Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.

- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.

- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form
MECHANISMS OF COMPENSATION IN AGENESIS OF THE CORPUS CALLOSUM

Melodie S. Barr

A thesis submitted in partial fulfilment of the requirements for
the degree of Doctor of Philosophy in Psychology
University of Auckland, 2003
ABSTRACT

This thesis examines the compensatory mechanisms that allow information to be available to both cerebral hemispheres in individuals with agenesis of the corpus callosum.

The first set of experiments, detailed in Chapter Three, were designed to determine what types of visual information can be integrated interhemispherically in these subjects. Two acallosals, J.P. and M.M., and ten control subjects were tested. Results showed that M.M., whose anterior commissure was within normal limits, was much worse at matching colours and letters between visual fields than within visual fields, while J.P., whose anterior commissure was greatly enlarged, showed no evidence of interhemispheric disconnection on these tasks. This suggests that in some cases of callosal agenesis an enlarged anterior commissure may compensate for the lack of a corpus callosum. Neither acallosal subject showed disconnection on tasks requiring integration of location and orientation, however, suggesting that the anterior commissure plays no role in such tasks, although both subjects performed poorly relative to controls. These tasks may depend on subcortical commissures, such as the intertectal commissure.

The two experiments in Chapter Four tested J.P. and M.M. tested on a simple reaction-time (RT) task, with visual stimuli presented either singly to one or the other visual field or in bilaterally presented pairs. Stimuli were either white against a black background, or grey against an equiluminant yellow background. RTs to bilateral pairs were decreased beyond predictions based on a simple race between independent unilateral processes, implying interhemispheric neural summation. This effect was enhanced under equiluminance in M.M., but not J.P., suggesting that the anterior commissure may act, relative to its size, to affect cortical activation to bilateral pairs, which then acts to decrease subcortical neural summation.

In Chapter Five, J.P., M.M. and A.L.M. (the daughter of M.M.), and twelve control subjects were tested on a simple RT task, with visual evoked potentials collected using a high-density 128-channel system. Independent-components analyses were performed to isolate the visual components of interest.
Contrary to previous research with acallosals, evidence of ipsilateral activation was present in all three acallosal subjects. While ipsilateral visual components were present in all four unilateral conditions in M.M. and A.L.M., in J.P. these were present only in the crossed visual field/hand conditions and not in the uncrossed conditions. It is suggested that individual differences and methodological limitations in the previous studies due to the small number of electrodes used are the most likely explanation for the difference in findings.

Finally, due to the clear individual differences in aetiology, neurophysiology and compensatory mechanisms utilized by the three acallosal subjects tested here, a case study approach was taken with each subject discussed separately.
ACKNOWLEDGMENTS

I would firstly like to thank my supervisor, Professor Michael Corballis, for his unwavering support and mentorship. Mike’s wealth of knowledge, constructive advice and sense of humour has made this experience a pleasant as well as productive one. I would also like to thank Dr. Jeff Hamm and Dr. Ian Kirk for their guidance and support.

A huge thank you also to John and the rest of my family for all their encouragement and support throughout my time at university. I also want to mention all those in the Cognitive Lab and on the "3rd floor". The friendship and great sense of fun that we have shared has made my time there very enjoyable.

Finally I want to thank J.P., M.M. and A.L.M. for their participation in this study.

This research was supported by grants from the Marsden Fund of the Royal Society of New Zealand and the Human Frontiers Science Program.
TABLE OF CONTENTS

Abstract ii
Acknowledgments iv
Table of Contents v
List of Tables vii
List of Figures viii

CHAPTER ONE

INTRODUCTION

The Corpus Callosum 2
 Agenesis of the corpus callosum 3
The Disconnection Syndrome in the Split Brain 5
 The surgically-split brain 5
 The acallosal brain 6
Visual Pathways 9
Possible Compensatory Mechanisms in Callosal Agenesis 11
 Bilateral representation of function 12
 Enhanced ipsilateral sensory and motor pathways 12
 Non-callosal commissures 14
Techniques for Measuring the Interhemispheric Transfer of Information 17
 The crossed-uncrossed difference (CUD) 17
 The redundancy gain 20
This Study 23

