

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

ASSESSMENT OF DUCTILE ENDURANCE OF EARTHQUAKE RESISTING STEEL MEMBERS

by

Clark William Keith Hyland

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Civil Engineering, The University of Auckland, 2008

ii

Abstract

This thesis provides a structural and materials engineering explanation for many of the running fractures that occurred in steel structures during the destructive Kobe and Northridge earthquakes in the mid 1990s. A method is developed that allows the ductile endurance of structural steel members subjected to cyclic plastic deformation during earthquakes to be assessed and for prenecking running fractures to be avoided.

The study commenced following the 2000 World Earthquake Conference in Auckland. The conference brought together the findings of the huge research effort, in America, Japan, Europe and New Zealand, that followed the Kobe and Northridge earthquakes. The running fractures that had occurred in steel structures represented an unpredicted failure mode that structural engineers have not known how to predict or suppress through the engineering design process. A clear fundamental understanding of the causes and how to prevent the fractures did not arise from the conference. In fact apparently conflicting results were reported. Full scale cyclic tests in New Zealand on structural assemblies had not resulted in running fractures, whereas tests in American and Japan had.

Structural engineers designing earthquake resistant structures rely on constructional steel to be materially homogeneous and nominally tri-linear in behaviour. Steel is expected to behave elastically under regular in-service loading, have a reliable and flat yield stress-strain characteristic, and under overload then develop predictable levels of strain-hardening in conjunction with significant plastic elongation up to its ultimate tensile strength. Steel is expected to eventually fracture after further plastic elongation and necking. Ductile design strategies and methods utilise the plastic elongation characteristics of steel to protect structures in earthquake. Plastic deformation is considered to beneficially dissipate energy generated in the structure by a severe earthquake and also dampen the structure's response. The occurrence of running fracture without significant cyclic plastic deformation and before section necking in steelwork, therefore undermines the basis of the ductile seismic design approach.

The initial part of the thesis is devoted to bringing together the fundamental aspects of materials engineering related to fracture of constructional steel. This is intended to provide a bridge of knowledge for structural engineering practitioners and researchers not fully conversant with materials engineering aspects of fracture. Fracture behaviour in steel is a broad and complex topic

iii

that developed rapidly in the twentieth century driven by the demands of technological growth. The unexpected fracture of welded liberty ships at sea in World War 2; the need for reliable long term containment for the nuclear reactors in the 1950s and 1960s; and prevention of fatigue failures in aircraft frames since the 1950s all drove engineering research into steel fracture behaviour.

There are many subtle variations in definitions in the published literature on fracture that can be confusing. Therefore an attempt has been made to clarify terminology. The term brittle fracture in particular is only used in this thesis as applying to running fracture when the general or far field tensile stresses are below the yield stress of the steel. The term pre-necking or running fracture is preferred to describe the condition more broadly which may occur prior to and also after general yielding, but before section necking. Running fracture is a manifestation of pre-necking fracture in which insufficient plastic flow is available in the assembly to absorb the energy released upon fracture.

The experimental studies investigated the behaviour of constructional steel commonly used in New Zealand, at various levels of plastic strain. This started with Charpy V-Notch (CVN) testing which revealed that a significant transition temperature shift and curve shape change occurs with increasing plastic strain and the associated strain-hardening. This showed that the ability of steel to avoid pre-necking or running fracture reduces as the level of plastic strain-hardening increases.

Temperature controlled Crack Tip Opening Displacement (CTOD) testing was then undertaken. The setting of testing temperatures for the CTOD tests were guided by review of the CVN test results, using published CVN to fracture toughness correlation methods. However running cleavage fractures developed in the CTOD specimens at higher than predicted temperatures of 10 °C and 20 °C. These are typical service temperatures for structures in New Zealand and so are very likely to occur at the time of an earthquake. The implication from this is that there are levels of strainhardening and conditions of material notching constraint that can lead to pre-necking and running fracture in New Zealand fabricated steel structures, under severe earthquake loading.

Care was taken in the CTOD testing to monitor and maximise the capture of data electronically using a specially developed Direct Current Potential Drop method. This allowed the test results to be analysed and considered in varying ways, leading to a consistent assessment of the CTOD, crack growth, and the specific work of fracture in each test piece.

While CTOD test results have sometimes been published by structural and welding engineering researchers in the wake of Kobe and Northridge, the results were typically of little use for this study as the CTOD initiation point was generally not identified effectively. The effect of remote plastic

iv

flow in the specimens was also not adequately accounted for. The CTOD test results were often simply used to help correlate other factors observed by the researchers. Side-grooving of specimens was not reported as having been used in any of the published results reviewed. When conducting CTOD test with highly ductile constructional steels it is very difficult to get useful CTOD results if the specimens are not side-grooved, as significant necking and tunnelling will otherwise occur and limit the usefulness of the results.

Work by Knott and also by McRobie and Smith was seminal in terms of identifying some critical aspects of plane strain development in CTOD tests, and the links to non-metallic particle density with respect to fracture toughness and CTOD at initiation. Some of their findings with regards to the effect of pre-strain on CTOD initiation were subsequently found to confirm the experimental findings in this study.

No effective methodology for prediction of pre-necking or running fracture in a structural member or assembly when subjected to gross plastic cyclic deformation was found to exist in the literature. It was concluded however that the principles of specific work of fracture, and monotonic and cyclic fracture similitude were particularly relevant. These were therefore utilised in the development of the design method proposed in this thesis. The CTOD test results were reviewed, isolating the remote plastic flow component, to determine the critical specific work of fracture property R_c of the steels tested.

A meeting with Professor Kuwamura at the University of Tokyo was providential, allowing discussion of his similitude principle, and observations in person of some of the fractured specimens developed during his full scale test series'. Running fractures with cleavage were evident in the specimens, with their tell-tale chevron markings. He had predicted running fracture problems in structures in Japan ahead of the Kobe earthquake and been largely ignored. His insights were subsequently seriously considered in Japan after the earthquake.

He and his colleagues developed the principle of structural similitude that relates monotonic fracture displacement ductility to cyclic fracture displacement ductility for a particular assembly. This arose from their observation that running fractures developed from ductile crack formation at blunt notches in structures. The similitude principle has echoes of the Coffin-Manson approach to ductile crack initiated low cycle fracture. The principle of similitude has a log–log relationship as does the Manson-Coffin relationship. So where notch plasticity controls the initiation of fracture in a structural assembly it is conceptually reasonable to expect that the number of cycles to initiation of fracture from a notch will have a log–log relationship to the amplitude of the cyclic strain developed in the notch.

