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Abstract

This thesis considers the scattering of small amplitude water waves, obliquely incident on

a set of floating elastic plates occupying the entire water surface. The problem is two-

dimensional and assumes invariance in the width of the plates. All non-linear physical

effects are neglected. The plates are floating on a body of water of finite depth and each

plate has uniquely defined properties. The problem is formulated by imposing boundary

conditions on the eigenfunction expansion of Laplace’s equation. A set of transmission

and reflection coefficients is generated, which is solved by applying the edge conditions and

matching at each plate boundary. We label this solution method the Matched Eigenfunc-

tion Expansion Method (MEEM). The problem is solved for a variety of edge conditions

including free, clamped, sliding, springed and hinged. To verify the MEEM results, the

problem is also solved using a Green Function Method. The convergence of the two

methods is compared and found to be almost identical. The MEEM is used to simulate

wave–ice interaction in the Marginal Ice Zone (MIZ). The model removes the resonance

effects and predicts that the transmitted energy is independent of floe length, provided

the wavelength is more than three times the floe length. The model predicts an exponen-

tial decay of wave energy with distance of propagation through the MIZ, which agrees

with experimental findings. The results have been summarised in a graph with the at-

tenuation coefficient expressed as a function of period for various floe thicknesses. We

also provide an estimate of the attenuation coefficient using an approximation theory.

The displacements of the MEEM are compared against a series of laboratory experiments

performed in a two-dimensional wave-tank and show good agreement. The attenuation

model results are compared against a series of field experiments carried out in the Arctic

and off the West Antarctic Peninsula. Generally, the decay rates of the model agree well

with the field experiments in diffuse ice. We suggest that factors other than wave scatter

are relevant in models of wave-attenuation in non-diffuse ice.
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1
Introduction

The study of linear wave propagation through a region of water containing floating elastic

plates has been the subject of significant research. In this thesis, we consider wave scatter

under a set of plates, each with unique (but constant) properties and floating on a body of

water of arbitrary finite depth. The problem is formulated by imposing boundary condi-

tions on the eigenfunction expansion of Laplace’s equation. The wave modes are generated

by solving the dispersion equation, which is derived from the boundary conditions. A set

of transmission and reflection coefficients is generated, which is solved by applying the

plate edge conditions and matching the velocity potential and its derivatives at each plate

boundary. Throughout this thesis, we label this solution method the Matched Eigenfunc-

tion Expansion Method (MEEM). To verify the MEEM, the problem is also solved via

a Green Function Method (GFM), which is computationally more efficient but can only

solve for plates of constant rigidity.

The original motivation for this study was to understand wave propagation in ice-covered

seas. Large plates of floating ice are found in polar regions. This sea-ice plays a key role

in driving the world’s oceanic circulatory system and hence the world’s climatic system.

It also harbours an entire ecosystem and its existence has a large impact on the survival

of many species. Sea-ice is highly influenced by the surrounding ocean and its dynamic

and unrelenting nature, and is constantly moving, breaking and re-forming. Our global
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climate is changing. A warmer climate in the Arctic is melting sea-ice and reducing its

extent. Further warming will intensify storm activity and hence increase wave energy

and its penetration into sea-ice, which will potentially increase floe breakup and further

reduce sea-ice extent.

Interest in understanding wave–ice interaction began towards the end of the nineteenth

century. Due to the remoteness of the study area, wave–ice related field studies have

always been logistically challenging and expensive, and the available experimental data is

limited in quality and quantity. There however have been useful measurements of wave-

attenuation through sea-ice. Unfortunately, significant work is required for the most

sophisticated three-dimensional wave–ice models to reach a point where predictions of

wave-attenuation are possible and such predictions require large computational resources,

so that no summary of the attenuation coefficient as a function of various parameters has

been possible. One of the aims of this study is to simulate wave scatter through sea-ice,

using our simplified but flexible two-dimensional (one vertical and one horizontal) solu-

tion. This solution is compared against laboratory experiments, and is also used to model

wave-attenuation which is compared to experimental data.

The study of wave interaction with floating plates can also be applied to the construction

of very large floating structures. Our world has a growing population and a correspond-

ing expansion of urban development in land-scarce countries. Engineers have proposed

the construction of very large floating structures, which involves connecting a series of

floating plates, for industrial space, airports, storage facilities and even habitation. By

allowing for articulated plates, our two-dimensional solution can be applied to these very

large floating structures.

We begin this thesis by providing some background information on this research field.

The importance of sea-ice, models of wave–ice interaction and the attenuation of waves

through ice are discussed. We also discuss strain within an ice floe and floe breakup.

The research surrounding man-made very large floating structures is also briefly covered.

In Chapter 3, we introduce the assumptions, boundary conditions and formulation of

the two-dimensional problem. Chapter 4 deals with a mathematical explanation of the

MEEM. To ease into the final solution, we begin by solving for two semi-infinite plates

which leads onto solving for a set of plates. In Chapter 5, we use the GFM to solve

for a large homogeneous plate with multiple cracks. We include this method as it is a

useful tool to verify the results of the MEEM. In Chapter 6, we solve for various cases

of articulated plates, which have many applications including engineering problems asso-
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ciated with very large floating structures. The accuracy and efficiency of the solutions

is considered in Chapter 7. We check that the system is in energy balance and compare

the MEEM with the GFM and a finite-floe model. In Chapter 8, we use the MEEM to

simulate an idealised Marginal Ice Zone and produce a wave attenuation model. In Chap-

ter 9, an approximation theory is derived which estimates the wave-attenuation, using

only the reflected and transmitted waves from a wave travelling from open water into a

semi-infinite plate. In Chapter 10, we test our theory and models against wave-tank and

field experiments. In our final chapter we summarise and conclude the thesis.
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2
Background

2.1 Sea-Ice and the Marginal Ice Zone (MIZ)

Sea-ice surrounds the poles of our planet and occupies about 7% of the total area of the

world’s oceans (Wadhams, 2000). These ice-covered seas represent the cold end of the

enormous heat engine which enables our planet to sustain temperatures suitable for hu-

man life. Sea-ice creates a barrier between the ocean and the atmosphere and prevents

the transfer of heat and gases across the interface. Water has a high heat capacity, and

without a barrier can transfer a large amount of heat to the polar atmosphere. When

sea-ice is present, the atmosphere can cool by up to 30◦C (Ruddiman, 2001). Sea-ice also

has a strong impact on the albedo and reflects up to 80% solar radiation while water only

reflects 10% (Wadhams, 2000). Increasing the sea-ice extent, increases the albedo which

decreases the absorbed heat and increases cooling. Satellite data from 1979 to 2007, has

shown that the sea-ice area and extent in the Arctic is retreating by 10% - 11% per decade

(Comiso et al., 2008). It is unknown whether Arctic summer sea-ice will even exist in

years to come. Sea-ice also has an influence on the ocean circulation system. The for-

mation of sea-ice creates salty dense water which sinks and carries oxygen and dissolved

carbon dioxide to the ocean depths. These convection regions drive a three-dimensional

global pattern of deep and shallow currents which spread nutrient and oxygen rich waters

5
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throughout the globe (Wadhams, 2000). Sea-ice also plays a major role in supporting

polar marine ecosystems. Several species of copepods, amphipods and two species of krill

have adapted to life in close association with sea-ice, where they feed on ice algae and seek

shelter from predators. It is these organisms and their predators that are being affected

most by warming (Smetacek and Nicol, 2005).

The interfacial region between the open ocean and the ice-covered seas is known as the

Marginal Ice Zone (MIZ). This region consists of neither open ocean, nor frozen ocean,

but consists of a patchwork of ice floes and open water. The MIZ is a dynamic and at

times turbulent region, which is formed by wave-induced breaking of continuous ice. This

process is balanced by wave scatter within the MIZ which partially shields the continuous

ice from the destructive wave energy. There are two aspects which need to be understood

to model this process: the first is the wave-induced breaking of the continuous ice, and

the second is the wave scattering in the MIZ (Squire et al., 1995). The greatest amount

of breakup, and thus the smallest floes, are found closest to the ice edge. If the wind is

blowing towards the ice edge from the open sea, it compresses the MIZ and produces a

compact ice field. If the wind is blowing away from the ice edge, most of the MIZ be-

comes diffuse. The outermost edge can sometimes organise itself into a series of compact

ice edge bands which are separated by completely open water and lie with their long axes

roughly perpendicular to the wind. In winter, new ice can form in these open water bands

(Wadhams, 2000). The four major MIZ regions of the world are located in the Greenland

Sea, Labrador Sea, Bering Sea and circumpolar Antarctic ice edge.

2.2 Wave–Ice Modelling

It is a well known fact that sea-ice has the effect of reducing incoming swell. The distance

at which waves are found to penetrate into ice varies considerably. Modelling this process

requires understanding of the physical processes involved in wave-attenuation. In this

section, we summarise some of the wave–ice modelling techniques to date. We begin by

briefly introducing some of the early concepts and research techniques. Following this we

discuss in some detail wave scatter modelling, which is applicable to diffuse ice fields and

is the focus of this thesis. Various solution methods and problems are discussed. Finally,

we briefly discuss viscous models which are applicable to compact ice fields. A review of

the interaction between waves and ice is summarised in Squire et al. (1995) and Squire

(2007).
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2.2.1 Early Findings

As early as 1887, scientists developed an interest in understanding waves and how they

interact with floating ice; Greenhill (1887) found an expression for the velocity of waves

through ice where the ice sheet is modelled as a thin elastic beam. During the 1930’s and

50’s, Greenhill’s ideas were developed through a series of field experiments and analyses

(Roethlisberger, 1972). Waves were artificially generated by detonation blasts, and the

elastic and flexural ice-coupled wave propagation in ice of various types was studied,

where the ice was treated as a plate rather than a beam. The artificial waves were also

used to measure the Young’s modulus of ice. During the 50’s, the theoretical aspect

of wave propagation through ice was also studied. Keller and Weitz (1953) focused on

the boundary value problem at the ice edge and the calculation of the transmission and

reflection coefficients. Here the ice is treated as a floating material of uniform surface

density with no elastic properties nor viscosity. This problem is solved completely and

the solution method may be particularly useful in modelling wave propagation through

frazil or pancake ice. During a voyage, Robin (1963) confirmed visually that ice floes

bend. It has consequently become standard to model ice floes as thin elastic plates.

2.2.2 Scattering Models

For ice conditions consisting of discrete solitary floes, it has been assumed that the major

physical factor influencing wave-attenuation is the redistribution of wave energy due to

scattering by the floes (Squire et al., 1995). Within each floe, energy propagates with an

altered dispersion relation. The ice floe therefore scatters incoming ocean wave energy

due to a mismatched mode of propagation between each plate (Squire et al., 1995). This

scattering energy generates an energy reflection and transmission wave.

Solitary plates and two semi-infinite plates

Initially the problem of wave scatter through floating elastic plates, was solved for two

semi-infinite plates with identical properties. Kouzov (1963) solved this problem explicitly

using the Riemann–Hilbert technique. More recently this problem has been reconsidered

by Squire and Dixon (2000) and Williams and Squire (2002), who solve it using a Green

Function method. Their method is applicable to infinitely deep water and they extend

the problem to oblique wave incidence.

A more challenging problem involves solving for two semi-infinite plates with arbitrary

properties. The first significant work on this problem was done by Evans and Davies
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(1968), who presented a solution method for evaluating the transmission and reflection of

waves, propagating from a semi-infinite region of open water into a semi-infinite region

of a floating elastic plate. The method of solution was based on the Wiener–Hopf tech-

nique. Evans and Davies (1968), however, only solved explicitly for the case of shallow

water. They presented only the formulation for the finite-depth case, as they were un-

able to compute the transmission and reflection coefficients. Wadhams (1986) presents

an alternative method (the eigenfunction expansion method), which he developed in the

early 1970’s. It was the first based on a solution for a single finite-floe surrounded by

water. Unfortunately, no numerical method to solve the problem for a single floe had

been developed at the time, and the reflection and transmission coefficients were only

derived approximately, as only a subset of the evanescent waves were included. Fox and

Squire (1994) returned to the problem of a wave propagating from a semi-infinite region

of open water into a semi-infinite region covered by a floating elastic plate. Their method

is derived from the work of Wadhams (1986) and they extend by matching along the

entire water column at the plate edge and solve for oblique incidence. Soon after, Bar-

rett and Squire (1996) extended the solution of Fox and Squire (1994) to two plates of

arbitrary properties. Meylan and Squire (1994) solve for a single ice floe using dry mode

eigenfunctions to construct a Green function for the plate and used a second Green func-

tion for the water. A Fredholm integral equation is assembled for the velocity potential

at the surface which is solved using the Nystrom method. Recently, the computational

difficulties associated with the Wiener–Hopf solution of Evans and Davies (1968) have

been overcome and solved explicitly by several authors, including Balmforth and Craster

(1999); Chakrabarti (2000); Tkacheva (2001); Chung and Fox (2002). Chung and Lin-

ton (2005) have also solved the problem of open water and a semi-infinite plate using the

residue calculus technique, a method which is closely related to the Wiener–Hopf method.

Attention has also been focused towards constructing physically more realistic ice sheets

such as solving for pressure ridges, open and refrozen leads and sudden or gradual changes

in thickness (Porter and Porter, 2004; Williams and Squire, 2004; Chung and Linton, 2005;

Gayen et al., 2007). Authors, including Bennetts et al. (2007); Porter and Porter (2004)

have incorporated sea-ice draft into their models. Marchenko (1996); Marchenko and

Voliak (1997); Vaughan et al. (2007) attempt to estimate floe thickness and other param-

eters from the wave propagation through real sea-ice terrain using in situ wave data. The

three-dimensional floating circular ice floe is solved in Meylan and Squire (1996) via an

extension of Meylan and Squire (1994) and Peter et al. (2004) solve for the finite depth

case using matched eigenfunctions. Meylan (2002) solves for arbitrary floe shapes where

the dry modes are substituted into the integral equation for water to give a linear sys-
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tem of equations for the coefficients used to expand the ice floe motion. The modes are

determined generally using a finite element approach.

Multiple plates

The next major development in wave scattering theory was in the consideration of wave

propagation through multiple plates. Squire and Dixon (2001) extend the single crack

problem to a multiple crack problem, in which the semi-infinite regions are separated by a

region consisting of a finite number of plates of finite size with all plates having identical

properties. Evans and Porter (2003); Porter and Evans (2005) consider the multiple crack

problem for finitely-deep water and derive a simple solution. Hermans (2004) also present

a solution for multiple plates, based on an earlier solution for a single plate (Hermans,

2003), and is for a set of finite elastic plates of arbitrary properties. Hermans (2004)

solves the problem using Green’s theorem to obtain an integral equation for the deflec-

tion. Ogasawara and Sakai (2006) numerically solve for a set of arbitrary plates using a

time-domain solution incorporating the boundary element method and the finite-element

method proposed by Liu and Sakai (2002). Bukatov and Bukatov (1999) consider the

influence of floating broken ice on the displacement of non-linear surface waves. Sophis-

ticated three-dimensional models have also been developed. (Masson and LeBlond, 1989;

Meylan et al., 1997; Meylan and Masson, 2006) couple the solutions for individual ice

floes with a transport equation. Also, for a finite number of arbitrary plates, the three-

dimensional problem is solved by Peter and Meylan (2004). A number of works consider

periodic infinite or semi-infinite arrays. Chou (1998) solves for wave propagation through

an infinite array of periodically arranged surface scatterers or plates by an extension of

Floquet’s Theorem. Wang et al. (2007) solve for an infinite array using a periodic Green

function, while Peter et al. (2006) and Peter and Meylan (2007) solve the infinite and

semi-infinite array problem respectively using an interaction theory.

In this study, we consider a two-dimensional multiple floating elastic plate solution, which

is solved exactly via an extension of Fox and Squire (1994)’s matched eigenfunction ex-

pansion method (Kohout et al., 2007). The only physical parameters which are considered

are length, mass and elastic stiffness. All non-linear effects, floe collisions and ice-creep

are neglected so that the problem is only applicable to discrete floes which are large rela-

tive to thickness and non-extreme wave conditions. We consider this simplified model for

its flexibility, computational efficiency and as a practical tool to help understand the key

physical processes in wave scattering.
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2.2.3 Viscous Models

In more compact ice fields, the interactions between floes increase and it may no longer be

realistic to consider the ice field as being composed of individual floes (Wadhams, 2000).

Instead, floes collide or are held together by the stress of an on-ice wind or by freezing

of brash, pancake or frazil ice. Here the ice field is approaching the condition of being

a single entity, yet does not possess the bulk property of being a uniform elastic sheet

(Wadhams, 2000). It is tempting to ignore the detailed physics of the various energy

consuming, ice-water and ice-ice interaction processes and model a material with its sea

surface and wave-attenuation properties determined empirically. Weber (1987) was the

first to introduce the idea of considering such an ice-cover as a thin, highly viscous fluid.

The viscosity is included in the free surface condition as a dampening term. Liu and

Mollo-Christensen (1988) describe a physically more realistic model for wave decay which

assumes that attenuation is due to the viscous boundary layer under ice. It is assumed

that in a highly compact ice-cover, waves disperse as though propagating beneath a thin

elastic sheet. An oscillating boundary layer develops under the ice, causing energy loss.

2.3 Wave Attenuation

Experiments have shown that waves attenuate exponentially with distance of propagation

through ice, and the attenuation coefficient decreases with increasing wave period. There

is evidence of a “rollover”, where a trend of decreasing attenuation occurs at periods less

than 6-8 s. This rollover may be explained by an increase in energy at short periods due

to local generation of waves by wind (Squire and Wadhams, 1985). The point of rollover

depends on ice conditions, especially ice thickness (Liu et al., 1991).

There are several factors which influence the attenuation of waves through ice. It is,

however, not fully understood what these factors are and how much influence they have.

The most influential factor in diffuse ice is thought to be due to wave scatter (Section

2.2.2). In compact ice, viscous losses are thought to have the most influence (Section

2.2.3). According to Shen and Squire (1998), other factors which may be relevant in-

clude: the absorption due to hysteresis as floes deform on the passing wave field, the

absorption in the water column from processes such as wave breaking and the absorption

due to collisions and other interactions between floes. Shen et al. (1998) however find

that collisional stresses are only small and McKenna and Crocker (1990) conclude that

floe collisions cannot account for the observed decrease in wave energy.
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2.3.1 Wave Attenuation Models

Wadhams (1986) was a significant paper, as it showed how to estimate the transmitted

energy through a set of floes in terms of the transmitted energy through a single floe, so

that an attenuation coefficient could be estimated. The possible paths of each wave vec-

tor through the ice field are considered, and the final forward vector summed through all

possible multiple reflections. Dixon and Squire (2001) model wave scatter in the Marginal

Ice Zone, using the coherent potential approximation to compute the energy transport ve-

locity and derive an attenuation coefficient, which unfortunately does not compare well to

experimental results. Liu and Mollo-Christensen (1988) describe a model for wave decay,

which assumes attenuation is due to the viscous boundary layer under ice (Section 2.2.3).

They parametrise the energy loss by a tuning parameter, the eddy viscosity, which is

related to actual flow conditions. Their model agrees well with experimental data. Perrie

and Hu (1996) develop a model which is based on Masson and LeBlond (1989)’s model

and use a rigid cylindrical floe model (Isaacson, 1982). The scattering model is incorpo-

rated into an operational wave model. The model suffers from the requirement that the

ice floes be small enough to be modelled as rigid cylinders so that it is only applicable to

ice fields with small floes. For the most sophisticated wave–ice models, significant work is

required to reach the point where predictions of the attenuation coefficients are possible

and such predictions would require large computational resources so that no summary

of the attenuation coefficient as a function of various parameters has been possible. It

would be interesting to see how Perrie and Hu (1996)’s model would perform using a more

sophisticated three-dimensional ice floe model, such as the model of Meylan (2002).

The attenuation model we present in this thesis is also limited, as the only physics con-

sidered is the elastic bending of the floes. The numerical values for the wave-attenuation,

however, can be determined relatively straightforwardly and without using a tuning pa-

rameter (Section 8.6) (Kohout and Meylan, 2008b).

2.3.2 Wave Attenuation Field Experiments

Theory and experiment need to work together to understand complicated geophysical phe-

nomena such as wave–ice interaction. It is important to realise that recently, for wave–ice

interaction, there has been much more progress with modelling than with experiments.

This is highly unsatisfactory, and from a modeller’s perspective we have great need for

more experimental results.
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Methods

It is not at all surprising that models have surpassed experiments in this field. Scientists

have to work in remote locations and contend with some of the world’s toughest environ-

mental conditions including freezing air temperatures, icy seas and at times wild winds

and turbulent waves. In such conditions, scientists must calculate the wave spectrum

simultaneously (or near simultaneously) at constant intervals from the ice edge to deep

into the ice zone. The measurements need to be along the direction of the swell and

the scientists need to record a thorough analysis of the ice conditions at the time of the

experiment. A number of different methods are discussed below.

Early measurements

The first measurements of wave decay in the zone of discrete ice floes near an unconfined

ice margin were made by shipborne wave recorder (Robin, 1963) and reported in Wad-

hams (1979, 1986). Later measurements were made by upward-looking echo sounder from

a submerged hovering submarine Wadhams (1972, 1978) and by airborne laser profilome-

ter Wadhams (1975).

Wave buoys

Wave buoys have been the standard instrument for measuring waves for many years. The

most recent buoys use ultra-sensitive tiltmeters and novel re-zeroing techniques to au-

tonomously gather wave data. These modern buoys use Iridium satellite communication

systems to recover data continuously and to remotely control the instrument. For over

two years now, there have been several of these buoys drifting independently and success-

fully recording wave data. Unfortunately, while these buoys can successfully record many

useful properties, they can not record wave-attenuation data. Attaining wave-attenuation

data requires deployment of a series of wave buoys along the direction of swell to mea-

sure the local wave spectrum. The ice conditions at the time of the experiment, such as

floe thickness and size, must also be measured. It is difficult to obtain accurate wave-

attenuation data using wave buoys, as it requires extensive logistical support to measure

wave properties simultaneously (or near simultaneously), and results can be skewed by

changes in the swell conditions during the experiment and difference in the swell direction

for different periods or multi-directional swell.

Remote Sensing

Remote sensing can be used to obtain sea-ice information on a continuous basis. Due to

their all weather capability, microwave sensors like synthetic aperture radar (SAR) or the
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radiometer play an important role in this context. Radiometric systems like the Special

Sensor Microwave Imager (SSM/I) (Bjørgo et al., 1997) with a resolution between 10 and

50 km, are mainly used to measure sea-ice coverage and sea-ice type. SAR imagery as

acquired by the European Remote Sensing Satellite (ERS), has a resolution of about 20 m

and thus allows the study of processes in the MIZ on a smaller scale (Schulz-Stellenfleth

and Lehner, 2002). SAR can be used to observe the spatial properties of a wave field

in sea-ice (Larouche and Cariou, 1992) and is useful for collecting wave direction infor-

mation. SAR has been used to examine waves propagating through pancake ice fields

(Wadhams et al., 2002) and to estimate pancake ice thickness (Wadhams et al., 2004).

Unfortunately, however, the use of SAR has not been found to be practical in measuring

wave-attenuation through discrete floes.

Autonomous Underwater Vehicle (AUV)

In these experiments, an upward looking Acoustic Doppler Current Profiler (ADCP) is

mounted on an autonomous underwater vehicle (AUV). The AUV is a promising device

which can sample at high resolution and can sample a large portion of the MIZ over short

time scales (Hayes et al., 2007).

Available Data Sets

Early Data Sets

The wave decay measurements from the 60’s and early 70’s are available and have been

summarised and compared against wave-attenuation theory in Wadhams (1986).

The Scott Polar Research Institution (SPRI) Experiments

The most substantial set of experiments to measure wave-attenuation in the MIZ were

carried out by the SPRI in the late 1970’s and early 1980’s (Squire and Moore, 1980;

Wadhams et al., 1986, 1988). During these experiments, a helicopter was used to visit

floes at intervals within the ice fields along the major axis of the incoming wave spectrum.

At each site a wave buoy was inserted between floes to measure the local wave spectrum.

The flexural, heave and surge responses of the experimental floe were measured with ac-

celerometers and strain-meters. A mean thickness of the floes was determined by coring

at each of the experimental floes. Floe size distributions along the flight path into the

ice were derived from overlapping vertical photographs taken from helicopter. The main

sources of experimental error were changes in the swell conditions during the experiment,

difficulties in determining the ice floe size distribution and thickness, and difference in the

swell direction for different periods or multi-directional swell.
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The attenuation coefficients from the experiments in the Greenland Sea in September

1978, September 1979 and July 1983 are given in Wadhams et al. (1988) and are used

in this study. We also use the attenuation coefficients from the Bering Sea in March

1979 and February 1983. Unfortunately, due to possible reflection or absorption of waves

from the fjords, accurate attenuation coefficients could not be calculated from the 1978

Greenland Sea experiments.

The Labrador Ice Margin Experiment (LIMEX)

Another set of experiments took place off the east coast of Newfoundland, Canada, in

1987 and 1989. These experiments provided synthetic aperture radar (SAR) imagery,

wave buoy and ice property data. We attempted to obtain the results of this experiment,

but unfortunately were not successful.

The Antarctic Peninsula Experiments

Most recently an experiment took place in the MIZ of Antarctica. Autosub, an Au-

tonomous Underwater Vehicle (AUV), was used to complete four missions west of the

Antarctic Peninsula in the Bellinghausen Sea during 22 – 25 March 2003. The Autosub

is a promising new device. It is a battery-powered vehicle that follows a pre-programmed

course and can travel up to a maximum range of 400 km. In water track mode, the Au-

tosub’s navigation frame of reference is the water rather than the seabed, hence for some

missions, a mean current caused the sub to drift from the mission plan. Consequently,

the line of travel of the sub was not necessarily along the direction of the swell nor at

right angles to the ice edge. A thorough study of the ice conditions at the time of the

experiments was not conducted; estimations from the ship were made for each mission.

