

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

THERMAL EVOLUTION AND FLUID-ROCK INTERACTIONS IN THE ORAKEIKORAKO-TE KOPIA GEOTHERMAL SYSTEM, TAUPO VOLCANIC ZONE, NEW ZEALAND.

Gregory Bignall

February 1994

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

University of Auckland 1994

ABSTRACT

The active Orakeikorako-Te Kopia geothermal system was drilled in the mid-1960's, down to 1405m, as part of a programme to investigate its electrical generation capability. Four wells were completed at Orakeikorako (23km NNE of Taupo) and two at Te Kopia, 9.5km further northeast. The exploration drilling provided information on the present day hydrological and thermal regime which is as hot as 265°C (1137m drilled depth (-801m RL) in OK-2). Major flows into the wells occurred at depths down to 850m, although poor permeability and decline in mass output discouraged development. The waters discharged were of near neutral pH and had low salinities (highest Cl content from OK-2 \approx 546mg/kg), low discharge enthalpies and indicated water temperatures (T_{SiO2} and T_{NaKCa}) of 210°C to 240°C.

A hydrologic model proposed here envisages a hot water reservoir in the OK-2 area (northeastern part of the Orakeikorako thermal area) with a lateral flow supplying water to the Red Hill (OK-4 area) in the southern part of the system and a concealed northeast flow which reaches the surface at Te Kopia.

The Orakeikorako thermal area occupies a surface area of about 1.8km², mainly on the east bank of the Waikato River, where dilute chloride-bicarbonate water discharges along faults and fractures in association with an extensive silica sinter sheet, boiling springs and geysers. The occurrence of a mordenite-smectite assemblage at shallow depths, plus the oxygen and hydrogen isotopic composition of surface discharge waters, indicate that the ascending chloride fluids are diluted by near surface (heated?) groundwaters. The δD shift from local groundwater composition may be evidence for a magmatic component to the convecting hydrothermal system. Incursion of fluids from the relatively cool (<120°C) steam-heated carapace into deep levels of the system and its mixing with the alkali-chloride fluids, produces argillic alteration, sealing and will eventually result in the demise of the system. Old silica sinter on the west bank, at the foot of the Tutukau Rhyolite Dome, is covered by Oruanui Ash (22,700 years B.P.) and demonstrates that the hydrologic character of this part of the system has changed due to a combination of fault movement, changes in the height of the watertable and sealing.

The Te Kopia thermal area is located along 2.5km of the Paeroa Fault scarp, a major structural feature inferred to be controlling migration of deep hydrothermal fluids in the Orakeikorako-Te Kopia area. Surface activity at Te Kopia is characterised by acid alteration (including fumaroles, warm acid pools and steaming ground), although neutral pH alkali-chloride fluids discharged here within the last 3000 years and deposited silica sinter (C^{14} age on wood enveloped by sinter is 3026 +/- 43years B.P.). New thermal areas in the past year have begun to develop in the northwestern part of Te Kopia, whilst cold hydrothermally altered ground (hosting a mordenite + clay assemblage) records a decline in activity in the southern part of the Te Kopia thermal area.

The system is hosted by a generally SE dipping sequence of Pliocene to Quaternary ignimbrite, tuff and rhyolite lavas of the Taupo Volcanic Zone. Point counting, electron microprobe analyses of surviving primary phases (Fe, Mg, Al and Ti contents of hornblende and biotite), together with X-ray fluorescence and neutron activation analysis were used to distinguish three extensive ignimbrites encountered in the Orakeikorako-Te Kopia drillholes: (0.33Ma, sanidine-bearing) <u>Paeroa</u>, (0.35Ma) <u>Te Kopia</u> and (undated) <u>Akatarewa Ignimbrites</u>, despite their having been hydrothermally altered. Ignimbrite recognition is made on the basis of a combination of immobile trace and rare earth element abundances and ratios: Ta and Yb (ppm), $P_2O_5(\%)$ and the ratios Zr/Yb, Zr/Y, Yb/Hf, La/Lu, Nb/Hf, Zr/Nb, Zr/Lu, Yb/Ta, Ta/Lu, La/Tb and Nb/Ta.

e.g. Zr/Y	Paeroa Ignimbrite 4.89 - 6.35 (mean 5.56)	<u>Te Kopia Ignimbrite</u> 9.67 - 11.92 (mean 10.78)	Akatare
Yb/Ta	2.84 - 3.38 (mean 3.11)	3.22 - 3.67 (mean 3.39)	7.55 - 9.22 3.84 - 5.1
P_2O_5	0.013 - 0.040 (mean 0.026)	0.060 - 0.075 (mean 0.068)	0.070 - 0.

<u>Akatarewa Ignimbrite</u> 7.55 - 9.22 (mean 8.21) 3.84 - 5.11 (mean 4.32) 0.070 - 0.105 (mean 0.087)

i

The Paeroa Ignimbrite is distinguished by its Eu anomaly ($(Eu/Eu^*)_{cn}$ is 0.48 to 0.54), whereas the Te Kopia and Akatarewa Ignimbrites are characterised by their flatter REE Spidergrams ($(Eu/Eu^*)_{cn}$ is ~1.0 and ~0.8 respectively). The correlation of the extensive ignimbrites was satisfactorily effected by a combination of their characteristic bulk rock and pumice chemistry, plus primary mineralogy, to enable the subsurface stratigraphy and structure of the Orakeikorako-Te Kopia geothermal system to be defined.