Kuwamura found that steel assemblies with lower CVN energy had reduced cyclic fracture endurance than the same assemblies made with steel with higher CVN impact energy. However no method of predicting performance of any particular assembly could be developed from his observations. The benefit of his method primarily relates to the minimising of testing necessary to assess the fracture limited cyclic displacement ductility of a structural assembly. However it doesn't provide a means for designing a structural assembly to achieve specific levels of ductile endurance other than clearly identifying the need to use steel with good CVN characteristics.

The most significant development arising from this thesis is therefore the development of a design method to assess cyclic ductile endurance. The method utilises the specific work of fracture properties obtained from CTOD specimens of the steel in conjunction with a relatively simple fracture mechanics assessment and an elasto-plastic finite element analysis (FEA). The FEA model is used to determine the displacement ductility of the assembly at the calculated onset of prenecking fracture. The elasto-plastic stress–strain properties of the steel in various pre-strain states required for the FEA may be derived from tensile testing. Kuwamura's similitude principle is then used to predict cyclic plastic endurance at various constant displacement ductility amplitudes. The method is extended using Miner's rule to allow for the effects of increasing variable amplitude cyclic plastic loading.

In summary the thesis explains why pre-necking and running fractures occur in steel members subjected to cyclic plastic deformation during a severe earthquake. In addition a method for consistently assessing the ability of structural steel assemblies to achieve a specified level of ductile endurance during earthquakes is proposed. The method is verified against published results for a cyclic test of a simple steel member with a crack at mid-span.

Dedication

To my wife Kay, and children Benjamin, Barnabas and Abigail. and my parents.

Above all this is dedicated to my inspiration, the Lord Jesus Christ.

"Call to Me and I will answer you and I will tell you great and mighty things which you do not know"

Jeremiah 33:3

Acknowledgements

I wish to express my gratitude to Professor W. G. Ferguson, of the Department of Chemical and Materials Engineering, for his encouragement and supervision of this project. His willingness to pass on his materials engineering insights to a civil engineer is deeply appreciated.

I would also like to thanks Associate Professor J.W. Butterworth, of the Department of Civil and Environmental Engineering, my associate supervisor, for his calm assistance and support through the years.

My sincere thanks also to the technical staff of the Departments of Civil and Environmental Engineering, Mechanical Engineering, and Chemical and Materials Engineering who have provided assistance during the execution of this project: in particular to Messrs J. Guertz, and H. Moy.

This project was assisted by financial grants for fees, materials and conference attendance from the New Zealand Heavy Engineering Education and Research Foundation. These are gratefully acknowledged.

Table of Contents

AbstractIII			
DEDICATION			
Ac	KNOWL	EDGEMENTS	IX
TA	BLE OF	Contents	XI
Lis	ST OF FIG	GURES	XIX
Lis	T OF TA	ABLES	XXVII
GL	OSSARY	OF TERMS	XXIX
1	Introi	DUCTION	1
	1.1	Thesis Structure	1
	1.2	Background	1
2	RUNNI	NG FRACTURES IN STEEL STRUCTURES IN EARTHQUAKES	9
	2.1	Seismic Response of Steelwork Structures	9
	2.2	Earthquake Characteristics	9
	2.3	Running Fracture in Northridge and Kobe Earthquakes	10
	2.4	Review of SAC Research Results	12
	2.5	Review of Japanese Research Results	15
	2.6	European Selection of Seismic Steel by CVN Test	18
	2.7	Cyclic Performance of New Zealand Beam End Plate Connections	18
	2.8	Review of Welding Considerations	19
	2.9	Summary	21
3	Seismi	IC STRUCTURAL STEELWORK DESIGN IN NEW ZEALAND	25
	3.1	Introduction	25
	3.2	Development of Seismic Design Approaches	25
	3.3	Seismic Design of Steel Structures in New Zealand	26
	3.4	Material Ductility	29
	3.5	Structural Steelwork Ductility Categories	29
	3.6	Effective Steel Section Concept	32
	3.7	Beam Section Stability and Rotational Ductility	32
	3.8	Characteristics of Category 1 to 4 Frame Failure	36
	3.9	Cyclic Strain-hardening Behaviour	36
	3.10	Effect of Section Stability on Over-Strength Demand	37
	3.11	Summary	38

4	CYCLIC	E	NDURANCE OF STRUCTURAL ASSEMBLIES	. 41
	4.1	Int	roduction	. 41
	4.2	Су	clic Plasticity	. 42
	4.3	De	esign for Low Cycle Plastic Loading	. 42
	4.4	Str	rain History Prediction Model: Coffin-Manson Method	. 43
	4.5	Liı	mitations of the Strain History Prediction Model	. 44
	4.6	Су	clic Testing Regimes	. 45
	4.7	Ba	ckground to the ATC-24 Cyclic Loading Regime	. 46
	4.8	Fra	acture Limited Structural Displacement Ductility Ratios	. 48
	4.9	Jap	panese Cumulative Displacement Ductility Approach	. 49
	4.10	Pri	inciple of Monotonic and Cyclic Structural Similitude	. 49
	4.11	Su	mmary	. 52
5	FRACTU	URE	E IN STEEL	. 55
	5.1	Int	roduction	. 55
	5.2	Ov	verview of Fracture in Metals	. 56
	5.3	Mo	odes of Fracture	. 57
	5.3.1 Fatigue		Fatigue	. 57
	5.3	.2	Brittle Elastic Fracture	. 58
	5.3	.3	Running Pre-necking Plastic Fracture	. 60
	5.3	.4	Running Post-necking Fracture	. 62
	5.3	.5	Stable Post-necking Plastic Fracture	. 63
	5.4	Po	lycrystalline Fracture Behaviour	. 64
	5.4	.1	Fibrous Fracture	. 64
	5.4	.2	Transgranular Cleavage	. 65
	5.4	.3	Inter-granular Fracture	. 68
	5.5	Tra	ansition Behaviour of Steel	. 68
	5.6	Me	etallurgical Effects on Fracture	. 70
	5.6	.1	Grain Size Effect	. 70
	5.6	.2	Manufacturing Process Thickness Effect	. 71
	5.6	.3	Yield Ratio Effect	. 72
	5.6	.4	Bauschinger Effect	. 72
	5.6	.5	Alloying Effect	. 72
	5.6	.6	Effect of Non-Metallic Inclusions	. 73
	5.7	Ge	cometrical Effects on Fracture	. 74
	5.7	.1	Strain Energy Related Size Effect	. 74
	5.7	.2	Plastic Constraint Effect Related to Plate Thickness	. 74
	5.7	.3	Tri-axial Stress Effects	. 75