CHAPTER TWO

GENERAL METHOD

Subjects 24

CHAPTER THREE

THE INTERHEMISPHERIC TRANSFER OF VISUAL INFORMATION:

The Role of the Anterior Commissure 29

Experiment 1 – Integration of Colour Information 30
 Method 31
 Results 34
 Discussion 36
Experiment 2 – Integration of Letter Information 36
LIST OF TABLES

Table 4.1 Percentages of Missed Stimuli and False Responses to Catch Trials in Experiment 1 and Experiment 2 58

Table 4.2 Median Reaction Times (RTs) and Transfer Indices in Experiments 1 and 2 58

Table 5.1 Percentages of Missed Stimuli and False Responses to Catch Trials 77

Table 5.2 Median Reaction Times (RTs) and Transfer Indices 78

Table 5.3 Brain Regions Activated in each Stimulus/hand Condition for the Control Participants. Anatomical Stereotaxic Coordinates are in Millimetres (R=Right, L=Left). Activations in **Bold** Type indicate Maxima in each Hemisphere. 90

Table 5.4 Brain Regions Activated in each Stimulus/hand condition for Participant J.P. Anatomical Stereotaxic Coordinates are in Millimetres (R=Right, L=Left). Activations in **Bold** Type indicate Maxima in each Hemisphere. 91

Table 5.5 Brain Regions Activated in each Stimulus/hand Condition for Participant M.M. Anatomical Stereotaxic Coordinates are in Millimetres (R=Right, L=Left). Activations in **Bold** Type indicate Maxima in each Hemisphere. 93

Table 5.6 Brain Regions Activated in each Stimulus/hand Condition for Participant A.L.M. Anatomical Stereotaxic Coordinates are in Millimetres (R=Right, L=Left). Activations in **Bold** Type indicate Maxima in each Hemisphere. 94
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Mid-sagittal MRI Scan of Acallosal Subject J.P. showing Complete Absence of the Corpus Callosum. Arrow indicates Anterior Commissure.</td>
<td>25</td>
</tr>
<tr>
<td>2.2</td>
<td>Mid-sagittal MRI Scan of Acallosal Subject M.M. showing Complete Absence of the Corpus Callosum. Arrow indicates Anterior Commissure.</td>
<td>27</td>
</tr>
<tr>
<td>2.3</td>
<td>Mid-sagittal MRI Scan of Acallosal Subject A.L.M. showing Complete Absence of the Corpus Callosum. Arrow indicates Anterior Commissure.</td>
<td>28</td>
</tr>
<tr>
<td>3.1</td>
<td>Mean Accuracy of Responses made by Hand and Visual Field in Colour-Matching Task of Experiment 1. Error Bars represent Standard Deviations of the Mean.</td>
<td>35</td>
</tr>
<tr>
<td>3.2</td>
<td>Mean Accuracy of Responses made by Hand and Visual Field in Shape-Matching and Name-Matching Tasks of Experiment 2. Error Bars represent Standard Deviations of the Mean.</td>
<td>41</td>
</tr>
<tr>
<td>3.3</td>
<td>Trials in Dot-Location Task in Experiment 3 are responded to as “Same” or “Different” by Comparing the Relative Positions of the Dots within their Squares.</td>
<td>46</td>
</tr>
<tr>
<td>3.4</td>
<td>Location of Lines (not precisely to scale) used in Line-Alignment Task in Experiment 3 under the Bilateral Condition.</td>
<td>47</td>
</tr>
<tr>
<td>3.5</td>
<td>Mean Accuracy of Responses made by Hand and Visual Field in Dot-Location Task in Experiment 3. Error Bars represent Standard Deviations of the Mean.</td>
<td>49</td>
</tr>
<tr>
<td>3.6</td>
<td>Mean Percentage of “Misaligned” Responses as a Function of Actual Misalignment and Field Location in Line-Alignment Task in Experiment 3. Error Bars represent Standard Error of the Mean.</td>
<td>50</td>
</tr>
<tr>
<td>4.1</td>
<td>Cumulative RT Distributions and Distributions of the Violation Function, defined by the expression ((p_B - (p_L + p_R - p_L \cdot p_R))), for each of the Subjects under.</td>
<td>60</td>
</tr>
</tbody>
</table>
Conditions of Luminance Contrast (Experiment 1).

