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Abstract 

This thesis provides a structural and materials engineering explanation for many of the running 

fractures that occurred in steel structures during the destructive Kobe and Northridge earthquakes in 

the mid 1990s.  A method is developed that allows the ductile endurance of structural steel 

members subjected to cyclic plastic deformation during earthquakes to be assessed and for pre-

necking running fractures to be avoided.   

The study commenced following the 2000 World Earthquake Conference in Auckland.  The 

conference brought together the findings of the huge research effort, in America, Japan, Europe and 

New Zealand, that followed the Kobe and Northridge earthquakes.  The running fractures that had 

occurred in steel structures represented an unpredicted failure mode that structural engineers have 

not known how to predict or suppress through the engineering design process.  A clear fundamental 

understanding of the causes and how to prevent the fractures did not arise from the conference. In 

fact apparently conflicting results were reported.  Full scale cyclic tests in New Zealand on 

structural assemblies had not resulted in running fractures, whereas tests in American and Japan 

had.   

Structural engineers designing earthquake resistant structures rely on constructional steel to be 

materially homogeneous and nominally tri-linear in behaviour.  Steel is expected to behave 

elastically under regular in-service loading, have a reliable and flat yield stress-strain characteristic, 

and under overload then develop predictable levels of strain-hardening in conjunction with 

significant plastic elongation up to its ultimate tensile strength.  Steel is expected to eventually 

fracture after further plastic elongation and necking.  Ductile design strategies and methods utilise 

the plastic elongation characteristics of steel to protect structures in earthquake.  Plastic deformation 

is considered to beneficially dissipate energy generated in the structure by a severe earthquake and 

also dampen the structure’s response.  The occurrence of running fracture without significant cyclic 

plastic deformation and before section necking in steelwork, therefore undermines the basis of the 

ductile seismic design approach.  

The initial part of the thesis is devoted to bringing together the fundamental aspects of materials 

engineering related to fracture of constructional steel.  This is intended to provide a bridge of 

knowledge for structural engineering practitioners and researchers not fully conversant with 

materials engineering aspects of fracture.  Fracture behaviour in steel is a broad and complex topic 
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that developed rapidly in the twentieth century driven by the demands of technological growth.  The 

unexpected fracture of welded liberty ships at sea in World War 2; the need for reliable long term 

containment for the nuclear reactors in the 1950s and 1960s; and prevention of fatigue failures in 

aircraft frames since the 1950s all drove engineering research into steel fracture behaviour.   

There are many subtle variations in definitions in the published literature on fracture that can be 

confusing.  Therefore an attempt has been made to clarify terminology.  The term brittle fracture in 

particular is only used in this thesis as applying to running fracture when the general or far field 

tensile stresses are below the yield stress of the steel.  The term pre-necking or running fracture is 

preferred to describe the condition more broadly which may occur prior to and also after general 

yielding, but before section necking.  Running fracture is a manifestation of pre-necking fracture in 

which insufficient plastic flow is available in the assembly to absorb the energy released upon 

fracture. 

The experimental studies investigated the behaviour of constructional steel commonly used in New 

Zealand, at various levels of plastic strain.  This started with Charpy V-Notch (CVN) testing which 

revealed that a significant transition temperature shift and curve shape change occurs with 

increasing plastic strain and the associated strain-hardening.   This showed that the ability of steel to 

avoid pre-necking or running fracture reduces as the level of plastic strain-hardening increases. 

Temperature controlled Crack Tip Opening Displacement (CTOD) testing was then undertaken. 

The setting of testing temperatures for the CTOD tests were guided by review of the CVN test 

results, using published CVN to fracture toughness correlation methods.  However running cleavage 

fractures developed in the CTOD specimens at higher than predicted temperatures of 10 oC and 20 
oC.  These are typical service temperatures for structures in New Zealand and so are very likely to 

occur at the time of an earthquake. The implication from this is that there are levels of strain-

hardening and conditions of material notching constraint that can lead to pre-necking and running 

fracture in New Zealand fabricated steel structures, under severe earthquake loading. 

Care was taken in the CTOD testing to monitor and maximise the capture of data electronically 

using a specially developed Direct Current Potential Drop method.  This allowed the test results to 

be analysed and considered in varying ways, leading to a consistent assessment of the CTOD, crack 

growth, and the specific work of fracture in each test piece.   

