Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage.
http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
THE EFFECT OF SUBSTRATE PARAMETERS ON THE
MORPHOLOGY OF THERMALLY SPRAYED PEEK SPLATS.

Benjamin Paul Withy

A thesis submitted in fulfilment of the requirements
for the degree of Doctor of Philosophy in
Abstract

Thermal spray is a well established technology that is commonly used in the aerospace and automotive industries. This thesis reports on the effect that substrate surface chemistry, morphology and temperature has on the morphology of PEEK single splats on aluminium substrates.

PEEK single splats were deposited by HVAF and plasma spraying on aluminium substrates with 6 different pretreatments. Substrates were either sprayed at room temperature, or 323°C, and a subset of substrates was held at incremental temperatures up to 363°C.

HVAF deposited splats on room temperature substrates showed sensitivity to surface chemistry, with increased circularity and area associated with low levels of hydroxide and chemisorbed water on the aluminium surface. Substrates held at 323°C were more sensitive to substrate morphology, where rough surfaces resulted in decreased circularity and area apparently independent of surface chemistry. Substrate temperature trials revealed a significant step in the results, equating to greater circularity, and lower splat area, perimeter and Feret diameter. This step occurred between 123°C and 163°C, the two points bracketing the glass transition temperature of PEEK (143°C). This result was due to the relaxation of splats deposited on surfaces above 143°C, whilst splats on cooler substrates quench through the glass transition and do not relax.

PEEK splats deposited by plasma spray on room temperature and 323°C substrates showed sensitivity to the amount of hydroxide and chemisorbed water present on the aluminium substrates, with low levels resulting in more circular and larger area splats. Plasma splats did not show the same temperature effects as HVAF splats, thought to be due to the more molten state of plasma splats upon impact compared to the HVAF splats.

The primary conclusions reached were that plasma sprayed polymers were sensitive to surface chemistry, and that as such the surface chemistry of a substrate should be considered when forming plasma spray polymer coatings. It was also concluded that the kinetic energy of particles in HVAF thermal spray contributed significantly to the thermal energy of a particle on impact, allowing for improved splat properties without overheating the particles in flight. Finally it was concluded that substrate temperature is far more important for HVAF thermal spray of polymers than plasma spray of polymers, but that it improves splat properties for both techniques.
for Brooke,
who has made me so happy,
words are not enough.
Acknowledgements

I thank and acknowledge the following:

My family, for their love, support and encouragement to do what I wanted to do.

My supervisors, Associate Professor Margaret Hyland and Doctor Bryony James, for their support, advice and guidance.

Uniservices for the scholarship that allowed me to live and study.

The Graduate Research Fund for travel and registration to ITSC Seattle 2006.

Professor Sanjay Sampath and the Centre of Thermal Spray Research, Stony Brook, SUNY, for the opportunity to study and conduct experiments there for six weeks in 2006.

The technical staff of the Chemical and Materials Engineering Department who provided varied and valued assistance over the course of my PhD.

The friends who would insist I leave the lab or computer and venture into the world for a coffee or beer at regular intervals.
Owl explained about the Necessary Dorsal Muscles. He has explained this to Pooh and Christopher Robin once before, and had been waiting ever since for a chance to do it again, because it is a thing which you can easily explain twice before anybody knows what you are talking about.

A.A.Milne, *The House at Pooh Corner*.

I love deadlines. I like the whooshing sound they make as they fly by.

