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ON THE VARIETIES OF THE SECOND ROW OF THE
SPLIT FREUDENTHAL-TITS MAGIC SQUARE

by Jeroen SCHILLEWAERT and Hendrik VAN

MALDEGHEM (*)

Abstract. Our main aim is to provide a uniform geometric charac-
terization of the analogues over arbitrary fields of the four complex
Severi varieties, i.e. the quadric Veronese varieties in 5-dimensional
projective spaces, the Segre varieties in 8-dimensional projective spaces,
the line Grassmannians in 14-dimensional projective spaces, and the
exceptional varieties of type E6 in 26-dimensional projective space.
Our theorem can be regarded as a far-reaching generalization of Maz-
zocca and Melone’s approach to finite quadric Veronesean varieties.
This approach takes projective properties of complex Severi varieties
as smooth varieties as axioms.

Sur les variétés de la deuxième rangée du carré magique deployé de
Freudenthal-Tits

Résumé. Notre but principal est de fournir une caractérisation géométrique
des analogues sur les corps quelconques des quatres variétés com-
plexes de Severi, c’est-à-dire la surface de Veronese, la variété de
Segre S(2, 2), la grassmanniene G(2, 6) et la variété exceptionelle de
type E6. Notre théorème peut être regardé comme une généralisation
considérable de l’approche de Mazzocca et Melone pour les surfaces
de Veronese sur les corps finis qui est fondée sur des propriétés pro-
jectives des variétés de Severi en étant des variétés lisses.

Keywords: Severi variety, Veronese variety, Segre variety, Grassmann variety, Tits-
building.
Math. classification: 51E24, 51A45, 14M12, 17C37, 20G15.
(*) The research of the first author is supported by Marie Curie IEF grant GELATI (EC
grant nr 328178).



2 JEROEN SCHILLEWAERT AND HENDRIK VAN MALDEGHEM

1. Introduction

1.1. General context of the results

In the mid fifties, Jacques Tits [33] found a new way to approach complex

Lie groups by attaching a canonically defined abstract geometry to it. The

main observation was that the Dynkin diagram related to the simple com-

plex Lie algebra could be interpreted as an identity card for this geometry.

This led Tits to define such geometries over arbitrary fields giving birth to

the theory of buildings. In the same work [33], Jacques Tits introduced for

the first time what Freudenthal would call much later the Magic Square,

which was in [33] a (4 × 4)-table of Dynkin diagrams, each symbolizing a

precise geometry that was constructed before, except for the very last entry

(the E8-entry), for which Tits only made some conjectures regarding various

dimensions. All these geometries were defined over the complex numbers,

but one could easily extend the construction to arbitrary fields, although

small characteristics would give some problems. It is essential to note that

these geometries were constructed as subgeometries of a projective geom-

etry, and not as abstract geometries. As such, they can be regarded as

a kind of realization of the corresponding building (which is the abstract

geometry). The geometries of the Magic Square, later better known as

the Freudenthal-Tits Magic Square [35], were intensively investigated with

tools from algebraic geometry, since they define smooth varieties in complex

projective space. One prominent example of this, which is directly related

to the present paper, is the classification of the complex Severi varieties by

Zak [38], see also Chaput [6] and Lazarsfeld & Van de Ven [18]. It turns out

that the complex Severi varieties correspond exactly to the split geometries

of the second row of the Freudenthal-Tits Magic Square (FTMS), namely

the quadric Veronese varieties in 5-dimensional projective spaces, the Segre

varieties in 8-dimensional projective spaces, the line Grassmannians in 14-

dimensional projective spaces, and the exceptional varieties of type E6 in

26-dimensonal projective spaces. For a recent approach with K-theory, see

Nash [22]. In the present paper we present a way to approach the geome-

tries of the second row of the FTMS over any field. The main idea can be

explained by both a bottom-up approach and a top-down approach.

• Bottom-up. The smallest complex Severi variety or, equivalently,

the geometry of the first cell of the second row of the complex

FTMS, is the Veronesean of all conics of a complex projective plane.

This object can be defined over any field, and a characterization of
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THE SECOND ROW OF THE MAGIC SQUARE 3

the finite case by Mazzocca-Melone [20] was achieved in the mid-

eighties. This characterization was generalized to arbitrary fields by

the authors [25]. Here the question is whether a further generaliza-

tion is possible by considering “quadrics” in the Mazzocca-Melone

axioms instead of conics. A first step was made in [24, 27], where all

quadrics in 3-space which are not the union of two planes are con-

sidered, and the corresponding objects are classified. The axioms

below generalize this further to all dimensions, using split quadrics.

Hence, our results can be seen as a far-reaching generalization of

Mazzocca & Melone’s characterization of the quadric Veronesean

in 5-dimensional finite projective space.

• Top-down. Here, the question is how to include the (split) geome-

tries of the second row of the FTMS, defined over arbitrary fields

in Zak’s result. Thus, one would like to have a characteristic prop-

erty of these point sets in projective space close to the requirement

of being a Severi variety (which, roughly, just means that the se-

cant variety of the smooth non-degenerate complex variety is not

the whole space, and the dimension of the space is minimal with

respect to this property). The naturalness of the Mazzocca-Melone

axioms alluded to above is witnessed by the fact that they reflect

the properties of complex Severi varieties used by Chaput [6] and by

Lazarsfeld & Van de Ven [18] to give an alternative proof of Zak’s

result. Note that, indeed, Zak proves (see Theorem IV.2.4 of [38])

that every pair of points of a 2n-dimensional complex Severi vari-

ety is contained in a non-degenerate n-dimensional quadric (and no

more points of the variety are contained in the space spanned by

that quadric). Also, the spaces generated by two of these quadrics

intersect in a space entirely contained in both quadrics. These are

the (Mazzocca-Melone) properties that we take as axioms, together

with the in the smooth complex case obvious fact that the tangent

space at a point is (at most) 2n-dimensional. The latter is achieved

by requiring that the tangent spaces to the quadrics through a fixed

point are contained in a 2n-dimensional space. Remarkably, we show

in the present paper that these requirements suffice to classify these

“point sets”.

So it is interesting to see how these two points of view meet in our work.

There remains to explain the choice of which kind of quadrics. We consider

the same class as Zak was dealing with in the complex case: split quadrics
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4 JEROEN SCHILLEWAERT AND HENDRIK VAN MALDEGHEM

(as the complex numbers are algebraically closed). Hence we consider so-

called hyperbolic quadrics in odd-dimensional projective space, and so-

called parabolic quadrics in even-dimensional projective space. This way,

Zak’s result follows entirely from ours, once the immediate consequences of

the definition of a Severi variety are accepted.

The complexity and generality of the characterization (remember we

work over arbitrary fields) does not allow a uniform proof dealing with all

dimensions at the same time (where dimension d means that d + 1 is the

dimension of the ambient projective space of the quadrics; we do not as-

sume anything on the dimension of the whole space). Some small cases for

d, however, have already been dealt with in the literature in other contexts:

The case d = 1, leading to the quadric Veronesean varieties in [25], the case

d = 2, leading to the Segre varieties in [27], and the case d = 3, leading

to nonexistence, in [28]. We consider it the main achievement of this paper

to present a general and systematic treatment of the remaining cases, in-

cluding the intrinsically more involved line-Grassmannians and exceptional

varieties of type E6.

We obtain more than merely a characterization of all geometries of the

second row of the FTMS. Indeed, in contrast to Zak’s original theorem, we

do not fix the dimension of the space we are working in. This implies that

we obtain some more “varieties” in our conclusion. Essentially, we obtain

all subvarieties of the varieties of the second row of the split Freudenthal-

Tits Magic Square that are controlled by the diagram of the corresponding

building.

Note that we do not attempt to generalize Zak’s result to arbitrary fields

in the sense of being secant defective algebraic varieties. Such a result

would require scheme theory and does not fit into our general approach to

the Freudenthal-Tits Magic Square.

Let us mention that there is a non-split version of the second row of

the FTMS, which consists of the varieties corresponding to the projective

planes defined over quadratic alternative division algebras. These objects

satisfy the same Mazzocca-Melone axioms as we will introduce below, ex-

cept that the quadrics are not split anymore, but on the contrary have

minimal Witt index, namely Witt index 1. It is indeed shown in [17] that

point sets satisfying the Mazzocca-Melone axioms below, but for quadrics

of Witt index 1, are precisely the Veronesean representation of the projec-

tive planes over composition division algebras (and this includes the rather

special case of inseparable field extensions in characteristic 2). In fact, this

leads to an even more daring conjecture which, loosely, is the following.
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THE SECOND ROW OF THE MAGIC SQUARE 5

(∗) The split and non-split varieties related to the second

row of the Freudenthal-Tits Magic Square are characterized

by the Mazzocca-Melone axioms, using arbitrary nondegen-

erate quadrics.

Conjecture (∗) thus consists of three parts, the split case, which uses

split quadrics, the non-split case, using quadrics of Witt index 1, and the

intermediate case, where one uses quadrics which have neither maximal

nor minimal Witt index. If Conjecture (∗) is true, then the intermediate

case does not occur. The other cases are now proved.

1.2. The varieties of the second row of the split FTMS

We now discuss the different geometries that are captured by the second

row of the FTMS. The split case of the second row of the Freudenthal-Tits

Magic Square (FTMS) can be seen as the family of “projective planes”

coordinatized by the standard split composition algebras A over an arbi-

trary field K. These algebras are K, K×K, M2×2(K) and O′(K), which are

the field K itself, the split quadratic extension of K (direct product with

component-wise addition and multiplication), the split quaternions (or the

algebra of 2 × 2 matrices over K), and the split octonions, respectively.

Each of these cases corresponds with a different cell in the second row of

the FTMS.

The first cell corresponds with A = K and contains the ordinary quadric

Veronese variety of the standard projective plane over K, as already men-

tioned above. Mazzocca and Melone [20] characterized this variety in the

finite case for fields of odd characteristic using three simple axioms, which

we referred to as the Mazzocca-Melone axioms above. They can be formu-

lated as follows. Let X be a spanning point set of a projective space, and

Ξ a family of planes such that X ∩ ξ is a conic for each ξ ∈ Ξ. Then Axiom

1 says that every pair of points of X is contained in a member of Ξ; Axiom

2 says that the intersection of two members of Ξ is entirely contained in

X; Axiom 3 says that for given x ∈ X, the tangents at x to the conics

X ∩ ξ for which x ∈ ξ are all contained in a common plane. This character-

ization has been generalized step-by-step by various authors [11, 31], until

the present authors proved it in full generality for Veronese surfaces over

arbitrary fields [25] (where in the above axioms “conics” can be substituted

with “ovals”).
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6 JEROEN SCHILLEWAERT AND HENDRIK VAN MALDEGHEM

The second cell corresponds with A = K×K and contains the ordinary

Segre variety S2,2(K) of two projective planes. In [27], the authors charac-

terize this variety using the above Mazzocca-Melone axioms substituting

“conic” with “hyperbolic quadric in 3-dimensional projective space”, “fam-

ily of planes” with “family of 3-spaces”, and in Axiom 3 “common plane”

with “common 4-space”, and using a dimension requirement to exclude

S1,2(K) and S1,3(K).

In the present paper, we consider the natural extension of these ax-

ioms using “quadric of maximal Witt index (or “split” quadric) in (d+ 1)-

dimensional space”, “family of (d+ 1)-dimensional spaces”, and “common

2d-space”, instead of “conic”, “family of planes” and “common 4-space”,

respectively. The first cell corresponds with d = 1, the second with d = 2.