While CTOD test results have sometimes been published by structural and welding engineering 

researchers in the wake of Kobe and Northridge, the results were typically of little use for this study 

as the CTOD initiation point was generally not identified effectively.  The effect of remote plastic 
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flow in the specimens was also not adequately accounted for.  The CTOD test results were often 

simply used to help correlate other factors observed by the researchers.  Side-grooving of specimens 

was not reported as having been used in any of the published results reviewed.  When conducting 

CTOD test with highly ductile constructional steels it is very difficult to get useful CTOD results if 

the specimens are not side-grooved, as significant necking and tunnelling will otherwise occur and 

limit the usefulness of the results. 

Work by Knott and also by McRobie and Smith was seminal in terms of identifying some critical 

aspects of plane strain development in CTOD tests, and the links to non-metallic particle density 

with respect to fracture toughness and CTOD at initiation. Some of their findings with regards to 

the effect of pre-strain on CTOD initiation were subsequently found to confirm the experimental 

findings in this study. 

No effective methodology for prediction of pre-necking or running fracture in a structural member 

or assembly when subjected to gross plastic cyclic deformation was found to exist in the literature.  

It was concluded however that the principles of specific work of fracture, and monotonic and cyclic 

fracture similitude were particularly relevant.  These were therefore utilised in the development of 

the design method proposed in this thesis.  The CTOD test results were reviewed, isolating the 

remote plastic flow component, to determine the critical specific work of fracture property Rc of the 

steels tested. 

A meeting with Professor Kuwamura at the University of Tokyo was providential, allowing 

discussion of his similitude principle, and observations in person of some of the fractured 

specimens developed during his full scale test series’.  Running fractures with cleavage were 

evident in the specimens, with their tell-tale chevron markings. He had predicted running fracture 

problems in structures in Japan ahead of the Kobe earthquake and been largely ignored.  His 

insights were subsequently seriously considered in Japan after the earthquake. 

He and his colleagues developed the principle of structural similitude that relates monotonic 

fracture displacement ductility to cyclic fracture displacement ductility for a particular assembly.  

This arose from their observation that running fractures developed from ductile crack formation at 

blunt notches in structures.  The similitude principle has echoes of the Coffin-Manson approach to 

ductile crack initiated low cycle fracture.  The principle of similitude has a log–log relationship as 

does the Manson-Coffin relationship.  So where notch plasticity controls the initiation of fracture in 

a structural assembly it is conceptually reasonable to expect that the number of cycles to initiation 

of fracture from a notch will have a log–log relationship to the amplitude of the cyclic strain 

developed in the notch. 
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Kuwamura found that steel assemblies with lower CVN energy had reduced cyclic fracture 

endurance than the same assemblies made with steel with higher CVN impact energy.  However no 

method of predicting performance of any particular assembly could be developed from his 

observations.  The benefit of his method primarily relates to the minimising of testing necessary to 

assess the fracture limited cyclic displacement ductility of a structural assembly.  However it 

doesn’t provide a means for designing a structural assembly to achieve specific levels of ductile 

endurance other than clearly identifying the need to use steel with good CVN characteristics.  

The most significant development arising from this thesis is therefore the development of a design 

method to assess cyclic ductile endurance.  The method utilises the specific work of fracture 

properties obtained from CTOD specimens of the steel in conjunction with a relatively simple 

fracture mechanics assessment and an elasto-plastic finite element analysis (FEA).  The FEA model 

is used to determine the displacement ductility of the assembly at the calculated onset of pre-

necking fracture.  The elasto-plastic stress–strain properties of the steel in various pre-strain states 

required for the FEA may be derived from tensile testing.  Kuwamura’s similitude principle is then 

used to predict cyclic plastic endurance at various constant displacement ductility amplitudes.  The 

method is extended using Miner’s rule to allow for the effects of increasing variable amplitude 

cyclic plastic loading. 

In summary the thesis explains why pre-necking and running fractures occur in steel members 

subjected to cyclic plastic deformation during a severe earthquake.  In addition a method for 

consistently assessing the ability of structural steel assemblies to achieve a specified level of ductile 

endurance during earthquakes is proposed.  The method is verified against published results for a 

cyclic test of a simple steel member with a crack at mid-span. 
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