Hayes et al. (2007) notes that the attenuation coefficients for waves of period longer than

16 s may be compromised by possible surge response of the vehicle. A detailed description

of these experiments can be found in Hayes et al. (2007). The results of these experiments

were attained from D. Hayes and are used in this study.

2.4 Strain and Floe Break-up

Incoming waves cause ice floes to bend. If the bending induces sufficient strain, fracture

will occur (Squire, 1993). The breaking of large continuous floes and land-fast ice, supplies

the MIZ with ice floes and determines the floe size distribution of the MIZ (Langhorne

et al., 1998). Observations suggest that cracks initially form within a few tens of metres
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on the ice edge and that sea-ice thickness is the principal determinant of crack position.

Wavelength appears to play only a secondary role (Squire, 1993). During ocean wave

experiments, strain gauges were fixed to the upper surface of sea-ice floes in the Arctic

which provided some direct measurements of sea-ice fracturing. Results from these ex-

periments have shown an ice island to fracture at 3x10−5 (Goodman et al., 1980) and

sea-ice to fracture from 4.4x10−5 to 8.5x10−5 (Squire and Martin, 1980). Based on a series

of experiments carried out in the McMurdo Sound, Antarctica, Langhorne et al. (1998)

deduce that sea-ice fatigues when it is cyclically stressed. This fatigue can cause the ice to

fracture and breakup at stresses well below its flexural strength. Using these experiments,

Langhorne et al. (2001) predict the lifetime of the sea-ice as a function of significant wave

height and sea-ice brine fraction. We assume that, in general, if the strain is less than

3x10−5, the ice will have an infinite resistance to failure (Squire, 1993; Personal corre-

spondence with T. Haskell).

Fox and Squire (1991) were the first to completely and precisely model the strain in

ice due to incoming ocean waves. The model is an extension of their Fox and Squire

(1990) matched eigenfunction model, which is also summarised in Fox and Squire (1994),

for the solution of the velocity potential. Squire (1993) uses a variation on the Fox and

Squire (1991) method and considers wave propagation into a viscoelastic ice sheet. This

alters the travelling mode so that it attenuates exponentially by an amount which depends

on the magnitude of the viscous damping term, which unfortunately is currently unknown.

In Section 8.7, we define the strain as defined in Fox and Squire (1991) and consider

the effects it has on floe breakup for a given wave spectrum.

2.5 Very Large Floating Structures (VLFS)

The study of wave propagation through floating elastic plates can also be applied to

the construction of Very Large Floating Structures (VLFS). This has motivated much of

the recent research in this field. Our world has a growing population and a correspond-

ing expansion of urban development in land-scarce countries. Engineers have proposed

the construction of VLFS for industrial space, airports, storage facilities and habitation

(Watanabe et al., 2004). There are many examples of such structures already in place.

Japan have constructed a Mega-Float (a VLFS test model for floating airport terminals

and airstrips), a floating amusement facility, floating emergency rescue bases and floating

oil storage systems. There have been floating bridges built in Japan, Canada, Norway
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and the United States. Canada also has a floating heliport and Vietnam a floating Hotel

(Watanabe et al., 2004).

VLFS may be classified under two broad categories; the pontoon type and the semi-

submersible type. The pontoon type is suited to calm sea conditions and is usually

associated with naturally sheltered coastal formations. In open seas where wave heights

are relatively large, the semi-submersible type of structure is required, to minimise the

effects of waves (Watanabe et al., 2004). It is common for the semi-submersible type to

be modelled as a column supported structure consisting of a thin upper deck and a great

number of buoyancy elements. In Japan, most VLFS research has focused on the pontoon

type structure (Kashiwagi, 2000). Formulations for the pontoon type are closely related

to ice plate formulations. For the pontoon type, the wavelengths are very small compared

to the horizontal dimensions of the structure, hydroelastic responses are more important

than the rigid-body motions due to the relatively small flexural rigidity of the structure,

and they have a small draft (Kashiwagi, 2000). Consequently, much of the floating ice and

VLFS modelling methods are similar e.g. Matched Eigenfunction Expansion Methods,

Mesh Methods, and Green function Methods. Recently, VLFS research has focused on

topics such as mooring systems, breakwaters, profiles of seabed and anti-motion devices.

In this thesis, we consider a VLFS which is constructed via connecting a series of plates,

and solve using both the MEEM and GFM for various articulated edge conditions, in-

cluding springed and hinged plates (Chapter 6).



3
Formulation and Preliminaries

3.1 Introduction

We begin this chapter by outlining the two-dimensional elastic plate problem. We then

outline the familiar assumptions and boundary conditions. This is an important aspect

of this research as it forms the basis of our solution. We conclude the chapter with the

final non-dimensionalised equations.

3.2 The Problem

In this thesis, we consider the problem of small amplitude waves, incident on a set of

floating elastic plates occupying the entire water surface. Open water surfaces are ap-

proximated by very thin plates. The submergence of the plates is considered negligible.

The extension of the method to submerged plates may be possible by modifying the

present formulation, but this remains a subject for future research. We assume the prob-

lem is invariant in one horizontal direction, although we allow the waves to be incident

from an angle. The set of plates consists of two semi-infinite plates separated by a region

consisting of a finite number of plates, each with unique properties. A schematic diagram

of the problem is shown in Figure 3.1.

17
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y
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x

0

Figure 3.1: A schematic diagram of small amplitude waves incident on a set of floating plates occupy-
ing the entire water surface. x and y represent the horizontal co-ordinates and z represents
the vertical co-ordinate.

3.3 Assumptions and Conditions

We assume that in the fluid region −∞ < x, y < ∞ and −h < z ≤ 0, the flow is

irrotational and inviscid, so that the fluid velocity can be written as the gradient of a

velocity potential, Φ, which satisfies Laplace’s equation in the fluid region, i.e.

∇2Φ = 0, for − h < z ≤ 0. (3.1)

We consider only incident waves of a single frequency ω, and we assume that these waves

also have a simple harmonic variation with respect to y. The velocity potential of the

wave can therefore be expressed as

Φ(x, y, z, t) = <{φ(x, z)eikyye−iωt} (3.2)

(Stoker, 1957), where φ is the complex-valued potential, ky is the wave number in the y

direction, t is time and < denotes the real part. The corresponding elevation of the plates

is defined by <{η(x)eikyye−iωt}.

3.3.1 The Seabed

We assume the seabed is impermeable, therefore the velocity component normal to the

sea floor vanishes. Hence, the velocity potential at the sea floor satisfies

∂Φ

∂z
= 0, at z = −h. (3.3)
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3.3.2 The Free Surface

Open water, or the free surface, can also be solved explicitly by considering the following

conditions, which are applied in Section 4.4.3. At the free surface, where the (moving)

surface is always composed of fluid particles, the kinematic condition holds (Johnson,

1997) and is defined as

∂Φ

∂z
=

∂η

∂t
+

∂Φ

∂x∂y

∂η

∂x∂y
, at z = 0. (3.4)

We assume the amplitude at the free surface is small relative to the wavelength, and that

the curvature is small. Hence, the non-linear term can be assumed negligible and the

kinematic condition (3.4) becomes

∂η

∂t
=

∂Φ

∂z
, at z = 0 (3.5)

(Billingham and King, 2000). We eliminate time dependence using (3.2) to give

−iωη =
∂φ

∂z
, at z = 0. (3.6)

As it is assumed the flow is irrotational, the dynamic condition given by Bournoulli’s

equation applies
∂Φ

∂t
+

1

2
∇Φ · ∇Φ +

P

ρw

+ gη = 0 (3.7)

(Stoker, 1957), where P is the pressure at the water surface, g is the gravitational constant

and ρw is the water density.

It is usual to set the pressure at the free surface equal to the constant atmospheric pressure

(Johnson, 1997). We also linearise at the surface and eliminate time dependence to give

−iωφ + gη = 0, at z = 0. (3.8)

3.3.3 The Covered Surface

We assume the µth elastic plate has mass density ρµ and thickness τµ. The equation of

motion for the plate is therefore given by the elastic plate equation

P = Dµ

(
∂2

∂x2
− k2

y

)2

η − ω2ρµτµη, at z = 0, for lµ ≤ x ≤ rµ, (3.9)
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where P is the pressure at the surface, Dµ is the rigidity constant of the µth plate and is

given by Dµ = Y τ 3
µ/(12ρµ(1−ν2)) where Y is the effective Young’s modulus (GPa) and ν

is Poisson’s constant. lµ and rµ (= lµ+1) are the x co-ordinates of the left and right edge

of the µth plate. The dynamic condition given by the linearised Bernoulli’s equation for

a covered surface applies

−iωφ +
P

ρw

+ gη = 0, at z = 0 (3.10)

(Stoker, 1957), where P is the pressure at the water surface and ρw is the water density.

Equating (3.9) and (3.10) gives

Dµ

(
∂2

∂x2
− k2

y

)2

η − ω2ρµτµη − iωρwφ + ρwgη = 0, at z = 0, for lµ ≤ x ≤ rµ.

(3.11)

3.3.4 The Plate Edges

Additional constraints apply at the edges of the elastic plates. Plates with free edges

have a zero bending moment and shearing forces at each edge. The derivation of the free

edge boundary conditions are given in Fox and Squire (1994). The free edge boundary

conditions can be expressed as

(
∂3

∂x3
− k2

y(2− ν)
∂

∂x

)
η = 0, at z = 0, for x = lµ, rµ, (3.12)

(
∂2

∂x2
− k2

yν

)
η = 0, at z = 0, for x = lµ, rµ. (3.13)

Alternative conditions considered in this thesis include: clamped, simply supported, slid-

ing, springed and hinged. The clamped edge boundary conditions can be expressed as

∂η

∂x
= 0, at z = 0, for x = lµ, rµ, (3.14)

η = 0, at z = 0, for x = lµ, rµ. (3.15)
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The simply supported edge boundary conditions can be expressed as

∂2η

∂x2
= 0, at z = 0, for x = lµ, rµ, (3.16)

η = 0, at z = 0, for x = lµ, rµ. (3.17)

The sliding edge boundary conditions can be expressed as

∂3η

∂x3
= 0, at z = 0, for x = lµ, rµ, (3.18)

∂η

∂x
= 0, at z = 0, for x = lµ, rµ. (3.19)

(Chung, 2002). The springed edge boundary conditions can be expressed as

(
∂3

∂x3
− k2

y(2− ν)
∂

∂x

)
η(lµ+1) = −sv

β

(
η(lµ+1)− η(rµ)

)
,

(
∂3

∂x3
− k2

y(2− ν)
∂

∂x

)
η(rµ) = −sv

β

(
(η(lµ+1)− η(rµ)

)
,

(
∂2

∂x2
− k2

yν

)
η(lµ+1) =

sr

β

(
∂η(lµ+1)

∂x
− ∂η(rµ)

∂x

)
,

(
∂2

∂x2
− k2

yν

)
η(rµ) =

sr

β

(
∂η(lµ+1)

∂x
− ∂η(rµ)

∂x

)

(3.20)

(Xia et al., 2000), where sv is the vertical spring constant, sr is the rotational spring

constant and β is the stiffness constant. Lastly, the hinged edge boundary conditions can

be expressed as

η(rµ)− η(lµ+1) = 0,

∂3η(rµ)

∂x3
− ∂3η(lµ+1)

∂x3
= 0,

∂2η(lµ+1)

∂x2
= 0,

∂2η(rµ)

∂x2
= 0.

(3.21)
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3.4 Non-Dimensionalising the Variables

It is convenient to reduce the number of constants in the equations by non-dimensionalising.

We non-dimensionalise by scaling the spatial variables by a length parameter L and the

time variables by a time parameter
√
L/g. The choice of length parameter, L, we leave

open. A typical value for L is the water depth, h. The non-dimensional variables, denoted

by an overbar are

x̄ =
x

L , ȳ =
y

L , z̄ =
z

L , η̄ =
η

L , t̄ =
t√
g/L , ω̄ =

ω√
g/L , and φ̄ =

φ

L√Lg
.

The free surface boundary condition given by (3.8) can now be non-dimensionally ex-

pressed as

−iω̄φ̄ + η̄ = 0, for z = 0. (3.22)

Also, the boundary condition given by (3.11) can now be non-dimensionally expressed as

βµ

(
∂2

∂x̄2
− k2

y

)2

η̄ − ω̄2γµη̄ − iω̄φ̄ + η̄ = 0, at z = 0, for l̄µ ≤ x̄ ≤ r̄µ, (3.23)

where βµ = Dµ/(ρµgL4) is the stiffness constant and γµ = ρµτµ/(ρwL) is the mass con-

stant. From here on, all equations are expressed non-dimensionally, and for simplicity the

overbar will be omitted from the dimensionless variables in what follows.

3.5 Final Equations

Eliminating η using (3.6), equations (3.1), (3.3), (3.22) and (3.23) become

(
∂2

∂x2
+

∂2

∂z2
− k2

y

)
φ = 0, for − h < z ≤ 0, (3.24)

∂φ

∂z
= 0, at z = −h, (3.25)

∂φ

∂z
= αφ, at z = 0, for lµ ≤ x ≤ rµ, (3.26)
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(
βµ

(
∂2

∂x2
− k2

y

)2

− γµα + 1

)
∂φ

∂z
− αφ = 0, at z = 0, for lµ ≤ x ≤ rµ, (3.27)

where α = ω2.
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4
The Matched Eigenfunction Expansion

Method

4.1 Introduction

Within this chapter, we explicitly go through the steps involved in solving the elastic

plate problem using the Matched Eigenfunction Expansion Method (MEEM) (Linton

and McIver, 2001). We begin the chapter with a general description of the problem and

explain how it is solved. This is followed by solving explicitly for two plates, which leads

to solving for a set of plates. To finalise, we also solve for the shallow water case and

discuss an alternative solution method, which includes the free surface formulations.

4.2 Method of Solution

4.2.1 Eigenfunction Expansion

We will solve (3.24) to (3.27) using an eigenfunction expansion. This method has been

applied in many situations for linear water wave problems, and the technique is described

in Linton and McIver (2001). The method was developed by Fox and Squire (1994) for

the case of the elastic plate boundary condition. We show here how this method can

25
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be extended to the case of an arbitrary number of plates. This extension of the MEEM

has been published in Kohout et al. (2007). One of the key features in the eigenfunction

expansion method for elastic plates, is that extra modes are required in order to solve the

higher order boundary conditions at the plate edges. The first and last plates are semi-

infinite and the middle plates are finite. The velocity potential under the first plate can

be expressed as the summation of an incident wave and of reflected waves, one of which is

propagating but the rest of which are evanescent and decay as x tends to minus infinity.

Similarly, the potential under the final plate can be expressed as a sum of transmitted

waves, one of which is propagating and the rest of which are evanescent and decay towards

positive infinity. The potential under the middle plates can be expressed as the sum of

transmitted waves and reflected waves, each of which consists of a propagating wave and

evanescent waves, which decay as x increases or decreases respectively (Figure 4.1). We

could combine these waves in the formulation, but because of the exponential growth (or

decay) in the x direction, in some cases the solution becomes numerically unstable if the

transmission and reflection are not expanded at opposite ends of the plate.

Plate edge

RR R

TTI T

Figure 4.1: A schematic diagram of the incident (I), reflected (R) and transmitted (T ) waves.

The velocity potential can be written in terms of an infinite series of separated eigenfunc-

tions of the form

eκ(x) cos(k(z + h)) (4.1)

(Ursell, 1947), where κ and k are the wave numbers in the x and z direction respectively.

The free surface

As discussed in Section 4.4.3, the free surface can be solved exactly. It is however possible

to estimate the solution for the free surface, by solving for a surface covered by a very

thin plate. To identify the eigenfunctions at the free surface, we apply the free surface

boundary condition (3.26) to (4.1) and obtain

kf
µ tan(kf

µh) = α. (4.2)
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Solving for kf
µ, the free surface wave number of the µth plate in the z direction, the dis-

persion equation (4.2) gives a negative and positive pure imaginary root and an infinite

number of real roots which approach ±mπ/h as m approaches ± infinity (Linton and

McIver, 2001). We denote the negative purely imaginary root by kf
µ(0) and the positive

real roots by kf
µ(m) for m a positive integer. kf

µ(0) corresponds to a reflected travelling

mode propagating along the x axis and kf
µ(m) correspond to the reflected evanescent

modes. In a similar manner, the negative of these correspond to the transmitted travel-

ling and evanescent modes respectively.

The covered surface

To identify the eigenfunctions of a covered surface, we apply the boundary conditions

given by (3.25) and (3.27), and obtain

kµ tan (kµh) =− α

βµk4
µ + 1− αγµ

. (4.3)

Solving for kµ, the covered surface wave number of the µth plate in the z direction, the

dispersion equation (4.3) gives a negative and positive pure imaginary root, four complex

roots (two complex conjugate paired roots with positive real part and two with nega-

tive real part in all physical situations), an infinite number of real roots which approach

±mπ/h as m approaches ± infinity (Fox and Squire, 1994). We denote the two complex

roots with positive real part by kµ(−2) and kµ(−1), the negative purely imaginary root

by kµ(0) and the positive real roots by kµ(m) for m a positive integer. kµ(−2) and kµ(−1)

correspond to damped reflected travelling modes, kµ(0) corresponds to a reflected trav-

elling mode propagating along the x axis, and kµ(m) correspond to reflected evanescent

modes. In a similar manner, the negative of these correspond to the transmitted travel-

ling, damped and evanescent modes respectively. Note that β = γ = 0 recovers (4.2) with

−α.

The coefficient κµ is given by

κµ(m) =
√

kµ(m)2 + k2
y,

where ky = k1(0) sin(θ), where θ is the incident wave angle with respect to the x-axis.

Note that the solutions of the dispersion equation will differ per plate, and that the ex-

pansion is only valid under a single plate.
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4.2.2 The Velocity Potential

The incident wave

The incident wave consists of one travelling mode from negative infinity. Its potential

is defined by

φI = Ie−κ1(0)(x−r1) cos (k1(0)(z + h)),

where I is the non-dimensional incident wave amplitude in potential and r1 is the right

edge of the first plate.

The transmitted and reflected waves

We expand the potential under each plate (or the free surface) using the separation of

variables solution. For the potential under each plate (or free surface), we include all of

the roots of each dispersion equation (note, there are M+3 roots under each plate and

M+1 roots under each free surface, where M is the number of evanescent roots of the

dispersion equation). For the reflected waves, we require a solution of φ that remains finite

as x approaches −∞ and only consider the positive solutions of the dispersion equation

(4.3). For the transmitted waves, we require a solution that remains finite as x approaches

∞ and consider the negative solutions of the dispersion equation. The potential, φ, under

the µth plate can now be expressed as the eigenfunctions transmitted through the lµ edge

and propagating in the positive x direction, plus the eigenfunctions reflected from the rµ

edge and propagating in the negative x direction (Figure 4.1), i.e.

φµ ≈
M∑

m=n

Tµ(m)e−κµ(m)(x−lµ) cos kµ(m)(z + h)

cos kµ(m)h

+Rµ(m)eκµ(m)(x−rµ) cos kµ(m)(z + h)

cos kµ(m)h
, for lµ < x < rµ,

(4.4)

where n = 0 for the free surfaces and n = −2 for the ice-covered surfaces, µ is the µth

plate, Λ is the last plate, rµ is the x-co-ordinate of the right edge of the µth plate, lµ is the

x-co-ordinate of the left edge of the µth plate, Rµ(m) is the reflected potential coefficient

of the mth mode under the µth plate, and Tµ(m) is the transmitted potential coefficient of

the mth mode under the µth plate. Note that 4.4 is a truncation, for M = ∞ the solution

would be exact. Also, note that we divide by cos (kh). This is so the coefficients are

normalised by the potential at the surface rather than at the seabed. This means that if

the water is deep and the potential at the seabed is small, we avoid the problem of having

very small numbers for the coefficients in the expansion.
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4.2.3 The Displacement

Recall (3.6) which, assuming a small amplitude relative to wave length, implies

ηµ = − 1

iω
∂zφµ

∣∣
z=0

. (4.5)

Using (4.4), (4.5) becomes

ηµ ≈ − 1

iω

M∑
m=n

−Tµ(m)kµ(m)e−κµ(m)(x−lµ) tan (kµ(m)h)

−Rµ(m)kµ(m)eκµ(m)(x−rµ) tan (kµ(m)h), for lµ < x < rµ.

(4.6)

4.2.4 Eigenfunction Matching

To solve for the coefficients Tµ and Rµ, we require as many equations as we have un-

knowns. We derive the equations from the edge conditions, and from imposing conditions

of continuity of the potential and its partial derivative with respect to x, at each plate

boundary. We impose the latter condition by taking inner products with respect to the

orthogonal functions cos nπ
h

(z + h) where n is a natural number. These functions are

chosen for the following reasons. The vertical plate eigenfunctions, cos kµ(m)(z + h), are

not orthogonal (they are not even a basis) and could therefore lead to an ill-conditioned

system of equations. Furthermore, by choosing cos nπ
h

(z + h) we can use the same func-

tions to take the inner products under every plate. Finally, and most importantly, the

plate and free surface eigenfunctions approach cos (nπ/h)(z + h) for large n, so that as

we increase the number of modes, the matrices become almost diagonal, leading to a very

well-conditioned system of equations.
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4.3 Wave Propagation Through Two Semi-Infinite

Elastic Plates

I R1

T2

r1 = l2

Figure 4.2: A schematic diagram of wave propagation through two semi-infinite plates with an incident

wave (I) and reflected waves (R) under the left plate and transmitted waves under the right

plate (T). r1 is the right edge of the first plate and l2 is the left edge of the second plate.

For simplicity, we first show the solution for wave propagation through two semi-infinite

elastic plates with no edge restrictions. Each plate is homogeneous, but the plate prop-

erties per plate can vary (i.e. thickness). The wave can be incident from any angle. We

have an incident wave and the reflected waves under the first plate. Under the second

plate, we have the transmitted waves only (Figure 4.2). Note, the solution in this section

is exactly the solution of Barrett and Squire (1996). This particular problem has also

been solved by the Wiener–Hopf technique (Chung and Fox, 2002).

From Section 4.2, we can define the velocity potential of the region as

φ ≈





Ie−κ1(0)(x−r1) cos(k1(0)(z + h))

cos(k1(0)h)

+
M∑

m=−2

R1(m)eκ1(m)(x−r1) cos(k1(m)(z + h))

cos(k1(m)h)
, for x < r1,

M∑
m=−2

T2(m)e−κ2(m)(x−l2) cos(k2(m)(z + h))

cos(k2(m)h)
, for x > r1,

(4.7)

and the displacement as

η(x) ≈ − 1

iω





−Ik1(0)e−κ1(0)(x−r1) tan (k1(0)h)

−
M∑

m=−2

R1(m)k1(m)eκ1(m)(x−r1) tan (k1(m)h), for x < r1,

−
M∑

m=−2

T2(m)k2(m)e−κ2(m)(x−l2) tan (k2(m)h), for x > r1.

(4.8)
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As described in Section 4.2, we solve via eigenfunction matching between the plates

∫ 0

−h

φ1(r1, z) cos
nπ

h
(z + h) dz =

∫ 0

−h

φ2(l2, z) cos
nπ

h
(z + h) dz,

∫ 0

−h

∂φ1(r1, z)

∂x
cos

nπ

h
(z + h) dz =

∫ 0

−h

∂φ2(l2, z)

∂x
cos

nπ

h
(z + h) dz,

(4.9)

where n ∈ [0,M ]. Expanding the first matching in (4.9) gives

∫ 0

−h

M∑
m=−2

I
cos (k1(0)(z + h))

cos(k1(0)h)
cos

(nπ

h
(z + h)

)
dz

+

∫ 0

−h

M∑
m=−2

R1(m)
cos (k1(m)(z + h))

cos(k1(m)h)
cos

(nπ

h
(z + h)

)
dz

=

∫ 0

−h

M∑
m=−2

T2(m)
cos (k2(m)(z + h))

cos(k2(m)h)
cos

(nπ

h
(z + h)

)
dz,

(4.10)

and expanding the second matching gives

∫ 0

−h

M∑
m=−2

−κ1(0)I
cos (k1(0)(z + h))

cos(k1(0)h)
cos

(nπ

h
(z + h)

)
dz

+

∫ 0

−h

M∑
m=−2

R1(m)
cos (k1(m)(z + h))

cos(k1(m)h)
cos

(nπ

h
(z + h)

)
dz

=

∫ 0

−h

M∑
m=−2

T2(m)
cos (k2(m)(z + h))

cos(k2(m)h)
cos

(nπ

h
(z + h)

)
dz.

(4.11)

The remaining equations to be solved are given by the two free edge conditions per edge

(
∂3

∂x3
− k2

y(2− ν)
∂

∂x

)
∂φ

∂z
= 0, at z = 0, for x = r1, l2,

(
∂2

∂x2
− k2

yν

)
∂φ

∂z
= 0, at z = 0, for x = r1, l2.

(4.12)

Expanding the first edge condition under the first plate in (4.12) gives

0 =
M∑

m=−2

(
I −R1

)(
(κ1(m)3 − κ1(m)k2

y(2− ν)) tan(k1(m)h)
)
, (4.13)
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and expanding the first edge condition under the second plate gives

0 = −
M∑

m=−2

T2

(
(κ2(m)3 − κ2(m)k2

y(2− ν)) tan(k2(m)h)
)
. (4.14)

Expanding the second edge condition under the first plate in (4.12) gives

0 =
M∑

m=−2

(−I −R1

)(
(κ1(m)2 − k2

yν) tan(k1(m)h)
)
, (4.15)

and expanding the second edge condition under the second plate gives

0 =
M∑

m=−2

−T2

(
(κ2(m)2 − k2

yν) tan(k2(m)h)
)
. (4.16)

We will show the explicit form of the linear system of equations which arise when we solve

(4.9) and (4.12). Let T2 be the vector representing [T2(−2), ...,T2(M)] and R1 be the

vector representing [R1(−2), ...,R1(M)].

