This is the Accepted Manuscript version. This version is defined in the NISO recommended practice RP-8-2008 http://www.niso.org/publications/rp/

Suggested Reference

Copyright

Items in ResearchSpace are protected by copyright, with all rights reserved, unless otherwise indicated. Previously published items are made available in accordance with the copyright policy of the publisher.

For more information, see General copyright, Publisher copyright, SHERPA/RoMEO.
This article is available on http://journals.sagepub.com/doi/10.1177/2042753017695652

Please cite:

Silva, P. (2017). Scaffolding assignments: Analysis of AssignMentor as a tool to support first year students’ academic writing skills. *E-Learning and Digital Media* 0(0) 1–12. doi: 10.1177/2042753017695652

Scaffolding assignments:

Analysis of AssignMentor as a tool to support first year students’ academic writing skills

Pedro Silva

The University of Auckland

p.silva@auckland.ac.nz
Abstract

There are several technological tools who aim to support first year students’ challenges, especially when it comes to academic writing. This paper analyses one of these tools, Wiley’s AssignMentor. TPACK framework was used to systematise this analysis. The paper showed an alignment between the tools’ features, and the content, pedagogical and technological requirements. In particular, the paper highlighted that the tool provided an online scaffolding tool, which guides students during their writing process. Additionally, some limitations of the software were identified, which could be addressed by using a blended learning approach.

Keywords: Academic Writing, Scaffolding, TPACK, First Year Students
Scaffolding assignments:

Analysis of AssignMentor as a tool to support first year students’ academic writing skills

Introduction

There is a wide literature that addresses first year students in a tertiary environment. In particular, academic writing seems to be a common theme that emerges from research (Evans & Morrison, 2011; Palmer, Levett-Jones, Smith, & McMillan, 2014; Penn-Edwards & Donnison, 2011). This is an important factor, as it has a possibility of hindering students’ academic success (Bye, Gray, & Tomasich, 2012). In order to help develop this specific writing skill, several approaches have been put in place both by institutions and educators. Additionally, as the digital technology finds its way into 21st century society, several commuter-based technologies have been designed in order to support and develop students’ academic writing skills. This paper will provide an analysis of one of those tools, AssignMentor, while addressing the way it could be integrated in the Student Learning Centre’s activities. This is an important analysis as it will allow a comprehensive reflection process, which will go beyond the simple description of the tool’s analysis. This reflection will then incorporate a wider conceptual framework where the analysis will stem from. However, and although this paper will address concepts as knowledge, pedagogy and technology, it is not the paper’s aim to fully investigate and discuss these concepts. Thus a generic approach will be taken, while allowing sufficient space for the tool’s analysis.

Section one of this paper will address Koehler and Mishra’s (2009) framework, and will focus on each of its components. Content Knowledge will address the concepts of academic writing and will also offer a brief discussion on Halliday and Matthiessen’s (2013) Functional
Grammar. From a Pedagogical perspective, scaffolding will be examined, while also addressing students’ experience and the concept of blended learning. Under Technological Knowledge, Puente
dura’s (2011) model will be examined, while discussing the challenges regarding computer-based scaffolds. Section two of this paper will address the tool’s functionalities, starting from its theoretical background as well as the current features offered. Section three will provide a brief discussion on the tool’s capabilities, within Koehler and Mishra’s (2009) framework. The following section will provide some conclusions and recommendations for a possible implementation.

TPACK framework

Technology has always been a part of learning and teaching. Technology here is understood in its wider context, and not necessarily as digital technology. Koehler and Mishra (2009) provide a framework that allows some reflection on the relationship between several types of knowledge which are essential, yet complementary, in the classroom environment. This framework derives from Shulman’s (1986) approach, where a clear differentiation between two types of knowledge is explored, the content knowledge and the pedagogical knowledge. According to the author, this is quite a relatively recent distinct in academia, with less than a century. This is not to say that there was no reflection on pedagogy. What it does mean is that the distinction and existing relationship in literature between content and pedagogy was not evident (Shulman, 1986). Based on this distinction, and with a wider presence of technology. Koehler and Mishra (2009) further developed this framework and introduced technology as a key component. The presented model distinguishes between three key components, or types of knowledge, Content Knowledge, Pedagogical Knowledge and Technological Knowledge.
Content Knowledge