	5.8 N	lotch Effect	76
	5.9 N	lotch Strengthening	77
	5.10 L	oading and Strain History Effects	79
	5.10.	1 Effect of Temperature	79
	5.10.	2 Effect of Loading Rate or Strain Velocity	79
	5.10.	3 Effect of Strain Amplitude on Cyclic Strain-hardening Behaviour	81
	5.10.	4 Effect of Compressive Pre-strain	83
	5.10.	5 Strain-aging	84
	5.11 R	esidual Stress Effects	85
	5.11.	1 General	85
	5.11.	2 Cracking in the Presence of Residual Stresses	86
	5.11.	3 Cold-working	86
	5.11.	4 Flame Cutting	87
	5.12 V	Velding Effects	87
	5.12.	1 Effect of Welding on Development of Plastic Fracture	87
	5.12.	2 Welding Induced Residual Stresses	88
	5.12.	3 Effect of Weld Deposition Sequencing	88
	5.12.	4 Micro-Mechanisms of Failure in C-Mn Weld Metals	89
	5.12.	5 Effect of Weld Strength Mismatch on Ductile Crack Initiation	90
	5.12.	6 Toughness of Mild Steel Weld Metal	90
	5.12.	7 High HAZ Toughness and Aging	91
	5.13 S	ummary	92
6	MECHAN	ICS OF FRACTURE	97
	6.1 L	inear Elastic Fracture Mechanics	97
	6.1.1	Griffith Formula	97
	6.1.2	Elastic Cracking: Stress Intensity Factor K	98
	6.1.3	Stress Concentration Factor	99
	6.1.4	Non-linear Elastic Behaviour	99
	6.1.5	Thickness and Yield for Plane Stress or Plane Strain	100
	6.2 C	harpy V-Notch LEFM Correlation Methods	101
	6.2.1	Existing Design Methods to Avoid Running Fracture	101
	6.2.2	Barsom-Rolfe K _{Ic} or K _{Id} -CVN Correlation	102
	6.2.3	The Linear-Elastic 28 Joule CVN Method	102
	6.2.4	The PD6493 Service Temperature CVN Method	104
	6.2.5	Limitations of Charpy V-Notch Correlation Methods	105
	6.2.6	Effect of CVN and the Ratio of Tensile to Yield Stress	105

	6.3 Y	ielding Fracture Mechanics	106
	6.3.1	Practical Use of CTOD based Yielding Fracture Mechanics	106
	6.3.2	Eshelby-Rice J-Integral	106
	6.3.3	J Integral and R	107
	6.3.4	Limitations of J _c as a Criterion for Crack Initiation	108
	6.3.5	Limitation of Stress Intensity Approach with Remote Plastic Flow	108
	6.4 Ci	rack Tip Behaviour	109
	6.4.1	Crack Tip Process Zone	109
	6.4.2	Crack Tip Plastic Zone Size Constraint Effect	109
	6.4.3	Crack Tip Zones of Irreversibility	110
	6.4.4	Newman Closure Model	111
	6.4.5	Ductile Crack Initiation Behaviour	111
	6.4.6	Ductile Crack Initiation Stress State	113
	6.4.7	Ductile Crack Growth	114
	6.4.8	Void Growth and Coalescence	117
	6.4.9	Rice and Tracey Void Growth Model	117
	6.4.10	The Gurson-Tvergaard Model of Crack Growth	118
	6.5 Ei	nergy Balance Approach to Fracture	119
	6.5.1	Specific Work of Fracture	119
	6.5.2	Energy Concepts	120
	6.5.3	Crack Propagation and Changes in Strain Energy	122
	6.5.4	Work Rate Viewpoint	122
	6.5.5	Energetic Stability	123
	6.5.6	Crack Stability in Brittle Elastic Fracture	124
	6.5.7	R-Curve Analysis and Elastic-Plastic Fracture	124
	6.5.8	R Curves and Stability	125
	6.5.9	Sub-Critical Crack Growth	125
	6.6 A	pplication to Cyclically Loaded Specimens	126
	6.7 Su	ımmary	126
7	FRACTUR	E TOUGHNESS TESTING METHODS	131
	7.1 C	harpy V-Notch Testing	131
	7.1.1	Notch Toughness	131
	7.1.2	Charpy V-Notch Impact Test	131
	7.2 Ci	rack Tip Opening Displacement Testing	132
	7.2.1	Introduction to CTOD Testing	132
	7.2.2	Determination of Elastic K _{Ic} by CTOD Testing	134
	7.2.3	Practical Aspects of CTOD Fracture Toughness Testing	135

	7.2.4	Direct Current Potential Drop Crack Monitoring136
	7.2.5	Crack Sharpness and CTOD
	7.2.6	CTOD Crack Length to Specimen Depth Ratio a/W140
	7.2.7	Effect of Side-Grooving of CTOD Specimens140
	7.2.8	CTOD Specimen Size141
	7.2.9	Effect of CTOD Specimen Thickness
	7.2.10	Transition Region Effects145
	7.2.11	Crack Stability in Elastic Fracture during Testing145
	7.2.12	Determination of R Values145
	7.3 Su	mmary147
8	Experime	NTAL INVESTIGATION
	8.1 Inv	vestigation Outline
	8.2 Ste	eel Mill Certificate Properties
	8.3 Ste	eel Specimen Pre-straining
	8.3.1	Pre-strain Specimen Design
	8.3.2	Testing Machine Capacity and Strain Distribution Investigation153
	8.3.3	Pre-strain Calibration Using Portal and Strain Gauges155
	8.3.4	Tensile Pre-straining of Dog-bone Samples157
	8.4 Me	echanical Test Pieces from Pre-strained Specimens
	8.4.1	Location of Mechanical Test Pieces
	8.4.2	CTOD SENB3 Specimens
	8.4.3	Charpy V-Notch Specimens
	8.4.4	Tensile Specimens
	8.4.5	Metallographic Samples162
	8.5 Ch	arpy V-Notch Testing162
	8.5.1	Introduction
	8.5.2	Preparation of Test Pieces
	8.5.3	Test Procedure
	8.6 Te	nsile testing165
	8.6.1	Introduction
	8.6.2	Specimen Preparation165
	8.6.3	Temperature Control
	8.7 Fra	acture Toughness Investigation167
	8.7.1	Introduction167
	8.7.2	CTOD Testing
	8.7.3	Requirements of BS7448169
	8.7.4	Location and Preparation of CTOD Test Pieces169