The equations which arise from matching between the plates are

IC + MRR1 = MTT2,

−κ1(0)IC + NRR1 = NTT2,
(4.17)

where MR and MT represent matrices of size (M + 1) by (M + 3) such that

MR(n,m) =

∫ 0

−h

cos k1(m)(z + h)

cos k1(m)h
cos

nπ

h
(z + h) dz,

MT (n, m) =

∫ 0

−h

cos k2(m)(z + h)

cos k2(m)h
cos

nπ

h
(z + h) dz.

(4.18)

NR and NT are (M + 1) by (M + 3) matrices such that

NR(n,m) = κ1(m)MR(n,m),

NT (n,m) = −κ2(m)MT (n,m).
(4.19)

C is a (M + 1) by (1) matrix representing the incident wave and is given by

C(n) =

∫ 0

−h

cos k1(0)(z + h)

cos k1(0)h
cos

nπ

h
(z + h) dz. (4.20)
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We can express the edge conditions (4.12), as

IE+
T1

+ E+
R1

R1 = 0,

E−
T2

T2 = 0,
(4.21)

where E+
R1

and E−
T2

are (2) by (M+3) matrices given by

E+
R1

(1,m) = (κ1(m)2 − (2− ν)k2
y)(−k1(m)κ1(m) tan (k1(m)h)),

E−
T2

(1,m) = (κ2(m)2 − (2− ν)k2
y)(k2(m)κ2(m) tan (k2(m)h)),

E+
R1

(2,m) = (κ1(m)2 − νk2
y)(−k1(m) tan (k1(m)h)),

E−
T2

(2,m) = (κ2(m)2 − νk2
y)(−k2(m) tan (k2(m)h)).

(4.22)

E+
T1

represents the incident wave and is a (2) by (1) matrix given by

E+
T1

(1, 0) = (κ1(0)3 − k2
yκ1(0)(2− ν))(k1(0) tan (k1(0)h)),

E+
T1

(2, 0) = −(κ1(0)2 − νk2
y)(k1(0) tan (k1(0)h)).

(4.23)

Combining the set of coefficients, R and T can now be solved by




MR −MT

NR −NT

E+
R1

0

0 E−
T2



×




R1

...

T2


 =




−IC

Iκ1(0)C

0
...

−IE+
T1

0

0




.
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4.4 Wave Propagation Through a Set of Plates

| ||
||

|

I R1

T2 R2 TΛ−1 RΛ−1

TΛ

r1 = l2 rΛ−1 = lΛ

Figure 4.3: A schematic diagram of wave propagation through a set of plates with I representing the

incident wave, Rµ representing the reflected waves under the µth plate and Tµ representing

the transmitted waves under the µth plate. rµ is the right edge of the µth plate and lµ is the

left edge of the µth plate.

4.4.1 Arbitrary Depth

Here we show how we can extend the eigenfunction expansion and matching technique

to the case of a set of plates. We let the first and last plates be semi-infinite and the

middle plates be finite. Each plate is homogeneous, but the plate properties can very per

plate (i.e. thickness and length). The wave can be incident from any angle. The velocity

potential of the first plate can be expressed as the summation of an incident wave and of

reflected waves, one of which is propagating, the rest of which are evanescent and decay

as x tends to minus infinity. Similarly the potential under the final plate can be expressed

as a sum of transmitted waves, one of which is propagating and the rest of which are

evanescent and decay towards plus infinity. The potential under the middle plates can be

expressed as the sum of transmitted waves and reflected waves, each of which consists of

a propagating wave plus evanescent waves which decay as x increases or decreases respec-

tively (Figure 4.3).

We note that we can simulate open water by setting the plate thickness to be small

or by introducing an additional formulation. For all solutions of the MEEM in this thesis,

we simply set the plate thickness to be very thin to simulate open water. In Section 4.4.3,

it is explained how to include the additional formulation to explicitly simulate open water.

We now expand the potential under each plate using the separation of variables solution.

We always include the two complex and one imaginary root and truncate the expansion

at M real roots to the dispersion equation. From Section 4.2, the potential φ can be
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expressed as the following sum of eigenfunctions

φ(x, z) ≈





Ie−κ1(0)(x−r1) cos(k1(0)(z + h))

cos(k1(0)h)

+
M∑

m=−2

R1(m)eκ1(m)(x−r1) cos(k1(m)(z + h))

cos(k1(m)h)
, for x < r1,

M∑
m=−2

Tµ(m)e−κµ(m)(x−lµ) cos(kµ(m)(z + h))

cos(kµ(m)h)

+
M∑

m=−2

Rµ(m)eκµ(m)(x−rµ) cos(kµ(m)(z + h))

cos(kµ(m)h)
, for lµ < x < rµ,

M∑
m=−2

TΛ(m)e−κΛ(m)(x−lΛ) cos(kΛ(m)(z + h))

cos(kΛ(m)h)
, for lΛ < x,

(4.24)

where I is the incident wave amplitude, µ is the µth plate, Λ is the last plate, rµ is the

x co-ordinate of the right edge of the µth plate, lµ is the x co-ordinate of the left edge of

the µth plate, Rµ(m) is the reflected potential coefficient of the mth mode under the µth

plate, and Tµ(m) is the transmitted potential coefficient of the mth mode under the µth

plate.

The displacement can be expressed as

η(x) ≈ − 1

iw





−Ik1(0)e−κ1(0)(x−r1) tan (k1(0)h)

−
M∑

m=−2

R1(m)k1(m)eκ1(m)(x−r1) tan (k1(m)h), for x < r1,

−
M∑

m=−2

Tµ(m)kµ(m)e−κµ(m)(x−lµ) tan (kµ(m)h)

−
M∑

m=−2

Rµ(m)kµ(m)eκµ(m)(x−rµ) tan (kµ(m)h), for lµ < x < rµ,

−
M∑

m=−2

TΛ(m)kµ(m)e−κµ(m)(x−lΛ) tan (kµ(m)h), for lΛ < x.

(4.25)

To solve for the coefficients, we require as many equations as we have unknowns. As

described in Section 4.2, we derive the equations from the free edge conditions and from

imposing conditions of continuity of the potential and its derivative in the x-direction
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at each plate boundary. We impose the latter condition by taking inner products with

respect to the orthogonal functions cos nπ
h

(z + h) where n is a natural number. The

matched eigenfunctions are given by

∫ 0

−h

φµ(rµ, z) cos
(nπ

h
(z + h)

)
dz

=

∫ 0

−h

φµ+1(lµ+1, z) cos
(nπ

h
(z + h)

)
dz

(4.26)

and ∫ 0

−h

∂φµ

∂x
(rµ, z) cos

(nπ

h
(z + h)

)
dz

=

∫ 0

−h

∂φµ+1

∂x
(lµ+1, z) cos

(nπ

h
(z + h)

)
dz,

(4.27)

where n ∈ [0,M ] and φµ is given by (4.24) and denotes the potential under the µth plate

valid for lµ < x < rµ. Expanding (4.26) gives

∫ 0

−h

M∑
m=−2

Tµ(m)e−κµ(m)(rµ−lµ) cos (kµ(m)(z + h))

cos(kµ(m)h)
cos

(nπ

h
(z + h)

)
dz

+

∫ 0

−h

M∑
m=−2

Rµ(m)
cos (kµ(m)(z + h))

cos(kµ(m)h)
cos

(nπ

h
(z + h)

)
dz

=

∫ 0

−h

M∑
m=−2

Tµ+1(m)
cos (kµ+1(m)(z + h))

cos(kµ+1(m)h)
cos

(nπ

h
(z + h)

)
dz

+

∫ 0

−h

M∑
m=−2

Rµ+1(m)eκµ+1(m)(lµ+1−rµ+1)
cos (kµ+1(m)(z + h))

cos(kµ+1(m)h)

cos
(nπ

h
(z + h)

)
dz,

(4.28)
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and expanding (4.27) gives

∫ 0

−h

M∑
m=−2

−κµ(m)Tµ(m)e−κµ(m)(rµ−lµ) cos (kµ(m)(z + h))

cos(kµ(m)h)
cos

(nπ

h
(z + h)

)
dz

+

∫ 0

−h

M∑
m=−2

Rµ(m)
cos (kµ(m)(z + h))

cos(kµ(m)h)
cos

(nπ

h
(z + h)

)
dz

=

∫ 0

−h

M∑
m=−2

Tµ+1(m)
cos (kµ+1(m)(z + h))

cos(kµ+1(m)h)
cos

(mπ

h
(z + h)

)
dz

+

∫ 0

−h

M∑
m=−2

−κµ+1(m)Rµ+1(m)eκµ+1(m)(lµ+1−rµ+1)
cos (kµ+1(m)(z + h))

cos(kµ+1(m)h)

cos
(nπ

h
(z + h)

)
dz.

(4.29)

The remaining equations to be solved are given by the two free edge conditions satisfied

at both edges of each plate

(
∂3

∂x3
− k2

y(2− ν)
∂

∂x

)
∂φµ

∂z
= 0, at z = 0, for x = lµ, rµ,

(
∂2

∂x2
− k2

yν

)
∂φµ

∂z
= 0, at z = 0, for x = lµ, rµ.

(4.30)

We expand for the µth and (µ + 1)th plates for each edge condition in (4.30). The first

edge condition at the left edge of the plate gives

0 =
M∑

m=−2

(
Tµ −Rµe

κµ(m)(lµ−rµ)
)

(
(κµ(m)3 − κµ(m)k2

y(2− ν)) tan(kµ(m)h)
)
,

(4.31)

and the first edge condition at the right edge of the plate gives

0 =
M∑

m=−2

(
Tµe

−κµ(m)(rµ−lµ) −Rµ

)

(
(κµ(m)3 − κµ(m)k2

y(2− ν)) tan(kµ(m)h)
)
.

(4.32)
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The second edge condition at the left edge of the plate gives

0 =
M∑

m=−2

(−Tµ −Rµe
κµ(m)(lµ−rµ)

)

(
(κµ(m)2 − k2

yν) tan(kµ(m)h)
)
,

(4.33)

and the second edge condition at the right edge of the plate gives

0 =
M∑

m=−2

(−Tµe
−κµ(m)(rµ−lµ) −Rµ

)

(
(κµ(m)2 − k2

yν) tan(kµ(m)h)
)
.

(4.34)

We will show the explicit form of the linear system of equations which arise when we solve

(4.28), (4.29) and (4.31) to (4.34).

Let Tµ be a column vector given by [Tµ(−2), ..., Tµ(M)]T and Rµ be a column vector

given by [Rµ(−2)...Rµ(M)]T. The equations which arise from matching at the boundary

between the first and second plates are

IC + M+
R1

R1 = M−
T2

T2 + M−
R2

R2,

−κ1(0)IC + N+
R1

R1 = N−
T2

T2 + N−
R2

R2.
(4.35)

The equations which arise from matching at the boundary between the µth and (µ + 1)th

plates (µ > 1) are

M+
Tµ

Tµ + M+
Rµ

Rµ = M−
Tµ+1

Tµ+1 + M−
Rµ+1

Rµ+1,

N+
Tµ

Tµ + N+
Rµ

Rµ = N−
Tµ+1

Tµ+1 + N−
Rµ+1

Rµ+1.
(4.36)

The equations which arise from matching at the Λth − 1 and Λth boundary are

M+
TΛ−1

TΛ−1 + M+
RΛ−1

RΛ−1 = M−
TΛ

TΛ,

N+
TΛ−1

TΛ−1 + N+
RΛ−1

RΛ−1 = N−
TΛ

TΛ,
(4.37)

where M+
Tµ

and M+
Rµ

are (M + 1) by (M + 3) matrices given by

M+
Tµ

(n,m) =

∫ 0

−h

e−κµ(m)(rµ−lµ) cos (kµ(m)(z + h))

cos (kµ(m)h)
cos

(nπ

h
(z + h)

)
dz,

M+
Rµ

(n,m) =

∫ 0

−h

cos (kµ(m)(z + h))

cos (kµ(m)h)
cos

(nπ

h
(z + h)

)
dz,

(4.38)
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and
M−

Tµ
(n,m) = M+

Rµ
(n,m),

M−
Rµ

(n,m) = M+
Tµ

(n,m).
(4.39)

N+
Tµ

, N+
Rµ

, N−
Tµ

, and N−
Rµ

are given by

N±
Tµ

(n,m) = −κµ(m)M±
Tµ

(n,m),

N±
Rµ

(n,m) = κµ(m)M±
Rµ

(n,m).
(4.40)

C is a (M + 1) vector which is given by

C(n) =

∫ 0

−h

cos(k1(0)(z + h))

cos(k1(0)h)
cos

(nπ

h
(z + h)

)
dz. (4.41)

Now, for all but the first and Λth plate, (4.30) becomes

E+
Tµ

Tµ + E+
Rµ

Rµ = 0,

E−
Tµ

Tµ + E−
Rµ

Rµ = 0.
(4.42)

The first and last plates only require two equations because there is only one plate edge.

The equation for the first plate must be modified to include the effect of the incident

wave. This gives

I

(
E+

T1
(1, 0)

E+
T1

(2, 0)

)
+ E+

R1
R1 = 0, (4.43)

and for the Λth plate we have no reflection so

E−
TΛ

TΛ = 0 (4.44)

E+
Tµ

, E+
Rµ

, E−
Tµ

and E−
Rµ

are (2) by (M+3) matrices given by

E−(1,m)Tµ = (κµ(m)2 − (2− ν)k2
y)(kµ(m)κµ(m) tan (kµ(m)h)),

E+(1,m)Tµ = (κµ(m)2 − (2− ν)k2
y)(kµ(m)κµ(m)e−κµ(m)(rµ−lµ) tan (kµ(m)h)),

E−(1,m)Rµ = (κµ(m)2 − (2− ν)k2
y)(−kµ(m)κµ(m)eκµ(m)(lµ−rµ) tan (kµ(m)h)),

E+(1,m)Rµ = (κµ(m)2 − (2− ν)k2
y)(−kµ(m)κµ(m) tan (kµ(m)h)),

E−(2,m)Tµ = (κµ(m)2 − νk2
y)(−kµ(m) tan (kµ(m)h)),

E+(2,m)Tµ = (κµ(m)2 − νk2
y)(−kµ(m)e−κµ(m)(rµ−lµ) tan (kµ(m)h)),

E−(2,m)Rµ = (κµ(m)2 − νk2
y)(−kµ(m)eκµ(m)(lµ−rµ) tan (kµ(m)h)),

E+(2,m)Rµ = (κµ(m)2 − νk2
y)(−kµ(m) tan (kµ(m)h)).

(4.45)
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Now, the matching matrix is a (2M +6)× (Λ− 1) by (2M +1)× (Λ− 1) matrix given by

M =




M+
R1

−M−
T2

−M−
R2

0 0 0 0 0
N+

R1
−N−

T2
−N−

R2
0 0 0 0 0

0 M+
T2

M+
R2

−M−
T3

−M−
R3

. . . 0 0 0
0 N+

T2
N+

R2
−N−

T3
−N−

R3
0 0 0

...
. . .

0 0 0 0 0 M+
TΛ−1

M+
RΛ−1

−M−
TΛ

0 0 0 0 0 N+
TΛ−1

N+
RΛ−1

−N−
TΛ




, (4.46)

the edge matrix is a (2M + 6)× (Λ− 1) by 4(Λ− 1) matrix given by

E =




E+
R1

0 0 0 0 0 0 0

0 E+
T2

E+
R2

0 0 0 0 0

0 E−
T2

E−
R2

0 0 0 0 0

0 0 0 E+
T3

E+
R3

. . . 0 0 0

0 0 0 E−
T3

E−
R3

0 0 0
...

. . .

0 0 0 0 0 E+
TΛ−1

E+
RΛ−1

0

0 0 0 0 0 E−
TΛ−1

E−
RΛ−1

0

0 0 0 0 0 0 0 E−
TΛ




, (4.47)

and finally, the complete system to be solved is given by

(
M

E

)
×




R1

T2

R2

T3

R3

...

TΛ−1

RΛ−1

TΛ




=




−IC

κ1(0)IC

0
...

−IE+
Tµ

(1, 0)

−IE+
Tµ

(2, 0)

0
...




. (4.48)

The final system of equations has size (2M + 6) × (Λ − 1) by (2M + 6) × (Λ − 1). The

method of solution we have derived is relatively simple and leads to large systems of

equations when we simulate multiple plates. Our aim is to produce code which is simple

to develop and which we have a strong degree of confidence is numerically accurate and

error free. We do not want to make any kind of wide-spacing approximations since real
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ice fields always have some small floes which we want to be able to account for. We have

used our method to solve for up to a hundred plates in simulations of wave propagation

in the Marginal Ice Zone.

The system of equations has a large number of zero entries, due to the fact that each plate

couples only with its nearest neighbour. It seems likely that a more sophisticated method

of solution could be developed, which exploits this structure. We have been unable to

find such a method due to the difficulty of including the free edge conditions.

4.4.2 Shallow Water

Consider the special case of a wave in shallow water propagating obliquely through a set

of ice plates. Recall the dispersion equation (4.3). For small h, tan (kh) ≈ kh and the

dispersion equation becomes

βµk
6
µ + (1− αγµ)k2

µ −
α

h
= 0. (4.49)

Solving for kµ gives two purely imaginary travelling modes and four complex damped

travelling modes, i.e. there no longer exists an infinite number of real modes. Three

modes for each of the reflected and transmitted potentials remain. The shallow water

potential, φs, can now be expressed as

φs =





Ie−κ1(0)(x−r1) cos(k1(0)(z + h))

cos (k1(0)h)

+
0∑

m=−2

R1(m)eκ1(m)(x−r1) cos (k1(m)(z + h))

cos (k1(m)h)
, for x < r1,

0∑
m=−2

Tµ(m)e−κµ(m)(x−lµ) cos(kµ(m)(z + h)

cos(kµ(m)h)

+Rµ(m)eκµ(m)(x−rµ) cos(kµ(m)(z + h))

cos(kµ(m)h)
, for lµ < x < rµ,

0∑
m=−2

TΛ(m)e−κµ(m)(x−lΛ) cos(kµ(m)(z + h)

cos(kµ(m)h)
, for lΛ < x,

(4.50)

where µ stands for the µth plate and Λ is the last plate.
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For the shallow water displacement, ηs, tan (kh) ≈ kh implies

ηs = − i

ω





Ik1(0)2he−κ1(0)(x−r1)

−
0∑

m=−2

R1(m)k1(m)2heκ1(m)(x−r1), for x < r1,

−
0∑

m=−2

Tµ(m)kµ(m)2he−κµ(m)(x−lµ)

−Rµ(m)kµ(m)2heκµ(m)(x−rµ), for lµ < x < rµ,

ηΛ = −
M+3∑
m=1

TΛ(m)kΛ(m)2e−κΛ(m)(x−lΛ), for lΛ < x.

(4.51)

We again solve for the coefficients by matching the potential and its derivative at each

plate boundary, but in this case do not need to generate extra equations as the evanescent

modes are non-existent. We simply state that at each plate boundary at z = 0,

φµ = φµ+1,

∂φµ

∂x
=

∂φµ+1

∂x
.

(4.52)

The edge conditions remain the same as in (4.30). We show the explicit form of the

linear system of equations which arise when solving for shallow water and again let Tµ

be a column vector given by [Tµ(−2), ..., Tµ(M)]T and Rµ be a column vector given by

[Rµ(−2)...Rµ(M)]T. The equations which arise from matching at the boundary between

the first and second plate are

I + M+
R1

R1 = M−
T2

T2 + M−
R2

R2,

−κ1(0)I + N+
R1

R1 = N−
T2

T2 + N−
R2

R2.
(4.53)

The equations which arise from matching at the boundary between the µth and (µ + 1)th

plate are

M+
Tµ

Tµ + M+
Rµ

Rµ = M−
Tµ+1

Tµ+1 + M−
Rµ+1

Rµ+1,

N+
Tµ

Tµ + N+
Rµ

Rµ = N−
Tµ+1

Tµ+1 + N−
Rµ+1

Rµ+1.
(4.54)

The equations which arise from matching at the Λth − 1 and Λth boundary are

M+
TΛ−1

TΛ−1 + M+
RΛ−1

RΛ−1 = M−
TΛ

TΛ,

N+
TΛ−1

TΛ−1 + N+
RΛ−1

RΛ−1 = N−
TΛ

TΛ,
(4.55)
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where for this case, M+
Tµ

, M+
Rµ

, M−
Tµ

, and M−
Rµ

are (M + 1) by (M + 3) matrices given by

M+
Tµ

(n,m) = e−κµ(m)(rµ−lµ),

M+
Rµ

(n,m) = 1,

M−
Tµ

(n,m) = 1,

M−
Rµ

(n,m) = eκµ(m)(lµ−rµ).

(4.56)

N+
Tµ

, N+
Rµ

, N−
Tµ

, and N−
Rµ

are given by

N±(n,m)Tµ = −κµ(m)M±
Tµ

(n,m),

N±(n,m)Rµ = κµ(m)M±
Rµ

(n,m).
(4.57)

For all but the first and Λth plate, (4.30) can be expressed as

E+
Tµ

Tµ + E+
Rµ

Rµ = 0,

E−
Tµ

Tµ + E−
Rµ

Rµ = 0.
(4.58)

For the first plate, we obtain

I

(
E+

T1
(1, 0)

E+
T1

(2, 0)

)
+ E+

R1
R1 = 0, (4.59)

and, for the Λth plate,

E−
TΛ

TΛ = 0. (4.60)

E+
Tµ

, E+
Rµ

, E−
Tµ

and E−
Rµ

are 2 by M+3 matrices given by

E−(1,m)Tµ = (κµ(m)2 − (2− ν)k2
y)(k

2
µ(m)κµ(m)),

E+(1,m)Tµ = (κµ(m)2 − (2− ν)k2
y)(k

2
µ(m)κµ(m)e−κµ(m)(rµ−lµ)),

E−(1,m)Rµ = (κµ(m)2 − (2− ν)k2
y)(−k2

µ(m)κµ(m)eκµ(m)(lµ−rµ)),

E+(1,m)Rµ = (κµ(m)2 − (2− ν)k2
y)(−k2

µ(m)κµ(m)),

E−(2,m)Tµ = (κµ(m)2 − νk2
y)(−k2

µ(m)),

E+(2,m)Tµ = (κµ(m)2 − νk2
y)(−k2

µ(m)e−κµ(m)(rµ−lµ)),

E−(2,m)Rµ = (κµ(m)2 − νk2
y)(−k2

µ(m)eκµ(m)(lµ−rµ)),

E+(2,m)Rµ = (κµ(m)2 − νk2
y)(−k2

µ(m)).

(4.61)
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We again express the large matching matrix as

M =




M+
R1

−M−
T2

−M−
R2

0 0 0 0 0
N+

R1
−N−

T2
−N−

R2
0 0 0 0 0

0 M+
T2

M+
R2

−M−
T3

−M−
R3

. . . 0 0 0
0 N+

T2
N+

R2
−N−

T3
−N−

R3
0 0 0

...
. . .

0 0 0 0 0 M+
TΛ−1

M+
RΛ−1

−M−
TΛ

0 0 0 0 0 N+
TΛ−1

N+
RΛ−1

−N−
TΛ




, (4.62)

and the edge matrix as

E =




E+
R1

0 0 0 0 0 0 0

0 E+
T2

E+
R2

0 0 0 0 0

0 E−
T2

E−
R2

0 0 0 0 0

0 0 0 E+
T3

E+
R3

. . . 0 0 0

0 0 0 E−
T3

E−
R3

0 0 0
...

. . .

0 0 0 0 0 E+
TΛ−1

E+
RΛ−1

0

0 0 0 0 0 E−
TΛ−1

E−
RΛ−1

0

0 0 0 0 0 0 0 E−
TΛ




, (4.63)

so that the complete system to be solved is given by

(
M

E

)
×




R1

T2

R2

T3

R3

...

TΛ−1

RΛ−1

TΛ




=




−I

κ1(0)I

0
...

−IE+
T1

(1, 0)

−IE+
T1

(1, 0)

0
...




. (4.64)
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4.4.3 The Free Surface Formulation

Throughout this thesis, open water is simulated by setting the plate thickness to be suf-

ficiently small. The additional free surface formulation can be used as an alternative

representation of open water. This technique is slightly more complicated, but is also

slightly more accurate and more practical under certain circumstances, since it has two

fewer unknowns.

For each free surface region, the matching and edge matrices (M, N, C) are redefined

using the set of free surface eigenfunctions defined in Section 4.2.1. No edge conditions

exist for free surface regions. For the free surface, each matrix in (4.61) is therefore zero.

Due to the lack of damped modes at the free surface, the free surface M and N matrices

are now square matrices of size (M+1). The structure of the large matrices M and E

remain the same and have the same number of rows, but have two less columns per free

surface region.
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5
The Green Function Method

The Green function was first derived for infinite depth by Squire and Dixon (2001) and for

finite depth by Evans and Porter (2003). We include this solution method as it is a useful

tool to verify the results of the MEEM (Section 7). In this chapter, we re-express the

derivation of Evans and Porter (2003) and Porter and Evans (2006) to be consistent with

our notation. Note that our derivation of the GFM equations is new, as is the application

of the GFM to various edge conditions (Section 6).

The Green Function Method (GFM) considers the entire free surface to be occupied by

a floating elastic plate, with identical properties throughout and a set of discontinuities,

i.e. cracks, at x′n where n = 1, ..., Λ − 1. Note that this is problem can be solved using

MEEM with Λ identical plates. The Free-Surface Green Function for a floating elastic

plate is given by

G(x, x′, z) =
∞∑

m=−2

k(m) sin (k(m)h) cos (k(m)(z + h))

2ακ(m)C(k(m))
e−κ(m)|x−x′|,

C(k(m)) =
1

2

(
h− (5βk(m)4 + 1− αγ) sin2 (k(m)h)

α

)
,

(5.1)

47
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and satisfies the following equations

∇2G = 0, −h < z < 0,

Gz = 0, z = −h,(
β(∂2

x − k2
y)

2 − γα + 1
)
Gz − αG = δ(x− x′), z = 0,

(5.2)

where k(m) are the solutions given by (4.3). Green’s second identity can be applied as

φ and G are both twice continuously differentiable on U , where U is the area bounded

by the contour S, which is defined by the boundaries of the sea floor, sea surface and the

extent of the floating plate (Figure 5.1).