Sets satisfying these axioms will be referred to as Mazzocca-Melone sets of

split type d. It will turn out that the third cell corresponds with d = 4 and

the fourth with d = 8.

The third cell corresponds with A = M2×2(K) and contains the line

Grassmannian variety of projective 5-space over K. The fourth cell corre-

sponds with a split octonion algebra. The corresponding geometry is the

1-shadow of the building of type E6 over K. In order to handle the latter

case, we need an auxiliary result on varieties related to the half-spin geome-

tries of buildings of type D5. In fact, that result corresponds with d = 6. In

short, our first Main Result states that Mazzocca-Melone sets of split type

d only exist for d ∈ {1, 2, 4, 6, 8}, and a precise classification will be given in

these cases (containing the varieties mentioned above). As a corollary, we

can single out the varieties of the second row of the FTMS by a condition

on the dimension—namely, the same dimensions used by Zak.

2. Mazzocca-Melone sets of split type

2.1. The axioms

We now present the precise axioms and in the next subsection the main

examples. Then, in the next section, we can state our main results.

In the definition of our main central object, the notion of a quadric plays

an important role. A quadric in a projective space is the null set of a

quadratic form. This is an analytic definition. However, we insist on using

only projective properties of quadrics as subsets of points of a projective

space. One of the crucial notions we use is the tangent subspace Tx(Q)

at a point x of a quadric Q. This can be defined analytically, leaving the
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THE SECOND ROW OF THE MAGIC SQUARE 7

possibility open that different quadratic forms (different up to a scalar

multiple) could define the same point set, or that the tangent space would

depend on the chosen basis, which would imply that the tangent space is

not well defined. However, it is well known, and very easy to prove, that

a point y 6= x belongs to the analytically defined tangent space at x to Q

if and only if the line 〈x, y〉 either meets Q in exactly one point (namely,

x), or fully belongs to Q. Alternatively, a point z does not belong to the

tangent space at x if and only if the line 〈x, y〉 intersects Q in precisely 2

points. So Tx(Q) is defined by the point set Q.

Now let X be a spanning point set of PN (K), N ∈ N∪ {∞}, with K any

field, and let Ξ be a collection of (d+ 1)-spaces of PN (K), d > 1, such that,

for any ξ ∈ Ξ, the intersection ξ∩X =: X(ξ) is a non-singular split quadric

(which we will call a symp, inspired by the theory of parapolar spaces,

see [30]; for d = 1, we sometimes say conic) in ξ (and then, for x ∈ X(ξ),

we denote the tangent space at x to X(ξ) by Tx(X(ξ)) or sometimes simply

by Tx(ξ)). We call (X,Ξ) a Mazzocca-Melone set (of split type d) if (MM1),

(MM2) and (MM3) below hold.

The condition d > 1 stems from the observation that, if we allowed

d ∈ {−1, 0}, then we would only obtain trivial objects (for d = −1, a single

point; for d = 0 a set of points no 3 of which collinear and no 4 of which

co-planar).

A Mazzocca-Melone set is called proper if |Ξ| > 1. Non-proper Mazzocca-

Melone sets of split type are just the split quadrics themselves (we use the

expression “of split type” to leave the exact number d undetermined, but

still to indicate that the quadrics we use are split). Also, the members of

Ξ are sometimes called the quadratic spaces.

(MM1) Any pair of points x and y of X lies in at least one element of Ξ,

denoted by [x, y] if unique.

(MM2) If ξ1, ξ2 ∈ Ξ, with ξ1 6= ξ2, then ξ1 ∩ ξ2 ⊂ X.

(MM3) If x ∈ X, then all d-spaces Tx(ξ), x ∈ ξ ∈ Ξ, generate a subspace

Tx of PN (K) of dimension at most 2d.

The central problem of this paper is to classify all Mazzocca-Melone sets

of split type d, for all d > 1. We will state this classification in Section 3,

after we have introduced the examples in the next section.

We conclude this introduction by mentioning that the first case of non-

existence, namely d = 3, was proved in [28] in the context of the first cell

of the third row of the FTMS. So we can state the following proposition.

Proposition 2.1. — A proper Mazzocca-Melone set of split type 3 does

not exist.
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8 JEROEN SCHILLEWAERT AND HENDRIK VAN MALDEGHEM

Proof. — This is basically Proposition 5.4 of [28]. That proposition states

that no Lagrangian set of diameter 2 exists. A Lagrangian set (X,Ξ) sat-

isfies the same axioms as a Mazzocca-Melone set of split type 3, except

that (MM1) is replaced by (MM1′′) below. The diameter of a Langrangian

set is defined as the diameter of the following graph Γ. The vertices are

the elements of X and two vertices are adjacent if they are contained in a

singular line of X (a line fully contained in X).

(MM1′′) Any pair of points x and y of X at distance at most 2 in the graph

Γ is contained in at least one element of Ξ.

By Axiom (MM1), any Mazzocca-Melone set of split type 3 has diameter

2 and hence is a Langangian set of diameter 2, which does not exist by

Proposition 5.4 of [28]. �

As a side remark, we note that a similar conjecture as above for the third

row can be stated, supported by a recent result of De Bruyn and the second

author [4]. Some other work that is related to our axiomatic approach, but

still with a restriction on the underlying field, has been carried out by Russo

[23] and by Ionescu & Russo [13, 14].

2.2. Examples of Mazzocca-Melone sets of split type

We define some classes of varieties over the arbitrary field K. Each class

contains Mazzocca-Melone sets of split type. This section is meant to in-

troduce the notation used in the statements of our results.

Quadric Veronese varieties — The quadric Veronese variety Vn(K),

n > 1, is the set of points in P(n+2
2 )−1(K) obtained by taking the images

of all points of Pn(K) under the Veronese mapping, which maps the point

(x0, · · · , xn) of Pn(K) to the point (xixj)06i6j6n of P(n+2
2 )−1(K). If K = C,

then this is a smooth non-degenerate complex algebraic variety of dimen-

sion n.

Line Grassmannian varieties — The line Grassmannian variety, de-

noted by Gm,1(K), m > 2, of Pm(K) is the set of points of P
m2+m−2

2 (K)

obtained by taking the images of all lines of Pm(K) under the Plücker map

ρ(〈(x0, x1, . . . , xm), (y0, y1, . . . , ym)〉) =

(∣∣∣∣ xi xj
yi yj

∣∣∣∣)
06i<j6m

.

If K = C, then this is a smooth non-degenerate complex algebraic variety

of dimension 2m− 2.
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THE SECOND ROW OF THE MAGIC SQUARE 9

Segre varieties — The Segre variety Sk,`(K) of Pk(K) and P`(K) is

the set of points of Pk`+k+`(K) obtained by taking the images of all pairs

of points, one in Pk(K) and one in P`(K), under the Segre map

σ(〈(x0, x1, . . . , xk), (y0, y1, . . . , y`)〉) = (xiyj)06i6k;06j6`.

If K = C, then this is a smooth non-degenerate complex variety of dimen-

sion k + `.

Varieties from split quadrics — Every split quadric is by definition a

variety, which we will refer to as the variety corresponding to a split quadric.

The one corresponding to a parabolic quadric in P2n(K) will be denoted

by Bn,1(K); the one corresponding to a hyperbolic quadric in P2n−1(K) by

Dn,1(K).

Half-spin varieties — The exposition below is largely based on [12],

but the results are due to Chevalley [7], see also the recent reference [19].

Let V be a vector space of dimension 2n over a field K with a nonsingular

quadratic form q of maximal Witt index giving rise to a hyperbolic quadric

and (·, ·) the associated bilinear form. Then the maximal singular subspaces

of V with respect to q have dimension n and fall into two classes Σ+ and

Σ− so that two subspaces have an intersection of even codimension if and

only if they are of the same type.

Then we define the half spin geometry Dn,n(K) as follows. The point set

P is the set of maximal totally singular subspaces of V of one particular

type, say +. For each totally singular (n−2)-space U , form a line by taking

all the points containing U . The line set L is the collection of sets of this

form.

Fix a pair of maximal isotropic subspaces U0 and U∞ such that V =

U0 ⊕ U∞. Let S =
∧
U∞ be the exterior algebra of U∞, called the spinor

space of (V, q) and the even and odd parts of S are called the half-spinor

spaces, S+ =
∧even

U∞, S− =
∧odd

U∞.

To each maximal isotropic subspace U ∈ Σ+ ∪ Σ− one can associate a

unique, up to proportionality, nonzero half-spinor sU ∈ S+ ∪ S− such that

φu(sU ) = 0, for all u ∈ U , where φu ∈ End(S) is the Clifford automorphism

of S associated to U :

φu(v1∧· · ·∧vk) =
∑
i

(−1)i−1(u0, vi)v1∧· · ·∧ v̂i∧· · ·∧vk+u∞∧v1∧· · ·∧vk,

where u = u0 + u∞, with uo ∈ U0, u∞ ∈ U∞.

One can also obtain an explicit coordinate description, as well as a set

of defining quadratic equations for the point set, see e.g. [7, 12, 19, 21].

We shall refer to these varieties as the half-spin varieties Dn,n(K).
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10 JEROEN SCHILLEWAERT AND HENDRIK VAN MALDEGHEM

The variety related to a building of type E6 — Let V be a 27-

dimensional vector space over a field K consisting of all ordered triples

x = [x(1), x(2), x(3)] of 3 × 3 matrices x(i), 1 6 i 6 3, where addition and

scalar multiplication are defined entrywise. Moreover the vector space is

equipped with the cubic form d : V → K given by

d(x) = detx(1) + detx(2) + detx(3) − Tr(x(1)x(2)x(3))

for x ∈ V , see for instance Aschbacher’s article [1].

Let x ∈ V . The map ∂xd : V → K such that ∂xd(y) is the coefficient in

the expansion of d(x+ty) ∈ K[t] as a polynomial in t is called the derivative

of d at x. Define the adjoint square x] of x by ∂x(d)(y) = Tr(x]y). The

variety E6,1(K) consists of the set of projective points 〈x〉 of V for which

x] = 0.

3. Main result

We can now state our main result.

Main Result. A proper Mazzocca-Melone set of split type d > 1 in

PN (K) is projectively equivalent to one of the following:

d = 1 – the quadric Veronese variety V2(K), and then N = 5;

d = 2 – the Segre variety S1,2(K), and then N = 5;

– the Segre variety S1,3(K), and then N = 7;

– the Segre variety S2,2(K), and then N = 8;

d = 4 – the line Grassmannian variety G4,1(K), and then N = 9;

– the line Grassmannian variety G5,1(K), and then N = 14;

d = 6 – the half-spin variety D5,5(K), and then N = 15;

d = 8 – the variety E6,1(K), and then N = 26;

Remark 3.1. — If one includes the non-proper cases in the previous

statement, then a striking similarity between these and the proper cases

becomes apparent (and note that each symp of any proper example in the

list is isomorphic to the non-proper Mazzocca-Melone set of the same split

type). Indeed, for d = 1, a conic is a Veronesean variety V1(K); for d = 2,

a hyperbolic quadric in 3-space is a Segre variety S1,1(K); for d = 4, a

hyperbolic quadric in 5-space is the line Grassmannian variety G3,1(K); for

d = 6, the hyperbolic quadric in 7-space is, by triality, also the half-spin

variety D4,4(K); finally for d = 8, the hyperbolic quadric in 9-space is a

variety D5,1, sometimes denoted E5,1 to emphasize the similarity between

objects of type D5 and the ones of type E6,E7 and E8.
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THE SECOND ROW OF THE MAGIC SQUARE 11

The following corollary precisely characterizes the varieties related to the

second row of the FTMS. It is obtained from our Main Result by either

adding a restriction on the global dimension, or a restriction on the local

dimension, i.e., the dimension of at least one tangent space.

