.2.

6. Conclusions.

We propose a novel ratio-labeling algorithm to find a complete set of extreme supported

efficient solutions of BMCF problems. The algorithm is based on the ideas of a parametric

network simplex method for biobjective linear programs. The proposed method enhances this

classical parametric method by associating, with each node, so-called ratio labels (the slope or

trade-off of the two objective functions between two consecutive extreme supported non-

dominated points). Instead of examining the complete set of arcs to find the entering arc with

minimum ratio, the proposed method maintains a heap from which the node that allows to

determine this arc is extracted. To do this we investigate how the ratios of the arcs change

when a pivot with this entering arc is performed in order to adequately update the ratio labels

of the nodes, and details of the derivation of necessary label updates are contained in this

paper (and Appendix A). The result is an efficient algorithm improving the parametric method

to find a complete set of extreme supported efficient solutions to the BMCF problem.

Moreover, the space needed by our algorithm is minimal since it does not need to store the

flows associated with each extreme supported solution. We present extensive computational

experiments for five different types of test networks to demonstrate the superior performance

of the proposed ratio-labeling approach, when network density is high.

In the future algorithms for BMCF could be further improved by exploiting potential for

parallelization. While this is relatively straightforward for scalarization based approaches such

as the dichotomic approach tested here, good strategies for parallelization in other methods

are worth investigating and may lead to significant improvements in runtime.

Acknowledgments

The authors thank University of Auckland summer student Samuel Ridler for testing and

calibration of the dichotomic algorithm implementation. The research of the second author

was partially supported by MTM2016-74877-P.

References

[1] Ahuja R, Magnanti T, Orlin JB. Network Flows: theory, algorithms and applications.

Englewood Cliffs, New Jersey: Prentice-Hall; 1993.
[2] Kovács, P. Minimum-cost flow algorithms: an experimental evaluation. Optimization

Methods and Software; 30:1, 94-127; 2015.

30

[3] Raith A, Ehrgott M. A two-phase algorithm for the biobjective integer minimum cost
flow problem, Computers & Operations Research; 36:1945-1954; 2009.

[4] Hamacher HW, Roed Pedersen C, Ruzika, S. Multiple objective minimum cost flow
problems: a reviw. European Journal of Operational Research; 176, 1404-1422; 2007.

[5] Sedeño-Noda A, González-Martín C. The Biobjective minimum cost flow problem,
European Journal of Operational Research; 124:591-600; 2000.

[6] Sedeño-Noda A, González-Martín C. An alternative method to solve the biobjective
minimum cost flow problem, Asia-Pacific Journal of Operational Research; 20:241-260;
2003.

[7] Fonseca M, Figueira JR, Resende MGC. Solving scalarized multi-objective network
flow problems using an interior point method, International Transactions of Operational
Research; 17:607-636; 2010.

[8] Medrano FA and Church RL. A parallel computing framework for finding the supported
solutions to a biobjective network optimization problem, Journal of Multi-Criteria
Decision Analysis; 22:244-259; 2015.

[9] Eusébio A, Figueira JR, Ehrgott M. A primal-dual simplex algorithm for bi-objective
network flow problems, 4OR; 7:255-273; 2009.

[10] Eusébio A, Figueira JR. On the computation of all supported efficient solutions in multi-
objective integer network flow problems, European Journal of Operational Research;
199:68-76; 2009.

[11] Eusébio A, Figueira JR. Finding non-dominated solutions in bi-objective integer
network flow problems, Computers & Operations Research; 36:2254-2564; 2009.

[12] Sun M. Finding integer efficient solutions for multiobjective network programming
problems, Networks; 57:362-375; 2011.

[13] Eusébio A, Figueira JR, Ehrgott M. On finding representative non-dominated points for
bi-objective integer network flow problems, Computers & Operations Research; 48:1-
10; 2014.

[14] Sedeño-Noda A, Raith A. A Dijkstra-like method computing all extreme supported non-
dominated solutions of the biobjective shortest path problem, Computers & Operations
Research; 57:83-94; 2015.

[15] Cunningham, WH. A Network Simplex Method. Mathematical Programming; 11:105-
106; 1976.

[16] Steuer R. Multiple Criteria Optimization. Theory, Computation, and Application. New
York: Wiley;1985.