Content Knowledge is understood as the specific knowledge regarding a specific field of study. This is a critical component of the framework, as educators should have a high level of proficiency in their specific areas. This includes not only knowledge about theories, concepts and frameworks, but also the awareness of well-established practices and terminology within a specific field of study (Koehler & Mishra, 2009). For this specific analysis, a reflection on Academic Writing, its Stages, and a relation with Systemic functional Grammar will be offered.

Learning in higher education involves a specific adaptation from students regarding a wide range of challenges. More specifically, it involves discovering new ways of engaging, processing and organising knowledge (Lea & Street, 1998). Simultaneously, there is an emerging and recent body of research related to academic literacies, especially in the last decade (Hocking & Fieldhouse, 2011). In fact, this concept of academic literacies is mostly related to the act of reading and writing within an academic context. However, this oversimplified conceptualisation has been challenged by introducing the concept of ‘multiliteracies’, which relate to the fact that students will need to discover new languages to adjust to University. These literacies are wider and go beyond the simple mastery of a language, from a purely grammatical perspective.

According to Cope and Kalantzis (2009), the multiliteracies model includes several perspectives, as written language, oral language, visual representation, audio representation, tactile representation, gestural representation, representation of oneself and, spatial representation. In addition to Cope and Kalantzis’s (2009) model, it would be useful to include the digital component as one of the competences to be developed - or at least to consider - when designing support for higher education students. However, there seems to be a focus on written language, as this skill contributes significantly to the development and adoption of specific codes and
convents used in academia. Thus, the notion of academic literacies is closely linked to the notion of academic writing, and encompasses not only the relevant writing skills as grammar, spelling and sentence structure, but also the ‘academic socialisation’, as the ability to incorporate a specific genre (Hocking & Fieldhouse, 2011). However, academic writing involves a specific process that also needs to be addressed before further investigating the notions of genre.

Academic writing is also an output of a process. Although there is a wide literature regarding the stages of academic writing, the differences are more related with taxonomy than with specific stages of the process. As an example, Godwin (2009) chooses a writing framework divided in seven stages: analyse the question, generate ideas, research and referencing, draft the assignment plan, write the first draft, edit, final draft. This taxonomy has a close relation with the Auckland University of Technology’s Student Learning Centre framework (Student Learning Centre, 2013). In the first phase there is a need to analyse and understand the question. Here students are invited to have a further understanding of instruction words, content words and context words. Specifically regarding instruction words, students are advised to have a dictionary at hand, so that the meaning could be highlighted. Phase two is generating ideas. Here brainstorming and mind-mapping are two possible technique students could use to increase the understanding of the topic. Then, on phase three students are invited to research and read on the topic, while keeping track of the references used. On phase four is time to impose a logical structure, and come up with a plan to address the question. This is not only to the overall assignment plan, but also with regard to the paragraphing structure. After a plane was made, phase five is the start of the writing phase, with the first draft. Phase six is editing and proofreading, where several techniques are shared to improve the quality of the assignment. Finally, the last stage is the final draft, where the assignment should be ready to be handed in
Scaffolding assignments (Student Learning Centre, 2013). These stages’ breakdown allows students to have a better understanding of the process, while allowing for sufficient preparation time for research and writing. However, although genre is addressed, the main focus of this framework is more on the mechanics than on the style. Thus, the need for a systemic functional grammar approach.