U

S

z = 0

z = −h

x = −∞ x = ∞

Figure 5.1: A schematic diagram showing the area, U bounded by the contour S, which is defined by

the boundaries of the sea floor (−h ≤ z ≤ 0) and the extent of the floating plate (−∞ ≤
x ≤ ∞).

Hence by Green’s second identity,

∫

U

(
G∇2φ− φ∇2G

)
dV =

∮

∂U
(Gφn − φGn) dS, (5.3)

where n is the outward plane normal to the boundary, S.

Our governing equations for G and φ imply that the L.H.S of Green’s second identity is

zero so that

0 =

∮

∂U
(Gφn − φGn) dS. (5.4)
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Expanding (5.4) gives

0 = lim
N→∞

[ ∫ N

−N

(Gφz|z=0 − φGz|z=0) dx

+

∫ 0

−h

(Gφx|x=N − φGx|x=N) dz

−
∫ N

−N

(Gφ−z|z=−h − φG−z|z=−h) dx

−
∫ 0

−h

(Gφ−x|x=−N − φG−x|x=−N) dz

]
,

(5.5)

where we take the limit as N goes to infinity. We evaluate the four integrals in (5.5)

separately.

The first integral in (5.5) is given by

∫ ∞

−∞
(G(x, x′)φz(x

′)− φ(x′)Gz(x, x′)) dx. (5.6)

We integrate by parts remembering that φz is continuous everywhere except at x = x′n so

that ∫ ∞

−∞
(∂4

xφz)Gzdx =
Λ−1∑
n=1

∫ x′n

−∞
(∂4

xφz)Gzdx +

∫ ∞

x′n

(∂4
xφz)Gzdx, (5.7)

where ∫ b

a
(∂4

xφz)Gzdx =
∫ b

a
φz(∂xG)dx

−φz(b)(∂
3
xG(b)) + φz(a)(∂3

xG(a))

+(∂xφz(b))(∂
2
xG(b))− (∂xφz(a))(∂2

xG(a))

−(∂2
xφz(b))(∂xG(b)) + (∂2

xφz(a))(∂xG(a))

+(∂3
xφz(b))G(b)− (∂3

xφz(a))G(a).

(5.8)

and obtain

∫ ∞

−∞

{
1

α

(
β(∂2

x − k2
y)

2)− γα + 1
)
Gz(x

′
n, x′)−G(x′n, x

′)
}

φz(x)dx

+
β

α

Λ−1∑
n=1

(
− (∂3

x − 2k2
y∂x)Gz(x

′
n, x

′)[φz]n + (∂2
x − 2k2

y)Gz(x
′
n, x′)∂x[φz]n

−∂xGz(x
′
n, x

′)∂2
x[φz]n + Gz(x

′
n, x′)∂3

x[φz]n

)

+φz(−N)∂3
xGz(−N)− ∂xφz(−N)∂2

xGz(−N)

+∂2
xφz(−N)∂xGz(−N)− ∂3

xφz(−N)Gz(−N),

(5.9)
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where [φz]n denotes the jump in φz at x = x′n. The integral in (5.9) can be simplified

using the delta function property of the Green Function, and the last four terms of (5.9)

can be simplified, so that (5.9) reduces to

1

α
φz +

β

α
4k(0)2κ(0)3IG(0)e−κ(0)x′ sin2(k(0)h)

+
β

α

Λ−1∑
n=1

(
− (∂3

x − 2k2
y∂x)Gz(x

′
n, x′)[φz]n + (∂2

x − 2k2
y)Gz(x

′
n, x

′)∂x[φz]n

−∂xGz(x
′
n, x′)∂2

x[φz]n + Gz(x
′
n, x

′)∂3
x[φz]n

)
.

(5.10)

The second and third term in (5.5) give zero. The final term is given by

∫ 0

−h

(G(−N, x′, z)φ−x(−N, x′, z)− φ(−N, x′, z)G−x(−N, x′, z)) dz. (5.11)

From Section 4, φ under the first plate is

φ1(x, z) = Ie−κ(0)(x) cos(k(0)(z + h)) +
M∑

m=−2

Reκ(m)(x) cos(k(m)(z + h), (5.12)

where I = 1/k(0) so that

φI
z = e−κ(0)x sin(k(0)(z + h)).

We simplify G as

G(x, x′, z) =
M∑

m=−2

G(m)e−κ(m)|x−x′| cos(k(m)(z + h)), (5.13)

where

G =
k(n) sin(k(n)h)

2ακ(n)C(k(n))
, (5.14)

so that (5.11), under the first plate, can be expressed as

−
∫ 0

−h

G(0)e−κ(0)|−N−x′| cos(k(0)(z + h))(−κ(0)Ieκ(0)N cos(k(0)(z + h))

+κ(0)Re−κ(0)N cos(k(0)(z + h)))

−κ(0)G(0)e−κ(0)|−N−x′| cos(k(0)(z + h))(Ieκ(0)N cos(k(0)(z + h))

+Re−κ(0)N cos(k(0)(z + h)))dz.

(5.15)

Note that the reflected terms in (5.15) vanish. The reflected and transmitted terms under
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the middle and final plates also vanish so that (5.11) simplifies to

∫ 0

−h

2Iκ(0)G(0)e−κ(0)x′ cos2(k(0)(z + h))dz. (5.16)

From Evans and Porter (2003), (5.16) gives

2Iκ(0)G(0)e−κ(0)x′
(

C(k(0)) +
β

α
2k(0)2κ(0)2 sin2(k(0)(h))

)
. (5.17)

Expanding gives

1

α
Ik(0)e−k(0)x sin(k(0)h) +

β

α
4Ik(0)2κ(0)3G sin2(k(0)h)e−k(0)x, (5.18)

or simply
1

α
φI

z +
β

α
4Ik(0)2κ(0)3G sin2(k(0)h)e−k(0)x. (5.19)

Combining (5.10) and (5.19), we can now express (5.5) as

1

α
φz +

β

α

Λ−1∑
n=1

(− (∂3
x − 2k2

y∂x)Gz(x
′
n, x′)[φz]n + (∂2

x − 2k2
y)Gz(x

′
n, x

′)∂x[φz]n

−∂xGz(x
′
n, x

′)∂2
x[φz]n + Gz(x

′
n, x′)∂3

x[φz]n
)− 1

α
φI

z.

(5.20)

The boundary conditions are given in terms of η, so we multiply (5.20) by iω and rearrange

to give

η(x) = ηI + β

Λ−1∑
n=1

( (∂3
x − 2k2

y∂x)Gz[η]n − (∂2
x − 2k2

y)Gz[∂xη]n

+∂xGz[∂
2
xη]n −Gz[∂

3
xη]n ).

(5.21)

We can solve (5.21) by applying the free edge conditions (3.12) and (3.13). These edge

conditions imply [∂2
xη]n = k2

yν[η]n and [∂3
xη]n = k2

y(2− ν)[∂xη]n so that

η = ηI + β

Λ−1∑
n=1

(
(∂3

xGz − k2
y(2− ν)∂xGz)[η]n − (∂2

xGz − k2
yνGz)[∂xη]n

)
, (5.22)
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where

Gz|z=0 = −
∞∑

m=−2

k(m)2 sin2 (k(m)h)

2ακ(m)C(k(m))
e−κ(m)|x−x′|,

∂xGz|z=0 = −sgn(x− x′)
∞∑

m=−2

k(m)2 sin2 (k(m)h)

2αC(k(m))
e−κ(m)|x−x′|,

∂2
xGz|z=0 = −

∞∑
m=−2

k(m)2κ(m) sin2 (k(m)h)

2αC(k(m))
e−κ(m)|x−x′|,

∂3
xGz|z=0 = −sgn(x− x′)

∞∑
m=−2

k(m)2κ(m)2 sin2 (k(m)h)

2αC(k(m))
e−κ(m)|x−x′|.

To solve for the free edge, we apply edge condition (3.12),

0 =
(
∂3

x − k2
y(2− ν)∂x

)
η. (5.23)

Expanding gives

0 =
(
∂3

x − k2
y(2− ν)∂x

)
ηI

+
(
∂3

x − k2
y(2− ν)∂x

) Λ−1∑
n=1

(
∂3

xGz − k2
y(2− ν)∂xGz

)
[η]n

− (
∂3

x − k2
y(2− ν)∂x

) Λ−1∑
n=1

(
∂2

xGz − k2
yνGz

)
[∂xη]n,

(5.24)

which gives

0 = −(κ(0)3 − k2
yκ(0)(2− ν))e−κ(0)x

+
(
κ(m)3 − κ(m)k2

y(2− ν)
)2

(
Λ−1∑
n=1

∞∑
m=−2

C(k(m))−1k(m) sin2(k(m)h)e−κ(m)|x−x′|[η]n

)

−sgn(x− x′)(κ(m)3 − κ(m)k2
y(2− ν))(κ(m)2 − k2

yν)(
Λ−1∑
n=1

∞∑
m=−2

C(k(m))−1k(m) sin2(k(m)h)e−κ(m)|x−x′|[∂x′η]n

)
.

(5.25)
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Edge condition (3.13) gives

0 =
(
∂2

x − k2
yν

)
η. (5.26)

Expanding gives

0 =
(
∂2

x − k2
yν

)
ηI

+
(
∂2

x − k2
yν

) Λ−1∑
n=1

(
∂3

xGz − k2
y(2− ν)∂xGz

)
[η]n

− (
∂2

x − k2
yν

) Λ−1∑
n=1

(
∂2

xGz − k2
yνGz

)
[∂xη]n,

(5.27)

which gives

0 = (κ(0)2 − k2
yν)e−κ(0)x

−sgn(x− x′)
(
κ(m)2 − k2

yν
)
(κ(m)3 − κ(m)k2

y(2− ν))(
Λ−1∑
n=1

∞∑
m=−2

C(k(m))−1k(m) sin2(k(m)h)e−κ(m)|x−x′|[η]n

)

+(κ(m)2 − k2
yν)2

(
Λ−1∑
n=1

∞∑
m=−2

C(k(m))−1k(m) sin2(k(m)h)e−κ(m)|x−x′|[∂xη]n

)
.

(5.28)

The jump conditions [η]n and [∂xη]n can be solved by solving the edge conditions simul-

taneously. The reflection and transmission coefficients, R1 and TΛ can now be found by

taking the limit of η as x → ±∞ so that

R1 = lim
x→−∞

(
ηI + β

Λ−1∑
n=1

(
(∂3

xGz − k2
y(2− ν)∂xGz)[η]n

−β(∂2
xGz − k2

yνGz)[∂xη]n
)
,

= eκ(0)r1

(
βk(0) sin2(k(0)h)

2αC(k(0))
Λ−1∑
n=1

(
(κ(0)3 − κ(0)k2

y(2− ν)[η]n + (κ(0)2 − k2
yν)[∂xη]n

))
,

(5.29)



54 The Green Function Method

and

TΛ = lim
x→∞

(
ηI + β

Λ−1∑
n=1

(
(∂3

xGz − k2
y(2− ν)∂xGz)[η]n

−β(∂2
xGz − k2

yνGz)[∂xη]n
)
,

= e−κ(0)rΛ−1

(
1− βk1(0) sin2(k1(0)h)

2αC(k1(0))
Λ−1∑
n=1

(
(κ1(0)3 − κ1(0)k2

y(2− ν)[η]n − (κ1(0)2 − k2
yν)[∂xη]n

))
.

(5.30)



6
Articulated Plates

6.1 Introduction

Within this chapter, we consider plates with non free edges i.e. plates with a non zero

bending moment and/or non zero shear force at each edge. Solving for clamped, simply

supported or sliding plates is relatively straightforward and we solve for each case using

both the MEEM and the GFM.

A slightly more complicated case is when the plates are connected by springs. Such

a problem can be applied to Very Large Floating Structures (VLFS)’s, which are often

constructed by welding together a series of plates. During the process of welding, the

joints behave as vertical and rotational springs connecting the neighbouring plates with

a stiffness varying from zero (disconnected) to infinity (connected). It is important to de-

termine the relative motions between two adjacent plates, and the bending moment and

shear force on the joint due to waves, so that the assembly can progress smoothly and

efficiently (Xia et al., 2000). The problem of multiple plates connected by springs, where

each plate is assumed to have the same flexural rigidity, has been solved by (Xia et al.,

2000). By considering the symmetry and asymmetry of the problem, Xia et al. (2000)

defines the potential as the sum of the incoming wave potential, the singular moment

55
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loading potential and the singular slope disturbance potential. The potential is solved

by applying the connector conditions which are given by (3.20). Karmakar and Sahoo

(2005) solve a similar problem where they consider the geometrical symmetry and solve

by the direct application of a mixed-type Fourier transform and eigenfunction matching

at the plate boundaries. Both Xia et al. (2000) and Karmakar and Sahoo (2005) conclude

that the hydroelastic properties of the articulated plates are strongly dependent on the

stiffness of the connectors and the incoming wave frequency.

A special case of springed connections is hinged connections. Pontoon type structures

consisting of several plates connected by hinged joints, have been proposed for mobile

offshore bases. The hinges are desirable as they reduce the magnitude of the bending

loads compared to a single rigid structure of the same overall length (Newman, 2005).

Also, assembling a series of plates connected by hinges is logistically easier than trying

to construct one large structure. The hydrodynamic behaviour of hinged structures is

analysed in Xia et al. (2000), Lee and Newman (2000), and Newman (2005). We can

solve for the hinge case by redefining the springed edge conditions (3.20) by taking the

limit as sr approaches ∞ and taking sv = 0 to give (3.21) (Xia et al., 2000).

In this section, we solve for each articulated edge condition using both the MEEM and

the GFM. A summary of this theory has been submitted for publication (Kohout and

Meylan, 2008a). The results are compared in Section 7.

6.2 Matched Eigenfunction Expansion Method

6.2.1 Simple Connections

Solving for clamped, simply supported or sliding plates using the MEEM only requires

editing the edge matrices, E+
Tµ

, E+
Rµ

, E−
Tµ

and E−
Rµ

as defined in (4.45). The problem is

then solved using the same method as for a set of plates with free edges (Section 4.4.1).

Firstly, we consider plates which are clamped at each edge so that (3.14) and (3.15) apply
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giving

E−(1,m)Tµ = kµ(m)κµ(m) tan (kµ(m)h),

E+(1,m)Tµ = kµ(m)κµ(m)e−κµ(m)(rµ−lµ) tan (kµ(m)h),

E−(1,m)Rµ = −kµ(m)κµ(m)eκµ(m)(lµ−rµ) tan (kµ(m)h),

E+(1,m)Rµ = −kµ(m)κµ tan (kµ(m)h),

E−(2,m)Tµ = −kµ(m) tan (kµ(m)h),

E+(2,m)Tµ = −kµ(m)e−κµ(m)(rµ−lµ) tan (kµ(m)h),

E−(2,m)Rµ = −kµ(m)eκµ(m)(lµ−rµ) tan (kµ(m)h),

E+(2,m)Rµ = −kµ(m) tan (kµ(m)h).

(6.1)

Similarly, simply supported edge conditions defined by (3.16) and (3.17) give

E−(1,m)Tµ = (κµ(m)2 − νk2
y)(−kµ(m) tan (kµ(m)h)),

E+(1,m)Tµ = (κµ(m)2 − νk2
y)(−kµ(m)e−κµ(m)(rµ−lµ) tan (kµ(m)h)),

E−(1,m)Rµ = (κµ(m)2 − νk2
y)(−kµ(m)eκµ(m)(lµ−rµ) tan (kµ(m)h)),

E+(1,m)Rµ = (κµ(m)2 − νk2
y)(−kµ(m) tan (kµ(m)h)).

E−(2,m)Tµ = −kµ(m) tan (kµ(m)h),

E+(2,m)Tµ = −kµ(m)e−κµ(m)(rµ−lµ) tan (kµ(m)h),

E−(2,m)Rµ = −kµ(m)eκµ(m)(lµ−rµ) tan (kµ(m)h),

E+(2,m)Rµ = −kµ(m) tan (kµ(m)h).

(6.2)

Finally, the non-physical case of sliding edge conditions defined by (3.18) and (3.19) give

E−(1,m)Tµ =
(
κµ(m)3 − k2

yκµ(2− ν)
)
(kµ(m) tan (kµ(m)h)),

E+(1,m)Tµ =
(
κµ(m)3 − k2

yκµ(2− ν)
)
(kµ(m)e−κµ(m)(rµ−lµ) tan (kµ(m)h)),

E−(1,m)Rµ =
(
κµ(m)3 − k2

yκµ(2− ν)
)
(−kµ(m)eκµ(m)(lµ−rµ) tan (kµ(m)h)),

E+(1,m)Rµ =
(
κµ(m)3 − k2

yκµ(2− ν)
)
(−kµ(m) tan (kµ(m)h)),

E−(2,m)Tµ = kµ(m)κµ(m) tan (kµ(m)h),

E+(2,m)Tµ = kµ(m)κµ(m)e−κµ(m)(rµ−lµ) tan (kµ(m)h),

E−(2,m)Rµ = −kµ(m)κµ(m)eκµ(m)(lµ−rµ) tan (kµ(m)h),

E+(2,m)Rµ = −kµ(m)κµ tan (kµ(m)h).

(6.3)
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6.2.2 Springed Connections

In this section we solve for plates connected by springs using a slightly different version of

the MEEM presented in Section 4.4.1. Here, each plate is connected by a series of flexural

rotational and vertical linear springs so that the edge conditions are redefined by (3.20).

We first re-arrange (3.20) to give

η(rµ) =

(
β

sv

(
∂3

∂x3
− k2

y(2− ν)
∂

∂x

)
+ 1

)
η(lµ+1),

−η(lµ+1) =

(
β

sv

(
∂3

∂x3
− k2

y(2− ν)
∂

∂x

)
− 1

)
η(rµ),

∂η(rµ)

∂x
=

(
− β

sr

(
∂2

∂x2
− k2

yν

)
+

∂

∂x

)
η(lµ+1),

∂η(lµ+1)

∂x
=

(
β

sr

(
∂2

∂x2
− k2

yν

)
+

∂

∂x

)
η(rµ).

(6.4)

Using the definition of η given by (4.25), we expand each edge condition in (6.4). Ex-

panding the first edge condition for the boundary between the µth and (µ + 1)th plate,

gives

M∑
m=−2

[
−Tµ(m)kµ(m)e−κµ(m)(rµ−lµ) tan (kµ(m)h)−Rµ(m)kµ(m) tan (kµ(m)h)

]

=
M∑

m=−2

[
Tµ+1(m)kµ+1(m) tan (kµ+1(m)h)

(
β

sv

(
κ3

µ+1(m)− k2
yκµ+1(2− ν)

)− 1

)

−Rµ+1(m)kµ+1(m)eκµ+1(m)(lµ+1−rµ+1) tan (kµ+1(m)h)(
β

sv

(
κ3

µ+1(m)− k2
yκµ+1(2− ν)

)
+ 1

)]
.

(6.5)
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Expanding the second edge condition for the boundary between the µth and (µ + 1)th

plate, gives

M∑
m=−2

[
Tµ(m)kµ(m)e−κµ(m)(rµ−lµ) tan (kµ(m)h)

(
β

sv

(
κ3

µ+1(m)− k2
yκµ+1(2− ν)

)
+ 1

)

+Rµ(m)kµ(m) tan (kµ(m)h)

(
− β

sv

(
κ3

µ+1(m)− k2
yκµ+1(2− ν)

)
+ 1

)]

=
M∑

m=−2

[
Tµ+1(m)kµ+1(m) tan (kµ+1(m)h)

+Rµ+1(m)kµ+1(m)eκµ+1(m)(lµ+1−rµ+1) tan (kµ+1(m)h)

]
.

(6.6)

Expanding the third edge condition for the boundary between the µth and (µ + 1)th

plate, gives

M∑
m=−2

[
Tµ(m)kµ(m)κµ(m)e−κµ(m)(rµ−lµ) tan (kµ(m)h)

−Rµ(m)kµ(m)κµ(m) tan (kµ(m)h)

]

=
M∑

m=−2

[
Tµ+1(m)kµ+1(m) tan (kµ+1(m)h)

(
β

sr

(
κ2

µ+1(m)− k2
yν

)
+ κµ+1

)

+Rµ+1(m)kµ+1(m)eκµ+1(m)(lµ+1−rµ+1) tan (kµ+1(m)h)(
β

sr

(
κ2

µ+1(m)− k2
yν

)− κµ

)]
.

(6.7)
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Expanding the fourth edge condition for the boundary between the µth and (µ+1)th plate,

gives

M∑
m=−2

[
Tµ(m)kµ(m)e−κµ(m)(rµ−lµ) tan (kµ(m)h)

(
− β

sr

(
κ2

µ(m)− k2
yν

)
+ κµ

)

−Rµ(m)kµ(m) tan (kµ(m)h)

(
β

sr

(
κ2

µ(m)− k2
yν

)
+ κµ

)]

=
M∑

m=−2

[
Tµ+1(m)kµ+1(m)κµ+1(m) tan (kµ+1(m)h)

−Rµ+1(m)kµ+1(m)κµ+1e
κµ+1(m)(lµ+1−rµ+1) tan (kµ+1(m)h)

]
.

(6.8)

The edge conditions of the first and second plate can be expressed as

I

(
E+

R1
(1, 0)

E+
R1

(2, 0)

)
+ E+

R1
R1 = E−

T2
T2 + E−

R2
R2. (6.9)

The µth and (µ + 1)th edge conditions can be expressed as

E+
Tµ

Tµ + E+
Rµ

Rµ = E−
Tµ+1

Tµ+1 + E−
Rµ+1

Rµ+1. (6.10)

The final Λth − 1 and Λth edge conditions can be expressed as

E+
TΛ−1

TΛ−1 + E+
RΛ−1

RΛ−1 = E−
Tµ

Tµ, (6.11)
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where E+
Tµ

, E+
Rµ

, E−
Tµ

, E−
Tµ

are 4 by M+3 matrices given by

E−
Tµ

(1,m) = kµ(m) tan(kµ(m)h)
(

β
sv

(
κ3

µ(m)− k2
yκµ(m)(2− ν)

)− 1
)

,

E−
Rµ

(1,m) = −kµ(m) tan(kµ(m)h)eκµ(m)(lµ−rµ)

(
β
sv

(
κ3

µ(m)− k2
yκµ(m)(2− ν)

)
+ 1

)
,

E+
Tµ

(1,m) = −kµ(m) tan(kµ(m)h)e−κµ(m)(rµ−lµ),

E+
Rµ

(1,m) = −kµ(m) tan(kµ(m)h),

E−
Tµ

(2,m) = kµ(m) tan(kµ(m)h),

E−
Rµ

(2,m) = kµ(m) tan(kµ(m)h)eκµ(m)(lµ−rµ),

E+
Tµ

(2,m) = kµ(m) tan(kµ(m)h)e−κµ(m)(rµ−lµ)

(
β
sv

(
κ3

µ(m)− k2
yκµ(m)(2− ν)

)
+ 1

)
,

E+
Rµ

(2,m) = −kµ(m) tan(kµ(m)h)
(

β
sv

(
κ3

µ(m)− k2
yκµ(m)(2− ν)

)− 1
)

,

E−
Tµ

(3,m) = kµ(m) tan(kµ(m)h)
(

β
sr

(
κ2

µ(m)− k2
yν

)
+ κµ(m)

)
,

E−
Rµ

(3,m) = kµ(m) tan(kµ(m)h)eκµ(m)(lµ−rµ)
(

β
sr

(
κ2

µ(m)− k2
yν

)− κµ(m)
)

,

E+
Tµ

(3,m) = kµ(m)κµ tan(kµ(m)h)e−κµ(m)(rµ−lµ),

E+
Rµ

(3,m) = −kµ(m)κµ tan(kµ(m)h),

E−
Tµ

(4,m) = kµ(m)κµ tan(kµ(m)h),

E−
Rµ

(4,m) = −kµ(m)κµ tan(kµ(m)h)eκµ(m)(lµ−rµ),

E+
Tµ

(4,m) = −kµ(m) tan(kµ(m)h)e−κµ(m)(rµ−lµ)

(
β
sr

(
κ2

µ(m)− k2
yν

)− κµ(m)
)

,

E+
Rµ

(4,m) = −kµ(m) tan(kµ(m)h)
(

β
sr

(
κ2

µ(m)− k2
yν

)
+ κµ(m)

)
.

(6.12)

From (4.63), we can combine the edge conditions into one large (2M + 6) × (Λ − 1) by

4(Λ− 1) matrix:

E =




E+
R1

−E−
T2

−E−
R2

0 0 0 0 0

0 E+
T2

E+
R2

−E−
T3

−E−
R3

0 0 0
...

. . .