[17] Isermann H. Proper efficiency and the linear vector maximum problem. Operations
Research; 22:189-191; 1974.

[18] Dantzig GB, Thapa MN. Linear Programming 2: Theory and Extensions. Springer
Series in Operations Research. Springer; 1997.

[19] Fredman ML, Tarjan RE. Fibonacci heaps and their uses in improved network
optimization algorithms. Journal of the ACM; 34(3):596-615; 1987.

[20] DIMACS, 9th DIMACS Implementation Challenge – Shortest Paths, Available at
http://www.dis.uniroma1.it/challenge9 ; 2005-2006.

[21] Löbel, A. MCF version 1.3 – a network simplex implementation. Available for
academic use free of charge via WWW at www.zib.de, 2004.

[22] Cohon JL, Church RL. Generating multiobjective trade-offs: an algorithm for bicriterion
problems, Water Resources Research; 15:1001-1010; 1979.

[23] Leskovec, J., Krevl A. SNAP Datasets: Stanford Large Network Dataset Collection
http://snap.stanford.edu/data ; 2014.

31

Appendix A
We analyse values of the new ratios of the arc (,) ()i j A T when

 () () (,) (,) A T A T p q x y with (,) (,)x y p q , that is, (,)x y is the entering arc and

(,)p q is the leaving arc in the pivot operation. Remember that

(A1)
1 1

2 2

ˆ ˆ

ˆ ˆ
 xy ijk k

xy ij
xy ij

c c

c c

is always satisfied for the following expressions. The following cases have to be considered.

Case 1) 1()x V T and (,)x y L . In this case, node potentials in 2()V T are updated

following process A. Now, we distinguish the next subcases:

1.1) (,)i j L , 2()i V T and 1()j V T . Then the reduced cost of this arc becomes

ˆ ˆ v v v v
ij xy ij xyc c c c with 1, 2v . We obtain that the new ratio is

1 1
1

2 2

ˆ ˆ

ˆ ˆ

ij xyk
ij

ij xy

c c

c c

whenever 2 2ˆ ˆ 0 ij xyc c and 1 1ˆ ˆ 0 ij xyc c ; otherwise it becomes +. From (A1), we obtain

that:

(A2)

1
2 2

2 211 1 1 1 1
1

2 2 2 2 2 2 2 2 2

ˆ
ˆ ˆ

ˆ ˆˆˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ij
xy xy

ij xyxyij xy xy xy xyk k
ij xy

ij xy xy ij xy xy ij xy xy

c
c c

c ccc c c c c

c c c c c c c c c

(A3)

1
2 2

2 211 1 1 1 1
1

2 2 2 2 2 2 2 2 2

ˆ
ˆ ˆ

ˆ ˆˆˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

xy
ij ij

ij xyijij xy ij ij ijk k
ij ij

ij xy ij ij xy ij ij xy ij

c
c c

c ccc c c c c

c c c c c c c c c

(A4) If k k
xy ij , then 1 k k k

ij xy ij following the same arguments as in (A3).

1.2) (,)i j L , 1()i V T and 2()j V T . Then the reduced cost of this arc becomes

ˆ ˆ v v v v
ij xy ij xyc c c c with 1, 2v . We obtain that the new ratio is

1 1
1

2 2

ˆ ˆ

ˆ ˆ

ij xyk
ij

ij xy

c c

c c

whenever 2 2ˆ ˆ 0 ij xyc c and 1 1ˆ ˆ 0 ij xyc c ; otherwise it becomes +. From (A1), we obtain

that:

32

(A5)

1
2 2

2 211 1 1 1 1
1

2 2 2 2 2 2 2 2 2

ˆ
ˆ ˆ

ˆ ˆˆˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ij
xy xy

ij xyxyij xy xy xy xyk k
ij xy

ij xy xy ij xy xy ij xy xy

c
c c

c ccc c c c c

c c c c c c c c c

(A6)

1
2 2

2 211 1 1 1 1
1

2 2 2 2 2 2 2 2 2

ˆ
ˆ ˆ

ˆ ˆˆˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

xy
ij ij

ij xyijij xy ij ij ijk k
ij ij

ij xy ij ij xy ij ij xy ij

c
c c

c ccc c c c c

c c c c c c c c c

(A7) If k k
xy ij , then 1 k

ij , because 2 2ˆ ˆij xyc c and 2 2ˆ ˆ 0 ij xyc c

(A8) If k
ij , then 1 k

ij , because if 2ˆ 0ijc then 2 2ˆ ˆ 0 ij xyc c or if 1ˆ 0ijc

then 1 1ˆ ˆ 0 ij xyc c .