Main Corollary. A Mazzocca-Melone set of split type d, with d > 1, in

PN (K), with either N > 3d + 2, or dimTx = 2d for at least one x ∈ X, is

projectively equivalent to one of the following:

• the quadric Veronese variety V2(K), and then d = 1;

• the Segre variety S2,2(K), and then d = 2;

• the line Grassmannian variety G5,1(K), and then d = 4;

• the variety E6,1(K), and then d = 8.

In all cases N = 3d+ 2 and dimTx = 2d for all x ∈ X.

Concerning the proof, the cases d = 1, d = 2 and d = 3 of the Main

Result are proved in [25], [27] and Proposition 2.1, respectively. So we may

suppose d > 4. However, our proof is inductive, and in order to be able to

use the cases d ∈ {1, 2, 3}, we will be forced to prove some results about sets

only satisfying (MM1) and (MM2), which we will call pre-Mazzocca-Melone

sets (of split type), and this will include d = 1, 2, 3.

The rest of the paper is organized as follows. In the next section, we prove

some general results about (pre-)Mazzocca-Melone sets, and use these in

Section 5 to finish the proof of the Main Result for all the cases corre-

sponding with the varieties in the conclusion of the Main Result. In Sec-

tion 6, we prove the non-existence of proper Mazzocca-Melone sets for

d /∈ {1, 2, 4, 6, 8}, and in the last section, we verify the axioms.

4. General preliminary results for pre-Mazzocca-Melone
sets

We introduce some notation. Let (X,Ξ) be a pre-Mazzocca-Melone set

of split type d in PN (K), d > 1. Axiom (MM1) implies that, for a given line

L of PN (K), either 0, or 1, or 2 or all points of L belong to X, and in the

latter case L is contained in a symp. In this case, we call L a singular line.

More generally, if all points of a k-space of PN (K) belong to X, then we call

this k-space singular. Two points of X contained in a common singular line

will be called X-collinear, or simply collinear, when there is no confusion.

Note that there is a unique symp through a pair of non-collinear points

(existence follows from (MM1) and uniqueness from (MM2)). A maximal

singular subspace is one that is not properly contained in another.
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12 JEROEN SCHILLEWAERT AND HENDRIK VAN MALDEGHEM

The linear span of a set S of points in PN (K) will be denoted by 〈S〉.
We now have the following lemmas.

Lemma 4.1 (The Quadrangle Lemma). — Let L1, L2, L3, L4 be four

(not necessarily pairwise distinct) singular lines such that Li and Li+1

(where L5 = L1) share a (not necessarily unique) point pi, i = 1, 2, 3, 4,

and suppose that p1 and p3 are not X-collinear. Then L1, L2, L3, L4 are

contained in a unique common symp.

Proof. — Since 〈p1, p3〉 is not singular, we can pick a point p ∈ 〈p1, p3〉
which does not belong to X. Let ξ be the unique symp containing p1 and

p3. We choose two arbitrary but distinct lines M2,M3 through p inside

the plane 〈L2, L3〉. Denote Mi ∩ Lj = {pij}, {i, j} ⊆ {2, 3}. By (MM1)

there is a symp ξi containing pi2 and pi3, i = 2, 3. If ξ2 6= ξ3, then (MM2)

implies that p, which is contained in ξ2 ∩ ξ3, belongs to X, a contradiction.

Hence ξ2 = ξ3 = ξ and contains L2, L3. We conclude ξ contains L2, L3, and

similarly also L4, L1. �

Note that, if in the previous lemma all lines are different, then they span

a 3-space; this just follows from the lemma a posteriori.

Lemma 4.2. — Let p ∈ X and let H be a symp not containing p. Then

the set of points of H collinear with p is either empty or constitutes a

singular subspace of H.

Proof. — Suppose first that p isX-collinear with two non-collinear points

x1, x2 ∈ H, and let x ∈ H be collinear with both x1 and x2. Then the Quad-

rangle Lemma applied to p, x1, x, x2 implies that p ∈ H, a contradiction.

Hence all points of H collinear with p are contained in a singular subspace.

Suppose now that p is collinear with two collinear points y1, y2 ∈ H and

let y be a point on the line 〈y1, y2〉. If we assume that p and y are not

collinear, then the Quadrangle Lemma applied to p, y1, y, y2 yields that

the plane 〈p, y1, y2〉 is entirely contained in a symp, contradicting the non-

collinearity of p and y. Hence p and y are collinear and the lemma is proved.

�

Remark 4.3. — Note that, up to now, we did not use the part of (MM1)

that says that two collinear points of X are contained in some symp. In fact,

this follows from the previous lemmas. Indeed, let x, y be two X-collinear

points and suppose that they are not contained in any common symp. By

considering an arbitrary symp, we can, using Lemma 4.2, find a point not

collinear to y and hence a symp H containing y (but not x, by assumption).

Let z be a point of H collinear with y but not collinear with x (and z exists
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by Lemma 4.2). The Quadrangle Lemma applied to x, y, z, y now implies

that the (unique) symp X([x, z]) contains y. Hence we can relax (MM1) by

restricting to pairs of points that are not X-collinear. For ease of reference,

we have not included this minor reduction in the axioms.

Lemma 4.4. — A pair of singular k-spaces, k > 0, that intersect in a

singular (k−1)-space is either contained in a symp, or in a singular (k+1)-

space. In particular, if k > bd2c, then such a pair is always contained in a

singular (k + 1)-space.

Proof. — If k = 0, then this follows from (MM1). If k = 1, this follows

from the Quadrangle Lemma. Now let k > 2. Suppose A,B are singular k-

spaces intersecting in a singular (k−1)-space and suppose that C := 〈A,B〉
is not singular. Then there is a point p ∈ C which does not belong to X.

Choose a point pA ∈ A \B and let pB be the intersection of 〈p, pA〉 and B.

Then there is a unique symp ξ containing pA and pB . Let qA be any other

point of A\B and put q = 〈pA, qA〉∩B. Then the Quadrangle Lemma (with

L1 = L2 and L3 = L4) implies that qA ∈ ξ. Hence A ⊆ ξ and similarly

B ⊆ ξ. �

Lemma 4.5. — Every singular k-space, k 6 bd2c, which is contained in

a finite-dimensional maximal singular subspace, is contained in a symp.

Proof. — Clearly, the lemma is true for k = 0, 1. Now let k > 2.

Let A be a singular k-space contained in the finite-dimensional maximal

singular subspace M . Note that, in principle, the dimension of M should

not necessarily be larger than bd2c. Let S be a subspace of A of maximal

dimension with the property that it is contained in some symp H. We may

assume S 6= A, as otherwise we are done. In H, the subspace S is not

a maximal subspace as this would imply that bd2c = dimS < dimA =

k 6 bd2c, a contradiction. Hence, since H is a polar space, we can find

two singular subspaces B1 and B′1 of H, containing S, having dimension

dimS+1 and such that B1 and B′1 are not contained in a common singular

subspace of H. It then follows that B1 and B′1 are not contained in a

common singular subspace of X, as 〈B1, B
′
1〉 ⊆ 〈H〉 and since H = 〈H〉∩X,

this would imply that 〈B1, B
′
1〉 is a singular subspace of H, a contradiction.

Hence at most one of B1, B
′
1 belongs to A, and so we may assume that

B1 is not contained in A. Consequently, B1 is a singular subspace with

dimension dim(S) + 1 contained in H, containing S and not contained in

M . Put ` = dim(M)− dim(A) + 1 and let A1 ⊆ A2 ⊆ · · · ⊆ A` be a family

of nested subspaces, with dim(Ai) = dim(S) + i, for all i ∈ {1, 2, . . . , `},
with A` = M and S ⊆ A1 ⊆ A. Put Bi = 〈Ai−1, B1〉, i = 2, 3, . . . , ` + 1.
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14 JEROEN SCHILLEWAERT AND HENDRIK VAN MALDEGHEM

By the maximality of S, Lemma 4.4 implies that B2 is a singular subspace.

Let 2 6 i 6 `. If Bi is singular, then, since Bi ∩ Ai = Ai−1 ⊇ A1 and

A1 is not contained in a symp, Lemma 4.4 again implies that 〈Ai, Bi〉 =

〈Ai, B1〉 = Bi+1 is a singular subspace. Inductively, this implies that B`+1,

which properly contains M , is a singular subspace. This contradicts the

maximality of M . Hence S = A and the assertion follows. �

The next lemma suggests an inductive approach.

Lemma 4.6. — Suppose (X,Ξ) is a pre-Mazzocca-Melone set of split

type d, d > 4. Let x ∈ X be arbitrary and assume that Tx is finite-

dimensional. Let Cx be a subspace of Tx of dimension dim(Tx) − 1 not

containing x. Consider the set Xx of points of Cx which are contained in

a singular line of X through x. Let Ξx be the collection of subspaces of

Cx obtained by intersecting Cx with all Tx(ξ), for ξ running through all

symps of X containing x. Then (Xx,Ξx) is a pre-Mazzocca-Melone set of

split type d− 2.

Proof. — We start by noting that the dimension of a maximal singular

subspace in (Xx,Ξx) is bounded above by dimTx − 1. Hence we may use

Lemma 4.5 freely.

Now, Axiom (MM1) follows from Lemma 4.4 (two lines through x not in

a singular plane are contained in a symp) and Lemma 4.5 (a singular plane

is contained in a symp).

Axiom (MM2) is a direct consequence of the validity of Axiom (MM2)

for (X,Ξ). �

The pair (Xx,Ξx) will be called the residue at x. This can also be defined

for split type 3 in the obvious way, but we do not necessarily obtain a pre-

Mazzocca-Melone set of split type 1, as the following shows (the proof is

the same as the proof of the previous lemma, except that we do not need

Lemma 4.5 anymore by the weakening of Axiom (MM1)).

Lemma 4.7. — Suppose (X,Ξ) is a pre-Mazzocca-Melone set of split

type 3. Let x ∈ X be arbitrary and let (Xx,Ξx) be the residue at x. Then

(Xx,Ξx) satisfies Axiom (MM2) for split type 1 (so for each ξ ∈ Ξx we

have that X(ξ) is a plane conic), and the following weakened version of

Axiom (MM1):

(MM1′) Any pair of points x and y of X either lies on a singular line, or is

contained in a unique member of Ξx.

If in particular (X,Ξ) has no singular planes, then (Xx,Ξx) is a pre-

Maxxocca-Melone set of split type 1. �
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In general, we also want the residue to be a proper pre-Mazzocca-Melone

set whenever the original is proper. This follows from the next lemma,

but we state a slightly stronger property, which we will also use in other

situations.

Lemma 4.8. — Let (X,Ξ) be a proper Mazzocca-Melone set of split

type d > 1, and let x, y ∈ X be collinear. Then there is a symp containing

x and not containing y. In particular, the residue at any point of a proper

Mazzocca-Melone set of split type d > 4 is a proper pre-Mazzocca-Melone

set of split type d−2. If d = 3, then the residue contains at least two conics.