The alteration assemblage below 500m consists of quartz, albite+adularia, with variable abundance and distribution of chlorite, pyrite, calcite, wairakite, epidote, pyrrhotite, titanite, leucoxene, siderite and clinozoisite; illite is a late overprint. Rare almandine occurs in rhyolite in OK-1: 1312.5m; this is the first known occurrence of garnet in an active geothermal system of the TVZ. The surficial alteration assemblage of kaolin, cristobalite, alunite, hematite and jarosite reflects alteration by acid sulphate-steam heated waters.

The occurrence and textural relations exhibited by the hydrothermal mineral assemblage define the geochemical structure and thermal evolution of the Orakeikorako-Te Kopia system. The activities of components of minerals, determined from electron microprobe analyses and composition-activity relationships (OK-2 discharge: $\log \alpha_{K+}/\alpha_{H+}=3.6$, $\log \alpha_{Na+}/\alpha_{H+}=4.8$) support the petrologic observation that illite is now the stable potassium phase (overprinting adularia), although a state of equilibrium between the sheet silicate and the fluids is clearly not fully reached. The Na/K ratio of the altering fluid is controlled by the albite-adularia reaction (dissolution of albite and replacement by adularia, after andesine), whilst the H₂/H₂S ratio is buffered by the virtually complete replacement of pyrrhotite by pyrite. The fluids are now slightly undersaturated with respect to calcite, this is shown by etched surfaces on some calcite grains.

In the past the deep fluid boiled adiabatically from >300°C to ~250°C as it ascended, resulting in the deposition of adularia, quartz and bladed calcite. The system has cooled, resulting in lower subsurface temperatures (as recorded by fluid inclusion geothermometry) suppressing boiling, and migrated northwards as a consequence of self sealing. The thermal decline and retention of CO_2 in the deep alkali-chloride fluid shifted the alteration assemblage from one of albite-adularia stability to illite stability.

The homogenisation (T_h) temperatures of primary and secondary liquid-rich inclusions in 27 cores from different depths mostly match measured temperature profiles (e.g. OK-1 (shallow levels) and OK-2). Never-the-less, fluid inclusion data support mineral-inferred stability temperatures which indicate that parts of the Orakeikorako-Te Kopia system have cooled appreciably (e.g. OK-1, deep levels) and OK-4 (maximum T_{bore}=238°C, maximum T_h=312°C; epidote abundant). In contrast, the northwestern margin (OK-6 area) has heated (OK-6:1113.4m; T_{bore}=261°C, T_h=210-221°C). Some inclusions in the Te Kopia drillholes have T_h values that exceed T_{bore} by as much as 50°C, and are deduced to have been uplifted by movement on the Paeroa Fault. Freezing data indicate that the trapped fluid was dilute (~0.2 to 1.7 wt% NaCl equivalent) since most T_m values range from -0.1 to -0.5°C.

The outflow portion of the Orakeikorako-Te Kopia system has evolved recently, both chemically and physically. Movement on the Paeroa Fault, that uplifted pyroclastic rocks hosting a quartz-adularia-illite assemblage, combined with a lowering of the watertable has resulted in an overprinting of the neutral pH hydrothermal mineral assemblage by a kaolinite-alunite type assemblage which derives from an acid sulphate fluid. Quartz crystals found 150m above the base of the Paeroa Fault scarp host dilute (~1.5wt% NaCl equivalent) fluid inclusions with T_h values that range from 180-206°C (average 196°C). Bladed quartz (after calcite) did not contain usable inclusions. It is deduced that the inclusions formed about 120-160m below the ground, which indicates uplift in the order of ~300m. Assuming a constant rate of uplift of 4m/ka (based on the offset of 330ka Paeroa Ignimbrite), the minimum duration of activity at Te Kopia is 75,000 years.

CONTENTS

F	Abstract .	***************************************	i
1	Table of Con	ntents	iii
L	List of Figure	es	xi
Ĺ	list of Tables	s	xiv
A	Acknowledge	ements	xv
Cha	pter 1 :	Active Hydrothermal Systems	
		Nature of active systems in the Taupo Volcanic Zone	1
		ratare of active systems in the raupo volcame zone	
1	.1	Introduction	1
1	.2	Volcanic and Structural Setting	2
1	.3	Characteristics of Geothermal Systems of the TVZ	4
1	.4	Fluid Composition and Sources	6
1	.5	Geothermal Alteration Mineralogy	
		(Distribution and factors controlling alteration)	8
	1.5.1	Temperature	8
	1.5.2	Pressure	8
	1.5.3	Rock type	9
	1.5.4	Permeability	9
	1.5.5	Fluid composition	10
	1.5.6	Duration	10
1.	.6	Style of Alteration Mineralogy	12
C			
Cnap	oter 2 :	Geology of the Orakeikorako-Te Kopia Area,	
		Taupo Volcanic Zone	14
2.	1	Introduction - Location	14
2.	2	History of Investigations at Orakeikorako-Te Kopia	14
	2.2.1	Orakeikorako area	14
	2.2.2	Te Kopia area	17
2.	3	Regional Tectonic and Volcanic Setting	17
	2.3.1	Structural features in the Orakeikorako-Te Kopia area	17
	2.3.2	Maroa Volcanic Centre	19
	2.3.3	Basement	20
2.	4	Geology of the Orakeikorako and Te Kopia area	20
	2.4.1	Recent Pyroclastic Deposits	22
		Hydrothermal eruption breccias	22
	2.4.2	Pleistocene-Recent Alluvium and Hot Spring Deposits	24
		Taupo Pumice Alluvium	24