0 0 0 0 0 E+
TΛ−1

E+
RΛ−1

−E−
TΛ




, (6.13)

and can solve the springed edge condition problem using the complete matrix (4.64).
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6.2.3 Hinged Connections

A special case of springed connections is hinged connections. We can solve for the hinge

case by redefining the springed edge conditions (3.20) by taking the limit as sr approaches

∞ and taking sv = 0 to give (3.21) (Xia et al., 2000). The MEEM for hinged plates is

very similar to the method presented in 6.2.2. The edge conditions are again expressed

by (6.9), (6.10), (6.9), where E+
Tµ

, E+
Rµ

, E−
Tµ

, E−
Tµ

are in this case given by

E−
Tµ

(1,m) = −kµ(m) tan(kµ(m)h),

E−
Rµ

(1,m) = −kµ(m) tan(kµ(m)h)eκµ(m)(lµ−rµ),

E+
Tµ

(1,m) = −kµ(m) tan(kµ(m)h)e−κµ(m)(rµ−lµ),

E+
Rµ

(1,m) = −kµ(m) tan(kµ(m)h),

E−
Tµ

(2,m) = kµ(m)(κ3
µ(m)− κµ(m)k2

y(2− ν)) tan(kµ(m)h),

E−
Rµ

(2,m) = −kµ(m)(κ3
µ(m)− κµ(m)k2

y(2− ν)) tan(kµ(m)h)eκµ(m)(lµ−rµ),

E+
Tµ

(2,m) = kµ(m)(κ3
µ(m)− κµ(m)k2

y(2− ν)) tan(kµ(m)h)e−κµ(m)(rµ−lµ),

E+
Rµ

(2,m) = −kµ(m)(κ3
µ(m)− κµ(m)k2

y(2− ν)) tan(kµ(m)h),

E−
Tµ

(3,m) = −kµ(m)(κ2
µ(m)− k2

yν) tan(kµ(m)h),

E−
Rµ

(3,m) = −kµ(m)(κ2
µ(m)− k2

yν) tan(kµ(m)h)eκµ(m)(lµ−rµ),

E+
Tµ

(3,m) = 0,

E+
Rµ

(3,m) = 0,

E−
Tµ

(4,m) = 0,

E−
Rµ

(4,m) = 0,

E+
Tµ

(4,m) = −kµ(m)(κ2
µ(m)− k2

yν) tan(kµ(m)h)e−κµ(m)(rµ−lµ),

E+
Rµ

(4,m) = −kµ(m)(κ2
µ(m)− k2

yν) tan(kµ(m)h).

(6.14)

The hinged problem is solved using the large edge matrix (6.13) and solving the complete

matrix (4.64).
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6.3 The Green Function Method

6.3.1 Simple Connections

We first consider clamped plates so that (3.14) and (3.15) apply, which imply [∂xη]m = 0

and [η]m = 0. η, defined by (5.21), therefore becomes

η = ηI + β

Λ−1∑
n=1

(∂xGz[∂
2
xη]n −Gz[∂

3
xη]n), (6.15)

so that edge condition (3.14) becomes

0 = −κ(0)e−κ(0)x + β

Λ−1∑
n=1

∞∑
m=−2

(κ(m)[∂2
xη]n − sgn(x− x′)[∂3

xη]n)

k(m)κ(m) sin2(k(m)h)

2αC(k(m))
e−κ(m)|x−x′|,

(6.16)

and edge condition (3.15) becomes

0 = e−κ(0)x + β

Λ−1∑
n=1

∞∑
m=−2

(−sgn(x− x′)κ(m)[∂2
xη]n + [∂3

xη]n)

k(m) sin2(k(m)h)

2αC(k(m))
e−κ(m)|x−x′|.

(6.17)

The reflection and transmission coefficients, R1 and TΛ can now be found by taking the

limit of η as x → ±∞ so that

R1 = eκ(0)r1

(
βk(0) sin2(k(0)h)

2αC(k(0))

Λ−1∑
n=1

(
κ(0)[∂2

xη]n + [∂xη]n
))

, (6.18)

and

TΛ = e−κ(0)rΛ−1

(
1− βk(0) sin2(k(0)h)

2αC(k(0))

Λ−1∑
n=1

(
κ(0)[∂2

xη]n − [∂xη]n
))

. (6.19)

We also consider simply supported plates so that (3.16) and (3.17) apply, which imply

[∂2
xη]n = 0 and [η]n = 0. η, defined by (5.21), therefore becomes

η(x) = ηI − β

Λ−1∑
n=1

(
(∂2

x − 2k2
y)Gz[∂xη]n + Gz[∂

3
xη]m

)
, (6.20)
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so that edge condition (3.16) becomes

0 = κ(0)2e−κ(0)x + β

Λ−1∑
n=1

∞∑
m=−2

(
κ(m)2(κ(m)2 − 2k2

y)[∂xη]n + κ(m)2[∂3
xη]n

)

k(m) sin2(k(m)h)

2αC(k(m))
e−κ(m)|x−x′|,

(6.21)

and edge condition (3.17) becomes

0 = e−κ(0)x + β

Λ−1∑
n=1

∞∑
m=−2

(
(κ(m)2 − 2k2

y)[∂xη]n + [∂3
xη]n

)

k(m) sin2(k(m)h)

2αC(k(m))
e−κ(m)|x−x′|.

(6.22)

The reflection and transmission coefficients, R1 and TΛ can now be found by taking the

limit of η as x → ±∞ so that

R1 = eκ(0)r1

(
βk(0) sin2(k(0)h)

2αC(k(0))

Λ−1∑
n=1

(
(κ(0)2 − 2k2

y)[∂xη]n + [∂3
x′η]n

))
, (6.23)

and

TΛ = e−κ(0)rΛ−1

(
1 +

βk(0) sin2(k(0)h)

2αC(k(0))
Λ−1∑
n=1

(
(κ(0)2 − 2k2

y)[∂xη]n + [∂3
xη]n

))
.

(6.24)

Finally, we consider sliding plates so that (3.18) and (3.19) apply, which imply [∂3
xη]n = 0

and [∂xη]n = 0. η, defined by (5.21), therefore becomes

η = ηI + β

Λ−1∑
n=1

(
(∂3

x − 2k2
y∂x)Gz[η]n + ∂xGz[∂

2
xη]n

)
, (6.25)

so that edge condition (3.18) becomes

0 = −κ(0)3e−κ(0)x + β

Λ−1∑
n=1

∞∑
m=−2

(
(κ(m)3(κ(m)3 − 2k2

yκ(m))[η]n

+κ(m)4[∂2
xη]n

)k(m) sin2(k(m)h)

2αC(k(m))
e−κ(m)|x−x′|,

(6.26)
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and edge condition (3.19) becomes

0 = −κ(0)e−κ(0)x + β

Λ−1∑
n

∞∑
m=−2

(
κ(m)(κ(m)3 − 2k2

yκ(m))[η]n

+κ(m)2[∂2
xη]n

)k(m) sin2(k(m)h)

2αC(k(m))
e−κ(m)|x−x′|.

(6.27)

The reflection and transmission coefficients, R1 and TΛ can now be found by taking the

limit of η as x → ±∞ so that

R1 = eκ(0)r1

(
βk(0) sin2(k(0)h)

2αC(k(0))
Λ−1∑
n=1

(
(κ(0)3 − 2k2

yκ(0))[η]n + κ(0)[∂2
xη]n

))
,

(6.28)

and

TΛ = e−κ(0)rΛ−1

(
1− βk(0) sin2(k(0)h)

2αC(k(0))
Λ−1∑
n=1

(
(κ(0)3 − 2k2

yκ(0))[η]n + κ(0)[∂2
xη]n

))
.

(6.29)

6.3.2 Springed Connections

We begin by re-expressing (3.20) as

β(∂3
x − k2

y(2− ν)∂x)η
+(x′n) = −sv[η]n,

β(∂3
x − k2

y(2− ν)∂x)η
−(x′n) = −sv[η]n,

β(∂2
x − k2

yν)η+(x′n) = sr[∂rµη]n,

β(∂2
x − k2

yν)η−(x′n) = sr[∂rµη]n,

(6.30)

where η+(x′n) is the displacement at the right edge of the nth crack and η−(x′n) is the

displacement at the left edge of the µth crack. (6.30) implies

(∂2
x − k2

yν)η+(x′n)= (∂2
x − k2

yν)η−(x′n), (6.31)

which implies

[∂2
xη]n = k2

yν[η]n. (6.32)
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(6.30) also implies

(∂3
x − k2

y(2− ν)∂x)η
+(x′n) = (∂3

x − k2
y(2− ν)∂x)η

−(x′n), (6.33)

which implies

[∂3
xη]n = k2

y(2− ν)[∂xη]n. (6.34)

η, as defined by (5.21), can now be re-expressed as

η = ηI + β

Λ−1∑
n=1

(
(∂3

x − k2
y(2− ν)∂x)Gz[η]n − (∂2

x − k2
yν)Gz[∂xη]n

)
. (6.35)

We now have two unknowns which can be solved simultaneously using the following two

edge conditions

−sv

β
[η]n = (∂3

x − k2
y(2− ν)∂x)η(x′n),

sr

β
[∂xη]n = (∂2

x − k2
yν)η(x′n).

(6.36)

Expanding the first edge condition in (6.36) gives

−sv

β
[η]a =

(
∂3

x − k2
y(2− ν)∂x

)
ηI

+
(
∂3

x − k2
y(2− ν)∂x

) Λ−1∑
n=1

(
∂3

xGz − k2
y(2− ν)∂xGz

)
[η]n

− (
∂3

x − k2
y(2− ν)∂x

) Λ−1∑
n=1

(
∂2

xGz − k2
yνGz

)
[∂xη]n,

(6.37)

which gives

−sv

β
[η]a = −(κ(0)3 − k2

yκ(0)(2− ν))e−κ(0)x

+
(
κ(m)3 − κ(m)k2

y(2− ν)
)2

(
Λ−1∑
n=1

∞∑
m=−2

C(k(m))−1k(m) sin2(k(m)h)e−κ(m)|x−x′|
)

[η]n

−sgn(x− x′)(κ(m)3 − κ(m)k2
y(2− ν))(κ(m)2 − k2

yν)(
Λ−1∑
n=1

∞∑
m=−2

C(k(m))−1k(m) sin2(k(m)h)e−κ(m)|x−x′|
)

[∂xη]n.

(6.38)
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Rearranging gives

(κ(0)3 − k2
yκ(0)(2− ν))e−κ(0)x =

sv

β
[η]a +

(
κ(m)3 − κ(m)k2

y(2− ν)
)2

(
Λ−1∑
n=1

∞∑
m=−2

C(k(m))−1k(m) sin2(k(m)h)e−κ(m)|x−x′|
)

[η]n

−sgn(x− x′)(κ(m)3 − κ(m)k2
y(2− ν))(κ(m)2 − k2

yν)(
Λ−1∑
n=1

∞∑
m=−2

C(k(m))−1k(m) sin2(k(m)h)e−κ(m)|x−x′|
)

[∂xη]n,

(6.39)

for a = 1, 2, ..., Λ− 1. Expanding the second edge condition in (6.36) gives

sr

β
[∂xη]a =

(
∂2

x − k2
yν

)
ηI

+
(
∂2

x − k2
yν

) Λ−1∑
n=1

(
∂3

xGz − k2
y(2− ν)∂xGz

)
[η]n

− (
∂2

x − k2
yν

) Λ−1∑
n=1

(
∂2

xGz − k2
yνGz

)
[∂xη]n,

(6.40)

which gives

sr

β
[∂xη]a = (κ(0)2 − k2

yν)e−κ(0)x

−sgn(x− x′)
(
κ(m)2 − k2

yν
) (

κ(m)3 − κ(m)k2
u(2− ν))

)
(

Λ−1∑
n=1

∞∑
m=−2

C(k(m))−1k(m) sin2(k(m)h)e−κ(m)|x−x′|
)

[η]n

+(κ(m)2 − k2
yν)2

(
Λ−1∑
n=1

∞∑
m=−2

C(k(m))−1k(m) sin2(k(m)h)e−κ(m)|x−x′|
)

[∂xη]n.

(6.41)
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Rearranging gives

−(κ(0)2 − k2
yν)e−κ(0)x =

−sgn(x− x′)
(
κ(m)2 − k2

yν
) (

κ(m)3 − κ(m)k2
y(2− ν)

)
(

Λ−1∑
n=1

∞∑
m=−2

C(k(m))−1k(m) sin2(k(m)h)e−κ(m)|x−x′|
)

[η]n

−sr

β
[∂xη]a + (κ(m)2 − k2

yν)2

(
Λ−1∑
n=1

∞∑
m=−2

C(k(m))−1k(m) sin2(k(m)h)e−κ(m)|x−x′|
)

[∂xη]n,

(6.42)

for a = 1, 2, ..., Λ− 1.

The reflection and transmission coefficients, R1 and TΛ, can now be found by taking

the limit of η as x → ±∞. R1 becomes

R1 = eκ(0)r1

(
βk(0) sin2(k(0)h)

2αC(k(0))
Λ−1∑
n=1

(
(κ(0)3 − κ(m)k2

y(2− ν))[η]n + (κ(0)2 − k2
yν)[∂xη]n

))
,

(6.43)

and TΛ becomes

TΛ = eκ(0)rΛ−1

(
1− βk(0) sin2(k(0)h)

2αC(k(0))
Λ−1∑
n=1

(
(κ(0)3 − κ(m)k2

y(2− ν))[η]n − (κ(0)2 − k2
yν)[∂xη]n

))
.

(6.44)
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6.3.3 Hinged Connections

The hinged edge conditions (3.21) imply [η]n = 0, [∂2
xη]n = 0 and [∂3

xη]n = 0 so that

η(x) = ηI + β

Λ−1∑
n=1

−(∂2
x − 2k2

y)Gz[∂xη]n, (6.45)

with only one unknown to solve. The hinged edge condition ∂xη(x′n) = 0 implies

[∂xη]n =
∂2

xη
I

β∂2
x(∂

2
x − 2k2

y)Gz(x)

= κ(0)2e−κ(0)x
(− β(κ(m)2(κ(m)2 − 2k2

y)

C(k(m))−1k(m) sin2(k(m)h)e−κ(m)|x−x′|)−1
.

(6.46)

The reflection and transmission coefficients, R1 and TΛ can now be found by taking the

limit of η as x → ±∞ so that

R1 = ek(0)r1

(
βk(0) sin2(k(0)h)

2αC(k(0))

Λ−1∑
n=1

(k(0)2 − 2k2
y)e

−k(0)x′m [∂xη]n

)
, (6.47)

and

TΛ = e−k(0)rΛ−1

(
1− βk(0) sin2(k(0)h)

2αC(k(0))

Λ−1∑
n=1

(k(0)2 − 2k2
y)e

−k(0)x′n [∂xη]n

)
. (6.48)
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7
Accuracy and Efficiency of Solutions

7.1 Introduction

We test our results by ensuring the system is in energy balance. We can also verify

the MEEM by comparing it against the GFM and Meylan and Squire (1994)’s finite-floe

model. We verify that each method is producing the same reflected energy at the first

plate and the same transmitted energy at the final plate. We also compare the convergence

of the methods.

7.2 Energy Balance

Based on the method used in Evans and Davies (1968), a check can be made to ensure

the system is in energy balance. This is simply a condition that the incident energy is

equal to the sum of the radiated energy. If the properties of the first and last semi-infinite

plates were identical, this would give the familiar requirement that

|TΛ(0)|2 + |R1(0)|2 = |I|2.
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However, when the first and last plates have different properties, the energy balance

equation becomes

D|TΛ(0)|2 + |R1(0)|2 = 1, (7.1)

where D is given by

D =

(
κI

ΛkI
1 cosh2 (kI

1h)

κI
1k

I
Λ cosh2 (kI

Λh)

)

(
βΛ

α
4(kI

Λ)3((κI
Λ)2 + k2

y) sinh2 (kI
Λh) + 1

2
sinh (2kI

Λh) + kI
Λh

β1

α
4(kI

1)
3((κI

1)
2 + k2

y) sinh2 (kI
1h) + 1

2
sinh (2kI

1h) + kI
1h

)
(7.2)

where kI
µ = −=kµ(0) and κI

µ = −=κµ(0). D is found by applying Green’s theorem to φ

and its conjugate (Evans and Davies, 1968). The derivation of D is provided in Appendix

A. The energy balance condition is useful to help check that the solution is not incorrect

(it does not of course guarantee the solution is correct). The energy balance condition

is surprisingly well satisfied by our solutions. With M = 20, β = 0.1, h = 1, γ = 0 and

α = 5, we can easily get (7.1) correct to ten decimal places.

7.3 Verifying the Matched Eigenfunction Expansion

Methods Reflection and Transmission Coefficients

We compare results from the MEEM (Section 4) with results from the GFM (Section 5).

The problem which can be solved by the GFM is equivalent to the MEEM problem if

the rigidity properties are identical for each elastic plate. We have selected the GFM to

compare with because it solves the problem in a very different way. Also, the GFM can

be applied to multiple plates which is the most challenging aspect of our problem. To

further verify the MEEM, we also compare its solutions with solutions from Meylan and

Squire (1994)’s finite-floe model.

Figure 7.1 shows a comparison between the MEEM and the GFM for the free edge case,

Figure 7.2 compares the two methods for the various basic edge conditions and Figure

7.3 compares the two methods for plates connected by springs. Figure 7.4 compares the

MEEM and Meylan and Squire (1994)’s finite-floe model. The crosses and circles are the

results using the MEEM and the solid lines are due to the GFM and finite-floe model. As

can be seen from the figures, there is perfect agreement between each of the methods.
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Figure 7.1: The MEEM (-) and the GFM (’+’ and ’o’) solutions for the reflected (crosses) and transmitted

(circles) coefficients against α for plates with free edges. β = 0.1, γ = 0 and h = 1. Figure

(a) presents solutions for two plates with the crack at x = 0 and with θ = 0. Figure (b)

presents solutions for two plates with the crack at x = 0 and with θ = π
3 . Figure (c)

presents solutions for four plates with the cracks at x = 0, 1, 2 and with θ = 0. Figure (d)

presents solutions for four plates with the cracks at x = 0, 1, 2 and with θ = π
12 .
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Figure 7.2: The MEEM (-) and the GFM (’+’ and ’o’) solutions for the reflected (crosses) and transmitted
(circles) coefficients against α for a set of plates with various basic edge conditions with
β = 0.1, γ = 0 and h = 1. Figure (a) gives solutions for free plates for 2 plates with θ = 0.
Figure (b) gives solutions for clamped plates for 4 plates with θ = π

6 . Figure (c) gives
solutions for simply supported plates for 2 plates with θ = 0. Figure (d) gives solutions for
sliding plates for 4 plates with θ = π

3 .
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Figure 7.3: The MEEM (-) and the GFM (’+’ and ’o’) solutions for the reflected (crosses) and transmitted
(circles) coefficients against α for a set of plates connected by springs with β = 0.1, γ = 0
and h = 1. Figure (a) gives solutions for the hinged plates i.e. with sv →∞ and sr = 0 for
2 plates with θ = 0. Figure (b) gives solutions for the hinged plates i.e. with sv → ∞ and
sr = 0 for 4 plates with θ = π

6 . Figure (c) gives solutions for sv = 1 and sr = 0.5 for 2 plates
with θ = 0. Figure (d) gives solutions for sv = 1 and sr = 1000 for 4 plates with θ = π

3 .
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Figure 7.4: The MEEM (-) and Meylan and Squire (1994)’s finite-floe’s (’+’ and ’o’) reflected (crosses)
and transmitted (circles) coefficients against α for free edges with θ = 0 and h = 1. Figure
(a) gives solutions for β = 1 and γ = 0. Figure (b) gives solutions for β = 1 and γ = 1.
Figure (a) gives solutions for β = 50 and γ = 10. Figure (a) gives solutions for β =
1, 000, 000 and γ = 0.
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7.4 Solution Convergence

In this section, we compare the convergence of the MEEM and the GFM (Table 7.1). We

also compare the convergence of the MEEM with the convergence of Meylan and Squire

(1994) (Table 7.2). The rate of convergence of each of the solutions is almost identical.

The accuracy of two decimal places for M = 20 is sufficient for most practical calculations.

Table 7.1: Solutions of |T | from the MEEM (mTm) and the GFM (Tg) for α = 5 , β = 0.1, γ = 0, h = 1.

Λ M |Tm| |Tg|
2 5 0.72897005265395 0.68013661602795

10 0.73710075717437 0.73382189306476
20 0.73943613533854 0.73910099180859
50 0.74014223492682 0.74012279625910
100 0.74024743508561 0.74024507931561
150 0.74026720286310 0.74026651629366

4 5 0.78572228609681 0.64049634405062
10 0.81444198211422 0.80423931535963
20 0.82228249776276 0.82126508433661
50 0.82458694969417 0.82452862088603
100 0.82492540871298 0.82491836384358
150 0.82498871994750 0.82498666973497

Table 7.2: Solutions of |T | from the MEEM (Tm) and Meylan and Squire (1994)’s finite-floe model (Tf )
for α = 5 , β = 0.1, γ = 0, h = 1 and L = 1.

Λ M |Tm| |Tf |
3 5 0.89505673189974 0.89853323035868

10 0.89667581012319 0.89696873933913
20 0.89673974324719 0.89675495407642
50 0.89668355648691 0.89671200121147
100 0.89666885086657 0.89670637318048
150 0.89666569737692 0.89670531782835
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8
Modelling an Idealised Marginal Ice

Zone

8.1 Introduction

The sea-ice which forms in the polar oceans plays an important role in the world’s climatic

system, and it is important to understand the factors influencing its extent (see Section

2.1 for details). One of these factors is ocean wave energy, which plays a major role in

the fracturing of sea-ice (Squire et al., 1995; Wadhams, 2000). To fully understand this

fracturing process, it is critical to understand the attenuation of wave energy as it passes

through the Marginal Ice Zone (MIZ). The MIZ forms at the boundary of open and frozen

oceans and consists of vast fields of ice floes, which dampen wave energy and protect the

continuous ice from wave action and consequent breakup. If the wind is blowing towards

the ice edge from the open sea, the MIZ is compressed and produces a compact ice field

(Wadhams, 2000). This type of ice field is thought to be most accurately modelled by

a viscous model (Section 2.2.3). If the wind is blowing away from the ice edge, most of

MIZ becomes diffuse. The outermost edge can sometimes organise itself into a series of

compact ice-edge bands, which are separated by completely open water and lie with their

long axes roughly perpendicular to the wind (Wadhams, 2000). It is expected that this
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type of ice field is most accurately modelled by a scatter model (Section 2.2.3).

In this chapter, we use the solutions from the MEEM to simulate a diffuse MIZ. The

development of this research and the results have been published in Kohout and Meylan

(2006, 2008b). We begin by setting each of the variables so that they approximate a MIZ.

An important quantity introduced here is E, the energy transmitted through the floes.

Section 8.3 removes the resonance effects caused by linear wave theory, by averaging over

many simulations. This enables us to estimate E for a given length, period, thickness

and number of plates. It is then discovered that E attenuates exponentially so that an

attenuation coefficient can be estimated for a given period and thickness. We finalise this

chapter by considering the floe strain induced by wave action. The intention here is to

predict the number of floes which will be broken due to wave action for a given wave

period and floe thickness.

8.2 Setting the Variables

The number of evanescent modes required depends on the water depth. We set the water

depth sufficiently large so that it can be considered infinite (in practice this depth is one

wavelength i.e. h = gT 2/(2π)) where T is the wave period. We set M = 20 as we find this

gives a good compromise between accuracy and computational time. It is worth noting

that the long period waves, for which it is more difficult to determine the attenuation

coefficients, require less modes to get good convergence. We choose the following values

for the constants: Y = 6 GPa, ν = 0.3, g = 9.8 ms−2, ρw = 1025.0 kg m−3 and ρµ = 922.5

kgm−3 (Meylan, 2002). It is important to recognise that, because we have assumed the

ice floes as thin, the non-dimensional stiffness βµ is much more significant than the non-

dimensional mass γµ. This means that the effect of changing the Young’s modulus is

equivalent to changing the cube root of the thickness. For this reason we will not consider

any other values for Y . In all results, the semi-infinite plate on the left is open water. The

semi-infinite plate on the right is a semi-infinite ice floe which is chosen to have the same

thickness as the other floes (if the floe thicknesses are chosen randomly, then the thickness

of the semi-infinite floe is also random). A wave is incident from the left-hand (open water

side) with unit amplitude. The transmitted energy in the right-hand semi-infinite plate

can be calculated as E = 1 − |R1|2 (this expression being a result of the condition that

the incident energy is equal to the sum of the radiated energy). To simulate a MIZ with

discrete floes, we have included gaps of water between each floe, and the thickness τ of

each floe is chosen normally about a mean with a standard deviation of 0.05. In our
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simulation, we have a number of variables; the incident period, T ; the length of each floe,

L (which can differ per floe); the thickness of each floe, τ (which can differ per floe); and

the number of floes, Λ. Note that the number of finite floes is Λ− 2 and every second floe

represents a free surface.

8.3 Floe Length

One of the critical features of the model, and all models which use linear wave theory, is

that it is fully coherent. This means that we will always observe effects of cancellation

and addition of waves, no matter how large the ice floe size or number of ice floes. This

can be seen in Figure 8.1, where the transmitted energy in the right-hand semi-infinite

region, E, is shown as a function of floe length for Λ = 7. Note that in this case, each of

the five finite floes are of identical length.
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Figure 8.1: The transmitted energy (E) as a function of floe length L where τ is chosen normally about
1m with a standard deviation of 0.05 and Λ = 7 where the five finite floes are of identical
length. Figure (a) is for T = 6 s, Figure (b) is for T = 8 s and Figure (c) is for T = 10 s.

To remove this resonance, we allow the floe length to vary for each floe about a fixed

mean and average over many trials. Similar methods have been considered in Wadhams
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(1986) and Williams and Squire (2004, 2006). We assume that the spread of floe lengths

in the MIZ fits a Rayleigh distribution. The Rayleigh distribution is given by

f(l) =
l

ζ2
e
−l2

2ζ2 ,

where f(l) is the probability of selecting a floe length, l and ζ = µ̄
√

π
2

where µ̄ is the

mean floe length (Papoulis, 1984). The probability that the selected floe length is less

than or equal to the actual floe length, l′, is given by

p = Pr(l ≤ l′) =

∫ l

0

f(l′)dl′. (8.1)

Finding the inverse and rearranging (8.1) gives,

l =
√
−2ζ2 ln(1− p). (8.2)

Using (8.2), we randomly select p between 0 and 1 to find the Rayleigh distributed set

of floe lengths about a given mean. We include gaps between each floe, where each gap

length is also determined via the Rayleigh distribution. We calculate the mean E from

100 simulations (Figures 8.2, 8.3 and 8.4). The standard deviation of these simulations

is tested for various periods and floe thickness and found to average 0.13. We test our

results against other distributions (Figure 8.5) and we find virtually identical results.