Proof. — It is easy to see that there are at least two different symps

H,H ′ containing x (this follows straight from the properness of (X,Ξ),

and, in fact, this already implies that the residue at x is proper). Suppose

both contain y. Select a point p ∈ H \H ′ collinear to x but not collinear

to y, and a point p′ ∈ H ′ \ H collinear to x but not collinear to p (these

points exist by Lemma 4.2 and since H ∩ H ′ is a singular subspace). By

Lemma 4.4 the unique symp H ′′ containing p and p′ also contains x. It does

not contain y, however, because the intersection H ∩H ′′ would otherwise

not be a singular subspace, as it would contain the non-collinear points p

and y. �

In order to be able to use such an inductive strategy, one should also have

that Axiom (MM3) is inductive. To obtain this, one has to apply different

techniques for the different small values of d (for d = 1 and d = 2, there was

not even such an induction possible). Roughly, the arguments are different

for d = 4, 5, there is a general approach for 6 6 d 6 9 and another one

again for d > 10.

From now on, we also assume (MM3). The basic idea for the induction

for larger d is to prove that the tangent space Tx does not contain any point

y ∈ X with 〈x, y〉 not singular. Such a point y will be called a wrinkle (of

x), and if x does not have any wrinkles, then x is called smooth. Once we

can prove that all points are smooth, we get control over the dimension of

the tangent spaces in the residues at the points of X. For d = 4, 5, this fails,

however, and we have to use additional arguments to achieve this. The case

d = 3 is “extra special”, since we cannot even apply Lemma 4.6. This case

is the most technical of all (but is done in [28], see Proposition 2.1), but

also the case d = 2 is rather technical, see [27]).

Concerning wrinkles, we prove below a general lemma that helps in ruling

them out. Before that, we need two facts about hyperbolic and parabolic

quadrics. In passing, we also prove a third result which we will need later.

We freely use the well known fact already mentioned above that, if for any
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16 JEROEN SCHILLEWAERT AND HENDRIK VAN MALDEGHEM

quadric Q and any point x ∈ Q, some line L through x does not belong to

the tangent space of Q at x, then L intersects Q in precisely two points,

one of which is x.

Lemma 4.9. — Let H be a hyperbolic quadric in P2n+1(K), n > 1. Then

every (n + 1)-space of P2n+1(K) contains a pair of non-collinear points of

H.

Proof. — Let, by way of contradiction, U be a subspace of dimension

n + 1 intersecting H precisely in a singular subspace W . Since U meets

every subspace of dimension n that is completely contained in H in at least

one point, we deduce that W is nonempty. Let x ∈W be an arbitrary point.

Since no line in U through x intersects H in precisely two points, each such

line is contained in the tangent space Tx(H) of H at x. Now, Tx(H) ∩H
is a cone over x of a hyperbolic quadric H ′ in some P2n−1(K), and U can

be considered as a cone over x of an n-space in P2n−1(K) intersecting H ′

in some subspace. An obvious induction argument reduces the lemma now

to the case n = 1, which leads to a contradiction, proving the lemma. �

Lemma 4.10. — Let P be a parabolic quadric in P2n(K), n > 1. Then

through every singular (n− 1)-space there exists exactly one n-space con-

taining no further points of P . Also, every (n+1)-space of P2n(K) contains

a pair of non-collinear points of P .

Proof. — To prove the first assertion, let W be a singular (n− 1)-space

of P and let x ∈ W . Then, as in the previous proof, Tx(P ) ∩ P is a cone

over x of a parabolic quadric P ′ in some P2n−2(K), and every n-space of

P2n(K) intersecting P in exactly W corresponds to an (n − 1) space of

P2n−2(K) intersecting P ′ in exactly W ′, where W ′ corresponds to W . An

obvious induction argument reduces the assertion to the case n = 1, where

the statement is obvious (there is a unique tangent in every point).

The second assertion is proved in exactly the same way as Lemma 4.9,

again reducing the problem to n = 1, where the result is again obvious

(since n+ 1 = 2n in this case). �

Lemma 4.11. — Let Q be a hyperbolic or parabolic quadric in Pn(K),

n > 3, and let S be a subspace of dimension n − 2 of Pn(K). Then some

line of Q does not intersect S.

Proof. — Pick two disjoint maximal singular subspaces M1,M2 of Q. We

may assume that S intersects every maximal singular subspace M in either

a hyperplane of M , or in M itself, as otherwise we easily find a line inside

M not intersecting S. If Q is hyperbolic, then, as 〈M1,M2〉 = Pn(K), this
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easily implies that S = 〈S ∩M1, S ∩M2〉 and dim(S ∩Mi) = n−3
2 . Since

collinearity induces a duality between disjoint maximal singular subspaces,

there is a unique point in M1 not collinear to any point of M2 \S. It follows

that we find a point x1 ∈M1 \ S collinear in Q to some point x2 ∈M2 \ S
and that the line L joining x1, x2 does not intersect S. If Q is parabolic,

then the same argument and conclusion holds if dim(S∩〈M1,M2〉) = n−3.

If not, then S ⊆ 〈M1,M2〉, and we find a point x ∈M1∪M2 \S (otherwise

S = 〈M1,M2〉, which is (n− 1)-dimensional, a contradiction). Since not all

points of M1 and M2 are collinear to x, and since the points collinear to x

in Q span a hyperplane of Pn(K), we find a point y ∈ Q outside 〈M1,M2〉
collinear to x. The line 〈x, y〉 belongs to Q and does not meet S. �

We are now ready to prove a result that restricts the possible occurrences

of wrinkles. It is one of the fundamental observations in our proof.

Lemma 4.12. — Let (X,Ξ) be a Mazzocca-Melone set of split type d >
1. Let x ∈ X. Then no wrinkle y of x is contained in the span of two

tangent spaces Tx(ξ1) and Tx(ξ2), for two different ξ1, ξ2 ∈ Ξ.

Proof. — Suppose, by way of contradiction, that Tx contains the wrinkle

y, and that there are two symps H1 and H2 such that x ∈ H1 ∩ H2 and

y ∈ 〈Tx(H1), Tx(H2)〉. Then there are points ai ∈ Tx(Hi), i ∈ {1, 2}, such

that y ∈ a1a2. Our aim is to show that we can (re)choose the wrinkle y

and the point a1 in such a way that a1 ∈ X. Considering a symp through

y and a1 and using Axiom (MM2) then implies that a2 ∈ X, and so the

plane 〈x, a1, a2〉, containing two singular lines and an extra point y ∈ X,

must be singular, contradicting the fact that y is a wrinkle of x.

Set U = Tx(H1) ∩ Tx(H2) and dimU = `, 0 6 ` 6 bd2c.
By assumption dim〈Tx(H1), Tx(H2)〉 = 2d− `. Hence

dim([x, y] ∩ 〈Tx(H1), Tx(H2)〉) > d+ 1− `

and dim(Tx([x, y]) ∩ 〈Tx(H1), Tx(H2)〉) > d − `. The latter implies that

we can find a subspace W of dimension dd2e − ` through x contained in

Tx([x, y]) ∩ 〈Tx(H1), Tx(H2)〉, but intersecting Tx(H1) ∪ Tx(H2) exactly

in {x} (using the fact that Tx([x, y]) intersects Tx(Hi) in a subspace of

dimension at most bd2c). Note that W is not necessarily a singular sub-

space. We consider the space Π = 〈W, y〉 of dimension dd2e + 1 − `. Every

line in Π through x outside W contains a unique wrinkle. It follows that

Π ∩ 〈Hi〉 = {x}, i ∈ {1, 2}. This is already a contradiction for d = 1 and

` = 0, since this implies 3 = 2 + 1 = dim Π + dim〈Tx(H1)〉 6 2d− ` = 2. So

we assume d > 1. Using straightforward dimension arguments, we deduce

that there are unique (dd2e + 1)-spaces Ui ⊆ 〈Hi〉, i = 1, 2, containing U
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such that Π ⊆ 〈U1, U2〉 (and dim〈U1, U2〉 = 2dd2e + 2 − `). Let U ′1 be the

dd2e-space obtained by intersecting 〈U2,W 〉 with U1. Then, by Lemmas 4.9

and 4.10, we can pick a point a1 ∈ (X ∩ U1) \ U ′1. Since U2 and Π meet

in only x, and a1 ∈ 〈U2,Π〉, there is a unique plane π containing x, a1 and

intersecting both Π and U2 in (distinct) lines. By our choice of a1 outside

U ′1, the line π ∩ Π is not contained in W , hence contains a wrinkle, which

we may assume without loss of generality to be y. Inside the plane π, the

line 〈a1, y〉 intersects π∩U2 in a point a2 ∈ 〈H2〉. This completes the proof

of the lemma. �

We can show the power of the previous lemma by the following lemma,

which establishes the non-existence of wrinkles for small values of d.

Lemma 4.13. — If 2 6 d 6 9, then for every non-smooth point x ∈ X,

there exist at least one wrinkle y of x and two symps H1 and H2 through

x such that y ∈ 〈Tx(H1), Tx(H2)〉.

Proof. — Let z be a wrinkle of x. Let H = X([x, z]). Since 〈Tx(H), z〉 =

〈H〉, we know that H ⊆ Tx. Let H ′ be a symp through x which intersects H

in a subspace of minimal dimension. Since H,Tx(H ′) ⊆ Tx, this dimension

is at least 1. Since d 6 9, there are four cases.

We first observe that

H ∩ Tx(H ′) ⊆ 〈H〉 ∩ 〈H ′〉 ⊆ H ∩H ′ ⊆ H ∩ Tx(H ′),

hence H ∩ Tx(H ′) = H ∩H ′.
Case 1: H intersects H ′ in a line L.

In this case 〈H,Tx(H ′)〉 = Tx by a simple dimension argument, which also

shows dim(Tx) = 2d. Since L is a singular line, dim〈Tx(H), Tx(H ′)〉 =

2d − 1. Hence we can pick a point u ∈ (X ∩ Tx) \ 〈Tx(H), Tx(H ′)〉, with

〈x, u〉 singular. Let H ′′ be a symp through x and u. Since dim〈u,H〉 =

d + 2, we see that dim(〈u,H〉 ∩ Tx(H ′)) = 2. Consequently, there is a

point v ∈ (〈u,H〉 ∩ 〈Tx(H ′)〉) \ 〈H〉. The line 〈u, v〉 inside the (d+ 2)-space

〈u,H〉 intersects the (d+ 1)-space 〈H〉 in a point y′. If y′ were contained in

Tx(H), then the line 〈u, v〉 = 〈v, y′〉 would be contained in 〈Tx(H), Tx(H ′)〉,
contradicting the choice of u. Hence y′ ∈ 〈H〉 \ Tx(H). Then there is a

unique point y ∈ H \ Tx(H) on the line 〈x, y′〉 (and y is a wrinkle of x).

By replacing u with an appropriate point on 〈x, u〉, we may assume that

y′ = y. Hence y ∈ 〈u, v〉 ⊆ 〈Tx(H ′′), Tx(H ′)〉 and the lemma is proved.

Case 2: H intersects H ′ in a plane π.

In this case dim〈H,Tx(H ′)〉 = 2d− 1. If dim(Tx) = 2d− 1, then the lemma

follows from an argument completely similar to the one of Case 1. So we

may assume dim(Tx) = 2d. Note that dim〈Tx(H), Tx(H ′)〉 = 2d− 2. Hence
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there exist two points v1, v2 ∈ X such that 〈x, v1〉 and 〈x, v2〉 are singular

lines, v1 /∈ 〈Tx(H), Tx(H ′)〉, and v2 /∈ 〈v1, Tx(H), Tx(H ′)〉. This implies

that 〈v1, v2〉 does not intersect 〈Tx(H), Tx(H ′)〉.
If v1v2 intersects 〈H〉 in a point w then Axiom (MM2) implies w ∈ X.