		Hinuera Formation	24
		Umukuri Sinter	25
		Orakonui Formation	25
	2.4.3	Pleistocene lake sediments - Huka Group	25
		Huka Falls Formation	25
		Waiora Formation	26
	2.4.4	Quaternary igneous rocks and associated breccias	26
		Mangamingi Basalt	26
		Kakuki Basalt	26
		Tutua Basalt	28
		Parekauau Andesite	28
		Kaingaroa Ignimbrite	28
		Atiamuri Ignimbrite	28
		Paeroa Ignimbrite	28
		Te Weta Ignimbrite	34
		Te Kopia Ignimbrite	34
		Akatarewa Ignimbrite	35
	2.4.5	Haparangi Rhyolite	36
2.5		Structural Features in the Active Geothermal Areas	36
	2.5.1	Orakeikorako area	38
		Whakaheke Fault	38
		East Wainui Fault	38
		Faults between Whakaheke and East Wainui Faults	38
		Faults south of East Wainui Fault	38
	2.5.2	Те Коріа	38
2.6		Geophysical Studies	39
	2.6.1	Heat flow	39
	2.6.2	Resistivity	40
	2.6.3	Magnetics and gravity	40
2.7		Geological History of the Orakeikorako-Te Kopia Area	42
2.8		Orakeikorako-Te Kopia: A Single Geothermal System	43
Chapte	er 3 :	Surface Hydrothermal Alteration at Te Kopia	45
3.1		Introduction	45
3.2		Orakeikorako Geothermal Field: A Review	45
	3.2.1	Orakeikorako: Discharge features/spring types	45
	3.2.2	Orakeikorako: Surface alteration	47
3.3		Geology and Structure of the Te Kopia Thermal Area	47
3.4		Distribution of Surface Features at Te Kopia	48
3.5		Hydrothermal Alteration	63
	3.5.1	Surface to near-surface alteration	63

iv

	Kaolinite type	63
	Opal silicification	63
3.5.2	Alkali-chloride water alteration	67
	Weak clay-mordenite alteration	67
	Quartz-(adularia)-illite type	67
	Silicification	67
3.6	Overprinting of Quartz-(Adularia)-Illite Alteration Assemblage	68
3.7	Fluid Properties and Flow at Te Kopia	70
	Kaolinite zone	70
	Weak clay-mordenite zone	72
	Quartz-(adularia)-illite zone	72
3.8	Stages of Activity	72
3.8.1	Early alkali-chloride activity	73
3.8.2	Acid-sulphate activity	73
3.8.3	Present status	75
Chapter 4 :	Fluid Chemistry and Isotopes : A review	76
4.1	Introduction	76
4.2	Previous Studies	77
4.3	Well Discharge Chemistry	77
4.4	Mixing Relationships	82
4.5	Spring Chemistry	83
	Orakeikorako	83
	Те Коріа	87
4.6	Gas Chemistry	87
	Orakeikorako	87
	Те Коріа	90
4.7	Water Isotopes	90
	Orakeikorako	90
	Te Kopia	93
4.8	Gas and Sulphur Isotopes at Orakeikorako	93
4.9	Discussion	93 94
		74
Chapter 5 :	Subsurface Hydrothermal Alteration	96
	Occurrence and distribution of secondary minerals and clays	S
5.1	Introduction	96
5.2	Materials and Methods	90 97
5.3	Mineral Assemblages	98
5.3.1	Primary mineralogy	98 98
5.3.2	Secondary mineralogy	98
		20

V

	Mordenite type assemblage	100
	Weak clay (smectite) type assemblage	101
	Quartz-adularia type assemblage	101
	Quartz silicification - A note	107
	Opaline silicification (sinter)	107
	Acid water, kaolin group type assemblage	107
5.4	Occurrence and Distribution of Hydrothermal Minerals	108
	Adularia	108
	Albite	110
	Alunite	113
	Analcime	113
	Anatase	113
	Anhydrite	113
	Calcite	113
	Cristobalite	114
	Epidote Group minerals	114
	Garnet (almandine)	119
	Hematite	119
	Leucoxene	119
	Mordenite	119
	Prehnite	122
	Pyrite	122
	Quartz	122
	Siderite	122
	Titanite	124
	Wairakite	124
5.5	Occurrence and Distribution of Clay minerals	125
	Kaolinite	125
	Chlorite	125
	Smectite	127
	Interstratified smectite-illite	127
	Illite	130
5.6	Discussion	130
Chapter (Minorel Chamin	
Chapter 6 :	Mineral Chemistry	132
6.1	Introduction	132
6.2	Secondary minerals	132
6.2.1	Adularia	133
6.2.2	Albite	134
6.2.3	Calcite	135
6.2.4	Epidote	135