The first approach to a Systemic Functional Grammar theory appeared in the 1960’s, through the work of Halliday. This lead to the 1985 first edition of the Introduction to Functional Grammar, which at that time addressed both the functional theory and a description of the English grammar (Halliday & Matthiessen, 2013). For the purpose of this article, it is important to reflect on what systematic functional grammar encompasses, and how this framework could be useful to further develop academic writing. In doing so, four basic concepts are essential for the analysis: register, grammar, discourse and genre. Register refers to the metafunction of the text, where their main types of meaning are important, the ideational, interpersonal and textual. The ideational metafunction refers to the human experience, and how it relates to ideas. These can be experiential or logical. Simultaneously, language also incorporates an interpersonal perspective, which is simultaneously interactive and personal. The textual meaning has an enabling and facilitation function. Within this framework, Grammar is understood as a system that allows meaning. Thus, grammar is not understood as a rigid set of rules, but more importantly, a flexible and evolving framework that allows meaning-making. The third element, Discourse, is related to a relationship between the meaning and the sociocultural context (Halliday & Matthiessen, 2013). Although there is a relation between discourse and genre, discourse has a wider constructivist meaning than genre.

Genre is the fourth element of Systemic Functional Grammar. Genre can be understood as a distinctive type of communication, with a distinct purpose, which is recognised by a specific
community (Swales, 1990 as cited by Wingate, 2012). This involves using conventional designs and specific lexicon, which are particular to a specific area of knowledge. Within academic writing, this means adapting not only the structure accepted (i.e., an essay), but also the vocabulary. This vocabulary encompasses not only the Academic Word List but also specific vocabulary which is relevant to the discipline. This relates closely to the initial concept of academic literacies, as it facilitates a way for students to understand a particular writing style. However, an essential skill is the critical awareness of students’ own writing skills. Thus, the development of gender should go beyond a simple and prescriptive design of writing conventions, and needs to include a critical reflection on the personal ability and writing style, as well a critical awareness of specific writing practices for specific purposes (Wingate, 2012). Overall, these genre-based approaches enable students to understand and master the specific conventions of academic writing. This links directly with the idea of deconstructing a text in its specific component, which relates to a scaffolding approach.

Pedagogical Knowledge

Pedagogical Knowledge can be understood as the processes and practices present in teaching and learning. For this, it is essential to have an understanding of the learning process, as well of an awareness of the target audience and its environment. Additionally, pedagogical knowledge requires an understanding of cognitive, social and developmental theories and frameworks of learning, and how they would adapt to a real learning environment (Koehler & Mishra, 2009). For this specific analysis, a reflection on scaffolding in general, its application in academic writing will be offered. Furthermore, an incursion on students’ experience and blended learning will complement this perspective.
Scaffolding can be understood as a temporary structure who supports the construction or development of a project. Although the original terminology finds its way towards the construction industry, it was adapted by educators to characterise a teaching strategy. This strategy consists of providing a temporary structure which will allow the learner to identify each of the components of any specific topic, while creating a provisional structure which will allow the development of a specific skill. As would be expected, and in line with the original meaning of scaffolding, as the learner’s skills develop, the need for a scaffold gradually ceases to exist. Thus, this leads to a reduction of the scaffold, which in turn will lead to its removal (Gazza & Hunker, 2012). Although Vygotsky did not use the term ‘scaffolding’, his approach is based on his zone of proximal development concept. This zone is understood as the space between the current development stage and the learner’s possible development, supported by a capable peer. Later on, Bruner (1974) referred this strategy as scaffolding, using this metaphor. Therefore, scaffold intends to represent the level of modelling and support that the learner has in developing its task. In this process, which was initially thought to be applied to human interaction, the facilitator will gradually remove the scaffold once the learner achieves certain stages of his development (Wass, Harland, & Mercer, 2011). However, there is still a limited research that analyses the impact of digital scaffolding, where although the learner is empowered and decides what and when to learn, simultaneously the decision to stop using the scaffold also depends on the learner and his assessment on his stage of development.