	8.7.5	Pre-Cracking of CTOD Specimens170
	8.7.6	Crack Length versus Potential Drop Equations171
	8.7.7	Trial CTOD Test on Specimen 10-2173
	8.7.8	DCPD Crack Growth Monitoring173
	8.7.9	Side-grooving of CTOD Specimens
	8.7.10	Clip Gauge Development and Calibration174
	8.7.11	Clip Gauge Monitoring175
	8.7.12	Knife Edges
	8.7.13	Temperature Control176
	8.7.14	Loading and Data Collection176
	8.7.15	Measurement of CTOD Crack Growth
	8.8 FE	M of Remote Plastic Flow in CTOD Tests
	8.9 Op	tical Microscopy
	8.9.1	Specimen Preparation
	8.9.2	Optical Microscope Set up
	8.10 Sc	anning Electron Microscopy
	8.10.1	Specimen Preparation
	8.10.2	SEM procedure
9	EXPERIME	NTAL RESULTS AND INTERPRETATION
	9.1 Ste	eel Pre-straining Results
	9.1.1	Testing Machine Capacity and Strain Distribution Investigation183
	9.1.2	Pre-strain Calibration Using Portal and Strain Gauges
	9.1.3	Pre-straining of Specimens for Mechanical Testing185
	9.2 Ch	arpy V-Notch Testing Results
	9.2.1	Test Results
	9.2.2	The Effect of Pre-strain on the Charpy V-Notch Properties190
	9.2.3	Effect of Pre Strain on Fracture Surface Crystallinity193
	9.2.4	Implications of CVN Results
	9.2.5	CVN of New Zealand and Australian Produced Steel194
	9.2.6	Comparison of CVN Characteristics of International Steels197
	9.2.7	Review of CVN Characteristics of Welding Consumables199
	9.2.8	Conclusions from the Charpy V-Notch Impact Tests201
	9.2.9	Recommended CVN Limits for Seismic Resisting Structures202
	9.3 Te	nsile Testing Results
	9.3.1	Development of Stress-Strain Curves for AS/NZS 3679.1 Specimens203
	9.3.2	Strain-aging Effects
	9.3.3	True Stress vs. True Plastic Strain Curves for FEA Modelling206
		•

	9.3.4	Tensile Properties of M6, M7 and M8 Specimens Steel	207
9.4	Cra	ack Tip Opening Displacement Testing Results	207
	9.4.1	Effect of Pre-strain on Fatigue Pre-Crack Growth Rate	207
	9.4.2	Implications of Trial CTOD 10-2	210
	9.4.3	Force vs. Clip Gauge Displacement	213
	9.4.4	CTOD Fracture Surfaces	214
	9.4.5	Force vs. Load-line Displacement	220
	9.4.6	Use of DCPD vs. Crack Growth Plot to Identify CTOD at Initiation	220
	9.4.7	Finite Element Analysis of CTOD Tests	225
	9.4.8	Summary of CTOD Test Results	226
9.5	6 Me	etallographic Observations	229
	9.5.1	Overview	229
	9.5.2	Optical Microscopy	229
	9.5.3	Scanning Electron Microscopy	234
	9.5.4	Crack Fronts	237
	9.5.5	Cleavage Fracture Surfaces	240
	9.5.6	Fibrous Fracture Initiation Zones	241
9.6	i Ac	tual vs. Predicted CTOD Performance	242
	9.6.1	General	242
	9.6.2	Predicted CTOD Fracture Behaviour Based on NZS3404:1997	242
	9.6.3	Predicted CTOD Fracture Behaviour Based on Eurocode 3	245
9.7	Co	nclusions from the Experimental Investigation	247
9.8	S Spe	ecific Work of Fracture R Curves	248
	9.8.1	Introduction	248
	9.8.2	DCPD Monitoring of Crack Extension	249
	9.8.3	Load vs. Crack Area Plots	249
	9.8.4	Example Determination of R	250
	9.8.5	R Curves of As-received Australian AS/NZS 3679.1 G300 Steel	254
	9.8.6	R Curves of 4.9% Pre-strained Australian AS/NZS 3679.1 G300 Steel .	254
	9.8.7	R Curves of 9.8% Pre-strained Australian AS/NZS 3679.1 G300 Steel .	254
	9.8.8	R Curves of 17.7% Pre-strained Australian AS/NZS 3679.1 G300 Steel	257
	9.8.9	Summary R Curves of Australian AS/NZS 3679.1 G300 Steel	257
	9.8.10	Comparison of AS/NZS 3679.1 G300 and M-Series Steel R Curves	257
	9.8.11	Variation of R with Strain-hardening and Aging	264
	9.8.12	Equivalent K _R Values	
	9.8.13	Summary of Findings With Respect to R	265
10	METHO	DD OF CYCLIC DUCTILE ENDURANCE ASSESSMENT	

	10.1	Introduction
	10.2	Method
	10.3	Description of Method
11	Ex	AMPLE ASSESSMENT OF THE CYCLIC DUCTILE ENDURANCE OF A STEEL BAR271
	11.1	Identification of Fracture Limit States
	11.2	Determination of Bar Elastic Stiffness Function271
	11.3	Pre-Necking Fracture Limit State
	11.4	Plastic Hinge Limit State
	11.5	Over-strength Plastic Hinge Limit State
	11.6	Plastic Hinge and Fracture Limit State Surfaces
	11.7	Member Displacement at Pre-Necking Fracture
	11.8	Assessment of Monotonic Displacement Ductility to Fracture
	11.9	Monotonic Fracture Curves
	11.10	Cyclic Ductile Endurance Overview
	11.11	Constant Amplitude Cyclic Pre-necking Fracture Ductility to NZS 1170.5284
	11.12	Effect of R _c on Cyclic Fracture Ductility and Endurance287
	11.13	Application to Variable Amplitude Cyclic Loading
12	Со	NCLUSIONS
13	RE	FERENCES

List of Figures

Figure 1-1 Column Running Fracture, Great Hanshin Earthquake	4
(Clifton)	
Figure 3-1 Plastic Hinge Formation in Simple Beams (Horne & Morris	28
1981)	
Figure 3-2 Equal Displacement Hypothesis of Seismic Ductility and	29
Response	
Figure 3-3 NZS3404 Category 1 to 4 Members of Same Moment of	32
Inertia	
Figure 3-4 Trade-off of Strength vs. Displacement Ductility	33
Figure 3-5 Comparative Displacement Ductility of Equal Strength	33
Sections of Different Category	
Figure 3-6 Cyclic Beam Test Set-up (Short et al., 2005)	37
Figure 3-7 Cyclic Displacement Controlled Loading Pattern (Short et	37
al., 2005)	
Figure 3-8 Section Properties	37
Figure 3-9 Normalised Stiffness vs. Cyclic Amplitude	39
Figure 3-10 Normalised Load Resistance vs. Cyclic Amplitude	39
Figure 3-11 410UB54 After Cyclic Plastic Fracture (Clifton et al. 2000)	39
Figure 4-1 ATC-24 Cyclic Displacement Loading	47
Figure 4-2 University of Canterbury, UCB, PRESSS and PWRI Loading	47
Histories	
Figure 4-3 Kuwamura's Series 1 Test Set-up	51
Figure 4-4 Cyclic Endurance of SN490 Box Beam	51
Figure 4-5 Cumulative Ductility vs. Cyclic Amplitude	52
Figure 4-6 Cyclic Displacement Ductility Definitions (Kuwamura and	53
Takagi 2004)	
Figure 5-1 Strain-hardening Development at Crack Tip Under Reversed	58
Cyclic Loading (Orowan 1939)	
Figure 5-2 Crack Tip Development (Ashby and Jones 1996)	65
Figure 5-3 Davidenkov Diagram of Transition Temperature	69
Figure 5-4 Cleavage 5-3 9.8% PS @ -10°C	70
Figure 5-5 Plane Stress and Plane Strain Stress Distributions at Crack	75