Hence 〈v1, v2, x〉 is a singular plane. Since 〈v1, v2〉 ∩ Tx(H) = ∅, w ∈ H \
Tx(H), contradicting the fact that 〈x,w〉 is a singular line.

Hence dim(〈v1, v2, H〉) = d+ 3, and so, putting U = 〈v1, v2, H〉 we have

dim(U ∩Tx(H ′)) > 3. Consequently we find a point u in Tx(H ′)\〈H〉, with

u ∈ U . In U , the plane 〈u, v1, v2〉 intersects the space 〈H〉 in some point y.

If y ∈ Tx(H), then the point 〈u, y〉 ∩ 〈v1, v2〉 belongs to 〈Tx(H), Tx(H ′)〉,
contradicting the choices of v1, v2. Hence y ∈ 〈H〉 \ Tx(H). As in Case 1,

we can rechoose u on 〈x, u〉 so that y ∈ H, and so y is a wrinkle of x. It

follows that y ∈ 〈Tx(H ′), Tx(H ′′)〉, concluding Case 2.

Case 3: H intersects H ′ in a 3-space Σ.

Here again, the case where dim(Tx) = 2d− 2 is completely similar to Case

1, and if dim(Tx) = 2d−1, then we can copy the proof of Case 2, adjusting

some dimensions.

So assume Tx is 2d-dimensional. Since dim〈Tx(H), Tx(H ′)〉 = 2d− 3, we

can find points v1, v2, v3 ∈ X such that 〈x, vi〉 is a singular line, i = 1, 2, 3,

and 〈v1, v2, v3, Tx(H), Tx(H ′)〉 = Tx. By Lemma 4.4 and Lemma 4.5, there

is a symp H12 containing x, v1, v2 (note d > 6 by the definition of Σ). Since

〈v1, v2〉, which is contained in Tx(H12), does not meet 〈Tx(H), Tx(H ′)〉,
the latter intersects Tx(H12) in a subspace of dimension at most d − 2.

Lemma 4.11 implies that we can find a singular line L in Tx(H12) skew

to 〈Tx(H), Tx(H ′)〉. We may now assume that L = 〈v1, v2〉, and possibly

rechoose v3 so that we still have 〈v1, v2, v3, Tx(H), Tx(H ′)〉 = Tx. Note that

every point v of the plane π = 〈v1, v2, v3〉 is contained in a quadratic space

ξ, since v3 together with any point of 〈v1, v2〉 is contained in one. Hence,

as in Case 2 above, π does not meet 〈H〉. Note also that v in fact belongs

to Tx(ξ).

So, the space U = 〈π,H〉 is (d + 4)-dimensional and intersects Tx(H ′)

in a subspace of dimension at least 4. Similarly as above in Case 2, we

find a point u ∈ U in Tx(H ′) \ 〈H〉, and the 3-space 〈u, π〉 intersects 〈H〉
in some point y, which does not belong to Tx(H), and which we may

assume to belong to X (by rechoosing u on 〈x, u〉). As we noted above,

the point 〈u, y〉 ∩ π is contained in Tx(ξ), for some quadratic space ξ, and

so y ∈ 〈Tx(ξ), Tx(H ′)〉, completing Case 3.
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Case 4: H intersects H ′ in a 4-space α.

As before, we may again assume that dim(Tx) = 2d, as otherwise the proofs

are similar to the previous cases. Note that dim〈Tx(H), Tx(H ′)〉 = 2d− 4.

Now, similarly to Case 3, we first find points v1, v2 ∈ X such that

〈x, v1, v2〉 is a singular plane and dim〈v1, v2, Tx(H), Tx(H ′)〉 = 2d− 2, and

then we find, by the same token, points v3, v4 ∈ X such that 〈x, v3, v4〉 is

a singular plane and 〈v1, v2, v3, v4, Tx(H), Tx(H ′)〉 = Tx. Also as in Case 3,

every point of the 3-space Σ = 〈v1, v2, v3, v4〉 is contained in a quadratic

space. But then we can copy the rest of the proof of Case 3 to complete

Case 4.

This completes the proof of the lemma. �

Combining Lemma 4.13 with Lemma 4.12, we obtain the following con-

sequence.

Lemma 4.14. — If 2 6 d 6 9, then every point x ∈ X is smooth.

This implies the following inductive result.

Corollary 4.15. — If 6 6 d 6 9, for all p ∈ X, the residue (Xp,Ξp)

is a Mazzocca-Melone set of split type d− 2.

Proof. — In view of Lemma 4.6, is suffices to show that (Xp,Ξp) satisfies

Axiom (MM3). Let x ∈ X be collinear with p. By Lemma 4.8 there exists

a symp H through p not containing x. Put Wx = Tx ∩ 〈H〉. Since the

points of H collinear to x are contained in a maximal singular subspace of

H, Lemmas 4.9, 4.10 and 4.14, imply that dim(Wx) 6 bd+1
2 c. Hence we

can select a subspace W ′x in Tp(H) complementary to Wx (which is indeed

contained in Tp(H)). Since dim(W ′x) > dd−12 e−1, we see that dim(Tx∩Tp) 6
b 3d+1

2 c. Hence, if x′ ∈ Xp corresponds to x, then Tx′ has dimension at most

b 3d+1
2 c − 1. For d = 6, 7, 8, 9 this yields 8, 10, 11, 13, respectively, which

finishes the proof. �

The strategy of the proof of Main Result 1 for d ∈ {4, 5} will also be

to show that the residue satisfies Axiom (MM3). However, this will need

some very particular arguments. Concerning the cases d > 10, the argu-

ments to prove Lemma 4.13 cannot be pushed further to include higher

dimensions. Hence we will need different arguments, which, curiously, will

not be applicable to any of the cases d 6 9; see Proposition 6.9.

Remark 4.16. — The varieties in the conclusion of the Main Corollary

are analogues of complex Severi varieties, as already mentioned. The vari-

eties in the conclusion of the Main Result that are not in the conclusion of

the Main Corollary have, in the complex case, as secant variety the whole
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projective space. It can be shown that this remains true over an arbitrary

field; this is rather easy for the Segre and line Grassmannian varieties, and

slightly more involved for the half-spin variety D5,5, although the calcula-

tions are elementary, but tedious, using [15]. Likewise, the secant variety of

the secant variety of a complex Severi variety is the whole projective space,

and this remains true for our analogues over an arbitrary field. This now

has the following consequence.

Proposition 4.17. — Let X be one of the varieties in the Main Result

for d > 2, and regard X as a set of points. Let Γ = (X,L) be the point-line

geometry obtained from X by collecting (in the set L) all projective lines

entirely contained in X, and considering the natural incidence relation.

Let Ξ′ be the family of all maximal split quadrics contained in X. Then

there is a unique projective embedding of Γ with the property that any two

projective subspaces generated by members of Ξ′ intersect in a subspace

all points of which belong to X.

Proof. — Every geometry Γ has a natural embedding as given in Sec-

tion 2.2. This embedding is always the absolute universal one, meaning

that every other embedding is a projection of the absolute universal one.

This follows by results of Zanella (d = 2), see Theorem 3 of [39], Havlicek

(d = 4), see [10], Wells (d = 6), see Theorem 5 of [15], and combining The-

orem 6.1 of Cooperstein & Shult [8] (which bounds the dimension of any

embedding of E6,1 to 26) and Paragraph 4.11.1 of Kasikova & Shult [16]

(which shows the existence of the absolute universal embedding for d = 8).

Now either the secant variety is the whole projective space (in which case

there are no proper projections), or the secant variety of the secant variety

is the whole projective space (in which case every projection reduces the

dimension of the space spanned by some pair of maximal split quadrics,

contradicting Axiom (MM2)). This shows the assertion. �

In view of the previous proposition, is suffices to show that the points

and singular lines of a Mazzocca-Melone set of split type constitute the ge-

ometries related to one of the varieties in the Main Result, and only those.

The geometries Γ defined above related to a line Grassmannian variety,

half-spin variety or variety E6,1(K) will be referred to as a line Grassman-

nian geometry, half-spin geometry or geometry E6,1(K), respectively. These

geometries are related to (Tits-)buildings by defining additional objects in

the geometry; it is in this way that we will recognize the varieties of our

Main Result. This is the content of the next section.
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5. Recognizing the line Grassmannian, half-spin and E6,1

geometries

We start by recognizing the line Grassmannian geometries. Let (X,Ξ)

be a proper Mazzocca-Melone set of split type 4 in PN (K). For each point

p ∈ X, we denote the residue at p by (Xp,Ξp), and we also denote the

subspace spanned by Xp by Cp, as before (see Lemma 4.6). We will first

recognize these residues, and then the whole geometry. To that aim, we

need one more lemma.

Lemma 5.1. — Let p ∈ X. If k > 4, then there are no singular k-spaces

in the residue (Xp,Ξp).

Proof. — Suppose otherwise and let M be a maximal singular k-space

in (Xp,Ξp), with k > 4. Note that, by repeated use of Lemma 4.4, since, by

Lemma 4.6, (Xp,Ξp) is a proper pre-Mazzocca-Melone set of split type 2,

no point of Xp outside M is collinear with at least two points of M . Hence

every singular line meeting M in a point x lies together with any point of

M distinct from x in a unique symp. We will use this observation freely.

First we claim that every point r ofM is contained in at least two singular

lines not contained in M . Indeed, by considering any symp through r, we

see that r is contained in at least one such singular line, say Lr. Suppose

now that some point s ∈ M is contained in at least two lines Ls, L
′
s not

contained in M . Then the symps defined by 〈r, s〉 and Ls, and by 〈r, s〉 and

L′s both contain 〈r, s〉, so they cannot both contain Lr. Consequently there

exists a second singular line through r not contained in M . Hence we may

assume that through every point r of M passes a unique singular line Lr
not contained in M .

Consider three points x, y and z spanning a plane π in M . Consider a

point x′ on Lx different from x. Using a symp through Lx and Ly, we deduce

that there is a unique point y′ on Ly collinear with x′, and similarly, there

is a unique point z′ on Lz collinear with x′. If x′, y′ and z′ were contained in

a common line L, then the symps X([x, y′]) and X([y′, z]) would share the

lines L and Ly, and hence coincide, a contradiction since this symp then

contains the plane π. If y′ and z′ are not collinear then, by the Quadrangle

Lemma, the symp X([y′, z′]) contains x′, 〈y, y′〉 and 〈z, z′〉, and hence it

contains three singular lines through y′, a contradiction. Hence the plane

π′ := 〈x′, y′, z′〉 is singular. Consider next a 3-space Π in M containing π.

This leads with similar reasonings to a singular 3-space Π′ containing π′.

But then, since dim(Tp) 6 8, and so dim(Cp) 6 7, Π′ ∩M is non-empty,
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contradicting our assumption of the previous paragraph. This completes

the proof of our claim.

Hence there exist lines Lx and Ly through x and y, respectively, such

that the symps Hx and Hy containing Lx, y and Ly, x, respectively, are

distinct.