1.3) (,)i j U , 2()i V T and 1()j V T . Then the reduced cost of this arc becomes

ˆ ˆ v v v v
ij xy ij xyc c c c with 1, 2v . We obtain that the new ratio is

1 1
1

2 2

ˆ ˆ()

ˆ ˆ()

ij xyk
ij

ij xy

c c

c c

whenever 2 2ˆ ˆ 0 ij xyc c and 1 1ˆ ˆ 0 ij xyc c ; otherwise it becomes +. From (A1), we obtain

the same result as in (A5), (A6), (A7) and (A8).

1.4) (,)i j U , 1()i V T and 2()j V T . Then the reduced cost of this arc becomes

ˆ ˆ v v v v
ij xy ij xyc c c c with 1, 2v . We obtain that the new ratio is

1 1
1

2 2

ˆ ˆ()

ˆ ˆ()

ij xyk
ij

ij xy

c c

c c

whenever 2 2ˆ ˆ 0 ij xyc c and 1 1ˆ ˆ 0 ij xyc c ; otherwise it becomes +. From (A1), we obtain

the same results as in (A2), (A3) and (A4).

Case 2) 1()x V T and (,)x y U . In this case, the node potentials in 1()V T are updated

following process B. Now, we distinguish the following subcases:

2.1) (,)i j L , 2()i V T and 1()j V T . Then the reduced cost of this arc becomes

ˆ ˆ v v v v
ij xy ij xyc c c c with 1, 2v . We obtain that the new ratio is

1 1
1

2 2

ˆ ˆ

ˆ ˆ

ij xyk
ij

ij xy

c c

c c

whenever 2 2ˆ ˆ 0 ij xyc c and 1 1ˆ ˆ 0 ij xyc c ; otherwise it becomes +. From (A1), we obtain

the same results as in (A5), (A6), (A7) and (A8).

2.2) (,)i j L , 1()i V T and 2()j V T . Then the reduced cost of this arc becomes

ˆ ˆ v v v v
ij xy ij xyc c c c with 1, 2v . We obtain that the new ratio is

1 1
1

2 2

ˆ ˆ

ˆ ˆ

ij xyk
ij

ij xy

c c

c c

33

whenever 2 2ˆ ˆ 0 ij xyc c and 1 1ˆ ˆ 0 ij xyc c ; otherwise it becomes +. From (A1), we obtain

the same results as in (A2), (A3) and (A4).

2.3) (,)i j U , 2()i V T and 1()j V T . Then the reduced cost of this arc becomes

ˆ ˆ v v v v
ij xy ij xyc c c c with 1, 2v . We obtain that the new ratio is

1 1
1

2 2

ˆ ˆ()

ˆ ˆ()

ij xyk
ij

ij xy

c c

c c

whenever 2 2ˆ ˆ 0 ij xyc c and 1 1ˆ ˆ 0 ij xyc c ; otherwise it becomes +. From (A1), we obtain

the same results as in (A2), (A3) and (A4).

2.4) (,)i j U , 1()i V T and 2()j V T . Then the reduced cost of this arc becomes

ˆ ˆ v v v v
ij xy ij xyc c c c with 1, 2v . We obtain that the new ratio is

1 1
1

2 2

ˆ ˆ()

ˆ ˆ()

ij xyk
ij

ij xy

c c

c c

whenever 2 2ˆ ˆ 0 ij xyc c and 1 1ˆ ˆ 0 ij xyc c ; otherwise it becomes +. From (A1), we obtain

the same results as in (A5), (A6), (A7) and (A8).

Case 3) 2()x V T and (,)x y L . Node potentials in 1()V T are updated following process B.

Now, we distinguish the following subcases:

3.1) (,)i j L , 2()i V T and 1()j V T . Then the reduced cost of this arc becomes

ˆ ˆ v v v v
ij xy ij xyc c c c with 1, 2v . We obtain that the new ratio is

1 1
1

2 2

ˆ ˆ

ˆ ˆ

ij xyk
ij

ij xy

c c

c c

whenever 2 2ˆ ˆ 0 ij xyc c and 1 1ˆ ˆ 0 ij xyc c ; otherwise it becomes +. From (A1), we obtain

the same results as in (A5), (A6), (A7) and (A8).