Tips,	(Knott	1973)
-------	--------	-------

Figure 5-6 Running Fracture vs. Plastic Yield (Knott 1973)	78
Figure 5-7 Strain Rate Effect on Yield Stress (Campbell and Ferguson	81
1970)	
Figure 5-8 Cyclic Strain Hardening Effect (Orowan 1939)	83
Figure 6-1 Notch Plasticity vs. Fatigue Crack Tip Control of Crack	115
Development	
Figure 6-2 (a) Load Deflection Curve for a Material with Rising Crack	126
Growth Resistance From B To D and a Steady Value From	
D to E. (B) Corresponding Crack Growth Resistance Curve	
(Atkins and Mai 1985).	
Figure 7-1 Wells-Cottrell COD	139
Figure 7-2 Effect of Specimen Thickness on Crack Growth Resistance	144
(Knott 1973)	
Figure 7-3 Load -Displacement Diagram for Elastic Material	146
Figure 7-4 Load-Displacement Curve for Ductile Material	146
Figure 8-1 Type A Dog-bone Specimen Extracted from Flange Tips of	154
the 310UC158	
Figure 8-2 Portal and Strain Gauges Attached to Pre-strain Calibration	156
Specimen AO2	
Figure 8-3 Pre-straining Calibration of Type A Specimen	156
Figure 8-4 Pre-straining of Type A Specimens	157
Figure 8-5 Avery Testing Machine and Data Logger	158
Figure 8-6 Cutting Pattern for Mechanical Test Specimens from Dog-	159
bone Type A Pre-straining Specimens	
Figure 8-7 CTOD Specimens	161
Figure 8-8 CVN Specimens	162
Figure 8-9 Instron Machine with Broach	163
Figure 8-10 CVN Specimen Cooling Baths	163
Figure 8-11 CVN Tempunit CVN Specimen Warming Bath	164
Figure 8-12 CVN Impact Test Machine	164
Figure 8-13 Temperature Controlled Tensile Testing Set-up	166
Figure 8-14 Strain-gauged Tensile Specimen with Thermocouple and	167
Polystyrene Lined Copper Liquid Cup	
Figure 8-15 CTOD Specimen with DCPD Monitoring of Fatigue Crack	172

Growth

Figure 8-16 Beach-marking and Fatigue Pre-cracking Rig	172
Figure 8-17 Side-grooved Beach-marked Surface	172
Figure 8-18 Beach-marking Potential Drop Relationships	172
Figure 8-19 Side-grooving of CTOD Specimens	174
Figure 8-20 CTOD Test Rig with DCPD and Thermocouple Monitoring	177
Figure 8-21 DCPD and Temperature Controlling Bath Around Test	178
Specimen	
Figure 8-22 Breaking of CTOD Specimens After Testing and Cooling in	179
Liquid Nitrogen	
Figure 8-23 Tensile True Plastic Strain Curves for Finite Element	179
Analysis	
Figure 9-1 Specimen AO2 Pre-straining	186
Figure 9-2 AO2 Pre-straining Comparison of Portal and Strain Gauge	186
Measurements	
Figure 9-3 Specimen AO3 Pre-straining Plot	187
Figure 9-4 AO3 Pre-straining Comparison of Portal and Strain Gauge	187
Measurements	
Figure 9-5 Specimen AO4 Pre-straining Plot	188
Figure 9-6 Specimen AO5 Pre-straining Plot	188
Figure 9-7 Specimen AO6 Pre-straining Plot	188
Figure 9-8 Specimen AO7 Pre-straining Plot	189
Figure 9-9 Specimen AO8 Pre-straining Plot	189
Figure 9-10 Specimen AO9 Pre-straining Plot	189
Figure 9-11 Assessed CVN Impact Energy Transition Curves	190
Figure 9-12 CVN Specimen Fracture Surfaces	192
Figure 9-13 Assessed CVN % Fibrous Fracture Surface Transition	193
Curves	
Figure 9-14 Australian AS/NZS 3679.1 Steel Sections G300 and G350	195
CVN Sample Data	
Figure 9-15 New Zealand AS/NZS 3678 G300 Steel Plate CVN Sample	196
Data	
Figure 9-16 E70T Weld CVN Energy Compared to New Zealand	199
AS/NZS 3678 G300 Steel	
Figure 9-17 Comparison of International Constructional Steel and Weld	200

Metal CVN Data

Figure 9-18 11T1 Tensile Stress Plot	203
Figure 9-19 Strain-aged Tensile Plots	205
Figure 9-20 Strain-aged Tensile Plots Normalised at 300 MPa Extension	205
Figure 9-21 Strain-aged Tensile Plots Normalised to Extension at Pre-	205
strain	
Figure 9-22 Aging Effect on Tensile Properties	206
Figure 9-23 FEA Tensile Properties	207
Figure 9-24 M-Series Specimen Tensile Data Plots	208
Figure 9-25 Fatigue Crack Growth Plots	210
Figure 9-26 CTOD 10-2 Side View Showing Necking Dimple	211
Figure 9-27 CTOD 10-2 Top View	212
Figure 9-28 CTOD 10-2 Fracture Surface	212
Figure 9-29 CTOD Fracture Surfaces of Australian AS/NZS 3679.1	214
G300 4.9% to 17.7% Pre-strained Specimens	
Figure 9-30 CTOD Fracture Surfaces of Australian AS/NZS 3679.1	215
G300 and Unknown Steel As-received	
Figure 9-31 CTOD Force vs. Clip Gauge Displacement of 4.9% Pre-	216
strained Australian AS/NZS 3679.1 G300 Steel	
Figure 9-32 CTOD Force vs. Clip Gauge Displacement of As-received	216
Australian AS/NZS 3679.1 G300 Steel	
Figure 9-33 CTOD Force vs. Clip Gauge Displacement of 9.8% Pre-	217
strained Australian AS/NZS 3679.1 G300 Steel	
Figure 9-34 CTOD Force vs. Clip Gauge Displacement of 17.7% Pre-	217
strained Australian AS/NZS 3679.1 G300 Steel	
Figure 9-35 CTOD Force vs. Clip Gauge Displacement of M6, M7 &	218
M8 Steel	
Figure 9-36 CTOD Force vs. Clip Gauge Displacement of As-received	218
Australian AS/NZS 3679.1 G300 and M6, M7 & M8 Steel	
Figure 9-37 CTOD Force vs. Clip Gauge Displacement of All Samples	219
Australian AS/NZS 3679.1 G300 and M6, M7 & M8 Steel	
Figure 9-38 CTOD Force vs. Load-line Displacement Plots	221
Figure 9-39 DCPD vs. Clip Gauge Displacement	223
Figure 9-40 CTOD at U/Uo=1.028 for Australian AS/NZS 3679.1 G300	224
Steel	