	6.2.5	Garnet (almandine)	138
	6.2.6	Pyrite	138
	6.2.7	Quartz	140
	6.2.8	Titanite	140
	6.2.9	Zeolite minerals	141
		Mordenite	141
		Wairakite	141
	6.2.10	Other secondary minerals	143
		Anatase	143
		Leucoxene	143
6.3		Clay Minerals	143
	6.3.1	Chlorite	143
	6.3.2	Illite	146
6.4		Primary Mineralogy	147
	6.4.1	Amphibole	147
		Nomenclature	147
		Amphibole chemistry	147
	6.4.2	Biotite	149
	6.4.3	Hypersthene	152
	6.4.4	Plagioclase	154
	6.4.5	Sanidine	154
	6.4.6	Quartz	154
	6.4.7	Other primary minerals	157
		Apatite	157
		Magnetite	157
		Ilmenite	157
		Zircon	157
6.5		Summary	159
Chapte	r 7 ·	Fluid Inclusion Study	160
onupti		Find menusion study	100
7.1		Introduction	160
7.2		Fluid Inclusion Microthermometry: Methodology	161
7.3		Fluid Inclusion Data - Orakeikorako	161
	7.3.1	Orakeikorako Well-1	162
	7.3.2	Orakeikorako Well-2	162
	7.3.3	Orakeikorako Well-4	166
	7.3.4	Orakeikorako Well-6	166
	7.3.5	Discussion - Orakeikorako results	169
7.4		Fluid inclusion data - Te Kopia	170
	7.4.1	Te Kopia Well-1	173
	7.4.2	Te Kopia Well-2	173

	7.4.3	Discussion - Te Kopia results	174
7.5		Surface Samples at Te Kopia	175
	7.5.1	Results - TKS-10	177
	7.5.2	Results - TKS-12	177
	7.5.3	Discussion - Te Kopia surface samples	177
7.6		Raman Analysis	179
	7.6.1	Introduction	179
	7.6.2	Methodology	179
	7.6.3	Composition of fluids	180
	7.6.4	Results: Raman spectra of gases and liquids in fluid inclusions	180
		Raman spectrum of CO ₂	182
		Raman spectrum of other species	186
7.7		Discussion	186
Chapte		Rock Chemistry	10-
Chapte	10;		187
		Ignimbrite correlation and mass transfer	
8.1		Introduction	187
8.2		Sample Selection and Methodology	188
8.3		Primary Chemical Variations	188
8.4		Ignimbrite Correlation	190
	8.4.1	Geochemical fingerprinting	190
	8.4.2	Discriminant variation diagrams	196
8.5		Rare Earth Element Chemistry	202
	8.5.1	Introduction	202
	8.5.2	Results	202
	8.5.3	REE mobility and hydrothermal alteration	210
8.6		Mass Transfer in the Orakeikorako-Te Kopia System	210
	8.6.1	The isocon method	210
	8.6.2	Results	213
	8.6.3	Chemical change related to hydrothermal mineralogy	213
		Mordenite alteration zone	217
		Smectite alteration zone	217
		Quartz adularia alteration zone	219
	8.6.4	Interpretation of mobility patterns	221
Chapte	r 9 :	Thermal Evolution	224
9.1		Introduction	224
9.2		Inferred Mineral Stability Temperatures	224
	9.2.1	Orakeikorako Well-1	224
X	9.2.2	Orakeikorako Well-2	225

viii

9.2.3	Orakeikorako Well-4	225
9.2.4	Orakeikorako Well-6	228
9.2.5	Te Kopia Well-1	228
9.2.6	Te Kopia Well-2	228
9.3	Adularia-Albite Equilibration Temperature	230
9.4	Illite and Chlorite Crystallinity	230
9.4.1	Crystallinity Index Standards	230
9.4.2	Clay crystallinity and basal reflection	232
9.5	Discussion	236
Chapter 10 :	Chemical Evolution and Mineral-Fluid Reactions	241
10.1	Introduction	241
10.2	Activity Diagrams and their Assumptions	242
10.3	Quartz-Adularia Alteration Assemblage	247
10.3.1	Temperature	247
10.3.2	Pressure	248
10.3.3	Salinity	248
10.3.4	Silica solubility	248
10.3.5	pH	250
10.3.6	Boiling	250
10.3.7	Mineral-solute equilibria	251
10.3.8	f_{S_2} - f_{O_2} and sulphide-oxide equilibria	252
10.3.9	Calcite overprinting	255
10.4	Quartz-Adularia-Illite Alteration Assemblage.	255
10.5	Mordenite and Weak-Clay Alteration Assemblage	258
10.6	Kaolinite (+/- alunite) Alteration Assemblage	260
10.7	Summary	261
Chapter 11 :	Concluding Discussion	263
	References	273
	Appendices	288
	Appendix A : Petrography	289
	Definitions	289
	Petrologic descriptions. Orakeikorako Well 1	290
	Petrologic descriptions. Orakeikorako Well 2	295
	Petrologic descriptions. Orakeikorako Well 4	301
8	Petrologic descriptions. Orakeikorako Well 6	307
	Petrologic descriptions. Te Kopia Well 1	315

ix

Petrologic descriptions. Te Kopia Well 2	322 328
Appendix B : Well data	330
Downhole measurements	330
Well OK-1	330
Well OK-2	332
Well OK-4	332
Well OK-6	332
Well TK-1	334
Well TK-2	334
Appendix C : Analytical methods	335
Appendix C-1 : X-ray diffraction	335
Appendix C-2 : Electron microprobe	335
Appendix C-3 : X-ray fluorescence spectrometry	336
C-3a: System configuration	336
C-3b : Data acquisition and processing	337
C-3c : Sample preparation	337
C-3d : Accuracy and precision : X-ray fluorescence	339
Appendix C-4 : Neutron activation analysis	349
C-4a: Methodology and results	349
C-4b : Neutron activation results versus XRF results	349
Appendix C-5 : Fluid Inclusion Studies	356
C-5a: The Leitz-Laborlux 12HL heating-freezing stage	356
C-5b : Raman Analysis	357
Appendix D : Mineral chemistry	359
Appendix E : Bulk rock chemistry	374
Appendix F : Mineral chemistry	382
Appendix G : Carbon dating	400