Figure 4.2 Cumulative RT Distributions and Distributions of the Violation Function, defined by the expression \((p_B - (p_L + p_R - p_L \cdot p_R))\), for each of the Subjects under Conditions of Equiluminance (Experiment 2).

Figure 5.1 Electrode Layout of 128-channel Sensor Net with Recording Electrodes shown in boxes. Anatomical Landmarks without Recording Electrodes are indicated by circles. Those Electrodes closest to Standard 10-20 Positions (Jasper, 1958) are labelled in red. LIO, Left Infraorbital; RIO, Right Infraorbital; LOC, Left Outer Canthal; ROC Right Outer Canthal; Iz, Inion; Nz, Nasion; M1, Left Mastoid; M2, Right Mastoid. Ground Electrode is located above the Nasion, between Electrodes 22 and 14.

Figure 5.2 Distributions of the Violation Function, defined by the expression \((p_B - (p_L + p_R - p_L \cdot p_R))\), for both the Mean Values of the Control Subjects and the Values of the Individual Acallosal Subjects. Error bars represent Standard Errors of the Mean.

Figure 5.3 Overlaid Waveforms of all 128 Electrodes of Control Subjects’ Data for the Bilateral Stimuli/left-hand Response Condition. Figure shows an Epoch from 200 ms before the presentation of the Visual Stimuli to 600 ms after. ICA was used to breakdown the Raw Waveform into Separate Components.

Figure 5.4 A. Scalp Distribution of the Raw Waveform from Figure 5.3. B. Scalp Distribution and Topographical Map of Component 3 from Figure 5.3, identified as a Bilaterally-Distributed Visual N164.

Figure 5.5 The Earliest Identifiable Visual Components are shown for each Stimulus/hand Combination for the Averaged Data from the Control Subjects. For each Condition three figures are shown: a Topographical Scalp Map projecting the
Component onto a Spherical Head, and two Horizontal MRI slices from a
Standard Brain showing the Main Sources of this Activation. The label above
the Scalp Map indicates the Polarity of the Component (N = Negative) and the
Latency of the Component from Stimuli Onset.

Figure 5.6 The Earliest Identifiable Visual Components are shown for each Stimulus/hand Combination for J.P. For each Condition three figures are shown: a
Topographical Scalp Map projecting the Component onto a Spherical Head,
and two Horizontal MRI slices from a Standard Brain showing the Main Sources
of this Activation. The label above the Scalp Map indicates the Polarity of the
Component (N = Negative) and the Latency of the Component from Stimuli
Onset.

Figure 5.7 The Earliest Identifiable Visual Components are shown for each Stimulus/hand Combination for M.M. For each Condition three figures are shown: a
Topographical Scalp Map projecting the Component onto a Spherical Head,
and two Horizontal MRI slices from a Standard Brain showing the Main Sources
of this Activation. The label above the Scalp Map indicates the Polarity of the
Component (P = Positive) and the Latency of the Component from Stimuli
Onset.

Figure 5.8 The Earliest Identifiable Visual Components are shown for each Stimulus/hand Combination for A.L.M. For each Condition three figures are shown: a
Topographical Scalp Map projecting the Component onto a Spherical Head,
and two Horizontal MRI slices from a Standard Brain showing the Main Sources
of this Activation. The label above the Scalp Map indicates the Polarity of the
Component (N = Negative) and the Latency of the Component from Stimuli
Onset.