Figure 9-41 Finite Element Analysis of CTOD Specimens at Mid-span	228
and Centre-line Planes. Von Mises Stresses Greater than	
Yield Shown in the Coloured Contours	
Figure 9-42 CTOD Cross-section with 4.9 % Pre-strain, with Stable	230
Fibrous Crack Growth at 10 °C, then Broken in Liquid	
Nitrogen	
Figure 9-43 CTOD Cross-section with 17.7 % Pre-strain, with Minimal	230
Fibrous Crack Extension Followed by Cleavage and Arrest	
at 10 °C	
Figure 9-44 Optical Metallographic Images of M8 Steel As-received	231
Figure 9-45 Optical Metallographic Images of Inclusions In Australian	232
AS/NZS 3679.1 G300 Steel Pre-strained 9.8% and 17.7%	
Figure 9-46 Optical Metallographic Images of Inclusions in Australian	233
AS/NZS 3679.1 G300 Steel As-Received and Pre-strained	
4.9%	
Figure 9-47 SEM Image of Fracture Surface of 9.8% PS @ 20° C	235
Specimen 6-2	
Figure 9-48 SEM Image of Magnification of Fracture Initiation	236
Specimen 6-2	
Figure 9-49 SEM Image of Transition from Fibrous to Cleavage of	236
Specimen 5-3 17.7% PS @ 20°C	
Figure 9-50 Crack Front SEM 5-3 17.7% PS @ 20°C	237
Figure 9-51 Crack Front SEM 1-4 17.7% PS @ 10°C	237
Figure 9-52 Crack Front SEM M7 @ 0°C	238
Figure 9-53 Crack Front SEM 6-2 PS 9.8% @ 20°C	238
Figure 9-55 Crack Front SEM M8 @ -10°C	239
Figure 9-56 Cleavage M8 AR @ -10°C	240
Figure 9-57 Cleavage 5-3 9.8% PS @ -10°C	241
Figure 9-58 Cleavage 1-4 17.7% PS @ 10°C	241
Figure 9-59 Non-metallic Particle in Fibrous Fracture Zone Micro-	242
Conical Failure Dimple (Specimen 5-3)	
Figure 9-60 Fibrous Fracture Surface at Increasing Magnification	244
(Specimen 1-4)	
Figure 9-61 Crack Extension vs. Normalised Electrical Potential	248
Figure 9-62 CTOD Load vs. Crack Area Plot	250

Figure 9-63 Total Work Done During Crack Growth in a Ductile	252
Material	
Figure 9-64 Specific Work of Fracture in Process Zone	253
Figure 9-65 Specific Work of Fracture R vs. Normalised Crack Length	256
for Various Pre-Strain Levels for Australian AS/NZS	
3679.1 G300 and M Steel Specimens	
Figure 9-66 Specific Work of Fracture R vs. Crack Length for	258
Australian AS/NZS 3679.1 G300 Steel As-received	
Figure 9-67 Specific Work of Fracture R vs. Crack Length for	259
Australian AS/NZS 3679.1 G300 Steel at 4.9% Pre-strain	
Figure 9-68 Specific Work of Fracture R vs. Crack Length for	260
Australian AS/NZS 3679.1 G300 Steel at 9.8% Pre-strain	
Figure 9-69 Specific Work of Fracture R vs. Crack Length for	261
Australian AS/NZS 3679.1 G300 Steel at 17.7% Pre-strain	
Figure 9-70 Specific Work of Fracture R vs. Crack Length Summary for	262
Australian AS/NZS 3679.1 G300 steel	
Figure 9-71 Specific Work of Fracture R vs. Crack Length for Unknown	263
M-Series Steel Compared to Australian AS/NZS 3679.1	
G300 Steel As-received	
Figure 9-72 Stylised Specific Work of Fracture vs. Crack Area,	264
Showing the Effect of Pre-strain and Aging	
Figure 11-1 50 x 40 mm Cracked Steel Bar Used in FEA Model	272
Figure 11-2 Elastic Stiffness Function of Cracked 50 x 40 mm Bar from	272
FEA	
Figure 11-3 Elastically Deformed FEA Model of Half Span of 50 x 40	273
mm Bar (Loaded Upwards)	
Figure 11-4 Plastic Hinge Zone in Notched Bar	274
Figure 11-5 Pre-necking Fracture Moment M_{Rc} , Limit State Surface	276
Figure 11-6 Plastic Hinge Moment M _{pl.hinge} Limit State Surface	277
Figure 11-7 Over-strength Moment Mos.hinge Limit State Surface	277
Figure 11-8 Displacement at Pre-necking Fracture, Limit State Surface	280
Figure 11-9 50 x 40 x 600mm Cracked Steel Bar Used in FEA Model	281
Figure 11-10 50 x 40 x 600mm Bar: Ductility to Pre-necking Fracture	282
vs. Crack Length and Steel Strain-hardening	
Figure 11-11 Cyclic Endurance and Ductility of As-received R _c =38	288

kJ/m ²	Steel

Figure 11-12 Cyclic Endurance and Ductility of As-received R _c =30	289
kJ/m ² Steel	
Figure 11-13 ATC-24 Cyclic Ductility Ratings for Cracked 50 x40 x	290
600 mm Bar at Various Crack length and Strain-hardening %	