The first result from our simulations is that the mean E is independent of length, provided

the floe length is above a critical value. This is shown in Figures 8.2, 8.3 and 8.4 where

we consider the effect of the parameters T , τ and Λ. The physical explanation for this

effect is as follows. If the floe is sufficiently long, it must bend in response to the waves.

This bending induces reflections at the edges, but allows the waves to propagate under

the floes without attenuation (since our ice floe is modelled as perfectly elastic). This

means that the attenuation can be expected to depend only on the number of interfaces,

with obvious analogy to other wave scattering processes. However, once the floe length

becomes sufficiently short, so that the floe is no longer required to bend, there is no longer

any notion of a wave propagating under the floe. Furthermore, as the floe shortens it will

reflect less energy. In such situations, the floe no longer responds elastically, and a differ-

ent physical model is appropriate. For this reason we will restrict our model so that in all

the results we present, E is considered independent of floe length (and we always choose

values of floe length to make this true for our simulations). It can be expected that this

critical length will occur roughly when the wavelength is more than two or three times
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the floe length.
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Figure 8.2: The mean transmitted energy (E) as a function of mean floe length, where the floe lengths

are chosen via a Rayleigh distribution about the mean. For each mean floe length, E is

averaged over 100 simulations. For each subplot τ is normally distributed, with a standard

deviation of 0.05, about a mean of 1 m, Λ = 10. T = 6 s in Figure (a), T = 8 s in Figure

(b) and T = 10 s in Figure (c).
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Figure 8.3: The mean transmitted energy (E) as a function of mean floe length, where the floe lengths

are chosen via a Rayleigh distribution about the mean. For each mean floe length, E

is averaged over 100 simulations. For each subplot Λ = 10, T = 6 and τ is normally

distributed, with a standard deviation of 0.05, about a mean. The mean τ = 0.5 m in Figure

(a), 1 m in Figure (b) and 2 m in Figure (c).
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Figure 8.4: The mean transmitted energy (E) as a function of mean floe length, where the floe lengths

are chosen via a Rayleigh distribution about the mean. For each mean floe length, E is

averaged over 100 simulations. For each subplot τ is normally distributed, with a standard

deviation of 0.05, about a mean of 1m, T = 6. Λ = 5 in Figure (a), Λ = 10 in Figure (b) and

Λ = 20 in Figure (c).
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Figure 8.5: Mean transmitted energy (E) as a function of mean floe length, where the floe lengths

are chosen via a Rayleigh distribution (Figure (a)), a Normal distribution (Figure (b)) and

a Uniform distribution (Figure (c)). For each mean floe length, E is averaged over 100

simulations. τ is normally distributed, with a standard deviation of 0.05, about a mean of

1m, Λ = 10 and T = 6 .
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Figure 8.6 shows the displacement for one of the simulations from each subplot of Fig-

ure 8.2. It is interesting to have some visualisation of the solution which is provided by the

model for each simulation. It can be seen that the model provides much more information

than just E since it provides the displacement of each ice floe. This suggests that the

model could be used to predict other effects such as floe breakup.
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Figure 8.6: The displacement (η) as a function of distance (x) showing the displacement and floe
geometry for three of the realisations used in Figure 8.2. T = 6 s in Figure (a), T = 8 s in
Figure (b) and T = 10 s in Figure (c). The boxed rectangles represent each plate.
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8.4 Period and Floe Thickness

Figure 8.7 clearly shows that as period (T ) increases, energy (E) increases. This is as we

would expect as increasing T reduces the bend in the floes, reducing reflection and energy

loss. Figure 8.8 shows that as the mean τ increases, E decreases. We would also expect

this result as more energy is required to bend thicker floes.
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Figure 8.7: The mean transmitted energy (E) as a function of period (T ). For each T , E is averaged

over 100 simulations. For each subplot Λ = 10 and τ is normally distributed, with a stan-

dard deviation of 0.05, about a mean. The mean τ = 0.5 m in Figure (a), 1 m in Figure (b)

and 2 m in Figure (c).
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Figure 8.8: The mean transmitted energy (E) as a function of mean floe thickness (τ ), where τ is

normally distributed about the mean with a standard deviation of 0.05. For each τ , E is

averaged over 100 simulations and Λ = 10. T = 6 s in Figure (a), T = 8 s in Figure (b)

and T = 10 s in Figure (c).
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8.5 Number of Floes

Here we investigate the effects of increasing Λ. Figures 8.9 and 8.10 show the least square

fit of ln(E) to a straight line, indicating that E is decreasing exponentially with increas-

ing Λ. The linear correlation coefficients of the fit are consistently high and above 90%.

The strong correlation indicates that our model is successfully predicting the measured

exponential decay of energy (note that we have not made this assumption in our formu-

lation and this is a prediction of the model). The fit to an exponential tends to reduce

as Λ increases. This may be a consequence of increased reflection which can increase

coherent effects and lead to increased scatter. We conclude that we can fit the data to an

exponential curve of the form e−aΛ, where a is the attenuation coefficient (note that as Λ

approaches 0, E approaches 1). We express the exponential curve as a linear function by

taking the natural logarithm of both sides i.e. ln E = −aΛ. We solve for a by minimising

the sum of squares of errors between the data and the approximated curve. We will now

concentrate on a, the (exponential) attenuation coefficient.
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Figure 8.9: ln(E) as a function of Λ. For each Λ, E is averaged over 100 trials. The dotted line gives

the 67% confidence interval for E. τ is normally distributed, with a standard deviation of

0.05, about a mean of 1m. T = 6 s in Figure (a), T = 8 s in Figure (b), and T = 10 s in

Figure (c). The solid line shows a straight line fit to the data points (’+’).
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Figure 8.10: The logarithm of the mean transmitted energy (ln(E)) as a function of the number of

floes (Λ). For each Λ, E is averaged over 100 trials and the dotted line gives the 67%

confidence interval for E (one standard deviation). T = 6 and τ is normally distributed,

with a standard deviation of 0.05, about a mean. In Figure (a), the mean τ = 0.5 m and

the linear correlation coefficient (r2) is 0.96664. The mean τ = 1 m and r2 = 0.97016 in

Figure (b) and the mean τ = 2 m and r2 = 0.91713 in Figure (c). The solid line shows a

straight line fit to the data.
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8.6 Attenuation Coefficient

We assume that the wave energy, E, decays exponentially with the number of floes,

i.e. E ∝ e−aΛ, where a is the attenuation coefficient and E is normalised with unit

incidence. From Figures 8.9 and 8.10, we can see that the attenuation coefficient, a, is

dependent on both T and τ . Figure 8.11 gives ln(a) against T for various τ . This figure is

the cornerstone of our results. Our model provides a tool for predicting wave-attenuation

in the MIZ and can be used to compare the attenuation coefficients against other, perhaps

more sophisticated, models and field experiments. The figure shows that the attenuation

coefficient is strongly dependent on both wave period and thickness. The attenuation

coefficient for fixed period depends strongly on thickness, and the attenuation coefficient

for fixed thickness depends strongly on period. This figure explains why the MIZ acts so

strongly as a low-pass filter (in the sense of frequency) and how important the parameter

of thickness is in determining the properties of this filtering.
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Figure 8.11: Predictions of the logarithm of the attenuation coefficient, ln(a), as a function of T for

τ = 0.4 m (−), τ = 0.6 m (− −), τ = 0.8 m (· · · ), τ = 1.2 m (− · −), τ = 1.6 m (−), τ = 2.4
m (− −) and τ = 3.2 m (· · · ).
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8.7 Strain

Given an incident wave spectrum, we can use the MEEM and our attenuation model to

predict the number of floes which will be broken due to wave action. Essentially we input

a given wave spectrum and calculate the number of floes which are required to reduce the

wave height below which is considered minimal to induce floe breaking.

Direct measurements of sea-ice fracture took place in the Arctic, where strain gauges

were fixed to the upper surface of sea-ice floes. Results from these experiments have

shown an ice island to fracture at a strain of 3x10−5 (Goodman et al., 1980) and sea-ice

to fracture from a strain of 4.4x10−5 to 8.5x10−5 (Squire and Martin, 1980). We assume

that, in general, if the strain is less than 3x10−5, the ice will have an infinite resistance to

failure (Squire, 1993; Personal correspondence with T. Haskell). Models of strain through

an ice sheet combined with these experimental results can be used to predict floe breakup

in a MIZ.

8.7.1 Modelling Strain

We assume we have small-amplitude waves ( ∂η
∂x

2 ¿ 1). The strain, S, at the surface of

the ice due to an incident wave is therefore

S(x) =
τ

2

∂2η(x)

∂x2
, (8.3)

where η is the displacement. Thus, S is easily derived from our expression for the dis-

placement (4.6) and solved using the MEEM (Section 4).

In Figures 8.12 and 8.13, we plot the strain envelope (the magnitude of the complex

strain) through a semi-infinite plate. Figure 8.12 is a replica of a figure produced in Fox

and Squire (1991) and is included to verify our strain results. At the origin, each of these

curves have zero strain and strain gradient. This is a consequence of the boundary con-

ditions given by (3.12) and (3.13), which assume the bending moment and the shearing

forces at the edges are zero. Each curve also approaches an asymptote. The asymptote

value corresponds to the travelling wave due to the attenuation of the damped travelling

waves and the infinite sum of evanescent waves (Fox and Squire, 1991). The strain en-

velope either reaches a maximum before decreasing to its asymptotic value or increases

monotonically to reach the asymptote. The distance into the floe at which the maximum

strain envelope occurs is more sensitive to τ than T (Figure 8.13a and 8.13b). This may

be explained by the flexural rigidity, D = Y τ 3/(12(1− ν2)) where Y is Young’s modulus
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and ν is Poisson’s ratio which is proportional to τ 3 (Squire, 1993). As we would expect,

small τ combined with short T induce the greatest strain envelope (Figure 8.14). Also,

however, small τ combined with large T induce the least strain envelope. This suggests

that the period has greatest influence on the magnitude of the strain envelope, while

the floe thickness has greatest influence on the position of the maximum strain envelope

(Figure 8.13).
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Figure 8.12: A replica of a figure produced in Fox and Squire (1991). |S| as a function of x for I = 1,

τ = 1 m and h = 100 m. T = 5 s (· · · ), 10 s (− −), 15 s (−), 15 s (· · · ), 25 s (− −) and 30
s (−).
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Figure 8.13: |S| as a function of x for I = 1 and various T , τ and L. Figure (a) has τ = 1.4 m and

T = 6 s (· · · ), 9 s (− −), 12 s (−) and 15 s ((). Figure (b) has T = 9 s and τ = 0.4 m

(· · · ), 0.8 m (− −), 1.4 m (−) and 2 m ((). Figure (c) has T = 9 s, τ = 1 and L = 20 m

(· · · ), 50 m (− −), 100 m (−) and 200 m (().
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Figure 8.14: Maximum S as a function of T for I = 1 and τ = 0.4 m (· · · ), 0.8 m (− −), 1.2 m (−) and

2 m (().
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8.7.2 The strain for a Wave Spectrum

Section 8.7.1 considers the strain envelope for a single period only. In practice how-

ever, ocean waves consist of a power spectrum of waves, Υ(ω) where ω is the frequency

(ω = 2π/T ), with significant energy present at periods between 4 and 20 seconds (Fox

and Squire, 1991). Ideally Υ is determined from wave buoy measurements off the ice edge.

Alternatively, we can use a spectral model. A model which is commonly used to describe

a fully developed wind sea i.e. a storm, was developed by Pierson and Moskowitz in the

early 1960’s.

The Pierson–Moskowitz Spectrum

Pierson and Moskowitz (1964) made observations of fully developed wind seas using single-

point time series from shipborne wave-height recorders. The Pierson–Moskowitz power

spectrum formula was derived and is still the most widely used today, as it is simple to

use and is one of the few based on a fully developed sea. The Pierson–Moskowitz power

spectrum is given by

Υp(ω) = ζg2(2π)ω−5e
5
4(

ωm
ω )

4

, (8.4)

where ωm is the peak frequency and ζ is Phillip’s constant which is found experimentally

to be approximately 1.2x10−2 (Phillips, 1977).

The JONSWAP Spectrum

During the Joint North Sea Wave Project (JONSWAP), it was found that the seas dur-

ing the experiment were never fully developed (Hasselmann, 1973). In order to fit the

measurements, an extra peak enhancement factor was added to the Pierson–Moskowitz

spectrum. The JONSWAP spectrum is given by

Υj(ω) = Υp(ω)υe
− (ω−ωm)2

2σ2ω2
m , (8.5)

where Υj is the JONSWAP spectrum, υ is the peak enhancement factor and σ is the peak

width. υ is commonly represented by 3.3, but also can be defined as Υmax/Υ
p(ωm). σ is

commonly defined as 0.07 for ω < ωm and 0.09 for ω > ωm.

Figure 8.15 compares the Pierson–Moskowitz and JONSWAP spectrums. The examples

presented herein use the Pierson–Moskowitz spectrum as it is currently the most widely

used and accepted. Figure 8.16 plots the Pierson–Moskowitz spectrum for various peak
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periods.
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Figure 8.15: The JONSWAP (−) and Pierson–Moskowitz (−) spectrums as a function of frequency.
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Figure 8.16: Υp as a function of T for Tm = 8 s (· · · ), 10 s (− −), 12 s (−) and 14 s (().
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As the wave propagates through the ice, the wave spectrum will be altered due to damp-

ening caused by the ice. If we can estimate the attenuation of the wave energy, we can

estimate the change in the wave spectrum for a given τ and Λ so that

ΥΛ(ω) = Υ(ω)e−a(ω,τ)Λ. (8.6)

Also, the power spectrum wave energy (EΥ) between frequencies ω1 and ω2 can be ex-

pressed by EΥ =
∫ ω2

ω1
ΥΛ(ω)dω, so that the amplitude, A, can be expressed by

AΛ =

√∫ ω2

ω1

ΥΛ(ω)dω. (8.7)

Figure 8.17 shows the change in the wave spectrum with number of ice floes for a peak

period of 10 s (ωm = 2π/10). This figure shows that there is a strong attenuation of

high frequency waves and that as the thickness is increased, the cut off frequency below

which there is little attenuation decreases. It is important to note that there is virtually

no attenuation of the low frequency (long period) waves from our scattering model.
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Figure 8.17: A as a function of T after 0 floes (−), 25 floes (−−), 50 floes (− · −), 100 floes (−) and

200 floes (− −) for Tm = 10 s. τ = 1 in Figure (a), τ = 2 in Figure (b), τ = 3 in Figure (c).
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The strain for a particular ω as a function of time, can be calculated by multiplying

S(x, ω) by AΛ(ω) and by a time component such as eiωt. In practice, ocean waves behave

randomly. To represent this randomness, we include the phase of a wave, eiφ where φ is a

random number between 0 and 2π. We can simulate the spectral strain by summing each

strain for all ω or

ST =

∫ ∞

0

AΛ(ω)eiφeiωtS(x, ω)dω. (8.8)

Figure 8.18 shows that the maximum ST can be estimated by calculating the strain

envelope, which is defined as

SE =

√∫ ∞

0

|ΥΛS|2. (8.9)

Figure 8.18 also shows the effect the dampened waves have on reducing the strain.
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Figure 8.18: The spectral strain (ST ) and the spectral strain envelope (SE) as a function of distance

(x) with τ = 1 m, Tm = 10 s and t = 1. The strain in Figure (a) uses Υ0. Figure (b) uses

Υ20 and Figure (c) uses Υ200.
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Figure 8.19 shows the maximum of the strain envelope as a function of number of floes, for

various floe thicknesses and an incident spectrum with peak period 8, 10 and 12 s. Also

shown is the strain 3x10−5, below which experiments have shown floe breakup no longer

occurs. This figure implies that, for the Pierson–Moskowitz incident wave spectra with

peak period, Tm, greater than 8 s, floe breakup will occur almost indefinitely for small

floe thickness. This seems anomalous and implies that our model is failing to correctly

estimate the attenuation coefficient for long period waves or that the floe breaking strain

is incorrectly estimated. We believe that the former is more likely due to the very small

attenuation of the long period waves and conclude that our scatter model underestimates

the attenuation coefficient at long periods.
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Figure 8.19: The natural logarithm of the maximum strain envelope as a function of Λ for τ = 1 (−),

τ = 2 (− −) and τ = 3 (− · −). The MaxSenv = 3× 10−5 (· · · ) is also plotted to show the

estimated strain at which floes will no longer break. Figure (a) is for Tm = 8 s, Figure (b)

is for Tm = 10 s and Figure (c) is for Tm = 12 s.
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The significant wave height, Hs, is the most important and useful sea state parameter.

The old definition of Hs was to take the mean of the one third largest waves in the sea.

This, however, is not easily applied and it has become standard to define Hs as four times

the standard deviation

Hs = 4

√∫ ∞

0

ΥΛ(ω)dω. (8.10)

In Figure 8.20, (8.7) is used to find Hs for a given Λ and τ = 1. We find that Hs drops

rapidly for increasing Λ and decreases slightly faster with increasing τ .
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Figure 8.20: The significant wave height (Hs) as a function of the number of floes (Λ) for Tm = 10 s

and τ = 1 in Figure (a), τ = 2 in Figure (b) and τ = 3 in Figure (c).



9
Approximation Theory

9.1 Introduction

Our intention in this chapter is to use a theoretical approach to approximate an attenua-

tion coefficient for multiple plates, using only the transmission and reflection coefficients

from a wave travelling from a semi-infinite body of water to a semi-infinite plate. We

begin this chapter by working through the theory and conclude by comparing the theory

to the wave-attenuation model. The theory given in this chapter is an extension of the

theory presented in Meylan and Squire (1993) and has been included in the appendix of

Kohout and Meylan (2008b).

9.2 Approximation Theory

If we assume that a plate is large enough so the damped and evanescent waves diminish

by the time they reach the other edge of the plate, we can consider approximations for

R and T (denoted R̃ and T̃ ). To begin, we consider Tpw and Rpw, which are defined as

the transmitted and reflected coefficients of a wave travelling from a semi-infinite plate to

a semi-infinite body of water. Tpw and Rpw can be expressed in terms of Twp and Rwp,

the transmitted and reflected energy from a semi-infinite body of water to a semi-infinite
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plate

Tpw =
1− |Rwp|

T ∗
wp

,

Rpw = −R∗
wpTwp

T ∗
wp

(9.1)

(Meylan, 1994) where T ∗ and R∗ represent the conjugates of T and R. We consider the

problem of a long and wide finite plate surrounded by water (Figure 9.1). We can express

R̃ in terms of Rwp, b and Tpw (Figure 9.1), where b is the travelling wave coefficient under

the plate, travelling in the negative x direction and expressed in terms of the right edge

of the plate. The other terms are expressed in terms of the left edge of the plate (Figure

9.2a). Figure 9.2a, demonstrates the shift in b, so that R̃ can be expressed as

R̃ = Rwp + bek2(0)(l−r)Tpw. (9.2)

b can be expressed in terms of a and Rpw, where a is the travelling wave coefficient under

the plate, travelling in the positive x direction and expressed in terms of the left edge of

the plate. Figure 9.2b demonstrates the shift in a so that b can be expressed as

b = aek2(0)(l−r)Rpw. (9.3)

a can be expressed in terms of Twp, Rpw and b. Figure 9.2c demonstrates the shift in b so

that a can be expressed as

a = Twp + bek2(0)(l−r)Rpw. (9.4)

Finally, T̃ can be expressed in terms of Tpw and a. Figure 9.2d demonstrates the shift in

a so that T̃ can be expressed as

T̃ = aek2(0)(l−r)Tpw. (9.5)

Equating (9.3) and (9.4) gives

a =
Twp

1−R2
pwe2k2(0)(l−r)

,

b =
TwpRpwek2(0)(l−r)

1−R2
pwe2k2(0)(l−r)

.

(9.6)
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I

R

Tpw

Rwp

a b

Twp

Rpw Rpw

Tpw

T

l r

Figure 9.1: Wave propagation through a long and wide finite plate where I is the incident wave coef-
ficient, R is the total reflected wave coefficient, T is the total transmitted wave coefficient,
Rpw and Tpw are the reflected and transmitted wave coefficients from plate to water, Twp

and Rwp are the reflected and transmitted wave coefficients from water to plate, a and b
are the travelling wave coefficients under the plate and l and r are the x-co-ordinates for
the left and right edges of the plate.

so that (9.2) and (9.5) can be expressed as

R̃ = Rwp +
TwpTpwRpwe2k2(0)(l−r)

1−R2
pwe2k2(0)(l−r)

,

T̃ =
TwpTpwek2(0)(l−r)

1−R2
pwe2k2(0)(l−r)

.

(9.7)

Substituting (9.1) gives

R̃ = Rwp −
R∗

wpT
2
wp(1− |Rwp|)e2k2(0)(l−r)

T ∗2
wp −R∗2

wpT
2
wpe

2k2(0)(l−r)
,

T̃ =
|Twp|2(1− |Rwp|)ek2(0)(l−r)

T ∗2
wp −R∗2

wpT
2
wpe

2k2(0)(l−r)
,

(9.8)

which satisfies the energy balance equation, |R̃|2 + |T̃ |2 = 1. We compare the approxima-

tion theory to the MEEM and find they agree perfectly for sufficiently long plates (Figure

9.3). The point where the two plots merge, defines the point where the first evanescent

mode under the plate decays enough to be negligible and the approximation theory can

be applied.
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Figure 9.2: A detailed schematic diagram showing the wave reflection and transmission through a
long and wide finite plate. Figure (a) shows the terms which make up the total reflected
wave where R = Rpw + bek2(0)(l−r)Tpw and demonstrates the shift in notation for b by
letting y = x − l. Figure (b) shows the terms which make up b where b = aek2(0)(l−r)Rpw

and demonstrates the shift in notation for a by letting y = x − r. Figure (c) shows the
terms which make up a where a = Twp + bek2(0)(l−r)Rpw and demonstrates the shift in
notation for b by letting y = x − l. Figure (d) shows the terms which make up T where
T = aek2(0)(l−r)Tpw and demonstrates the shift in notation for T by letting y = x− r. kµ(0)
is the travelling wave number under the µth plate, where µ = 1 is the semi-infinite open
water plate on the left, µ = 2 is the long finite plate, and µ = 3 is the semi-infinite plate on
the right.
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Figure 9.3: The absolute value of the reflection coefficient, |R| as a function of floe length, L for a finite

plate surrounded by water with α = 1, β under the plate = 1, γ under the plate = 0, τ = 1
and h = 1. The solid line gives |R| using the MEEM for one plate and the dashed line gives

|R| using the approximation theory. Note the point where the two plots merge corresponds

to the point at which the first evanescent mode under the plate decays enough to become

negligible.

9.3 Wave Attenuation Approximation

Since, T̃ in (9.8) is periodic with respect to floe length, we can calculate the average of

|T̃ |2 over one period i.e.

|Tav|2 =
1

2π

∫ 2π

0

|TwpTpwek2(0)(l−r)|2
|1−Rwpe2k2(0)(l−r)|2dt (9.9)

(Williams, 2005). We solve via complex integration and the residue theorem (see Appendix

B) to give

|Tav|2 =
|TwpTpw|2
1− |Rwp|2 . (9.10)

The approximation for |Tav|2 for one plate can be extended to multiple plates, EΛ =

(|Tav|2)Λ = e−aΛ (Section 8.6). The approximation for the attenuation coefficient, ã can
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therefore be expressed as

ã = − ln(|Tav|2). (9.11)

Note that a similar approximation for single scattering is given in Wadhams et al. (1988).

The only difference is that their approximation is based on a solution for a single finite floe

surrounded by water, so that Tav is replaced by T3 (the transmission coefficient for a single

floe). A similar approximation based on multiple scattering is presented in Wadhams

(1986) and is given by

ã = −1

2
ln

( |T3|2
2− |T3|2

)
. (9.12)

Note that the approximations in Wadhams et al. (1988) and Wadhams (1986) become

equal in the limit of small T3. Figure 9.4 shows a comparison between the attenuation

coefficients from our model (Section 8.6) and the attenuation coefficients from the ap-

proximations given in (9.11) and (9.12). Note that in Figure 9.4 and any subsequent

comparisons, our estimate of Tav is used to replace T3 in 9.12. In Figure 9.4, the approx-

imate theories show exactly the same trends as the full scattering theory. The reason

why the scattering coefficient is lower for our model is because our model allows for all

scattering (and conserves energy).
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Figure 9.4: A comparison between the attenuation coefficient from the model (’-’) versus the attenua-

tion coefficients from the approximation theories, for τ = 0.4, 1.2 and 3.2 m. The dashed

line (- -) give the attenuation coefficients from (9.11) and the data points (*) give the atten-

uation coefficients from (9.12)
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10
Comparing Theory to Experiments

10.1 Introduction

Theory and experiment need to work together to understand complicated geophysical phe-

nomena such as wave–ice interactions. It is important to realise that the present situation

is one where there has been much more progress with modelling than with experiments.

We are reliant on data sets which are nearly thirty years old. This is highly unsatisfactory,

and from a modeller’s perspective we have great need for more and better experimental

results.

In this section, we compare results from the MEEM to results from a wave-tank ex-

periment, which was designed to simulate wave propagation in the MIZ. A description of

this experiment and the results have been published in Kohout et al. (2007). The next

section compares our wave-attenuation model to several field experiments performed in

both the Arctic and Antarctic. These experiments and results are described in Kohout

and Meylan (2008b).
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10.2 Wave Tank Experiment

Solutions from the MEEM are compared to a series of experiments which were performed

in a two-dimensional wave-tank. These experiments were aimed at simulating wave prop-

agation in the Marginal Ice Zone. The results concerned with determining the dispersion

equation are described in Sakai and Hanai (2002).

A 26 m long, 0.8 m wide and 0.6 m deep wave-tank was used for the experiment. The

waves were generated using a wave-maker at the front of the tank and an active wave

absorption system was used at the far end of the tank. Elastic plates were placed on the

surface of the wave-tank, with negligible gap in between the plates. The plates occupied

the entire width of the tank and in total occupied 8 m in length. We will compare our

theory with the experiments performed with one 8 m plate, two 4 m plates, four 2 m

plates, eight 1 m plates, sixteen 1/2 m plates and 32 1/4 m plates.