Douglas Adams.
Table of Contents

List of Figures ... ix
List of Tables ... xiii
List of Abbreviations ... xiv

1 Introduction ... 1

2 Literature Review .. 4

2.1 Surface chemistry and morphology of aluminium ... 4

2.2 Adhesion of organic compounds to aluminium surfaces .. 9

2.3 Surface chemistry of aluminium by XPS .. 10

2.4 Thermal spray of polymers ... 17

2.4.1 Thermal spray processes ... 17

2.4.2 Microstructure of polymer coatings ... 21

2.4.3 Spray variables ... 23

2.4.4 Substrate variables .. 24

2.4.5 Polymer single splats ... 27

2.4.6 Plasma spray of polymers ... 28

2.4.7 Combustion spray of polymers .. 29

2.4.8 Spray of polymers with filler particles .. 31

2.5 Impact and spreading of single splats during thermal spray ... 32

2.6 PEEK .. 37

2.7 Aims and methodology of this thesis .. 40

3 Experimental Methods .. 42

3.1 Substrate selection .. 42

3.2 Surface preparation ... 42

3.2.1 Polishing and degreasing ... 43

3.2.2 Etching ... 43

3.2.3 Boehmitising ... 44

3.2.4 Thermal oxidation ... 44

3.3 Surface characterisation techniques ... 44

3.3.1 Atomic force microscopy ... 44

3.3.2 Scanning electron microscopy ... 46

3.3.3 X-ray photoelectron spectroscopy ... 48

4 Surface Chemistry and Morphology of Aluminium .. 53

4.1 Surface chemistry .. 53

4.1.1 Surface composition of treated substrates ... 53
4.1.2 Oxide layer composition of different etched surfaces55
4.1.3 Surface acidity measurements ...57
4.1.4 Surface chemistry pretreatment, AA5052 ..59
4.1.5 Oxide layer composition and thickness of selected pretreatments62
4.2 Surface morphology ..65
5 Single Splat Experimental Methodology ..68
5.1 Thermal spray torches ..68
5.2 PEEK powder ...68
5.3 Depositing splats on substrates ..69
 5.3.1 Single splat deposition ..69
5.4 Substrate mounting and temperature control ..70
5.5 Imaging single splats ..71
5.6 Image analysis ..72
6 Qualitative Splat Analysis ..76
7 Plasma Spray of PEEK Single Splats ..80
 7.1 Effect of surface chemistry and morphology on plasma sprayed PEEK splats..80
 7.1.1 Number of splats ..81
 7.1.2 Splat circularity ...85
 7.1.3 Mean area of a splat ..87
 7.1.4 Splat perimeter ..89
 7.1.5 Splat Feret diameter ..91
7.2 Effect of substrate temperature on plasma splat properties92
7.3 Plasma splats discussion and summary ..95
8 HVAF Spray of PEEK Single Splats ..99
 8.1 Effect of surface chemistry and morphology on HVAF sprayed PEEK splats ..99
 8.1.1 Number of splats ..99
 8.1.2 Splat circularity ...101
 8.1.3 Average area of a splat ..103
 8.1.4 Splat perimeter ...106
 8.1.5 Splat Feret diameter ..108
8.2 The effect of substrate temperature on HVAF splat properties109
8.3 Kinetic energy conversion to thermal energy on particle impact113
8.4 HVAF discussion summary ...115
9 Mechanism of Splat Formation ..117
 9.1 Particles in Flight ..117
 9.2 Particle Impact ..118
 9.3 Splat Spreading ..120
List of Figures