Scaffold learning can also be applied to writing. The literature addressing scaffolding techniques is vast covering the early stages of human development to academic writing. Gazza and Hunker (2012) provide a framework to analyse scaffolding as a technique to develop academic writing. According to the authors, the first stage is to provide the learner with clear
assignment guidelines, marking grids and reference materials. This will allow students to clearly understand what is expected, which in turn is aligned with Biggs (1996) constructive alignment concept. Additionally, providing models of scholarly writing, and addressing mechanics of style are also essential components of the scaffold. Simultaneously, the model also connects to the learner’s previous experiences, while taking in consideration his current level of knowledge and skills (Gazza & Hunker, 2012). Although scaffolding is widely used in classrooms, a new stream of research addresses the usage of computer-based scaffolds for developing academic writing (Cheng, 2010; Proske & Narciss, 2008). These computer-based tools seem to provide effective ways to develop students’ academic writing skills. Additionally, although the scaffolding is computer based, the vygotskian principles still apply. Hung and Chen (2001) have adapted the principles of situation cognition to current design consideration for web-based learning tools. The authors emphasise that in the digital environment there is still a need for contextualised activities, shared interested, the acknowledgement of previous learning experiences and level of skills, as well as a set of rules and structures.

Another possible perspective of analysis is the students’ learning experience. Boud and Prosser (2002) describe as the four influences for high quality learning, which have a clear relation to Hung and Chen (2001), which in turn are once again based on Vygotsky’s work. A first area is relating to the need for engaging learners. The way to engage learners is to take into consideration students’ previous experiences and desires, while building and managing expectations. Additionally, a second area relates to the acknowledgement of the learning context, where a clear connection between the activity and the learning outcomes is provided. A third area relates to challenging learners, were an active participation will support and stimulate peers in their noir learning experience. Finally, the fourth perspective relates to the ability to provide
practice, which includes the ability to develop levels of confidence through practice (Boud & Prosser, 2002). Kreijns, Kirschner, and Jochems (2002) provide another perspective on students’ experience, by reflecting on the impact on the social connection and learning. The authors clearly argue that social connections are essential for collaborative learning, and that digital technology enhances social connection. However, the assumption that digital technology will automatic develop social interactions is not always a valid one. This brings the discussion on students’ experience back to the design of a specific learning strategy, with a specific goal, where technology will then contribute by facilitating the tools, and not the ends. Thus, the reflection on which pedagogical approach to choose is still essential.

The term ‘blended learning’ is an important component of the educational and pedagogical framework. It is interesting to reflect that in the early 20th century, a mediated delivery of content via postal and face-to-face interaction was an established practice in several institutions. Simultaneously, the proliferation of open universities in the 1970’s has seen an expansion of combination between face-to-face and some kind of electronic delivery (Moore, 2005), firstly via television, and later on via a computer-assisted channel. However, the idea of blended learning is currently related to the infusion of web-based technologies, which intends to contribute to a higher degree of the learners’ level of engagement. Controversially, there seems to be the idea that blended learning is the ‘mere’ combination of face-to-face (i.e., traditional) with digital delivery. In fact, this simplification misses the concept’s origin, which stems from the concept of hybridisation. Hybridisation may be understood as the process of combining two distinctive parts in order to produce a third one, which is distinctive from the previous ones. So, by reflecting on the concept of hybridisation, it stats to be clear that blended learning is more than a simple combination of face-to-face and online interaction (Vaughan, 2007).
Simultaneously, there is no clear criterion on which proportion of each of its components is ideal, nor which are the most appropriate methods of delivery. This makes every single combination a specific one, with a single and different outcome. Thus, his environment will then provide learners and teachers with the potential to create a unique and effective learning environment (Erdem & Kibar, 2014).

Technological Knowledge

Technological Knowledge is more difficult to define than the other two previous types of knowledge. On a wider perspective, technological knowledge refers to everything that is man-made or man-created, which in this case is applied to education. This is a notoriously broad definition, as it does not limit itself to digital technology. In fact, the usage of a chalk board is a type of technology that had a great impact on human learning for centuries. However, in the 21st century, the term ‘technology’ is often associated with ‘digital technology’. In this particular case, and according to Koehler and Mishra (2009), Technological Knowledge refers to a deeper understanding and even some mastery of information technology, that goes beyond the mere computer literacy. Thus, in this session, an analysis of Puentedura’s (2011) model as well as the computer based scaffolding approach will be made.