LIST OF FIGURES

Figure 1.1	Location of New Zealand	3
Figure 1.2	Location of geothermal areas in the Taupo Volcanic Zone	3
Figure 1.3	Geochemical model of a geothermal system (Hedenquist, 1986)	5
Figure 1.4	Phase diagram (sodium and potassium) in terms of ion activity at 260°C	11
Figure 2.1 Figure 2.2 Figure 2.3 Figure 2.4 Figure 2.5 Figure 2.6a Figure 2.6b Figure 2.6c Figure 2.6c Figure 2.6d Figure 2.7 Figure 2.8 Figure 2.9 Figure 2.10	Te Kopia Ignimbrite (OK6:365.8m) Te Kopia Ignimbrite (OK2:439.8m). Primary phenocrysts identified Akatarewa Ignimbrite (OK6:1219.2m) Point counting data, ternary diagrams Discriminant variation diagram. Zr/Y versus Yb/Hf Structural map of the Orakeikorako area plus location of hot springs	15 18 21 27 29 30 30 30 30 30 30 30 32 33 37 41
Figure 3.1 Figure 3.2 Figure 3.3 Figure 3.4 Figure 3.5 Figure 3.6 Figure 3.7 Figure 3.8 Figure 3.9 Figure 3.10 Figure 3.10 Figure 3.12 Figure 3.12 Figure 3.13 Figure 3.14 Figure 3.15 Figure 3.16 Figure 3.17 Figure 3.18 Figure 3.20 Figure 3.21 Figure 3.22 Figure 3.23 Figure 3.24	Location of the Te Kopia Geothermal field . Structural map of the Te Kopia thermal area Maps of the Te Kopia Geothermal Field . The Te Kopia Geothermal Field, showing the extent of surface alteration . Paeroa Fault scarp . Steaming ground on the Paeroa Fault scarp . Acid alteration mineral assemblage . Acid-sulphate spring . Central Lakes area, Te Kopia . Northern Lakes area, Te Kopia . Barren ground on the Paeroa Fault scarp . Southern Pool . Mud geyser . Vent on edge of acid-sulphate pool from which mud geyser erupts . Swamp filled, sub-circular hydrothermal eruption crater . Landslide deposit at the foot of the Paeroa Fault scarp . A hydrothermal alteration at Te Kopia . Silica sinter block in the Central Lakes area, Te Kopia . Layered sinter morphology	46 49 50 52 53 54 54 55 56 57 58 59 59 61 61 62 62 64 66 66
Figure 3.25	Wood enveloped in sinter	66
Figure 3.26	Block in landslide deposit on the Paeroa Fault scarp, containing quartz crystals	69
Figure 3.27	Relict 'stockwork' quartz veins	69
Figure 3.28	Abundant quartz crystals, on the ground on the Paeroa Fault scarp	69
Figure 3.29	Stages of hydrothermal activity at Te Kopia	74
Figure 4.1 Figure 4.2 Figure 4.3 Figure 4.4 Figure 4.5 Figure 4.6 Figure 4.7 Figure 4.8 Figure 4.9	Location of the Orakeikorako and Te Kopia drillholes, plus Enthalpy-chloride mixing diagram for Orakeikorako water Ratios of the dominant anions from Orakeikorako spring and well waters Enthalpy-chloride mixing diagram for Orakeikorako waters Relative Na, K, Mg-contents for Orakeikorako waters Ratios of the dominant anions from Te Kopia spring and well waters Plot of the ratios He, Ar and N2 in geothermal gases and steam Plot of δ^{18} O and δ D for Orakeikorako thermal and cold waters Plot of δ^{18} O and δ D for Te Kopia thermal and cold waters	78 81 84 86 86 89 92 92
Figure 5.1	Alteration zones at Orakeikorako and Te Kopia	99
Figure 5.2	Quartz-adularia alteration assemblage	102
Figure 5.3	Distribution of secondary minerals and clay in OK-1	104