3.2) (,)i j L , 1()i V T and 2()j V T . Then the reduced cost of this arc becomes

ˆ ˆ v v v v
ij xy ij xyc c c c with 1, 2v . We obtain that the new ratio is

1 1
1

2 2

ˆ ˆ

ˆ ˆ

ij xyk
ij

ij xy

c c

c c

whenever 2 2ˆ ˆ 0 ij xyc c and 1 1ˆ ˆ 0 ij xyc c ; otherwise it becomes +. From (A1), we obtain

the same results as in (A2), (A3) and (A4).

3.3) (,)i j U , 2()i V T and 1()j V T . Then the reduced cost of this arc becomes

ˆ ˆ v v v v
ij xy ij xyc c c c with 1, 2v . We obtain that the new ratio is

1 1
1

2 2

ˆ ˆ()

ˆ ˆ()

ij xyk
ij

ij xy

c c

c c

whenever 2 2ˆ ˆ 0 ij xyc c and 1 1ˆ ˆ 0 ij xyc c ; otherwise it becomes +. From (A1), we obtain

the same results as in (A2), (A3) and (A4).

34

3.4) (,)i j U , 1()i V T and 2()j V T . Then the reduced cost of this arc becomes

ˆ ˆ v v v v
ij xy ij xyc c c c with 1, 2v . We obtain that the new ratio is

1 1
1

2 2

ˆ ˆ()

ˆ ˆ()

ij xyk
ij

ij xy

c c

c c

whenever 2 2ˆ ˆ 0 ij xyc c and 1 1ˆ ˆ 0 ij xyc c ; otherwise it becomes +. From (A1), we obtain

the same results as in (A5), (A6), (A7) and (A8).

Case 4) 2()x V T and (,)x y U . We suppose that the node potentials in 2()V T are updated

following process A. Now, we distinguish the following subcases:

4.1) (,)i j L , 2()i V T and 1()j V T . Then the reduced cost of this arc becomes

ˆ ˆ v v v v
ij xy ij xyc c c c with 1, 2v . We obtain that the new ratio is

1 1
1

2 2

ˆ ˆ

ˆ ˆ

ij xyk
ij

ij xy

c c

c c

whenever 2 2ˆ ˆ 0 ij xyc c and 1 1ˆ ˆ 0 ij xyc c ; otherwise it becomes +. From (A1), we obtain

the same results as in (A2), (A3) and (A4).

4.2) (,)i j L , 1()i V T and 2()j V T . Then the reduced cost of this arc becomes

ˆ ˆ v v v v
ij xy ij xyc c c c with 1, 2v . We obtain that the new ratio is

1 1
1

2 2

ˆ ˆ

ˆ ˆ

ij xyk
ij

ij xy

c c

c c

whenever 2 2ˆ ˆ 0 ij xyc c and 1 1ˆ ˆ 0 ij xyc c ; otherwise it becomes +. From (A1), we obtain

the same results as in (A5), (A6), (A7) and (A8).

4.3) (,)i j U , 2()i V T and 1()j V T . Then the reduced cost of this arc becomes

ˆ ˆ v v v v
ij xy ij xyc c c c with 1, 2v . We obtain that the new ratio is

1 1
1

2 2

ˆ ˆ()

ˆ ˆ()

ij xyk
ij

ij xy

c c

c c

whenever 2 2ˆ ˆ 0 ij xyc c and 1 1ˆ ˆ 0 ij xyc c ; otherwise it becomes +. From (A1), we obtain

the same results as in (A5), (A6), (A7) and (A8).

4.4) (,)i j U , 1()i V T and 2()j V T . Then the reduced cost of this arc becomes

ˆ ˆ v v v v
ij xy ij xyc c c c with 1, 2v . We obtain that the new ratio is

1 1
1

2 2

ˆ ˆ()

ˆ ˆ()

ij xyk
ij

ij xy

c c

c c

whenever 2 2ˆ ˆ 0 ij xyc c and 1 1ˆ ˆ 0 ij xyc c ; otherwise it becomes +. From (A1), we obtain

the same results as in (A2), (A3) and (A4).