As dimTp 6 8, the (k+2)-spaces 〈Hx,M〉 and 〈Hy,M〉 intersect at least

in a (2(k+2)−7)-space. Since 2k−3 > k+1 (because k > 4), those spaces

share a (k + 1)-space S containing M . Now S intersects 〈Hx〉 and 〈Hy〉
in planes containing 〈x, y〉 and so S contains singular lines Rx and Ry of

Hx and Hy meeting 〈x, y〉 in the single points px and py, respectively. Now

pick two points rx and ry on Rx and Ry, respectively, and not contained

in M . Then R = 〈rx, ry〉 ⊂ S intersects M in a point, which necessarily

belongs to Xp since M ⊆ Xp, and hence is a singular line (this also implies

px 6= py). The Quadrangle Lemma applied to 〈x, y〉, Rx, R,Ry now implies

that Hx = Hy, a contradiction. The lemma is proved. �

Proposition 5.2. — Exactly one of the following holds

(1) For all p, (Xp,Ξp) is isomorphic to the Segre variety S1,3(K).

(2) For all p, (Xp,Ξp) is isomorphic to the Segre variety S1,2(K).

Proof. — First we prove that (Xp,Ξp) is a Mazzocca-Melone set of split

type 2 in the space Cp of dimension at most 7. By Lemma 4.6, we only

have to show that Axiom (MM3) holds.

Suppose that (MM3) is not satisfied. Then there exist a point x contained

in a symp H and three singular lines L1, L2 and L3 containing x and

spanning a 3-space Π which intersects 〈H〉 only in x. We distinguish two

cases.

Case 1. Suppose that at least two of the three planes determined by

L1, L2 and L3, say 〈L1, L2〉 and 〈L2, L3〉, are not singular. Then the symps

H1,2 (through L1 and L2) and H2,3 (through L2 and L3) intersect H only

in x. Consequently the subspaces 〈H,H1,2〉 and 〈H,H2,3〉 are 6-dimensional

and hence have a 5-space Σ containing H and L2 in common, which meets

each of 〈H1,2〉 and 〈H2,3〉 in a plane π1 and π3, respectively. These planes

contain L2 and hence contain further singular lines of H1,2 and H2,3, say

R1 and R3, respectively.

By assumption we have (R1, R3) 6= (L1, L3) (the latter pair is not con-

tained in a 5-space together with H and L2). Suppose now that 〈R1, R3〉
is a 3-space. Then the latter meets 〈H〉 in a line R, every point of which

is on a (necessarily singular) line meeting R1 and R3. Let r be any point

of R. Then, since R1, R3 are two non-intersecting lines and r belongs to

SUBMITTED ARTICLE : AIFSECONDROW.TEX



24 JEROEN SCHILLEWAERT AND HENDRIK VAN MALDEGHEM

the 3-space spanned by R1 and R3, there is a line Tr containing r and in-

tersecting R1 and R3 in two points, say r1 and r3, respectively. Any symp

through r1 and r3 must meet de symp H in at least the point r (by (MM2))

and so Tr is a singular line. Now, we can choose r such that Tr does not

intersect L2, and then we have the quadrangle Tr, R1, L2, R3. The Quad-

rangle Lemma implies that there is a unique (because the lines are distinct)

symp H∗ containing this quadrangle. But H∗ contains R1 and L2, hence

must coincide with H1,2. Similarly, H∗ = H2,3. Consequently, H1,2 = H2,3,

a contradiction.

So we may assume that R1 and R3 meet in a point y of L2 not belonging

to H. Then the plane 〈R1, R3〉 meets 〈H〉 in a point z, and this point

is easily seen to belong to H \ L2. If 〈x, z〉 is a singular line, then we

have the singular planes 〈R1, R3〉 and 〈L2, z〉, which have the singular line

〈y, z〉 in common. Lemma 4.4 implies that 〈R1, L2, R3〉 is a singular 3-

space containing the non-singular plane 〈R1, L2〉 ⊆ 〈H1,2〉, a contradiction.

Suppose now that the line 〈x, z〉 is not singular. Since 〈R1, R3〉 is a singular

plane, the line 〈y, z〉 is singular. So we can apply the Quadrangle Lemma to

the lines L2, 〈y, z〉 and two lines of H connecting z with x, obtaining that

there is a symp through x, z and L2. Hence H contains L2, a contradiction.

Case 2. Suppose that both 〈L1, L2〉 and 〈L1, L3〉 are singular planes.

Then Π is a singular 3-space by Lemma 4.4. Let N1 and N2 be the singular

lines of H meeting L1. If any of the planes 〈Li, Nj〉, i ∈ {1, 2, 3}, j ∈ {1, 2},
is singular then by Lemma 4.4 we obtain the singular 4-space 〈Π, Nj〉, a

contradiction to Lemma 5.1. Hence we jump back to case (1) using the

symp defined by L1, N1 instead of H, and the lines L2, N2, L3 instead of

L1, L2, L3, respectively.

Hence (MM3) is satisfied and (Xp,Σp) is a Mazzocca-Melone set of split

type 2. Since dimCp 6 7, we know by [27] that Xp is either S1,2(K) or

S1,3(K). Suppose (Xp,Ξp) is not always isomorphic to S1,2. Then there

exists a point r such that Xr is S1,3(K). For every point q collinear with r,

the residue Xq is also isomorphic to S1,3(K) as there is a 4-space containing

q and r. Now consider a point s not collinear with r. Then in X([r, s]) there

are points collinear with both r and s. Repeating the above argument twice

yields that Xs is projectively equivalent to S1,3(K). �

We now define an incidence geometry G(X) with elements of Type 1, 2

and 3, which we will prove to be a projective space of dimension 5 or 4,

corresponding to the conclusion (1) or (2), respectively, of Proposition 5.2.

We will treat both cases at once, so let f be in {3, 4}. The elements of Type

1 are the singular f -spaces of X, the elements of Type 2 are the points of
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X, and the elements of Type 3 are the singular planes of X not contained

in f -spaces. The incidence relation is inclusion made symmetric except for

elements of Type 1 and 3, which we declare incident if the corresponding

singular f -space intersects the corresponding singular plane in a line.

We now show that the Type 1, 2 and 3 elements of G(X), with the given

incidence, are the points, lines and planes of a projective space over K
(but not of dimension 3). Notice that collinear points of X correspond to

“concurrent” elements of Type 2 in G(X).

Lemma 5.3. — Every pair of distinct elements of G(X) of Type 1 is

incident with a unique element of Type 2.

Proof. — We have to show that two singular f -spaces intersect in a

unique point of X. First note that two such f -spaces intersect in at most

a point, since, if they would have a line in common, we can consider the

residue in a point of that line and obtain a contradiction in view of Propo-

sition 5.2 (two (f − 1)-spaces always belong to the same family of non-

intersecting subspaces of the corresponding Segre variety).

Now consider two singular f -spaces Π1 and Π2 and let p1 ∈ Π1 and

p2 ∈ Π2 be two arbitrary points. Consider a symp H containing p1, p2. Then

H intersects both Π1 and Π2 in planes π1, π2, respectively (this follows from

Proposition 5.2 by considering the residues in p1 and p2 and noting that in

the Segre variety S1,f−1(K), viewed as Mazzocca-Melone set, every symp

intersects every singular (f−1)-space in a line). We claim that π1 intersects

π2 in a point.

Indeed, if not, then they are disjoint and we can find a singular plane

π intersecting π1 in a line L and π2 in a point x. Looking in the residue

of a point on L, we conclude with the aid of Proposition 5.2 that π is a

maximal singular subspace. But looking in the residue of x, we see that π

corresponds to a line L in a Segre variety S1,f−1(K) disjoint from the (f−1)-

dimensional subspace corresponding to Π2 (maximal singular subspaces of

different dimension in a Segre variety always interest in a unique point).

Hence L itself is contained in an (f − 1)-dimensional subspace of S1,3(K).

Consequently π is contained in a singular f -space, a contradiction. The

claim and the lemma are proved. �

Lemma 5.4. — Every pair of distinct elements of Type 2 of G(X) which

are incident with a common element of Type 1, are incident with a unique

element of type 3.

Proof. — Translated back to (X,Ξ), it suffices to prove that, if p1, p2 are

two points of a singular k-space U , then the line L := 〈p1, p2〉 is contained in
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a unique singular plane π which is a maximal singular subspace. Existence

follows from considering a symp through 〈p1, p2〉; uniqueness follows from

Lemma 4.4 (one could also use Proposition 5.2 here). �

Lemma 5.5. — The elements of Type 1 and 2 incident with a given

element of Type 3 induce the structure of a projective plane over K.

Proof. — This follows immediately from the definition of G(X), and the

fact that every singular line is contained in a unique singular f -space, by

Proposition 5.2. �

It follows from Theorem 2.3 of [5] that G(X) is a projective space. We

determine the dimension.

Lemma 5.6. — The dimension of G(X), as a projective space, equals

f + 1.

Proof. — Fix an element of Type 1, which is a singular f -space Π. The

elements of Type 2 incident with it are the points x ∈ Π, and the elements

of Type 3 incident with Π are the singular planes not contained in Π inter-

secting Π in a line. Since there is only one such singular plane for a given

line of Π, we may identify each such plane with that line. Incidence between

the Type 2 and Type 3 elements is the natural incidence in Π, and so we

see that Type 2 and 3 elements incident with Π form a projective space of

dimension f . Hence the dimension of G(X) as a projective space is equal

to 1 + f . �

We can now prove the case d = 4 of the Main Result.

Proposition 5.7. — A Mazzocca-Melone set of split type 4 in PN (K)

is projectively equivalent to one of the following:

• the line Grassmannian variety G3,1(K), and then N = 5;

• the line Grassmannian variety G4,1(K), and then N = 9;

• the line Grassmannian variety G5,1(K), and then N = 14;

The first case is not proper and corresponds to a hyperbolic quadric of Witt

index 3.

Proof. — By the previous lemmas, if (X,Ξ) is proper, then G(X) is a

projective space of dimension 4 or 5 over K. Now, the lines of G(X) are the

points of X, and the planar line pencils are the points in the non-trivial

intersection of a singular 4-space and a singular 2-space not contained in

a singular 4-space (this follows from Proposition 5.2 by picking a point in

the intersection).
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Figure 5.1. Dynkin diagrams for D5 (on the left) and E6 (on the right)

Consequently X, endowed with the singular lines, is an embedding of the

line Grassmannian geometry G4,1(K) or G5,1(K). Proposition 4.17 implies

the uniqueness of this embedding, and the assertions follow. �

Now we assume d ∈ {6, 8}.
In order to identify the half-spin geometry varietyD5,5(K) and the variety

E6,1(K), we will use some basic theory of diagrams, as developed by Tits,

culminating in the beautiful characterizations of building geometries by

their diagrams in [37]. This works as follows.

A building is in fact a numbered simplicial chamber complex satisfying

some axioms. One of the axioms says that every pair of chambers (i.e.,

every pair of simplices containing a vertex of every type) is contained in a

thin subcomplex (thin means that every panel—a panel is a simplex ob-

tained from a chamber by removing one vertex—is contained in exactly

two chambers). The other axioms then ensure that all these thin subcom-

plexes (called apartments) are isomorphic and when they are finite, then we

talk about a spherical building. The type preserving automorphism group

of each apartment is a Coxeter group. The type of the Coxeter group is

also the type of the building. Attached to each Coxeter group is a Coxeter

diagram. In most spherical types, this Coxeter diagram is just a Dynkin

diagram with the arrow removed. In our current case, types D5 and E6, we

have the diagrams of Figure 5.1.

The diagram now acts as an identity card for the geometry of the build-

ing. Each node stands for a type of vertices, and each (simple) edge stands

for a family of residues isomorphic to the flag complex of a projective plane.