List of Tables

Table 5-1 Typical Strain Rates (deMeester 1988)	80
Table 8-1 Mill Certificate Chemical Analysis of Australian AS/NZS	152
3679.1 G300 310UC158, wt-%	
Table 8-2 Tensile True Stress-Plastic Strain Data Used In Finite Element	182
Analyses	
Table 9-1 Dog-Bone Trial Tensile Test Results	183
Table 9-2 Pre-straining Trials AO2 and AO3	184
Table 9-3 Pre-straining Data	185
Table 9-4 310UC158 Flange CVN Test Results	191
Table 9-5 ASTM Steel Grade CVN Averages Produced	198
Table 9-6 Japanese SN490B CVN Sample Data	198
Table 9-7 Fatigue Pre-cracking Test Record Data	209
Table 9-8 CTOD Tests Results	224
Table 9-9 CTOD Summary Results Table	227
Table 9-10 Crack Extension vs. Normalised Electrical Potential	248
Table 9-11 CTOD 10-1 DCPD Data Sample	255
Table 11-1 50 x 40 x 600mm Bar Geometric Ratios and Compliance	272
Table 11-2 Bar Pre-necking Fracture Moment, Plastic Hinge, Over-	278
strength and Governing Limit State vs. Crack Length	
Table 11-3 50 x 40 x 600mm Bar: Displacements and Monotonic Ductility	283
at Pre-Necking Fracture Moment M _{Rc}	
Table 11-4 Constant Amplitude Cyclic Endurance at Various Ductility	285
Ratings for As-received Australian AS/NZS 3679.1 G300, 50 x 40 x	
600 mm Bar with Varying Crack Lengths	
Table 11-5 Constant Amplitude Cyclic Endurance at Various Ductility	286
Ratings for 9.8% Strain-hardened Australian AS/NZS 3679.1	
G300, 50 x 40 x 600 mm Bar with Varying Crack Lengths	
Table 11-6 Constant Amplitude Cyclic Endurance at Various Ductility	286
Ratings for 4.9% Strain-hardened Australian AS/NZS 3679.1	

G300, 50 x 40 x 600 mm Bar with Varying Crack Lengths

Table 11-7 Constant Amplitude Cyclic Endurance at Various Ductility	287
Ratings for 17.7% Strain-hardened Australian AS/NZS 3679.1	
G300, 50 x 40 x 600 mm Bar with Varying Crack Lengths	
Table 11-8 Effect of R_c on Cyclic Endurance and Ductility of As-received	288
Steel	
Table 11-9 ATC-24 Cyclic Ductility Prediction for 50 x 40 x 600 mm Bar	290
Table 11-10 Assessments of Cyclic ATC-24 Ductility Ratings of 50 x 40 x	291
600 mm Bar with Various Crack Lengths, for $R_c=38$ and $R_c=30$	
kJ/m ² As-received Steel	
Table 11-11 Assessments of Cyclic ATC-24 Ductility Ratings of 50 x 40 x	292
600 mm Bar with Various Crack Lengths, for $R_c=38 \text{ kJ/m}^2$ Steel	
at Various Pre-strain States	

Glossary of Terms

A Proportionality constant used in CVN to K_{Ic} correlations

A_fFlange area

ABAQUS Finite element analysis software

AISC American Institute of Steel Construction Inc.

ATC-24 Applied Technology Council cyclic testing guideline

a Crack length

a_{crit} Critical crack length at which fracture will occur.

a_o Initial crack length

B Clear outstand width of a steel section flange; Breadth or thickness of a CTOD specimen; Proportionality constant

Beff Effective section thickness of side-grooved CTOD specimen per BS7448.4

B_N Net section thickness of side-grooved CTOD specimen per BS7448.4

bcc Body centred cubic grain structure

b_f Flange width

C-Mn Carbon-manganese steel

COD Crack Opening Displacement. Term superseded by CTOD

CTOD Crack Tip Opening Displacement

CVN Charpy V-Notch

d Clear depth of a steel section web

D Grain diameter

DCPD Direct current potential drop method of monitoring crack growth.

e material thickness

 e_{max} Maximum engineering pre-strain in test specimens

 \mathbf{e}_{s} Engineering strain at commencement of strain hardening

 $\mathbf{e}_{\mathbf{y}}$ Engineering strain at attainment of upper yield stress

E Young's modulus

E* Effective Young's modulus under plane strain conditions **EC3** Eurocode 3 FEA Finite element analysis **FEMA** Federal Emergency Management Agency **f** Void fraction after Gurson $\mathbf{f}_{\mathbf{0}}$ Initial void fraction **f**_c Critical void fraction fcc Face centred cubic grain structure $\mathbf{f}_{\mathbf{v}}$ Yield stress $\mathbf{f}_{\mathbf{u}}$ Ultimate tensile stress G_c Critical strain energy to generate crack growth G_{Ic} Critical plane strain energy release rate to generate crack growth hcp Hexagonal close packed crystal structure HAZ Heat Affected Zone adjacent to weld HRR Hutchinson-Rice-Rosengren singularity in the crack-tip region **HSLA** High Strength Low Alloy steel I_{xx} Second moment of inertia of section J_c J-integral at crack initiation J_{Ic} J-integral at crack propagation on 1-1 plane at crack initiation under plane strain K Applied stress intensity at a crack tip \mathbf{K}_{c} Critical stress intensity at the crack tip perpendicular to the crack propagation \mathbf{K}_{max} Calculated stress intensity at the maximum load obtained in a CTOD test. K₀ Calculated stress intensity at fracture obtained in a CTOD test. **K**_R Stress intensity at crack propagation derived from an R-curve $\mathbf{K}_{\mathbf{Rc}}$ Equivalent elastic stress intensity at fracture derived from an \mathbf{R}_{c} Kt Stress concentration factor

 K_{Ic} Critical stress intensity at the crack tip perpendicular to the crack propagation or I-I plane for plane strain conditions

 K_{Id} Critical stress intensity at the crack tip perpendicular to the crack propagation or I-I plane for cracking under plane strain condition, for dynamic loading.

 K_{ϵ} Strain concentration factor for use in Neuber postulate.

 K_{σ} Stress concentration factor for use in Neuber postulate.

k Average shear yield strength

k-line The point of tangency of the fillet between the web and flange, and the web surface.

k-zone The steel at the junction of a beam flange and web within the cross-sectional area bounded by the joining fillet.

kN Kilonewton

L Average inter-particle gauge length

LBZ Local brittle zones found in welds.

LEFM Linear Elastic Fracture Mechanics

LODMAT Lowest one day mean ambient temperature

Mos.hinge Over-strength plastic section capacity

 M_{pl} Section plastic moment capacity

M_{Rc} Critical cracking moment

 M_y Yield moment calculated at first yield of the extreme fibres of the section

MMA Manual metal arc welding process

MnS Manganese sulphide

MPa Megapascals

m Adjustment factor to convert δ_c to R to allow for remote plastic flow.

N Number of cycles under cyclic loading

Nf Number of quarter cycles under cyclic loading to fracture

N* Axial design action

 N_y Nominal axial yield strength

NDT Nil ductility temperature generally corresponding to the upper limit of lower shelf notch toughness dominated by plane strain behaviour. Typically corresponding to the development of 27J in CVN tests.