Understanding the way technology affects and transforms learning is one of the key objectives of Puentedura’s (2011) model. Within this framework, the impact of technology is assessed in four stages, Substitution, Augmentation, Modification and Redefinition. These are in turn are combined in two great areas: Enhancing (including Substitution and Augmentation) and Transformation (which includes Modification and Redefinition). Technology can then provide a simple Substitution role, where a previous task which was previously done without using a digital technology is then preferred with no additional functional change. This could be the case
for an electronic version of a dictionary, which brings very few - if none - additional functional change. Augmentation refers then to the usage of a digital tool where technology acts as a direct tool substitute, while providing some functional improvement. A good example is the ability to do online mind-mapping, which allows all the previous technology (i.e., paper and pencil) functionalities, while allowing some functional improvement as the possibility to move already linked boxes. Modification allows for a significant task redesign. A possible example is the possibility to work in an online document across a variety of locations and platforms. Although this would be possible by using, for example, a USB stick, the ability to do it anywhere, anytime, in any platform - including mobile devices - involves a significant task redesign. Redefinition implies the creation of new tasks, which were previously inconceivable (Puantedura, 2011). As an example, the possibility of a group learning task where participants work collaboratively in real time, from different locations, discovering and sharing data collected from different sources, while making it available to the world by using the internet is a possible example of redefinition. However, although this model was designed to measure the digital technology impact, what it actually measures is the difference in functionality between two different technologies, which may be digital or not. For instance, the model could be applied to assess the enhancement of functionality between Microsoft Word and Scrivener, when addressing writing tools.

While Puantedura’s model has been widespread across academic circles, there has also been some criticism. As an example, Hamilton, Rosenberg, and Akcaoglu (2016) critique the hierarchical way in which the SAMR is presented. As a possible way to improve the model, Hamilton et al. (2016) suggest the inclusion of some context information, as the TPACK model, which is included in this paper. In addition, the authors suggest that the model needs to take in consideration the dynamic interconnection between teaching and learning and technology.
Nevertheless, and while acknowledging the critiques of the model, the strongest advantage of Puente'dura’s (2011) framework is to provide a basis for reflecting on the level of change that technology introduced.

In recent years, computer based scaffolding tools have one of the means in which to use technology is being integrated in education. Integrating technology in education refers to the process of using technology to support teaching and learning. Although sometimes a big focus on technology is undertaken by both lecturers and researchers, Keengwe and Onchwari (2011) argue that technology is a tool that allows an enhancement of teaching and learning. In order of this tool to an effective driver for restructuring teaching and learning practices, there is also a need for educators to create the appropriate learning environment that will help learners learn with technology. This is in line with recent research on computer based scaffold writing tools. Cheng (2010) study demonstrates that there are clear benefits for learners by using computer-mediated scaffold writing tools. However, the author also highlights the role of educators by providing proper learning opportunities, which is in line with Keengwe and Onchwari (2011) argument, that in order for these tools to be effective, educators should create a proper environment. The same idea is identified by Proske and Narciss (2008), suggesting that there is a clear relationship between the educator support and environment and the success of computer based scaffold writing tools. In addition, Kreijns et al. (2002) research demonstrates the importance of social interaction in computer supported learning environments. This means creating an active teaching and active learning atmosphere, which includes a social component, is a cornerstone of active and collaborative learning (Keengwe & Onchwari, 2011). Therefore, although computer based scaffold writing tools seem to be highly effective amongst learners (Cheng, 2010; Proske &
Narciss, 2008), still the mediated role of educators is essential, by creating the appropriate learning environment.

AssignMentor

AssignMentor is an on-line scaffolding writing tool developed by Assignment Angels\(^1\), an Australian consortium of three academics, which is currently commercialized by Wiley\(^2\). The tool’s aim is to contribute to students’ understanding of the structure of an assignment, while providing an on-line web-based tool which will support student’s development (Bye et al., 2012). This section will address the theoretical background of the tool’s development, and its functionalities. Additionally it will provide an analysis of the tool based on the TPACK model addressed.