Namely, let the nodes of an edge be labeled i and j (so these are types of

vertices of the building); then, for any simplex F obtained from a chamber

by removing the vertices of types i and j, the graph formed by the vertices

of types i and j completing F to a panel, two vertices being adjacent if

they form a simplex (this graph is a residue of type {i, j}), is the incidence

graph of a projective plane. If the nodes labeled i and j are not on an
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edge in the diagram, then the similarly defined graph is complete bipartite.

Likewise, one defines the residue of any simplex. The rank of a residue is

the difference between the size of a chamber and the size of the simplex in

question.

Now, given a numbered chamber complex C, we can define residues as in

the previous paragraph. Given a graph Γ, we say that C conforms to Γ if the

nodes of Γ can be identified with the types of vertices in such a way that,

for each pair of types i, j, a residue of type {i, j} is the incidence graph of

a projective plane if {i, j} is an edge of Γ, and a complete bipartite graph

otherwise.

Now it follows from the main result in [37] and from work of Brouwer &

Cohen [3] that a numbered chamber complex is isomorphic to a building

of type D5 or E6 if and only if it conforms to the Coxeter diagram of type

D5 or E6, respectively, and if all residues of rank at least 2 are connected,

i.e., in each residue of rank at least 2, the graph on the vertices where two

vertices are adjacent if they form a simplex, is connected (we say that the

complex is residually connected). Moreover, by Theorem 6.13 of [36], given

the field K, there exists a unique building of each such type such that at

least one residue isomorphic to a projective plane is the Pappian projective

plane over K. This means that, in order to prove that the Mazzocca-Melone

sets in question are really the half-spin variety D5,5(K) and the variety

E6,1(K), respectively, it suffices to define a residually connected numbered

simplicial chamber complex where the points of he Mazzocca-Melone set

are the vertices of type 5 and 1, respectively, and the singular lines are the

vertices of type 3 (we use standard Bourbaki labelling, see [2]), and to show

that it conforms to the diagram D5 and E6, respectively. That is exactly

how we are going to proceed.

Proposition 5.8. — A Mazzocca-Melone set (X,Ξ) of split type 6 in

PN (K) is projectively equivalent to one of the following:

• the half-spin variety D4,4(K), and then N = 7;

• the half-spin variety D5,5(K), and then N = 15.

The first case is not proper and corresponds to a hyperbolic quadric of Witt

index 4.

Proof. — We may assume that (X,Ξ) is proper, as otherwise we have

the half-spin variety D4,4(K), which, by triality, is isomorphic to D4,1. By

Lemma 4.15 we know that every residue is a Mazzocca-Melone set of split

type 4, which is proper by Lemma 4.8. Since the ambient space of the
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residue has dimension at most 12 by (MM3), Proposition 5.7 implies that

the residue corresponds to a line Grassmannian variety G4,1(K).

Define the following numbered simplical complex G(X) with vertices of

types 1 up to 5. The vertices of type 1 are the symps of (X,Ξ), the ones of

type 2 are the singular 3-spaces not contained in a singular 4-space, the type

3 vertices are the singular lines, the type 4 ones are the singular 4-spaces

and, finally, the vertices of type 5 are the points belonging to X. We define

an adjacency relation between two vertices of distinct type as containment

made symmetric, except that a vertex of type 1 is incident with a vertex of

type 4 if the corresponding 4-space intersects the corresponding hyperbolic

quadric in a 3-space, and also that a vertex of type 2 is incident with one of

type 4 if the corresponding 3-space intersects the corresponding 4-space in

a plane. The simplices of G(X) are the cliques of the corresponding graph.

It is straightforward to verify that this simplical complex is a chamber

complex. We show that it conforms to the diagram of type D5 (where we

have chosen the types above so that they conform to the Bourbaki labeling

[2]), which, by Tits [37], implies that G(X) is the building of type D5 over

K. It follows easily from the definition of incidence in G(X) that any residue

of type {1, 2, 3, 4} of G(X) (say, of an element p of type 5) corresponds to

the residue (Xp,Ξp) of (X,Ξ) as defined in the present paper. Hence all

rank 2 residues of type {i, j}, with {i, j} ⊆ {1, 2, 3, 4}, are correct. Also,

in the same way, the residues of type {2, 3, 4, 5} of G(X) correspond to

the geometry of the symps, which establishes the correctness of all rank 2

residues of type {i, j}, for all {i, j} ⊆ {2, 3, 4, 5}. It remains to check the

residues of type {1, 5}. But these all are trivially complete bipartite graphs.

With the information of the previous paragraph, it is not difficult to see

that G(X) is residually connected. Since type 5 vertices of G(X) correspond

to elements of X, and type 3 to the singular lines, X is an embedding of

the half-spin geometry D5,5(K). Proposition 4.17 completes the proof of

the proposition. �

Proposition 5.9. — A Mazzocca-Melone set (X,Ξ) of split type 8 in

PN (K) is projectively equivalent to one of the following:

• the variety D5,1(K), and then N = 9;

• the variety E6,1(K), and then N = 26.

The first case is not proper and corresponds to a hyperbolic quadric of Witt

index 5.

Proof. — We may assume that (X,Ξ) is proper. By Lemma 4.15 we know

that every residue is a Mazzocca-Melone set of split type 6, which is proper
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by Lemma 4.8. Hence it follows from Proposition 5.8 that every residue is

a half-spin variety D5,5(K).

Define the following numbered simplical complex G(X) with vertices of

types 1 up to 6. The vertices of type 1, . . . , 6 are the points of X, singular

5-spaces, singular lines, singular planes, singular 4-spaces which are not

contained in a singular 5-space, and symps, respectively. First defining a

graph on these vertices, adjacency is containment made symmetric, except

in the following two cases. A singular 5-space and a singular 4-space which

is not contained in a singular 5-space are adjacent if they intersect in a 3-

space, and a singular 5-space and a symp are adjacent if their intersection is

a 4-dimensional singular space. The simplices of G(X) are again the cliques

of the graph just defined. It is routine to check that this is a chamber

complex.

We claim that G(X) is a building of type E6 over the field K, with

standard Bourbaki [2] labeling of the types.

We now show that G(X) conforms to the diagram of type E6. Since the

residue in G(X) of an element of type 6 is a symp, we already know that

the residues of types {i, j} ⊆ {1, 2, 3, 4, 5} are the correct ones. Moreover, it

follows directly from the definition of G(X) that the residue of an element

p of type 1 in G(X) corresponds to the residue (Xp,Ξp) in (X,Ξ). Since

the latter is the half-spin variety D5,5(K), the residues of type {i, j} ⊆
{2, 3, 4, 5, 6} are also the correct ones. It remains to check that the residues

of type {1, 6} are complete bipartite graphs, which is straightforward.

With the information of the previous paragraph, it is not difficult to see

that G(X) is residually connected. Since type 1 elements of G(X) corre-

spond to elements of X, and type 3 to the singular lines, X is an embed-

ding of the geometry E6,1(K). Proposition 4.17 completes the proof of the

proposition. �

6. The cases of non-existence

In this section, we show the nonexistence of proper Mazzocca-Melone

sets of split type d for d ∈ {5, 7, 9} and d > 10. There are essentially two

arguments for that: one ruling out d = 5 (and then use Corollary 4.15 to

get rid of d = 7, 9 as well), and one for d > 10. Interestingly, the argument

to rule out the general case d > 10 can not be used for smaller values of

d, whereas the argument in Corollary 4.15 cannot be pushed further to

include higher values of d.
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6.1. Mazzocca-Melone sets of split type 5, 7 and 9

By Corollary 4.15, a proper Mazzocca-Melone set of split type 7 or 9

does not exist as soon as we show that no such set of split type 5 exists.

The latter is the content of this subsection.

So let (X,Ξ) be a proper Mazzocca-Melone set of split type 5. Select a

point p ∈ X and consider the residue (Xp,Ξp), which is a pre-Mazzocca-

Melone set of split type 3 in Pk(K), for k 6 9. We note that the proof of

Corollary 4.15 implies that the tangent space at each point of (Xp,Ξp) has

dimension at most 7. If the dimension is 6, for every point, then we have

a proper Mazzocca-Melone set and have reached our desired contradiction,

in view of Proposition 2.1. So we may assume that the dimension is 7, for

at least one point.

Our argument is based on the following observation.

Lemma 6.1. — Let x ∈ Xp be such that dimTx = 7, and let H1, H2, H3

be three different symps of (Xp,Ξp) containing x. Suppose dim〈H1, H2〉 =

8, suppose also dim(〈H2, H3〉) = 7 and dim〈Tx(H1), Tx(H2), Tx(H3)〉 = 7.

Then dim〈H1, H3〉 < 8.

Proof. — Suppose, by way of contradiction, that dim〈H1, H3〉 = 8.

Let Σ be a subspace of Cp (= 〈Xp〉) complementary to 〈H1〉 and consider

the projection of Xp \ H1 with center 〈H1〉 onto Σ. By assumption, 〈H2〉
and 〈H3〉 are projected onto 3-spaces of the (k − 5)-space Σ. Suppose,

by way of contradiction, that some point y2 of H2 not collinear to x is

projected onto the same point as some point y3 of H3 not collinear to x.

Then the line 〈y2, y3〉 is a singular line intersecting H1 in some point y1.

The Quadrangle Lemma immediately implies that y1 is not collinear with

x. Now, by assumption, H2 and H3 share a line L containing x. There

is a unique point zi on L collinear to yi in Hi, for i ∈ {2, 3}. If z2 6=
z3, then the Quadrangle Lemma applied to y2, z2, z3, y3 leads to H2 =

H3, a contradiction. If z2 = z3, then the Quadrangle lemma implies that

〈y2, y3, z2〉 is a singular plane, which contains y1, implying that 〈y1, z2〉 is

a singular line. If u is any point of H1 collinear with both x and y1, then

the Quadrangle Lemma applied to x, u, y1, z2 implies z2 ∈ H1, so the only

possibility is z2 = x. But then x is collinear with y2, a contradiction. We

conclude that no point of H2 not collinear to x is projected onto the same

point as some point of H3 not collinear to x.

If k 6 8, then k = 8 and since the set of points of Hi, i = 2, 3, not

collinear to x is projected surjectively onto some affine part of Σ, these two

affine parts intersect nontrivially, contradicting the previous paragraph.
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Hence k = 9. Let Ui be the span of the projection of Hi, i = 2, 3. Then

U2 ∩ U3 is a plane π, which contains the projection xL of L. Let αi be

the projection of Tx(Hi) \ {x}, i = 2, 3. Then every point of Ui \ αi is the

projection of a unique point of Hi not collinear with x. The first paragraph

of this proof implies that π cannot intersect both α2 and α3 in a line. Hence

we may assume that α2 = π. The condition dim〈Tx(H1), Tx(H2), Tx(H3)〉 =

7 forces α3 6= π. So it is easy to see that we can find a point in π which is the

projection of a point w ∈ H3 not collinear to x, and also the projection of

a singular line K of H2 through x. In the 5-space generated by H1 and K,

the plane 〈w,K〉 intersects 〈H1〉 in a line, which must, by Axiom (MM2),

completely belong to X. Now it is easy to see that this forces 〈w,K〉 to be

a singular plane, contradicting the fact that w and x are not Xp-collinear.

�

We also need another lemma in case the field K is finite.

Lemma 6.2. — Let |K| = q be finite and consider two non-Xp-collinear

points x, y in Xp. If there are v singular lines through y inside Xp, and there

are no singular planes through y intersecting Xp([x, y]) in a line, then there

are at least (v − q − 1)q + 1 different symps in Xp containing x.