Figure 2.1 Schematic of the oxide layer on aluminium reproduced from [1] 5
Figure 2.2 Left, bonding schemes for hydroxide ions on an alumina surface [24]. Right, chemisorbed water structures [22] ... 6
Figure 2.3 The transformation sequence of Al(OH)₃ to Al₂O₃ reproduced from [22] 6
Figure 2.4 The Aluminium oxide – water equilibrium phase diagram, reproduced from [22] .. 7
Figure 2.5 Schematic of the basic principle of XPS analysis .. 11
Figure 2.6 A characteristic wide scan revealing elemental composition, and a narrow scan of the O 1s peak with peak deconvolution (this work) .. 13
Figure 2.7 A representative O 1s XPS spectrum with deconvoluted components. Green is the O²⁻ peak, blue the OH⁻ peak, and red the chemisorbed water peak (this work) 15
Figure 2.8 Left, XPS narrow scan spectra of the Al 2p peaks of a thin oxide layer. Right, a thick oxide layer (this work) ... 15
Figure 2.9 Schematic of a typical plasma spray system [50] .. 18
Figure 2.10 A schematic of the Browning Aerospray 150, the HVAF thermal spray gun used in this research .. 19
Figure 2.11 A Schematic of a typical high velocity thermal spray system [50] 20
Figure 2.12 Schematic of the different adhesion quantification methods, a) peel test, b) tensile test, c) shear test ... 22
Figure 2.13 Left, optical micrograph of a plasma sprayed PET coating [59]. Right, schematic of splat build up in thermal spray. The black spots represent porosity from degassing and poor wetting ... 22
Figure 2.14 Schematic illustration of two surfaces with different surface profiles but the same Ra value ... 26
Figure 2.15 Schematic illustration of a) a surface with negative Sk and b) a surface with positive Sk ... 26
Figure 2.16 The monomer unit of PEEK ... 26
Figure 3.1 Van der Waals forces relationship with distance, especially for the separation between AFM tip and sample, reproduced from [102] ... 45
Figure 3.2 Schematic of the interaction of electrons with a sample in an SEM. I is the incident electron beam, SE’s are the secondary electrons ... 47
Figure 3.3 Characteristic wide scans of two polished aluminium 5005 surfaces with chemical peaks as labelled .. 50
Figure 3.4 Deconvoluted O 1s narrow scan of a boehmitised aluminium 5005 surface.
Figure 3.5 Normalised Gaussian and Lorentzian distributions, and a typical curve used in XPS curve fitting.
Figure 3.6 An O 1s narrow scan of an AcidBrite etched aluminium 5052 surface.
Figure 4.1 XPS wide scans of a polished (top) and an AcidBrite etched (bottom) aluminium 5005 substrate.
Figure 4.2 Deconvoluted XPS O 1s spectra from polished and degreased, boehmitised, and FPL etched aluminium 5005 substrates (from top to bottom).
Figure 4.3 Shown are the wide scan and O 1s narrow scan of a BWI substrate.
Figure 4.4 Summary of the oxygen peak spectra breakdown representing how much of the O 1s spectra was due to each of its component parts.
Figure 4.5 Oxygen 1s binding energies vs. Aluminium 2p binding energies. A distinct trend can be noticed, with acidity increasing as the BE increases.
Figure 4.7 Summary of the oxygen peak spectra breakdown representing how much of the O 1s spectra was due to each of its component parts.
Figure 4.8 AFM images of the 6 pretreated surfaces. Images are of a 100µm sample square, with a scale of 2µm in the z axis.
Figure 4.9 SEM images of the 6 pretreated surfaces. Images are ~40µm square.
Figure 5.1 Left, SEM image of PEEK particles. Right, cumulative particle size distribution of PEEK powder by particle number percentage.
Figure 5.2 Schematic of copper block substrates were mounted on for spraying.
Figure 5.3 Two SEM images of the same area, the left image using secondary electrons, the right using back scattered electrons to generate the image.
Figure 5.4 The process of image analysis (a) is the raw back scatter SEM image, (b) has had the scale digitised, been cropped, and individual splats partitioned where required, (c) reveals the thresholding of the splats, and (d) reveals the final result for analysis after holes are filled and the image is “despeckled.”
Figure 5.5 Left, the raised oxide deposits on boehmite. Right, PEEK splats on the same surface as shown on the left.
Figure 6.1 Left, HVAF single splats deposited on room temperature polished aluminium substrates. Right, plasma single splats deposited on a room temperature polished aluminium substrate.
Figure 6.2 Left, HVAF single splats deposited on a 323°C polished aluminium substrates. Right, plasma single splats deposited on a 323°C polished aluminium substrate.
Figure 6.3 PEEK splats on differently pretreated substrates, A, B, and C are HVAF sprayed splats on polished, etched and boehmitised substrates, respectively. D, E, and F
are plasma sprayed splats on polished, etched and boehmitised substrates, respectively.

Figure 7.1 Example of the non-normal distribution of splat parameters, HVAF splats on 23°C polished substrates.

Figure 7.2 Number of splats per mm2 on a 23°C substrate with different surface pretreatments.

Figure 7.3 Number of splats per mm2 on a 323°C substrate with different surface pretreatments.

Figure 7.4 The effect of surface pretreatment on splat circularity.

Figure 7.5 Typical distribution diagram for splat areas on 23°C substrates.

Figure 7.6 The change in splat area with changing substrate pretreatment.

Figure 7.7 The effect of surface pretreatment on splat perimeter.

Figure 7.8 The effect of surface pretreatment on splat Feret diameter.