Figure 5.4	Distribution of secondary minerals and clay in OK-2	104
Figure 5.5	Distribution of secondary minerals and clay in OK-4	105
Figure 5.6	Distribution of secondary minerals and clay in OK-6	105
Figure 5.7	Distribution of secondary minerals and clay in TK-1	106
	Distribution of secondary minerals and clay in TK-2	106
Figure 5.8	A ship is a second any numerals and clay in rik-2	100
Figure 5.9	Adularia replacing plagioclase, with illite overprinting	
Figure 5.10	X-ray diffractogram of adularia from TK-1: 884.5m	109
Figure 5.11	Plan view showing the occurrence of adularia and albite	111
Figure 5.12	Distribution of adularia in Orakeikorako-Te Kopia drillholes	112
Figure 5.13	Albite replacing plagioclase phenocrysts	112
Figure 5.14	Plan view showing the occurrence of calcite and epidote	115
Figure 5.15	Calcite replacing plagioclase phenocrysts	116
	Calcule leptaching pragrobiose preficiency yes	116
Figure 5.16	SEM electromicrograph of euhedral epidote	
Figure 5.17	Epidote vein in Akatarewa Ignimbrite	118
Figure 5.18	Almandine garnet in vug, quartz-adularia alteration zone	120
Figure 5.19	SEM electromicrograph of mordenite filling voids	121
Figure 5.20	SEM electromicrograph of secondary quartz crystal growing into a cavity	121
Figure 5.21	SEM electromicrograph of secondary quartz veinlet	121
Figure 5.22	Plan view showing the distribution and abundance of secondary quartz	123
	Replacement of hypersthene (identified by shape) by chlorite	126
Figure 5.23	Replacement of hypersulene (identified by snape) by chloride	126
Figure 5.24	SEM electromicrograph of chlorite infilling an internal cavity in hypersthene	
Figure 5.25	Plan view showing the occurrence and distribution of smectite and illite	128
Figure 5.26	X-ray diffractogram of air-dried and glycolated smectite	129
Figure 5.27	X-ray diffractogram of air-dried and glycolated illite	129
Figure 5.28	SEM electromicrograph of illite in the groundmass of OK-4: 884.8m	131
Figure 5.29	SEM electromicrograph of illite replacing a plagioclase phenocryst	131
riguic 5.25	SELVI electronice of tapit of mile replacing a physice and phenoexyster and the	
D'anna (1	Transmission of accordance foldered in Oralizikaraka Ta Kapia drillhalar	133
Figure 6.1	Ternary plot of secondary feldspar in Orakeikorako-Te Kopia drillholes	
Figure 6.2	Compositions of calcites from the Orakeikorako-Te Kopia drillholes	136
Figure 6.3	Mol $\%$ composition of Ca, Al and (Mg+Fe ²⁺ +Fe ³⁺) for epidote	137
Figure 6.4	Classification of chlorites	144
Figure 6.5	Electron microprobe data. Chlorite Al(iv) and Fe/(Fe+Mg) against Tbore	145
Figure 6.6	SEM electromicrograph of chlorite replacing hypersthene	146
	Plot of chlorite analyses from the Te Kopia Ignimbrite	146
Figure 6.7	Flot of children analysis from the Fe Kopia Baaroa and Ta Kopia Ispimbrita	148
Figure 6.8	Compositions of calcic amphiboles from the Paeroa and Te Kopia Ignimbrites	
Figure 6.9	Hornblende compositions for Paeroa and Te Kopia Ignimbrite; Al(iv)-Al(vi)	150
Figure 6.10	Hornblende compositions; A-site occupancy - Ti	150
Figure 6.11	Hornblende compositions; Al(iv) - Ti	150
Figure 6.12	Hornblende compositions; Al(iv) - Na(A-site)	150
Figure 6.13	Biotite from Paeroa and Te Kopia Ignimbrites; total Al versus Fe/(Fe+Mg)	153
Figure 6.14	Biotite compositions; total Al - Ti	153
Figure 6.15	Biotite compositions; Fe/(Fe+Mg) - Ti	153
	Pyroxene analyses from the Te Kopia Ignimbrite	155
Figure 6.16		
Figure 6.17	An-Ab-Or plot of plagioclase in the Paeroa, Te Kopia and Akatarewa Ignimbrites	156
Figure 6.18	Plot of orthoclase solid solution against anorthite content	156
Figure 7.1	Thermal profile, boiling curve for pure water, Th histograms for OK-1	164
Figure 7.2	Thermal profile, boiling curve for pure water, Th histograms for OK-2	164
Figure 7.3	Plot of T_h versus T_m for fluid inclusions from OK-1	165
-		165
Figure 7.4	Plot of T_h versus T_m for fluid inclusions from OK-2	
Figure 7.5	Thermal profile, boiling curve for pure water, Th histograms for OK-4	165
Figure 7.6	Liquid-rich fluid inclusions from OK-6: 1141.7m	167
Figure 7.7	Liquid-rich fluid inclusions from OK-6: 1141.7m	167
Figure 7.8	Thermal profile, boiling curve for pure water, T _h histograms for OK-6	168
		168
Figure 7.9		
Figure 7.10	Plot of T_h versus T_m for fluid inclusions from OK-6	168
Figure 7.11	CO_2 concentrations in fluid inclusions estimated by the crushing method	171
Figure 7.12	Thermal profile, boiling curve for pure water, T _h histograms for TK-1	174
Figure 7.13	Thermal profile, boiling curve for pure water, T _h histograms for TK-2	174
Figure 7.14	Plot of T_h versus T_m for fluid inclusions from TK-1 and TK-2	176
Figure 7.15	Schematic representation of the uplift of quartz from TKS-10	178
	Schematic representation of the unlift of quartz from TKC 12	178
Figure 7.16	Schematic representation of the uplift of quartz from TKS-12	181
Figure 7.17	The spectrum of CO_2 measured in the gas phases of a 3-phase inclusion \ldots	
Figure 7.18	CO ₂ spectra for dry ice	183
Figure 7.19	Raman spectra of a fluid inclusion from the 50mol% CO ₂ standard	183