It is widely recognised that one of the main challenges of first year students in tertiary education is academic writing. Bye et al. (2012) argue that first year students often develop critical thinking skills, but still are not able to highly achieve within the academic writing standards. Additionally, the authors recognise that current tertiary education students are part of the ‘Net-generation’, and therefore have different pedagogical needs. This argument is in line with Prensky’s (2001) debate on digital native and digital migrants. Although there seems to be some controversy around the foundations of Prensky’s (2001) debate, it is whirly accepted that the current generation is - at least - generally more engaged with digital technology. Therefore, the current AssignMentor tool aims to also recognise this. By doing so, AssignMentor provides a computer-based scaffold writing tool, and it was designed to be accessible anywhere, anytime. Thus a web-based platform was chosen, allowing students access from multiple platforms.

Furthermore, the tool was designed to provide a safe environment for students to have

\(^1\) See http://www.assignmentangels.com

\(^2\) See http://www.wileyassignmentmentor.com
experimental learning, that was engaging, that allowed rapid access, while being flexible and allowing students to control their own learning experience (Bye et al., 2012). These theoretical background provided the structure for the functionalities’ development of this tool.

AssignMentor’s functionalities aim to deliver its theoretical design’s purpose. Firstly, it acknowledges different types of learning, by allowing students to immediately start their assignment. Simultaneously, it provides students with assignment guides, which allows students to access information about what academic writing is. Additionally the tool provides an ‘assignment builder’, which is an online template that supports and engages students during the assignment development stages. This assignment builder begins by supporting students to analyse the question, offering definitions for key terms and concepts, according to Bloom’s Taxonomy (Bloom, 1984). Furthermore, it support students through the brainstorming and planning stages. Concurrently, on the writing stage, the tool provides a scaffold and prompts built-in instructions for each section of the assignment. These activities provide learners with an interactive and engaging experience, allowing students to transform their learning experience. Additionally, students are provided with example of referencing, and supports the development of students’ referencing skills (Bye et al., 2012). During this assignment development process, the tool also supports the learner on paragraphing, promoting the recommended paragraph structure and length. In addition, the learner can save its work and come back to the same stage later. This not only allows flexibility, but also provides a safe environment where students can practice their writing skills. In addition, if the web-browser supports it, the tool also allow for spellchecks. At a later stage, when the assignment is nearly done, the tool allows students to export their work to a Word document, allowing for minor adjustments, as well as the possibility to hand in their assignment, either digitally or in hard copy.
Analysis of the tool

For the tool’s analysis, the Koehler & Mishra (2009) TPACK model will be used. Thus the analysis will focus on content knowledge, pedagogical knowledge and technological knowledge. In each section, strengths and weaknesses will be highlighted, and at the end, a summary table will be offered.

From a content perspective, this tool addresses one of the main first year students’ challenges, academic writing. Additionally, the tool acknowledges students’ ‘multiliteracies’ (Cope & Kalantzis, 2009), by combining several different aspects of students’ development. In addition, AssignMentor focuses on the savages of academic writing, which are similar to the ones observe in literature, as also used in the Student Learning Centre (Godwin, 2009; Student Learning Centre, 2013). However, AssignMentor offers limited mind-mapping options to students. Also, although the guides provided seem to address some of the components of Halliday and Matthiessen (2013) Functional Grammar, the online scaffolding tool does not seem to incorporate them. Although it is recognisable that an automated text-meaning recognition system would encompass an enormous software development, this could be an area of further development. Finally, some of the stages of the process, although having the same purpose, do not have the same taxonomy used in the Student Learning Centre, which would require an adaptation from one of the parties.