The elastic plate was either 5 mm or 20 mm thick. For the 5 mm plate, the Young’s mod-

ulus Y was approximately 850 MPa (824− 868MPa) and 650 MPa (624− 712MPa)for

the 20 mm plate. The specific gravity of the polyethylene plates was 0.914. The vertical

displacement was measured at 25 different points along the plate using ultra-sonic sensors.

We assume that Poisson’s ratio, ν, is 0.3, g is 9.8 ms−2 and the density of water, ρw, is

1000.0 kgm−3.

We found better agreement between measurement and theory for the 20 mm plates than

for the 5 mm plates. Figures 10.1 and 10.2 are a sample of the 5 mm comparisons between

theory and experiment. Figures 10.3 to 10.7 compare the different amplitudes of the 20

mm plate experiments. These figures show that the experimental amplitudes are within

the linear regime, as only uniform linear changes occur in the measured results as the am-

plitude increases. Figures 10.8 to 10.13 have therefore been simplified by standardising

the incident amplitude to 1. For each figure, we compare results for T = 0.8, 1, 1.2, 1.4

and 1.6 s. These figures generally show good agreement, with a trend of increasing agree-

ment as T increases and increasing agreement as Λ decreases. For Λ = 32, there is strong

disagreement for all T . There is also one surprisingly poor agreement in Figure 10.9d.

We are uncertain about the origin of this inconsistency. We however suggest that as the

amplitudes of the experiment seem restricted at the plate edge, the discrepancy may be

due to some sort of friction at the edges which is restricting the plate’s freedom of move-

ment.

Overall the agreement between the MEEM and the experiment is good, especially consid-
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ering that we are plotting the amplitude of displacement. Differences that do occur may

be explained by experimental errors, such as the reflected wave not being fully dampened

by the wave buoy at the end of the flume. Alternatively, the difference may be due to a

measurement error such as the calculation of Young’s modulus. The cusps apparent in

Figure 10.10 for T = 0.8 s, are caused by the plates being so short as to be almost rigid

and by having a near zero in displacement. The effect when plotting the absolute value of

displacement, is a cusp. We believe that overall these comparisons provide strong confir-

mation that our theory is correct for plates of uniform thickness. It would be interesting

to run an experiment with the plates alternating in thickness, say between 10 mm and 30

mm thick.
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Figure 10.1: |η| from the MEEM and from the experiment (pluses) for four plates 5 mm thick with

T = 1.2 s and incident amplitude 1.18 (a), 2.4 (b) and 3.64 (c).
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Figure 10.2: |η| from the MEEM and from the experiment (pluses) for a single plate 5 mm thick with

A = 1 and T = 0.8 s (a), T = 1.0 s (b), T = 1.2 s (c), T = 1.4 s (d) and T = 1.6 s (e).
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Figure 10.3: |η| from the MEEM and from the experiment (pluses) for a single plate 20 mm thick with

T = 1.2 s and incident amplitude 1.21 (a), 2.41 (b) and 3.72 (c).
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Figure 10.4: |η| from MEEM and from the experiment (pluses) for two plates 20 mm thick with T = 1.2
s and incident amplitude 1.18 (a), 2.47 (b) and 3.8 (c).
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Figure 10.5: |η| from MEEM and from the experiment (pluses) for four plates 20 mm thick with T = 1.2
s and incident amplitude 1.12 (a), 2.4 (b) and 3.89 (c).
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Figure 10.6: |η| from MEEM and from the experiment (pluses) for eight plates 20 mm thick with T = 1.2
s and incident amplitude 1.3 (a), 2.59 (b) and 3.81 (c).
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Figure 10.7: |η| from MEEM and from the experiment (pluses) for sixteen plates 20 mm thick with

T = 1.2 s and incident amplitude 1.22 (a), 2.52 (b) and 3.79 (c).
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Figure 10.8: |η| from MEEM and from the experiment (pluses) for a single plate 20 mm thick with A = 1
and T = 0.8 s (a), T = 1.0 s (b), T = 1.2 s (c), T = 1.4 s (d) and T = 1.6 s (e).
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Figure 10.9: |η| from MEEM and from the experiment (pluses) for two plates 20 mm thick with A = 1
and T = 0.8 s (a), T = 1.0 s (b), T = 1.2 s (c), T = 1.4 s (d) and T = 1.6 s (e).
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Figure 10.10: |η| from MEEM and from the experiment (pluses) for four plates 20 mm thick with A = 1
and T = 0.8 s (a), T = 1.0 s (b), T = 1.2 s (c), T = 1.4 s (d) and T = 1.6 s (e).
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Figure 10.11: |η| from MEEM and from the experiment (pluses) for eight plates 20 mm thick with A = 1
and T = 0.8 s (a), T = 1.0 s (b), T = 1.2 s (c), T = 1.4 s (d) and T = 1.6 s (e).
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Figure 10.12: |η| from MEEM and from the experiment (pluses) for sixteen plates 20 mm thick with

A = 1 and T = 0.8 s (a), T = 1.0 s (b), T = 1.2 s (c), T = 1.4 s (d) and T = 1.6 s (e).
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Figure 10.13: |η| from MEEM and from the experiment (pluses) for thirty-two plates 20 mm thick with

A = 1 and T = 0.8 s (a), T = 1.0 s (b), T = 1.2 s (c), T = 1.4 s (d) and T = 1.6 s (e).
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10.3 Field Experiments

We compare the energy attenuation coefficients from our attenuation model (Section 8.6)

and the single scatter approximation given by (9.11), against the SPRI experimental data

set (Section 2.3.2). We also compare the model and approximation theory to a set of

experiments carried out using an autonomous underwater vehicle (AUV) in the western

Bellingshausen Sea (Section 2.3.2). Although we do not expect our model to compare well

against the AUV data, as it is based on ice conditions with small floe lengths and high

ice concentrations, comparisons can help us define the limits of our model. In addition,

we compare our model to the wave-attenuation model presented in Perrie and Hu (1996)

(Section 2.3.1). It would also be beneficial to compare our model to the LIMEX data set

(Section 2.3.2), but unfortunately we have been unable to obtain this data.

The measured attenuation coefficients, ă, provided in Wadhams et al. (1988) and Hayes

et al. (2007), are calculated from fitting an exponential curve of E as a function of dis-

tance from the ice edge. Our energy attenuation coefficients, a, depends on the number

of floes (Λ = XC/L where L is the average length of the floes, C is the floe concentration

(the ratio of ice floes to open water), and X is the total distance). Therefore ă = aC/L.

We present the attenuation coefficients in Appendix C and in Figures 10.14 to 10.21.

Generally, we plot the experimental data points with error bars, the predicted value from

our model as a solid line, the approximation theory as a dashed line and Perrie and Hu

(1996)’s model as a dashed line.

10.3.1 Greenland Sea 1979

In 1979, two experiments were made in the King Oscars Fjord area of east Greenland

(Wadhams, 1979). During the first experiment on September 4th, the region consisted of

a reasonably uniform 30% cover of multi-year floes of typical diameter 50 – 80 m. Ice

thicknesses could not be determined and we have resorted to taking the floe thickness

from the 1978 data, which based on 14 measurements through smooth areas gave 3.1 m

(a tenuous assumption but we have no better method). It is worth noting that Overgaard

et al. (1983) suggested this value was an underestimate of the true mean thickness, but

as we have no way of verifying this we select τ distributed about 3.1 m with a relatively

large standard deviation of 0.4 so that 95% of the normally chosen τ are between 2.3 m

and 3.9 m. This experiment was conducted in a diffuse MIZ so we expect the experiment

to provide a good fit to our scatter model. The ice field also generally consisted of large

floes and hence qualify for the large floe requirement given in Section 8.3.
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We present the 4th of September 1979 Greenland Sea data and model results in Fig-

ure 10.14 and Figure 10.15. Figure 10.14 shows the predicted value from our model with

mean τ = 3.1 m as a solid line and the predicted values from the single scatter approx-

imation, given by (9.11), as a dashed line. The figure also shows the experimental data

for C = 0.3 with L = 50 m (’+’ data points with error bars) and L = 80 m (’◦’ data

points with error bars). This figure shows the linear scaling of the attenuation coefficient

with this property. Figure 10.15 shows the predicted value from our model with mean

τ = 2 m (solid line) and mean τ = 3.5 m (dashed line), both with a large standard devi-

ation of 0.4. It is clear from these figures that there is a great deal of uncertainty in the

comparison of these experiments with our model, highlighting the importance of accurate

and precise details of the ice conditions at the time of the experiment. In Figure 10.14,

our model slightly over-predicts the attenuation coefficient, while the approximation the-

ory considerably over-predicts the attenuation coefficient. Interestingly, the results in

Wadhams et al. (1988) agree with the experimental data better than the approxima-

tion theory presented here does. This might be due to the error in there solution for

the single floe scattering producing lower attenuation coefficients than are obtained with

the correct single floe scattering as presented here. It is also worth mentioning that there

is a range in the data, and in other situations the approximate theory may perform better.

On the 10th of September, the ice-cover was more sparse and the floes were generally

larger. This experiment was also conducted in a diffuse MIZ with large floes so we ex-

pect the experiment to provide a good fit to our scatter model. Again no record of floe

thickness was recorded during this experiment and we use the floe thickness data from

1978 which estimates τ = 3.1 m. Figure 10.16 shows the predicted attenuation coefficient

from our model with mean τ = 3.1 m with a large standard deviation of 0.4 (solid line)

and its 95% confidence interval (CI) (dotted lines), and the predicted values from the ap-

proximation theory (dashed line). The figure also plots the experimental data where we

estimate L = 80 m and C = 0.15. Generally the data and our model are in good agree-

ment. They slightly disagree for small periods where a rollover (a trend of decreasing

attenuation as the period becomes smaller) occurs in the field data and for longer periods

where our model slightly under-predicts the attenuation coefficient. The approximation

theory again over-predicts the attenuation coefficient.
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Figure 10.14: a (−) and ã (− −) for mean τ = 3.1 m and the 4th September 1979 Greenland Sea
experiment, with error bars, for C = 0.3 and L = 50 m (+) and L = 80 m (◦).
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Figure 10.15: a for mean τ = 2 m (−) and mean τ = 3.5 m (− −) and the 4th Sept 1979 Greenland

Sea experiment, with error bars, for L = 65 m and C = 0.3 (+).
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Figure 10.16: a (−), its 95% CI (· · · ), and ã (− −) for mean τ = 3.1 m, and the 10th Sept 1979

Greenland Sea experiment, with error bars, for C = 0.15 and L = 80 m (+).
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10.3.2 Bering Sea 1979

In March 1979, experiments were performed in the Bering Sea ice margin (Squire and

Moore, 1980). On the day of the experiment, the MIZ had 50% sea-ice concentration.

Floe diameter increased gradually from 10 m at the ice edge to 40 m at approximately

30 km in. At 30 km, the floe size increased abruptly to more than 100 m in diameter,

the typical size thereafter. Two buoys were located in the region of 10 m floe diame-

ters, 3 in the region of 10 – 40 m floe diameters and 2 in the region of 100 m floes. We

find L = 30 m by taking the average floe lengths. Core samples were taken from floes

10 – 20 m wide and 0.5 m thick. The section of the MIZ where this experiment took

place consisted of a mixture of diffuse and compact ice conditions. We therefore expect

a reasonable but not perfect comparison between the experimental data and model results.

Figure 10.17 compares the model attenuation coefficients against the experimental at-

tenuation coefficients from the Bering Sea in 1979. Since many of the floes are in fact

wider than 10 – 20 m, they are probably thicker than 0.5 m. Hence, the model attenuation

coefficients are calculated with the mean τ = 1.5 m (based on the thicknesses of floes from

other years in the Bering Sea) with a large standard deviation of 0.4. The experimental

attenuation coefficients are plotted for C = 0.5 and L = 30 m (+) and L = 100 m (◦).
Here the experimental attenuation coefficients are considerably less than the modelled

coefficients. They are however decreasing at a similar rate. At periods between 12 s and

16 s, the experimental data unexpectedly increases. We suspect the increase may be due

to an experimental error.
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Figure 10.17: a (−) and ã (− −) for mean τ = 1.5 m and the 1979 Bering Sea experiment, with error

bars, for C = 0.5 with L = 30 m (+) and L = 100 m (◦).

10.3.3 Greenland Sea 1983

On the 26th and 29th July, a helicopter was used to transport a vertical accelerometer to

six sites at increasing distance from the ice edge, while a buoy was measuring wave energy

at the ice edge. The experiments are reported in Squire et al. (1983). Unfortunately, very

little information is provided on the ice conditions at the time of these experiments.

Along the attenuation line on the 26th, the ice-cover changed from compact ice into

diffuse ice and the floes visited ranged between 30 m and 80 m. Very little information

is provided on floe thickness; it is mentioned that one of the floes that was visited was

thick.

To deal with the uncertainty in ice thickness, Figure 10.18 shows the predicted value
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from our model with mean τ = 4 (−) with a large standard deviation of 0.5. Figure 10.18

also shows the predicted values from the approximation theory (−−). The estimated up-

per and lower boundaries of the experimental data are plotted using C = 0.6 with L = 30

m (+ data points with error bars) and C = 0.4 with L = 80 m (◦ data points with error

bars). Our model fits within the expected attenuation coefficient boundaries based on

the experimental data. Note however, our model is not predicting the rollover at short

periods. The approximation theory over-predicts the attenuation coefficient.

On the 29th, the floes visited ranged between 30 m and 100 m. The freeboard was

found to vary between 0.2 m and 0.5 m. We estimate τ by assuming freeboard is 1/10 of

its draft (Perrie and Hu, 1997). Therefore we estimate τ is between 2.2 m and 5.5 m. We

select mean τ = 3.9 m with a large standard deviation of 0.8, so that 95% of the normally

chosen τ ’s are between 2.3 m and 5.5 m.

Figure 10.19 shows the predicted values from our model (−) and from the approximation

theory (−−). The estimated upper and lower boundaries of the experimental data are

plotted using C = 0.6 with L = 30 m (+ data points with error bars) and C = 0.4 with

L = 100 m (◦ data points with error bars). The attenuation coefficients are decaying at

a much faster rate than is usual and much faster than the models prediction. This may

be due to the experimental line (in direction of the incoming swell) being oblique with

respect to the ice edge. This implies that any wave refraction occurring at the ice edge

would have complicated the results. Although our model can allow for oblique direction

of incoming swell, the oblique angle was not reported.
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Figure 10.18: a (−) and ã (− −) for mean τ = 4 m and the 26th July 1983 Greenland Sea experiment,

with error bars, for C = 0.6, L = 30 m (+) and for C = 0.4, L = 80 m (◦).
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Figure 10.19: a (−) and ã (− −) for mean τ = 3.9 m (−) and the 29th July 1983 Greenland Sea

experiment, with error bars, C = 0.6, L = 30 m (+) and for C = 0.4, L = 100 m (◦).
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10.3.4 Bering Sea 1983

During February 1983, as part of the MIZEX West study, several experiments took place

in the Bering Sea (Wadhams et al., 1988; Squire and Wadhams, 1985). The first set of

experiments on the 7th February was intended as an attenuation transect and only three

sites were located in a straight line from the ice edge. Although three wave stations are

not sufficient for a detailed study of wave decay, the wave energy was continuously mon-

itored using radar transponders accompanied by Seadiscs. Consequently, the data from

each site was collected simultaneously. The remaining experiments involved a helicopter

hopping from floe to floe. Here, although the data was not simultaneously collected, a

large number of wave stations were set up and included sites which were deep into the ice

interior.

7th February

On the 7th of February, two experiments took place, one 12 hours after the other. The ice

conditions during this study consisted of compact floes with short average floe lengths.

Hence, we do not expect our model to perfectly fit the experimental data. These ex-

periments were close to the ice edge, where the majority of floe lengths were around 10

m across and the floe thickness ranged between 0.7 m and 1.0 m. Note however, these

thicknesses were measured from free board and may not be accurate. We select τ such

that it is distributed about a mean of 0.85 m with a standard deviation of 0.2. The floe

concentration was greater than 80%.

Figure 10.20 shows the predicted values from our model (−) with mean τ = 0.85 m. As the

floe lengths were small in this experiment, we compare our model to the rigid floe model

of Perrie and Hu (1996) (− −). The first (+) and second (◦) experimental attenuation

coefficients are plotted for C = 0.8 and L = 10 m. Note that these two experiments took

place on the same day with different results, despite the conditions being almost identical.

We find that our model and the Perrie and Hu (1996) model are in close agreement. This

is because our model reduces to the rigid body model in the limit of small floes. Our

model approximately lies between the two experiments, and it is generally a very good

representation of the experimental data. Perrie and Hu (1996)’s model has slightly higher

attenuation coefficients, but it represents the rollover in the first experiment very well,

while ours does not represent the rollover at all. Note that the mean floe thickness used

in Perrie and Hu (1996)’s model was 1.5 m rather than 0.85 m and their floe diameter

was 14.5 rather than 10.
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Figure 10.20: a for mean τ = 0.85 m (−), the model of Perrie and Hu (1996) (− −) and the first (+) and

second (◦) 7th February 1983 Bering Sea experiments, with error bars, for C = 0.8 and

L = 10 m.

20th, 22nd and 26th of February

A detailed account of the the ice conditions at the time of these experiments was not

reported in Wadhams et al. (1988). For each experiment, we make estimates of τ , C and

L.

The attenuation transect on the 20th comprised of 5 stations, each 5 – 10 km apart

and 50 km from the ice edge. It is expected that the data may have large errors due to

the small number of sites involved, their proximity and the large drift experienced by the

ship. The character of the ice-cover was considerably different from that encountered on

7th February and consisted of large conglomerate floes composed of thick discrete floes.

Ice concentrations were low and varied between 6% and 34%. On the 22nd, the atten-

uation transect comprised of 7 stations, again each 5 – 10 km apart. On the 26th, the

attenuation transect composed of 8 stations, each 5 – 20 km apart Note that on the 26th,

no measurements of sea state were available near the ice edge as the seadisc was lost in

rough seas. We expect that a viscous model would be a more appropriate model for the

conglomerate floes and expect disagreement between our scatter model and the experi-
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ment. Nevertheless, for all three experiments, we estimate L = 100 m, C = 0.2 and we

select τ such that is distributed about 2 m with a large standard deviation of 0.5.

Figure 10.21 shows that for periods of more than 13 s, both the attenuation coefficients

from our model and Perrie and Hu (1996)’s model decay considerably faster than the at-

tenuation coefficients from the experimental results. Note, however, that the experiment

includes periods up to 21 s, which is far longer than included in the previous experiments.

This discrepancy may be a result of the increased scatter seen in figures 8.9 and 8.10.

The increased scatter indicates that, for long periods, the transmitted energy does not

as strongly represent an exponentially decaying function. As mentioned earlier, this in-

creased scatter may be a result of increased coherent effects and hence our model for the

attenuation coefficient may be improved by increasing the number of simulations. Figure

10.21 plots our model results for both 100 simulations (−) and 1000 simulations (x). The

increased number of simulations smooth the results, but does not alter the rate of change

of the attenuation coefficient. Alternatively, the discrepancy between the experimental

data and the models may be a result of the inaccuracy of the instruments at longer periods

or may be an indication that the scatter model does not predict wave-attenuation at long

periods under these ice conditions.
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Figure 10.21: a for mean τ = 2 m for 100 simulations (−) and for 1000 simulations (x), the model of

Perrie and Hu (1996) (− −) and the 20th (+), 22nd (◦) and 26th (x) of February 1983

Bering Sea experiments, with error bars. For each experiment, C = 0.2 and L = 100 m.

10.3.5 Bellinghausen Sea 2003

The Autosub AUV completed four experiments west of the Antarctic Peninsula in the

Bellinghausen Sea during 22nd – 25th March 2003. In water track mode, the Autosub’s

navigation frame of reference is the water rather than the seabed, hence for some experi-

ments a mean current caused the submarine to drift from the mission plan. Consequently,

the line of travel of the sub was not necessarily along the direction of the swell nor at

right angles to the ice edge. Also, the attenuation coefficients for wave periods longer than

16 s may be compromised by possible surge response of the vehicle (Hayes et al., 2007).

The ice conditions at the time of the experiment were recorded by video and sea ice logs

and are summarised in Hayes et al. (2007). Of the four experiments, experiments 323

and 324 produced successful attenuation coefficients. During experiment 321 no records

were made as the region was completely under ice at 100 m depth. During experiment

322, no wave-attenuation was recorded, as there was a region of open water 2 km from

the ice edge. The AUV was not able to sense the motion of the open water surface due

to the set up of the acoustic current meter. Note that the AUV, with a slightly altered
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experimental design, would be capable of collecting data in regions consisting of both ice

and open water. Overall, we do not expect our model to perform well against this data

set as the ice is very compact and the floe lengths are small.

Experiment 323; 24th March During experiment 323, ice-coverage was 100%; 60% first-

year ice floes with diameter less than 20 m and 0.5 – 0.75 m thick, and 40% was brash

ice 0.5 m thick. To simulate, we select C = 0.6, τ to be distributed about 0.625 with a

standard deviation of 0.1 m and L = 20 m.

Experiment 324; 25th March On March 25, experiment 324 sampled roughly 10 km2

of sea-ice and traversed the ice edge twice (on entering and exiting). Ice conditions were

recorded from the ship at four locations several kilometres into the ice. The sea-ice was

reported to consist of 100% ice-coverage, 20% brash and 80% multi-year or first-year ice

of thickness 1.5 – 2 m. We therefore select C = 0.8 and τ such that it is distributed about

1.75 m and select a standard deviation of 0.1 m. Floe diameter was recorded to be less

than 20 m, we select L = 20.

We present the Autosub AUV data in Figures 10.22 and 10.23. There is little agree-

ment with our model for these ice conditions. The experimental results for short periods

are of similar order of magnitude, but our model is clearly under-predicting the attenua-

tion coefficients at long periods. Even the possible errors in the experimental data for long

periods cannot account for the predicted fast attenuation rates. This is a further indica-

tion that physical factors other than wave scatter may be involved in wave-attenuation

through compact ice.



10.3 Field Experiments 133

6 8 10 12 14 16 18 20 22 24 26
−14

−12

−10

−8

−6

−4

−2

T

ln
(a

)

Figure 10.22: a (−) and ã (− −) with mean τ = 0.625 m and the Bellinghausen Sea experiment 323,

with error bars, for C = 0.6 and L = 20 m (+).
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Figure 10.23: a (−) and ã (− −) with mean τ = 1.75 m and the Bellinghausen Sea experiment 324,

with error bars, for C = 0.8 and L = 20 m on entering (+) and exiting the ice (◦).
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10.3.6 Summary / Discussion

We use scatter theory to model a MIZ consisting of mainly diffuse ice. In highly concen-

trated ice fields, floe collisions are more likely to occur so that the pack behaves either

as a collection of very large floes or as a single entity. The floes can no longer surge in

response to the waves and wave-attenuation may be less associated with wave scatter and

occurring more significantly in the form of viscous losses from the boundary layer under

the ice (Squire et al., 1995). Our model also requires that the wave length is always 3

times the floe length so E remains independent of floe length (Section 8.3). We compare

our model to some experimental data sets which do, and some experimental data sets

which do not, fit these requirements. This is mainly due to the limited amount of exper-

imental data available. We use these varied data sets to help identify the limits of our

scatter model.

For the experiments carried out in diffuse ice with large floes, our model performs well

(Figure 10.14 and 10.16). The 1979 Bering Sea and 1983 Greenland Sea experiments

were carried out in a MIZ consisting of a mixture of diffuse and compact ice. Our model

compares reasonably well to the experiments from the Bering Sea in 1979 (Figure 10.17)

and from the the first experiment from the Greenland Sea in 1983 (Figure 10.18). Our

model does not agree with the second experiment from the Greenland Sea in 1983 (Figure

10.19). Note that during this experiment, the data was not collected perpendicular to the

direction of incoming swell.

The experiments carried out in the Bering Sea in 1983 between the 20th – 26th of February

consisted of large conglomerate floes composed of thick discrete floes. Our model does

not perform well in this case. This may be due to the fact that the ice zone consisted of

conglomerate floes where wave-attenuation may be less significantly associated with wave

scatter and occurring more significantly in the form of viscous losses. Also, for very large

floes, extra losses can occur from reflections from pressure ridges or as creep hysteresis

losses due to flexure of the ice sheet. Note that the discrepancy between the model and

the experiment increases with increasing period. It is possible that the instruments are

inaccurate for long periods or that scatter theory is less significant at long periods.

Three experiments were carried out in compact ice conditions with small floes. Of the

three, we found surprising agreement with the 7th February 1983 Bering Sea experiments

(Figure 10.20). This may be due to our model reducing to the rigid body model in

the limit of small floes. It is also possible that the small ice floes were close but not

interacting and hence the scatter model still applied. Our model does not agree with the

other two experiments carried out in compact ice (Figure 10.22 and 10.23). In this case,

physical factors other than wave scatter may have contributed to the wave-attenuation.
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For example, the increased attenuation loss may be due to viscous losses or the imperfect

elasticity of sea-ice. Factors which will effect the anelastic properties of sea-ice include

its brine-volume and crystal structure. It may be necessary to add an extra viscous or

anelastic term which accentuates the attenuation. Unfortunately, however, these terms

can only be determined through measurements.

Overall, we found successful agreement between our model and the experiments most

applicable to our model i.e. experiments in diffuse ice with large floes. Note however,

that our model never predicts the roll-over often found at short periods. Surprisingly we

found that generally, even for the experiments less applicable to our model, there is some

agreement between the model and the experimental data for short to medium periods.

However, as the ice concentration increases and floe length decreases, the under-prediction

of the attenuation coefficient increases and this is especially apparent at long periods.