Raman spectra of a fluid inclusion from the 50mol% CO2 standard 184 Figure 7.20 Raman spectra of a fluid inclusion from the 25mol% CO2 standard 184 Figure 7.21 Raman spectra of a fluid inclusion from the 10mol% CO₂ standard 185 Figure 7.22 185 Raman spectra of a fluid inclusion from OK-6: 1141.7m Figure 7.23 192 Binary plots - to select immobile element pairs Figure 8.1 195 Binary plots of Zr versus wt% P2O5, Nb and Y/Th in pumice Figure 8.2 197 The CV (Critical Value) Test Figure 8.3 198 Representative whole rock geochemical discriminant diagrams Figure 8.4 199 Representative whole rock geochemical discriminant diagrams Figure 8.5 Whole rock geochemical discriminant diagram of Zr/Yb versus Ta/Lu 200 Figure 8.6 200 Binary variation diagram - including unaltered Paeroa and Te Kopia Ignimbrites Figure 8.7 201 Binary variation diagram - including ignimbrites from nearby systems Figure 8.8 204 REE spidergrams for Paeroa and Te Kopia Ignimbrites Figure 8.9 206 REE spidergrams for Te Kopia, Paeroa, A and A' Ignimbrites Figure 8.10 REE spidergrams for Ignimbrite B, Te Kopia and Akatarewa Ignimbrites 208 Figure 8.11 209 REE spidergrams for Akatarewa, C and Kaingaroa Ignimbrites Figure 8.12 Element variation diagrams; OK-2: 275.6 versus least altered Paeroa Ignimbrite . 212 Figure 8.13 Isocon diagrams for representative Paeroa and Te Kopia Ignimbrites 215 Figure 8.14 Isocon diagrams for Paeroa Ignimbrites with mordenite+smectite alteration 218 Figure 8.15 Isocon diagrams for Te Kopia Ignimbrites with smectite alteration 218 Figure 8.16 Isocon diagrams for Paeroa Ignimbrites with quartz-adularia alteration 220 Figure 8.17 220 Isocon diagrams for Te Kopia Ignimbrites with quartz-adularia alteration Figure 8.18 Binary variation diagrams; wt%CaO-Sr; wt%K2O-Rb and wt%K2O-Ba 222 Figure 8.19 Typical thermal stability range for common hydrothermal minerals in the TVZ ... 225 Figure 9.1 226 Figure 9.2 Distribution of temperature dependent secondary minerals in OK-1 Figure 9.3 Distribution of temperature dependent secondary minerals in OK-2 226 1 4 5 4 5 5 5 5 5 5 Distribution of temperature dependent secondary minerals in OK-4 227 Figure 9.4 227 Figure 9.5 Distribution of temperature dependent secondary minerals in OK-6 229 Figure 9.6 Distribution of temperature dependent secondary minerals in TK-1 229 Distribution of temperature dependent secondary minerals in TK-2 Figure 9.7 $\{x,y,y,z,y,z,y,z\}$ 231 Figure 9.8 The K-feldspar-albite solvus Crystallinity of illite and chlorite versus core depth 234 Figure 9.9 Crystallinity of illite versus measured drillhole temperatures 235 Figure 9.10 237 Figure 9.11 Illite and smectite basal reflections plotted against depth and bore temperature 239 Temperature profile and occurrence of clay minerals at Orakeikorako Figure 9.12 239 Inferred temperature profile at Orakeikorako - based on hydrothermal minerals . . Figure 9.13 Temperature profile and occurrence of clay minerals at Te Kopia 240 Figure 9.14 Inferred temperature profile at Te Kopia - based on hydrothermal minerals 240 Figure 9.15 Activity diagram for K⁺, Na⁺and H⁺ 245 Figure 10.1 Activity diagram for K⁺, Ca²⁺ and H⁺ 246 Figure 10.2 249 Silica solubility Figure 10.3 Mineral gas equilibria in terms of variable pH, fO₂ and fS₂ 253 Figure 10.4 257 Activity diagram for K⁺ and Mg²⁺-bearing minerals Figure 10.5 259 Activity diagram for the system Ca-Na-K-Al-Si Figure 10.6 Dissolved silica - pH diagram showing the fluid conditions in the near surface . . 259 Figure 10.7 Schematic north-south cross-section through the Orakeikorako geothermal area . 266 Figure 11.1 267 Possible hydrology of the Te Kopia thermal area, NW-SE cross-section Figure 11.2 Figure 11.3 Possible hydrological model of the Orakeikorako-Te Kopia system 269