From a pedagogical perspective, AssignMentor focuses on a sound pedagogical approach, scaffolding. Additionally, it incorporates students’ previous experiences, acknowledges the learning context, challenges learners and incorporates the ability to develop confidence by practice, which is in line with Hung and Chen (2001) model presented. However, the tool does not allow for collaborative learning nor social integration, which seems to be a key component of
learning (Kreijns et al., 2002). Also, the usage of a single taxonomy, Bloom’s (1984), would require an alignment between the institution and the tool. In addition, scaffolding was designed with the presence of an educator, who will gradually remove the scaffold (Wass et al., 2011). In this case, it is not evident how the gradual removal of the scaffold will be managed. These areas of development could be addressed by creating a blended environment, which could address some of these pedagogical limitations, creating a unique and effective learning environment (Erdem & Kibar, 2014).

Finally, from a technological perspective, AssignMentor allows flexibility, as it is offered in a web-based platform. This allows multiple access from any device, including mobile devices, which is in line with university students user profile (Vulinovich, 2013). Also, it allows for a significant task redesign, by integrating several stages of the writing process. Thus, according to Puenteur’s (2011) model, the tool allows for Modification. However, AssignMentor could reach Puenteur’s (2011) Redefinition stage, if it would address Halliday and Matthiessen (2013) functional grammar perspective. Also, AssignMentor could allow for real-time collaboration, as well as social interaction, by taking advantage of tools like Facebook or GoogleDocs. In addition, another limitation is the way paragraphs are divided, which do not allow user control. This makes the tool useful for first-year shorter assignments (1,500 to 2,000 words), but not as suitable for longer assignments.

Conclusion

The aim of this paper was to provide an analysis on AssignMentor, using Koehler and Mishra (2009) TPACK framework. In order to do that, this paper discussed the three main TPACK areas. Subsequently it addressed AssignMentor’s functionalities, and provided some discussion and evaluation using TPACK.
From the content perspective it became evident the existence of several literacies, highlighting Cope and Kalantzis (2009) multiliteracies model. Additionally, the stages of academic assessment writing were unpacked, providing some light into this process. The discussion on systematic functional grammar allowed for further understanding of the ‘mechanics’ of writing, with a specific focus on genre. From a pedagogical perspective it was understood the meaning of scaffolding, and how it could be adapted to academic writing. However, one of the issues raised related to the need to gradually remove the scaffold, as this will contribute to the learner’s independence. Also, the discussion on blended learning allow the reflection on hybridisation, while addressing Vaughan’s (2007) model. From a technological perspective, Puontedura’s (2011) SAMR model was addressed, allowing the reflection on the role of technology. Additionally, some reflection was offered on computer-based scaffolds.

The section on AssignMentor allow an overview of the tools functionalities. The tool’s initial porpoise was to support first year students’ challenges, specifically academic writing, by providing a scaffolding tool. Also, the developers recognised the high level of interaction that the majority of the current young generation has with digital technology. In addition, AssignMentor allows students to interact in different ways, allowing for different learning approaches. Also, it provides a web-based approach, making the tool available anywhere, anytime.

On the discussion, it became evident some of the tool’s strengths and weaknesses. From the strengths perspective, the tool addresses one of the main first year students’ challenges, academic writing. Also, if focuses on a sound pedagogical approach, scaffolding, and integrates with the assessment development process. Additionally, by being web-based, the tool can be accessed anywhere, anytime. As rooms for improvement, the tool offers limited mind-mapping options, and done snot allow for students’ interaction and collaboration. Furthermore, the online
prompt does not address genre, which is an area that could be developed further. However, some of these limitations could be addressed by adopting a blended approach, as a face-to-face interaction would address these issues. Additionally, the tool is not ideal for longer and more complex assignments. Although this was highlighted as limitation, it may well be the developer’s infection, incorporating in this way the phase-out required by a scaffolding process.

This paper also has several limitations. Firstly, it does not address students’ real experiences with the tool. Additionally, no research was yet done on satisfaction and impact of this tool in students’ success. These limitations could be addressed in further research, which could monitor not only students’ usage, but also their satisfaction and impact on their learning.
References

Scaffolding assignments