Figure 7.9 Mean areas of single splats with increasing substrate temperatures.

Figure 7.10 Circularity of plasma sprayed splats with increasing surface temperature.

Figure 7.11 Feret diameter of plasma sprayed splats with increasing surface temperature.

Figure 7.12 Splats deposited on a polished substrate by plasma spray at increasing substrate temperatures.

Figure 7.13 Boehmite blisters observed after the thermal spraying process.

Figure 8.1 Effect of surface pretreatment on the number of splats deposited by HVAF on room temperature substrates.

Figure 8.2 Effect of surface pretreatment on the number of splats deposited by HVAF on substrates held at 323°C.

Figure 8.3 Effect of surface pretreatment on the circularity of HVAF sprayed PEEK splats.

Figure 8.4 Effect of surface pretreatment on mean area of HVAF sprayed PEEK splats.

Figure 8.5 Effect of surface pretreatment on mean area of HVAF sprayed PEEK splats on aluminium held at 323°C.

Figure 8.6 Effect of surface pretreatment on median area of HVAF sprayed PEEK splats.

Figure 8.7 Effect of surface pretreatment on median area of HVAF sprayed PEEK splats on aluminium held at 323°C.

Figure 8.8 Effect of surface pretreatment on the perimeter of HVAF sprayed PEEK splats.
Figure 8.9 Effect of surface pretreatment on the perimeter of HVAF sprayed PEEK splats on aluminium held at 323°C .. 107

Figure 8.10 Effect of surface pretreatment on the Feret diameter of HVAF sprayed PEEK splats. ... 108

Figure 8.11 Effect of substrate temperature on the area of HVAF sprayed PEEK single splats. ... 109

Figure 8.12 Effect of substrate temperature on the perimeter of HVAF sprayed PEEK single splats. ... 110

Figure 8.13 Effect of substrate temperature on the Feret diameter of HVAF sprayed PEEK splats. ... 110

Figure 8.14 Effect of substrate temperature on circularity of HVAF sprayed PEEK single splats. ... 110

Figure 8.15 The change in HVAF splats with increasing substrate temperature 112

Figure 8.16 Particle temperature increase for different particle velocities with different fractional conversion of kinetic energy to thermal energy ... 115

Figure 9.1 The four stages of splat deposition which can affect splat properties. In flight, impact, spreading, and post impact affects. .. 117

Figure 9.2 Schematic of a particle in flight (the lighter the shade, the higher the temperature) and the resultant “fried egg” splat formation. .. 119

Figure 9.3 Degree of intimate contact can be decreased by substrate degassing (A) or by inability of a particle to flow into surface features (B). .. 119
List of Tables