xiii

LIST OF TABLES

Table 1.1	Typical fluid characteristics of New Zealand geothermal systems, from Hedenquist	11
Table 2.1 Table 2.2 Table 2.3 Table 2.4 Table 2.5	Hydrothermal eruptions at Orakeikorako and Te Kopia, after Lloyd (1972) Subsurface stratigraphy at Orakeikorako-Te Kopia, as revealed by drilling Average modal abundances (%) for the most widespread pyroclastic rocks Element ratios for the Paeroa, Te Kopia and Akatarewa Ignimbrites Occurrence and thickness of Te Kopia Ignimbrite	23 23 29 33 35
Table 3.1	Summary of fluid properties in the Te Kopia geothermal area	71
Table 4.1 Table 4.2 Table 4.3a Table 4.3b Table 4.4a Table 4.4b	Representative water analyses at Orakeikorako Representative water analyses at Te Kopia Representative gas analyses, surface features at Orakeikorako and Te Kopia Gas analyses from OK-2 (Orakeikorako) and TK1 (Te Kopia) Isotopic composition of water and stem samples from Orakeikorako Isotopic composition of water and steam samples from Te Kopia	80 81 88 88 91 91
Table 5.1 Table 5.2 Table 5.3	Common alteration products of primary minerals XRD data for epidote XRD data for mordenite	102 118 120
Table 6.1 Table 6.2 Table 6.3 Table 6.4 Table 6.5 Table 6.5 Table 6.6 Table 6.7 Table 6.8 Table 6.9 Table 6.10 Table 6.11	Adularia and albite electron microprobe analyses Calcite electron microprobe analyses Epidote electron microprobe analyses Garnet, titanite and anatase electron microprobe analyses Mordenite and wairakite electron microprobe analyses Chlorite and illite electron microprobe analyses Chlorite electron microprobe analyses Amphibole electron microprobe analyses Biotite electron microprobe analyses Plagioclase electron microprobe analyses Magnetite and illmenite electron microprobe analyses	133 136 137 139 142 142 142 145 148 151 155 158
Table 7.1 Table 7.2 Table 7.3 Table 7.4 Table 7.5 Table 7.6 Table 7.7 Table 7.8	$\begin{array}{l} \label{eq:scalar} Fluid inclusion data from Orakeikorako \\ T_m \mbox{ and } T_h \mbox{ data from Orakeikorako } \\ Secondary minerals incorporated in Orakeikorako cores in fluid inclusion study . \\ Fluid inclusion \mbox{ data from Te Kopia } \\ T_m \mbox{ and } T_h \mbox{ data from Te Kopia } \\ Secondary minerals incorporated in Te Kopia cores in fluid inclusion study . \\ Secondary minerals incorporated in Te Kopia cores in fluid inclusion study . \\ Fluid inclusion \mbox{ data from Te Kopia } \\ Secondary minerals incorporated in Te Kopia cores in fluid inclusion study . \\ \\ Fluid inclusion \mbox{ data from Te Kopia surface samples } \\ \\ Vibrational \mbox{ frequencies (in cm}^{-1}) \mbox{ of species found in fluid inclusions } \\ \end{array}$	163 163 171 172 172 176 178 181
Table 8.1 Table 8.2 Table 8.3 Table 8.4 Table 8.5a,b Table 8.6	Average composition of Paeroa and Te Kopia Ignimbrites	189 191 194 201 214 216
Table 9.1 Table 9.2 Table 9.3	Adularia equilibration temperatures Illite and chlorite crystallinity of SW standards of Warr and Rice (1993) Crystallinity of illite and chlorite in cores from Orakeikorako-Te Kopia drillholes .	231 231 233
Table 10.1 Table 10.2	Thermodynamic equilibrium constants for mineral-fluid reactions	243 245
Table 11.1	Evolution of the Orakeikorako-Te Kopia geothermal system	264

xiv

Acknowledgements

It is with the greatest respect that I acknowledge the contribution that Assoc. Prof. Patrick (Pat) R. L. Browne has made, as my main supervisor, to the completion of this thesis. Pat has been a ready source of information, ideas and encouragement and I thank him for the time he has freely given. The 'lazy reader' will also benefit from the suggestions he has made to improve this thesis. My second supervisor has been Professor P. M. Black. I do appreciate her assistance, mostly 'behind the scenes', but also in helping to organise my JSPS scholarship to Misasa, Okayama University for 1994-1995, and for reading this thesis.

Many other people have helped me overcome obstacles (theoretical, practical and sometimes imagined) during the last four years, to whom I owe my sincere thanks.

- The staff of the Geothermal Institute, University of Auckland; academic, technical and administrative, but in particular Drs. Stuart Simmons and Keith Nicholson.

-Dr. Ritchie Sims (Electron microprobe); John Wilmshurst and Dr. Robin Parker (XRF) and Sue Courtney (XRD and SEM); Assoc. Prof. Kerry Rodgers (Laser Raman); all staff of the Geology Dept., University of Auckland.

-Dr. John Seakins (Laser Raman); Chemistry Dept.

-Dr. Phil Kyle (Neutron Activation Analysis), Dept. of Earth Sciences, New Mexico Institute of Technology, Socorro, New Mexico.

-Staff of the Institute of Nuclear and Geological Sciences (IGNS) Wairakei; particularly Dr. C.P.Wood and L.E. Klyen who made unpublished information available to me.

-Most of the thin sections of the Orakeikorako and Te Kopia drillholes described in this thesis were kindly loaned by the Geological Survey (DSIR); now IGNS. Thanks to Jan Hanbury-Sparrow (Curator, Petrology Collection).

-Dr. Alan Hogg (Waikato University) and Dr. Roger Spakes (IGNS, Lower Hutt) conducted C¹⁴ dating on the wood sample enveloped in sinter (Te Kopia).

-The Waikato Regional Council provided some funding to help with field expenses- I would like to thank Dr. Jim McLeod for organising this support.

-The Geothermal Institute provided the opportunity to tutor and demonstrate for four years of Diploma students. It was an enjoyable experience. I learnt from it and I trust the students did too. The Geothermal Institute, and in particular the common room, would be a duller place without the graduate students. Some have gone during the 1990-1994 period, whilst others have just arrived but Nenny Saptadji, Juliet Newson, Zhang Lan, Lisa Koenig, Huang Yicun, Djoko Suranto, Steve Torrens, Markos Melaku and Chen Song are the friends that the stories will be about.

- To my family, thanks for everything you have done to help.

- Finally, to Lisa, whom I love very much. It would not have been possible to complete this work without her immeasurable support. Thank you so very very much Lisa.