Note that without further experimental data, it is difficult to judge how the model would

perform against experiments in diffuse ice with large floes at long periods (approximately

greater than 14 seconds). It would be very profitable to compare our model to more

data sets, where the details of the floe characteristics at the time of the experiments are

more precise. We are, however, overall pleased with our results, which suggest that a

scattering model is generally a good approximation for ice conditions consisting of large

floes in diffuse ice for wave periods between 6 and 15 seconds. We also conclude that for

small floe sizes and high ice concentrations, wave attenuation is not primarily due to wave

scattering.
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11
Summary and Conclusions

This research contributes to the theoretical and analytical study of the interaction of

water waves with large floating structures. The scattering of small amplitude waves,

which are obliquely incident on a set of floating elastic plates occupying the entire water

surface, is considered. The plates float on a body of water of arbitrary depth and each

plate is uniquely defined. The problem is solved two-dimensionally, assuming invariance

in one horizontal direction. The problem is formulated by imposing boundary conditions

on the eigenfunction expansion of Laplace’s equation. The wave modes are generated

by solving the dispersion equation, which is derived from these boundary conditions. A

set of transmission and reflection coefficients is defined, which is found by matching at

each plate boundary, where the number of matching conditions provides fewer equations

than unknowns. The auxiliary equations arise from by the the plate boundary conditions.

The problem is solved for a variety of edge conditions including: free, clamped, sliding,

springed and hinged. The problem is also solved using a GFM which also solves for a set

of plates, but requires that each plate is identical. This method is included as it is a useful

tool to verify the results of the MEEM. The integrity of the solutions is further verified by

ensuring the systems are in energy balance. The solutions and convergence of the MEEM

are tested against the GFM and Meylan and Squire (1994)’s finite-floe model, where the

solutions agree exactly and the convergence of the methods are almost identical. For each

method, approximately 20 modes are required for the solution to converge to an accuracy

137
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of two decimal places.

Our frozen seas play an important role in sustaining our climate and it is therefore rele-

vant to understand the processes involved in its formation and de-formation. Wave energy

has proven to penetrate surprisingly deep into an ice field and play a major role in the

breakup of sea-ice. The main focus of this research was to develop our understanding of

wave propagation in ice-covered seas. The MEEM is used to simulate wave–ice interac-

tion in the Marginal Ice Zone (MIZ). The only physics included is due to the effects of an

elastic plate on the water surface and all non-linear effects are neglected as well as floe

collisions and viscosity. In removing the resonance effects, by averaging over a distribution

of floe lengths, the model predicts that the transmitted energy, E, is independent of floe

length, provided the mean floe length is above a critical value which will occur roughly

when the wavelength is more than three times the floe length. The model predicts an

exponential decay of wave energy with distance of propagation through the MIZ. This

result is particularly significant because it agrees with the experimental findings. The

attenuation coefficient, provided the floes are sufficiently large, is a function of number of

floes and is independent of the average floe length. The results have been summarised in

a graph with the attenuation coefficient expressed as a function of period for various floe

thicknesses. We also provide an estimate of the attenuation coefficient using an approx-

imation theory. We find the approximation approximately agrees with the model. The

attenuation coefficients are used to model the strain in the ice and its consequent floe

breakup. The results suggest that the model is under-predicting the attenuation rate and

physics other than wave scatter may be relevant.

The displacements of the MEEM are compared against a series of laboratory experi-

ments performed in a two-dimensional wave-tank. Overall the agreement between the

theory and experiment is good. We believe this is strong confirmation that our theory

is correct for plates of uniform thickness. Differences that do occur may be explained by

experimental error such as the reflected wave not being fully dampened by the wave buoy

at the end of the flume or alternatively by a measurement error such as the calculation

of Young’s modulus.

The attenuation model results are compared against field experiment results. Previous

model and experimental comparisons have only been achieved by applying approximation

theories or by including a tuning parameter in the model. The attenuation model results

are compared against a series of field experiments carried out in the Arctic seas by the

Scott Polar Research Institute and against a set of experiments carried out off the West
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Antarctic Peninsula. We find successful agreement between our wave attenuation model

and the experiments most applicable to our model. For highly concentrated ice with short

floes, we suggest that wave attenuation is not primarily due to wave scattering. Other

factors that may be involved include viscous losses from the boundary layer under the

ice, reflections from pressure ridges or losses due to the anelasticity of sea-ice. Overall,

we conclude that the model is applicable to large floes in a diffuse ice field, for short to

medium wave periods (6 to 15 seconds). Further experiments are required to make any

further conclusions.
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A
The Energy Balance Equation

Based on the method used in Evans and Davies (1968), a check can be made to ensure the

solutions of the floating plate problem are in energy balance. This is simply a condition

that the incident energy is equal to the sum of the radiated energy. When the first and

final plates have different properties, the energy balance equation is derived by applying

Green’s theorem to φ and its conjugate (Evans and Davies, 1968). We set up the problem

as given in Figure A.1

| ||
||

|

| ||
||

|

| ||
||

|

U

S

z = 0

z = −h

x = −∞ x = ∞

Figure A.1: A diagram depicting the area U which is bounded by the rectangle S. The rectangle S is

bounded by −h ≤ z ≤ 0 and −∞ ≤ x ≤ ∞.
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Applying Green’s theorem to φ and its conjugate φ∗ gives

∫ ∫

U
(φ∇2φ∗ − φ∗∇2φ)dxdz =

∫

S
(φ

∂φ∗

∂n
− φ∗

∂φ

∂n
)dl, (A.1)

where n denotes the outward plane normal to the boundary and l denotes the plane

parallel to the boundary. As φ and φ∗ satisfy (3.24), the left hand side of (A.1) vanishes

so that (A.1) reduces to

=
∫

S
φ

∂φ∗

∂n
dl = 0, (A.2)

Expanding gives

ξ1 + ξ2 + ξ3 = 0, (A.3)

where

ξ1 = =
∫ ∞

−∞
(φ

∂φ∗

∂z
)
∣∣
z=0

dx, (A.4)

ξ2 = =
∫ 0

−h

(φ
∂φ∗

∂x
)
∣∣
x=∞dz, (A.5)

and

ξ3 = −=
∫ 0

−h

(φ
∂φ∗

∂x
)
∣∣
x=−∞dz = 0, (A.6)

where = denotes the imaginary part.

Expanding ξ1

Near x = −∞, we approximate φ by

φ ≈ e−κ1(0)(x−r1) cos (k1(0)(z + h))

cos (k1(0)h)
+ R1(0)eκ1(0)(x−r1) cos (k1(0)(z + h))

cos (k1(0)h)
. (A.7)

To simplify the derivation, we re-express (A.7) as

φ ≈
(
e−iκI

1(x−r1) + R1(0)eiκI
1(x−r1)

) cosh (kI
1(z + h))

cosh (kI
1h)

, (A.8)

where kI
1 = −=k1(0) and κI

1 = −=κ1(0), so that

∂φ

∂x
≈

(
−iκI

1e
−iκI

1(x−r1) + iκI
1R1(0)eiκI

1(x−r1)
) cosh (kI

1(z + h))

cosh (kI
1h)

. (A.9)
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Therefore,

ξ1 = =
∫ 0

−h

[(
e−iκI

1(x−r1) + R1(0)eiκI
1(x−r1)

)
(
iκI

1e
iκI

1(x−r1) − iκI
1R1(0)∗e−iκI

1(x−r1)
)

(
cosh2 (kI

1(z + h))

cosh2 (kI
1h)

)]
dz,

= =
[
iκI

1 (1− |R1(0)|2)
2 cosh2 (kI

1h)

∫ 0

−h

(
cosh (2kI

1(z + h)) + 1
)
dz

]
,

= =
[

iκI
1 (1− |R1(0)|2)
2 cosh2 (kI

1h)

[
1

2kI
1

sinh (2kI
1(z + h)) + z

]0

−h

]
,

=
κI

1 (1− |R1(0)|2)
2 cosh2 (kI

1h)

(
1

2kI
1

sinh (2kI
1h)) + h

)
,

=
κI

1 (1− |R1(0)|2)
2kI

1

(
tanh (kI

1h) +
hkI

1

cosh2 (kI
1h)

)
,

(A.10)

where R1(0)∗ is the conjugate of R1(0).

Expanding ξ2

Near x = ∞, we approximate φ by

φ ≈ TΛ(0)e−κΛ(0)(x−lΛ) cos (kΛ(0)(z + h))

cos (kΛ(0)h)
, (A.11)

and re-express as

φ ≈ TΛ(0)e−iκI
Λ(x−lΛ))

cosh (kI
Λ(z + h))

cosh (kI
Λh)

, (A.12)

where kI
Λ = −=kΛ(0) and κI

Λ = −=κΛ(0), so that

∂φ

∂x
≈ −iκI

ΛTΛ(0)e−iκI
Λ(x−lΛ))

cosh (kI
Λ(z + h))

cosh (kI
Λh)

. (A.13)
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Therefore,

ξ2 = =
∫ 0

−h

[
(TΛ(0)e−iκI

Λ(x−lΛ))(iκI
ΛTΛ(0)∗e−iκI

Λ(x−lΛ))

cosh2 (kI
Λ(z + h))

cosh2 (kI
Λh)

]
dz, (A.14)

=
κI

Λ|TΛ(0)|2
2 cosh2 (kI

Λh)

(
1

2kI
Λ

sinh (2kI
Λh) + h

)
,

=
κI

Λ|TΛ(0)|2
2kI

Λ

(
tanh (kI

Λh) +
kI

Λh

cosh2 (kI
Λh)

)
.

(A.15)

Expanding ξ3

The ice-covered boundary condition, (3.27), gives

ξ3 = =
∫ ∞

−∞

(
β

α

(
∂2

∂x2
− k2

y

)2

− γ +
1

α

)
∂φ

∂z
¦ ∂φ∗

∂z

∣∣∣∣
z=0

dx. (A.16)

Since
∂φ

∂z
¦ ∂φ∗∂z is real,

ξ3 = =
∫ ∞

−∞

(
β

α

∂2

∂x2

(
∂2

∂x2
− 2k2

y

)2
)

∂φ

∂z
¦ ∂φ∗

∂z

∣∣∣∣
z=0

dx.

Integration by parts gives

ξ3 = =
[ [

β

α

∂

∂x

(
∂2

∂x2
− 2k2

y

)
∂φ

∂z
¦ ∂φ∗

∂z

]∞

−∞

−
∫ ∞

−∞

β

α

∂

∂x

(
∂2

∂x2
− 2k2

y

)
∂φ

∂z
¦ ∂

∂x

∂φ∗

∂z
dx

]
. (A.17)

As 2k2
y

∂

∂x

∂φ

∂z
¦ ∂

∂x

∂φ∗

∂z
is real and by integration by parts, (A.17) becomes,

ξ3 = =
[[

β

α

∂

∂x

(
∂2

∂x2
− 2k2

y

)
∂φ

∂z
¦ ∂φ∗

∂z
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[
β

α
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+

∫ ∞
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β

α
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∂x2

∂φ

∂z
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∂z
dx

]
. (A.18)
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As
∂2

∂x2

∂φ

∂z
¦ ∂2

∂x2

∂φ∗

∂z
is real, (A.18) becomes

ξ3 = =
[[

β

α

∂

∂x

(
∂2

∂x2
− 2k2

y

)
∂φ

∂z
¦ ∂φ∗

∂z
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−∞
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β

α

∂2

∂x2

∂φ

∂z
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∂φ∗
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−∞

]
. (A.19)

Now breaking ξ3 down,

∂

∂x

(
∂2

∂x2
− 2k2

y

)
∂φ(x2, 0)

∂z
¦ ∂φ(x2, 0)∗
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Λ)3kI
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Λ(x−lΛ) tanh (kI

Λh)
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ΛTΛ(0)∗eiκI
Λ(x−lΛ) tanh (kI

Λh)
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,
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Λ)2
(
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y

)
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I
1)

2
(
(κI
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y
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∂2

∂x2

∂φ(x2, 0)

∂z
¦ ∂

∂x

∂φ∗

∂z

=
[
−(κI

Λ)2kI
ΛTΛ(0)e−iκI
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,
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Λ)3(kI

Λ)2 tanh2 (kI
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and finally,
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2 tanh2 (kI
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(
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We can now express (A.19) as

=
[
βΛ

α
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]
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α

[
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I
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Solving the Energy Balance Equation

Pulling it all together, (A.3) becomes

βΛ

α

[
2κI

Λ(kI
Λ)2((κI

Λ)2 + k2
y) tanh2 (kI

Λh)|TΛ(0)|2]

− β1

α

[
2κI

1(k
I
1)

2((κI
1)
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y) tanh2 (kI
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+
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(
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)

− κI
1 (1− |R1(0)|2)

2kI
1

(
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1

cosh2 (kI
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)
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Re-arranging gives
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+
1

2it
+

h
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)
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which can be expressed as

D|TΛ(0)|2 + |R1(0)|2 = 1, (A.20)

where D is given by

D =
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ΛkI
1 cosh2 (kI
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I
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1)
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sinh (2kI

1h) + kI
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(A.21)
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B
Deriving |Tav|2

In this appendix, we solve |Tav|2 via complex integration and the residue theorem. This

solution is part of the derivation of the approximation theory presented in Chapter 9. The

intention of the theory is to approximate an attenuation coefficient for multiple plates and

is an extension of the theory presented in Meylan and Squire (1993).

Firstly,

|T |2 =
|TwpTpwek2(0)(l−r)|2
|1−R2

pwe2k2(0)(l−r)|2 . (B.1)

Rearranging gives

|T |2 = |TwpTpw|2 1

|1− |R2
pw|e2(k2(0)(l−r)+irpw)|2 , (B.2)

where |ek2(0)(l−r)| = 1 and Rpw = |Rpw|eirpw . Since |z|2 = zz∗,

|T |2 = |TwpTpw|2 1

(1− |R2
pw|eit)(1− |R2

pw|eit)∗
, (B.3)
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where it = 2(k2(0)(l − r) + irpw). Expanding gives

|T |2 = |TwpTpw|2 1

1 + |R2
pw|2 − |R2

pw|(eit + e−it)
. (B.4)

The average of |T |2 can be found by integrating over one period and then dividing by the

length of one period i.e.

|Tav|2 =
1

2π

∫ 2π

0

|T |2dt =
|TwpTpw|2

2π

∫ 2π

0

1

1 + |R2
pw|2 − |R2

pw|(eit + e−it)
dt. (B.5)

To solve, we let z = eit, so dz = ieitdt which gives

|Tav|2 =
|TwpTpw|2

2πi

∮

|z|=1

1

z(1 + |R2
pw|2 − |R2

pw|(z + z−1))
dz. (B.6)

Factorising via the quadratic formula gives

|Tav|2 =
|TwpTpw|2

2πi

∮

|z|=1

1(
z − |R2

pw|
) (−|R2

pw|z + 1
)dz, (B.7)

which gives two simple poles. Only the pole at z = |R2
pw| is within the contour |z| = 1.

Therefore, by the residue theorem

|Tav|2 =
|TwpTpw|2

2πi
2πiResz=|R2

pw|, (B.8)

which gives

|Tav|2 =
|TwpTpw|2
1− |R2

pw|
, (B.9)

since Resz=|R2
pw| = −|R2

pw|2 + 1.



C
The Attenuation Data

In this appendix, we simply list all the attenuation data used in this thesis. Each table

includes the raw attenuation data from the experiments, the scaled attenuation data from

the experiments and the attenuation coefficients from our model.

Table C.1: Comparison of the attenuation coefficients from the 4th of September 1979 Greenland Sea

experiment (ă) (obtained from Wadhams et al. (1988)), the scaled attenuation coefficients

and the model attenuation coefficients (a). The ± values given represent the margin of

error provided in Wadhams et al. (1988).

T ă (m−1 × 10−4) ă× 65/.3 (×10−2) a (×10−2)

8.14 2.66 ± 0.22 5.76 ± 0.48 9.22

9.10 2.01 ± 0.17 4.35 ± 0.37 7.29

10.31 1.23 ± 0.19 2.67 ± 0.41 4.92

11.88 0.73 ± 0.25 1.58 ± 0.54 2.77

14.03 0.29 ± 0.27 0.63 ± 0.59 1.02
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Table C.2: Comparison of the attenuation coefficients from the 10th of September 1979 Greenland Sea

experiment (ă) (obtained from Wadhams et al. (1988)), the scaled attenuation coefficients

and the model attenuation coefficients (a). The ± values given represent the margin of

error provided in Wadhams et al. (1988).

T ă (m−1 × 10−4) ă× 80/0.17 (×10−2) a (×10−2)

6.73 2.01 ± 1.46 9.46 ± 6.87 19.58

7.37 2.37 ± 1.46 11.15 ± 6.87 13.37

8.14 2.35 ± 0.54 11.06 ± 2.54 11.54

9.10 1.29 ± 0.13 6.07 ± 0.61 9.43

10.31 1.25 ± 0.28 5.88 ± 1.32 5.91

11.88 0.89 ± 0.46 4.19 ± 2.16 2.77

Table C.3: Comparison of the attenuation coefficients from the 7th of February 1983 Bering Sea ex-

periment 1. (ă) (obtained from Wadhams et al. (1988)), the scaled attenuation coefficients

and the model attenuation coefficients (a). The ± values given represent the margin of

error provided in Wadhams et al. (1988).

T ă (m−1 × 10−4) ă× 14.5/0.72 (×10−2) a (×10−2)

6.99 3.57 ± 0.18 0.72 ± 0.04 2.60

7.35 4.28 ± 0.25 0.86 ± 0.05 2.54

7.81 4.66 ± 0.81 0.94 ± 0.16 1.71

8.26 3.66 ± 1.16 0.74 ± 0.23 1.16

8.77 2.84 ± 0.65 0.57 ± 0.13 0.77

9.43 2.05 ± 0.03 0.41 ± 0.01 0.50

10.10 0.75 ± 0.19 0.15 ± 0.04 0.26

10.87 0.20 ± 0.05 0.04 ± 0.01 0.15

11.90 0.55 ± 0.31 0.11 ± 0.06 0.05

12.99 0.34 ± 0.26 0.07 ± 0.05 0.02
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Table C.4: Comparison of the attenuation coefficients from the 7th of February 1983 Bering Sea ex-

periment 2. (ă) (obtained from Wadhams et al. (1988)), the scaled attenuation coefficients

and the model attenuation coefficients (a). The ± values given represent the margin of

error provided in Wadhams et al. (1988).

T ă (m−1 × 10−4) ă× 14.5/0.72 (×10−2) a (×10−2)

6.99 7.87 ± 2.67 2.597 ± 0.54 2.60

7.35 8.41 ± 1.02 2.538 ± 0.21 2.54

7.81 8.17 ± 0.59 1.710 ± 0.12 1.71

8.26 6.95 ± 0.81 1.156 ± 0.16 1.16

8.77 5.79 ± 1.48 0.771 ± 0.30 0.77

9.43 3.76 ± 1.33 0.499 ± 0.27 0.50

10.10 2.81 ± 0.64 0.263 ± 0.13 0.26

10.87 2.53 ± 0.80 0.155 ± 0.16 0.15

11.90 1.89 ± 0.34 0.049 ± 0.07 0.05

Table C.5: Comparison of the attenuation coefficients from the 20th of February 1983 Bering Sea

experiment (ă) (obtained from Wadhams et al. (1988)), the scaled attenuation coefficients

and the model attenuation coefficients (a). The ± values given represent the margin of

error provided in Wadhams et al. (1988).

T ă (m−1 × 10−4) ă× 100/0.2 (×10−2) a (×10−2)

9.17 0.65 ± 1.28 3.25 ± 6.40 4.19

9.80 1.44 ± 0.94 7.20 ± 4.70 3.31

10.64 0.81 ± 0.30 4.05 ± 1.50 2.12

11.49 0.36 ± 0.39 1.80 ± 1.95 1.40

12.66 0.33 ± 0.63 1.65 ± 3.15 0.65

13.89 0.38 ± 0.24 1.90 ± 1.20 0.30

15.63 0.20 ± 0.82 1.00 ± 4.10 0.07
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Table C.6: Comparison of the attenuation coefficients from the 22nd of February 1983 Bering Sea

experiment (ă) (obtained from Wadhams et al. (1988)), the scaled attenuation coefficients

and the model attenuation coefficients (a). The ± values given represent the margin of

error provided in Wadhams et al. (1988).

T ă (m−1 × 10−4) ă× 100/0.2 (×10−2) a (×10−2)

9.17 1.04 ± 0.15 5.20 ± 0.75 4.19

9.80 1.12 ± 0.12 5.60 ± 0.60 3.31

10.64 1.23 ± 0.22 6.15 ± 1.10 2.12

11.49 1.06 ± 0.23 5.30 ± 1.15 1.40

12.66 0.84 ± 0.21 4.20 ± 1.05 0.65

13.89 0.68 ± 0.12 3.40 ± 0.60 0.30

15.63 0.18 ± 0.17 0.90 ± 0.85 0.07

17.54 0.22 ± 0.09 1.10 ± 0.45 0.02

Table C.7: Comparison of the attenuation coefficients from the 26th of February 1983 Bering Sea

experiment (ă) (obtained from Wadhams et al. (1988)), the scaled attenuation coefficients

and the model attenuation coefficients (a). The ± values given represent the margin of

error provided in Wadhams et al. (1988).

T ă (m−1 × 10−4) ă× 100/0.2 (×10−2) a (×10−2)

9.17 0.16 ± 0.04 8.00 ± 0.20 4.19

9.80 0.27 ± 0.08 1.35 ± 0.40 3.31

10.64 0.48 ± 0.07 2.40 ± 0.35 2.12

11.49 0.36 ± 0.08 1.80 ± 0.40 1.40

12.66 0.24 ± 0.07 1.20 ± 0.35 0.65

13.89 0.19 ± 0.04 0.95 ± 0.20 0.30

15.63 0.11 ± 0.03 0.55 ± 0.15 0.07

17.54 0.10 ± 0.03 0.50 ± 0.15 0.02

20.41 0.10 ± 0.06 0.50 ± 0.30 0.01
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Table C.8: Comparison of the attenuation coefficients from the 26th of July 1983 Greenland Sea exper-

iment (ă) (obtained from Wadhams et al. (1988)), the scaled attenuation coefficients and

the model attenuation coefficients (a). The ± values given represent the margin of error

provided in Wadhams et al. (1988).

T ă (m−1 × 10−4) ă× 55/0.5 (×10−2) a (×10−2)

7.76 7.39 ± 1.46 8.13 ± 1.61 14.52

8.35 8.72 ± 0.92 9.59 ± 1.01 12.41

9.23 7.35 ± 0.90 8.08 ± 0.99 9.23

10.31 6.48 ± 1.05 7.13 ± 1.16 6.32

11.68 4.86 ± 0.79 5.35 ± 0.87 4.24

13.47 2.87 ± 0.19 3.16 ± 0.21 2.18

15.90 1.98 ± 0.20 2.18 ± 0.22 0.74

Table C.9: Comparison of the attenuation coefficients from the 29th of July 1983 Greenland Sea exper-

iment (ă) (obtained from Wadhams et al. (1988)), the scaled attenuation coefficients and

the model attenuation coefficients (a). The ± values given represent the margin of error

provided in Wadhams et al. (1988).

T ă (m−1 × 10−4) ă× 65/0.5 (×10−2) a (×10−2)

8.35 3.86 ± 0.55 5.02 ± 0.72 12.41

9.23 1.42 ± 0.21 1.85 ± 0.27 9.23

10.31 0.54 ± 0.05 0.70 ± 0.07 6.32
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Table C.10: Comparison of the attenuation coefficients from the 24th of March 2003 Bellinghausen Sea

experiment 323 (ă) (Hayes et al., 2007), the scaled attenuation coefficients and the model

attenuation coefficients (a). The ± values given represent the margin of error provided in

Wadhams et al. (1988).

T ă (m−1 × 10−4) ă× 20/0.6 (×10−2) a (×10−2)

5.26 5.50 ± 2.67 1.83 ± 0.89 6.06

6.08 6.10 ± 2.65 2.03 ± 0.88 4.23

7.19 7.76 ± 1.36 2.59 ± 0.45 2.37

8.79 5.76 ± 1.23 1.92 ± 0.41 0.59

11.31 2.92 ± 7.81 0.97 ± 0.26 0.07

15.88 1.47 ± 7.52 0.49 ± 0.25 0.00

26.60 1.44 ± 1.33 0.48 ± 0.44 0.00

Table C.11: Comparison of the attenuation coefficients from the 25th of March 2003 Bellinghausen Sea

experiment 324 (ă) (Hayes et al., 2007), the scaled attenuation coefficients and the model

attenuation coefficients (a). The ± values given represent the margin of error provided in

Wadhams et al. (1988).

T ă (m−1 × 10−4) ă× 20/0.8 (×10−2) a (×10−2)

5.26 12.6 ± 15.1 3.15 ± 3.78 23.61

6.08 18.3 ± 15.5 4.58 ± 3.88 13.21

7.19 7.83 ± 5.21 1.96 ± 1.30 7.72

8.79 9.77 ± 2.27 2.44 ± 0.57 3.29

11.31 7.59 ± 1.00 1.90 ± 0.25 1.12

15.88 4.59 ± 1.05 1.15 ± 0.26 0.01

26.60 2.63 ± 1.57 0.66 ± 0.39 0.00
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Table C.12: The attenuation coefficients from our model (a), the measured attenuation coefficients

(ă) and the scaled measured attenuation coefficients from the 25nd March 2003 Belling-

hausen Sea experiment 324 on exiting the ice.

T ă (m−1 × 10−4) ă× 20/0.8 (×10−2) a (×10−2)

5.26 25.3 ± 32.9 6.33 ± 8.23 23.61

6.08 22.4 ± 18.9 5.60 ± 4.73 13.21

7.19 14.3 ± 8.26 3.58 ± 2.01 7.72

8.79 14.9 ± 3.1 3.73 ± 0.78 3.29

11.31 11.9 ± 3.18 2.98 ± 0.80 1.12

15.88 5.42 ± 3.34 1.36 ± 0.84 0.01

26.60 7.06 ± 4.51 1.77 ± 1.13 0.00
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