NZHERA New Zealand Heavy Engineering Research Association (Inc.)

n number of complete cycles: being 4 quarter cycles

p stretch zone width

Plane strain The stress condition at a particular location along a crack front in which the transverse restraint is fully rigid, measured in terms of strain on the 3-3 plane $\varepsilon_{33}=0$.

Plane stress The stress condition at a particular location along a crack front in which the transverse restraint in terms of stress on the 3-3 plane $\sigma_{33}=0$.

PCMC Pre-cleavage micro-cracks

PS Pre-strain

PWRI Japanese Public Works research Institute

q Plastic constraint factor: the ratio of notched to un-notched flow stress

q1, q2, q3 Continuum mechanics material parameters after Gurson and Tvergaard

 $\mathbf{R}_{\mathbf{c}}$ Critical crack resistance at which crack will run without further energy input.

 \mathbf{R}_0 Crack resistance at first cracking

rad. Radians of rotation

RKR Ritchie Knott Rice model

SG Segment generator control on MTS testing machine

Qf Monotonic fracture load per Kuwamura

Q_{max} Maximum cyclic fracture load per Kuwamura

R Stress ratio in fatigue testing; Fracture toughness or crack propagation energy

 $\mathbf{R}_{\mathbf{m}}$ Ultimate tensile strength

 $\mathbf{R}_{\mathbf{0}}$ Average radius of inclusions

 $\mathbf{R}_{\mathbf{p}0.2}$ 0.2% proof stress

r_c Crack tip radius

 $\mathbf{r}_{\mathbf{y}}$ nominal plastic zone radius at a crack tip

S Plastic section modulus

 S_p Structural performance factor in accordance with NZS 1170.5 Loadings Standard

SAC The SAC steel project funded by FEMA to solve the problem of running behaviour of welded steel frame structures that surfaced in the January 17, 1994 Northridge earthquake.

SAW Submerged Arc Weld

SEM Scanning electron microscope

SENB3 Simply supported three point bend specimen

SN490 Japanese constructional steel grade with nominal UTS of 490 MPa.
SWF Specific Work of Fracture
SZW Stretch zone width
SZW_c Critical stretch zone width at crack initiation
t _w Web thickness
T Temperature
T_s Service temperature
TK28 Test temperature at which 28J CVN obtained
T _f Flange thickness
U Electrical potential
\mathbf{U}_{0} Initial electrical potential prior to crack growth
UTS Ultimate tensile strength
u Displacement
u _{el} Elastic component of displacement
W Width of CTOD specimen
WSMF Welded Steel Moment Frame
X Applied force
X_0 Average inclusion spacing
X _{Rc} Critical cracking force
Yield Ratio Ratio of yield stress to ultimate tensile stress f_y/f_u
Y Stress intensity coefficient
y half the distance between probes across crack for DCPD monitoring
Z Elastic section modulus
\mathbf{Z}_{ex} Effective section modulus about x axis reduced for element slenderness effects
\mathbf{Z}_{web} Elastic section modulus of the web only
$\alpha(\frac{\sigma}{\sigma_y})$ Correlation for K_{Ic} other than x=100 MPa \sqrt{m}
$\beta(x)$ Correlation for K _{Ic} other than x=100 MPa \sqrt{m}

 γ_p Irreversible work on fracture surface dissipated during plastic flow at the crack tip

 Γ Plastic work done in specimen due to remote plastic flow away from the crack tip.

 γ_s Effective surface energy of a potential crack face

 ΔA Change in crack area

 Δa Change in crack length

 $\Delta \delta_p$ Half-cycle plastic displacement

ΔK Change in stress intensity

 ΔT_e Thickness correlation temperature

 ΔT_v Loading rate correction temperature

 δ_c Crack tip opening displacement at fracture

 δ_{ci} Crack tip opening displacement at initiation of cracking of a specimen

 δ_f Total monotonic displacement of load at fracture

 δ_i Crack tip opening displacement at initiation of cracking of a material

 δ_{iel} Elastic component of crack tip opening displacement at initiation of cracking

 δ_{ipl} Plastic component of crack tip opening displacement at initiation of cracking

 δ_m Crack tip opening displacement at first attainment of maximum force plateau in accordance with BS7448.1

 δ_{pM} Total monotonic plastic displacement of an applied load at fracture

 δ_u Crack tip opening displacement for fracture prior to attainment of maximum force plateau but after development of significant plasticity in accordance with BS7448.1

 δ_y Elastic displacement of the load relative to the support, corresponding to the development of fully plastic moment of a beam at the face of the column. In accordance with ATC-24.

ɛ true strain

 $\boldsymbol{\epsilon}_{c}$ True strain at initiation of cracking

 $\boldsymbol{\epsilon}_{cw}$ True cold work pre-strain

Emax Peak strain

 $\pmb{\epsilon}_s$ Strain at commencement of strain hardening

 $\boldsymbol{\epsilon}_{u}$ Uniform true strain capacity

 ε_{y} True yield strain

 ε_z Orthogonal component of true strain

 η_p Cumulative cyclic plastic displacement ratio at fracture.

 η_{pM} Plastic displacement ratio at fracture under monotonic load.

 Λ Elastic strain energy

 λ Element slenderness ratio for local buckling assessment

 θ_p Plastic rotation of the beam tip relative to the column, prior to moment capacity dropping below the fully plastic moment of a beam, at the face of the column. In accordance with AASHTO LRFD Bridge Design Specification, 1998

 θ_y Elastic rotation of the beam tip relative to the column, corresponding to the development of fully plastic moment of a beam at the face of the column

µ Displacement ductility

 $\mu_{\rm p}$ Cyclic displacement ductility amplitude.

v Poisson's ratio

 Ω Complimentary strain energy

• Material strength reduction factor in NZS 3404 Steel Structures Standard

 $\Sigma\Delta\delta_{p}$ Cumulative absolute plastic cyclic displacement at fracture

 σ True stress

 σ_0 True stress at initiation of plastic strain

 σ_{fl} Flow stress

 σ_{fr} Fracture stress

 $\sigma_{\rm H}$ Hydrostatic mean stress

 σ_{ideal} Ideal cleavage strength

 σ_{Mises} Von Mises stress

 σ_u Ultimate tensile stress

 σ_x Orthogonal stress component

 σ_y Yield stress; Orthogonal stress component

 σ_z Orthogonal stress component

 σ_{crit} Critical section stress at which fracture will occur

 τ_{peak} Peak stress triaxiality beneath a notched surface

 τ_y Dislocation shear yield stress of a crystal