Table 2.1 Published oxide and hydroxide peak positions .. 14
Table 2.2 Characteristic properties of PEEK 150PF powder as supplied by Victrex 39
Table 3.1 Nominal composition of AA5005 and AA5052 (mass %) 42
Table 3.2 Etchant compositions ... 44
Table 3.3 Ion beam analysis experimental conditions .. 52
Table 4.1 Summary of the coupon pretreatments .. 54
Table 4.2 AA5005 coupon surface compositions following surface treatment 55
Table 4.3 Thickness of oxide layers resulting from each pretreatment 58
Table 4.4 Summary of the coupon pretreatments .. 59
Table 4.5 Surface compositions due to each surface treatment 60
Table 4.6 Summary of ion beam analysis results for B and BT substrate surface chemistry .. 64
Table 4.7 Thickness and surface roughness of the oxide layers resulting from the different pretreatments ... 65
Table 4.8 Significant features of the surface chemistry of the different pretreated substrates ... 66
Table 5.1 Spray conditions for the deposition of HVAF and plasma sprayed PEEK splats .. 69
Table 5.2 Substrate preheat temperatures .. 71
Table 7.1 Summary of plasma “number of splats” results .. 83
Table 7.2 Summary of plasma “splat circularity” results .. 86
Table 7.3 Summary of plasma “splat area” results ... 88
Table 7.4 Summary of plasma “splat perimeter” results ... 90
Table 7.5 Summary of plasma “splat Feret diameter” results 92
Table 8.1 Summary of HVAF “number of splats” results .. 100
Table 8.2 Summary of HVAF “circularity” results .. 102
Table 8.3 Summary of HVAF “splat area” results ... 105
Table 8.4 Summary of HVAF “splat perimeter” results .. 107
Table 8.5 Summary of HVAF “splat Feret diameter” results 108
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>AcidBrite etched</td>
</tr>
<tr>
<td>AFM</td>
<td>Atomic force microscope</td>
</tr>
<tr>
<td>Alm 29</td>
<td>P3 Almeco 29 etched</td>
</tr>
<tr>
<td>B</td>
<td>Boehmitised</td>
</tr>
<tr>
<td>BE</td>
<td>Binding energy</td>
</tr>
<tr>
<td>BT</td>
<td>Boehmitised and thermally treated</td>
</tr>
<tr>
<td>BWI</td>
<td>Boehmitised</td>
</tr>
<tr>
<td>CCD</td>
<td>Charge-coupled device</td>
</tr>
<tr>
<td>DG</td>
<td>Polished and degreased</td>
</tr>
<tr>
<td>E</td>
<td>Etched (with AcidBrite)</td>
</tr>
<tr>
<td>EDS</td>
<td>Energy dispersive spectroscopy</td>
</tr>
<tr>
<td>ERDA</td>
<td>Elastic recoil detection analysis</td>
</tr>
<tr>
<td>ET</td>
<td>Etched and thermally treated</td>
</tr>
<tr>
<td>FPL</td>
<td>Forest Products Laboratory</td>
</tr>
<tr>
<td>FPL</td>
<td>FPL etched</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform infra-red</td>
</tr>
<tr>
<td>FTIR-RAS</td>
<td>Fourier transform infra-red - reflection absorption spectroscopy</td>
</tr>
<tr>
<td>FWHM</td>
<td>Full width half maximum</td>
</tr>
<tr>
<td>HAF</td>
<td>High velocity air fuel</td>
</tr>
<tr>
<td>HVOF</td>
<td>High velocity oxygen fuel</td>
</tr>
<tr>
<td>K</td>
<td>Sommerfeld flattening criterion</td>
</tr>
<tr>
<td>KE</td>
<td>Kinetic energy</td>
</tr>
<tr>
<td>Kf</td>
<td>Modified Sommerfeld flattening criterion</td>
</tr>
<tr>
<td>MDPE</td>
<td>Medium density polyethylene</td>
</tr>
<tr>
<td>P</td>
<td>Polished</td>
</tr>
<tr>
<td>P2</td>
<td>P2 etched</td>
</tr>
<tr>
<td>PEEK</td>
<td>Poly(aryl ether ether ketone)</td>
</tr>
<tr>
<td>PET</td>
<td>Poly(ethylene terephthalate)</td>
</tr>
<tr>
<td>PMA</td>
<td>Poly(methyl methacrylate)</td>
</tr>
<tr>
<td>PPS</td>
<td>Poly(phenylene sulphide)</td>
</tr>
<tr>
<td>PT</td>
<td>Polished and thermally treated</td>
</tr>
<tr>
<td>Pzc</td>
<td>Point of zero charge</td>
</tr>
<tr>
<td>Ra</td>
<td>Measure of surface roughness</td>
</tr>
<tr>
<td>RBS</td>
<td>Rutherford backscattering</td>
</tr>
<tr>
<td>Re</td>
<td>Reynolds number</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscope</td>
</tr>
<tr>
<td>Sk</td>
<td>Skewness</td>
</tr>
<tr>
<td>SLPM</td>
<td>Standard litres per minute</td>
</tr>
<tr>
<td>Tg</td>
<td>Glass transition temperature</td>
</tr>
<tr>
<td>Tt</td>
<td>Transition temperature</td>
</tr>
<tr>
<td>We</td>
<td>Weber number</td>
</tr>
<tr>
<td>XANES</td>
<td>X-ray absorption near-edge studies</td>
</tr>
<tr>
<td>XPS</td>
<td>X-ray photoelectron spectroscopy</td>
</tr>
<tr>
<td>ξm</td>
<td>Madejski flattening ratio</td>
</tr>
</tbody>
</table>