Proof. — Exactly v− q− 1 singular lines through y are not contained in

the symp ξ determined by x and y. On these lines lie in total (v−q−1)q+1

points (including y). The Quadrangle Lemma implies that no two symps

defined by these points and x coincide. The lemma follows. �

We now consider the residue ((Xp)p′ , (Ξp)p′) of a point p′ of Xp and

assume that it spans a space of dimension 6. We denote this residue briefly

by (X ′,Ξ′) ⊆ P6(K). Its structure is explained by Lemma 4.7, from which

we in particular recall that, if X ′ does not contain singular lines. then

(X ′,Ξ′) is a pre-Mazzocca-Melone set of split type 1.

Lemma 6.3. — Let C be a conic of (X ′,Ξ′) and x ∈ X ′ \C. Then there

exists at most one conic containing x and disjoint from C.

Proof. — Suppose that there are at least two conics D1, D2 containing

x and disjoint from C. We claim that dim(〈C,D1, D2〉) = 5. Indeed, this

dimension is at least 5, by Axiom (MM2) and the fact that D1 and C are

disjoint, hence span a 5-space. So suppose the dimension is 6 (this is the

maximum). Denote by H1 the symp in Xp corresponding to C, likewise

for H2 corresponding to D1 and H3 to D2. Then, since the intersection of

〈Hi〉 and 〈Hj〉 is contained in a singular subspace through p′, i, j = 1, 2, 3,

i 6= j, we see that dim〈H1, H2〉 = dim〈H1, H3〉 = 8 and dim〈H2, H3〉 = 7.
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Moreover, by our assumption, dim〈Tp′(H1), Tp′(H2), Tp′(H3)〉 = 6 + 1 = 7.

This contradicts Lemma 6.1. The claim is proved.

Let y ∈ X ′ be a point off 〈C,D1, D2〉 and let z1 be a point of D1 \ {x}.
Since there is at most one singular line through y meeting D1, we may

choose z1 in such a way that there is a conic E ⊆ X ′ containing z1 and y.

Now 〈C,D1, E〉 coincides with P6(K) and hence by Lemma 6.1 the conic

E intersects C, say in the point u. By the same token, now observing

that 〈E,C,D2〉 coincides with P6(K), the conic E intersects D2, say in z2.

Now the points u, z1, z2 of E generate 〈E〉 and hence E ⊆ 〈C,D1, D2〉,
contradicting y ∈ E. This contradiction proves the lemma. �

For the rest of this section, we assume that dim〈X ′〉 = 6. Our intention

is to show, in a series of lemmas, that this can only happen when |K| = 2.

Lemma 6.4. — The set X ′ does not contain singular 3-spaces.

Proof. — Let, for a contradiction, U be a singular `-space with ` > 3

and ` maximal. Since X ′ contains at least one plane π such that π ∩ X ′
is a conic, we see that ` 6 4. If ` = 4, then we consider a point x ∈ X ′
outside U . For any u ∈ U , the line 〈u, x〉 is non-singular, as repeated use

of Lemma 4.4 would otherwise lead to a singular subspace of dimension 5.

Pick two distinct points u, v ∈ U . So we have a conic C ⊆ X through x

and u, and for each point y of C \ {u}, we have a conic Cy containing v

and y. Let y1, y2 be two distinct points of C \ {u}. An arbitrary 5-space W

through U not containing the tangent lines at v to the conics Cy1 and Cy2 ,

respectively, intersects Cyi in a point zi, i = 1, 2. The line 〈z1, z2〉 intersects

U and so is singular, a contradiction.

Next suppose ` = 3. Let π be a plane in P6(K) skew to U . If π contains a

conic, then, as before, the projection with center π onto U is injective, im-

plying that X ′ = U ∪(π∩X ′), a contradiction. Hence every conic intersects

U . Also, the projection of X ′ \ U with center U onto π is injective, as the

line joining two points with same image must meet U and hence is singular,

a contradiction as above. If |K| = q is finite, then there are q3 + q2 + q + 1

conics through a fixed point of X ′ outside U and some point of U , giving

rise to q4 > q2 + q + 1 = |π| points of X ′ outside U , a contradiction. So

we may assume that K is infinite. We claim that no 4-space through U

contains a tangent T to a conic C at a point of U and a point v of X ′ \U .

Indeed, let u ∈ C \ U . Then the conic D containing u and v is contained

in 〈U,C〉 (as D contains a point of U), contradicting the injectivity of the

projection with center U onto π (C and D project into the same line). This

implies that all conics in X ′ through the same point u of U project onto

(“affine”) lines of π sharing the same point pu (“at infinity”) corresponding
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to the tangents to these conics at u. For different u, the points pu are also

different as otherwise, by injectivity of the projection, we find two conics

through a common point of Xp \U intersecting in all points but the ones in

U , a contradiction. This now implies that two different conics containing a

(possibly different) point of U meet in a unique point of X. We choose a

plane α ⊆ U and project X ′ \ α from α onto some skew 3-space Σ. Let ui,

i = 1, 2, 3, be three distinct points in α. The conics through these points

project onto three families of (“affine”) lines such that lines from differ-

ent families intersect in a unique point. Considering two families, we see

that, since |K| > 2, these lie either on a hyperbolic quadric, and the third

family cannot exist, or in a plane. In the latter case, we easily see that all

points of X ′ \U are contained in a 5-space together with α, a contradiction

considering a conic through some point of U \ α. �

Lemma 6.5. — The field K is finite.

Proof. — Assume K is infinite. If there is a non-trivial singular subspace

in X ′, then we let U be a singular line; if there is no (non-trivial) singular

subspace, then we let U be a quadratic plane. Consider a point x ∈ U ∩X ′
and let F be the family of all conics in X ′ containing x. Pick a point

x′ ∈ (U ∩ X ′) \ {x} and let C1, . . . , C4 be four distinct conics containing

x′. By Lemma 6.3, there are at most four members of F that do not inter-

sect all of C1, . . . , C4. Hence we can find three members D1, D2, D3 ∈ F
intersecting all of C1, . . . , C4. We now project X ′ \ U with center U onto

a complementary space of U in 〈X ′〉. Using Axiom (MM2), this projection

is injective on the set of points not X ′-collinear with a point of U . Hence

we see that the projections C ′1, . . . , C
′
4 of C1 \ {x}, . . . , C4 \ {x} are con-

tained in lines which meet the three lines spanned by the projections of

D1 \ {x′}, D2 \ {x′}, D3 \ {x′} in distinct points, and hence these lines are

contained in either a plane π, or a hyperbolic quadric H in some 3-space.

Now, every member of F intersects at least three of C1, . . . , C4. Conse-

quently, the projections of the members of F are contained in π or in H,

and in the latter case, they are contained in lines belonging to one system

of generators, while the projections of the conics through x′ are contained

in lines of the other system. Considering a third point x′′ in U ∩ X ′, we

obtain a third set of lines in π or in H. In the latter case, all these lines in-

tersect infinitely many generators from each system, a contradiction. Hence

all points of X ′ not X ′-collinear with a point of U are contained, together

with U , in either a 4-space (if U is singular), or a 5-space (if U is a qua-

dratic plane). This is a contradiction as soon as U is not singular, or U

is singular and not contained in a singular subspace of dimension at least
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3 (as otherwise X ′ does not span a 6-space). But there are no singular

3-spaces by the previous lemma. This contradiction completes the proof of

the lemma. �

Lemma 6.6. — There are no singular planes.

Proof. — Suppose there is a singular plane U . By Lemma 6.5, we may

assume that |K| = q, a prime power. Consider a point x ∈ X ′ \ U . By

joining with points from U , we obtain a set of q2 + q+ 1 conics through x,

and, in view of Lemma 6.3, at least q2 + q of them must meet an arbitrary

conic in X ′ not containing x, contradicting q2 + q > q + 1. �

Lemma 6.7. — The field K has only two elements; moreover there are

no singular lines in X ′ and |X ′| = 7 (hence every pair of conics intersects).

Proof. — By Lemma 6.6 and Lemma 4.4, X ′ cannot contain two in-

tersecting singular lines. Let |K| = q (which is allowed by Lemma 6.5).

Suppose first that there is some singular line L (and remember that there

is no singular plane by the previous lemma). We project X ′ \L with center

L onto a suitable 4-space Θ. We consider a conic C containing a point x of

L. If x 6= x′ ∈ L, then Lemma 6.3 assures that all points of X ′ are obtained

by considering all conics through x′ and a point of C, except possibly for

the points on one more conic through x′. Hence either there are q2 + q + 1

points in X ′ or (q + 1)2. In the former case, the projections of the conics

through x and x′ form the systems of generators (except for one generator

of each system) of a hyperbolic quadric in a hyperplane of Θ, or are con-

tained in a plane, hence dim〈X ′〉 6 5. In the other case, there are exactly

(q+1)2 conics meeting L. Through a point z of X ′\L, there are q+1 conics

meeting L, taking account of q2 + q + 1 points of X ′; hence there is room

for either one more conic, or a singular line L′ through z. In the latter case,

varying z on L′, we see that every conic that intersects L also intersects L′.

It follows that, if there were at least three singular lines, then all points of

X ′ are contained in the span of these lines, which is 5-dimensional. Hence

we may assume that there are at most two singular lines. But then, there

is a conic not intersecting any singular line. We now first look at the case

in which there are no singular lines.

If there are no singular lines, then we consider a point x and a conic C 63
x. The number of conics through x is either q+1 (and then |X ′| = q2+q+1

and there are q2 + q + 1 conics), or q + 2 (there are no other possibilities

by applying Lemma 6.3 to x and C), in which case |X ′| = (q + 1)2 and

|Ξ′| = (q + 1)(q + 2).
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Assume now that q > 2. By the foregoing, we have at most (q+ 1)(q+ 2)

conics, at least q2 + q + 1 points and at least one conic intersecting no

singular line. As this holds for every residue, Lemma 6.2 implies q3 + 1 6
(q + 1)(q + 2), which is only possible when q = 2.

If q = 2 and if we do have singular lines, then we also have a conic not

intersecting any singular line. In this case, we have nine points. Note that

this is the maximum number of points possible, implying that we have at

most twelve conics. But since we have nine points in X ′, we have nine

singular lines in Xp through the point p′. The conic in X ′ not intersecting

any singular line corresponds to a symp H of Xp through p′. Take a point

x on H not Xp-collinear with p′. Putting p′ = y in Lemma 6.2 (and x

remains x), the conditions are satisfied with v = 9 and q = 2, and so the

residue through x contains (v − q − 1)q + 1 = 13 conics, exceeding the

maximum number possible, a contradiction. The same argument works if

we have nine points without singular lines, of course. Hence we only have

seven points and hence every pair of conics intersects. �

Hence it follows that, if |K| > 2, then (Xp,Ξp) is a proper Mazzocca-

Melone set of split type 3, which does not exist by Proposition 2.1. But if

|K| = 2, then either dim〈X ′〉 6 5, or we have seven points and every pair

of conics intersects. Now (Xp,Ξp) cannot exist by [28, Remark 5.5].

Hence we have shown that proper Mazzocca-Melone sets of split type 5

cannot exist. Taking account of Corollary 4.15, this implies:

Proposition 6.8. — Proper Mazzocca-Melone sets of split type d ∈
{5, 7, 9} do not exist.

6.2. Mazzocca-Melone sets of split type at least 10

Here, we assume that (X,Ξ) is a Mazzocca-Melone set of split type d >
10. We show that it necessarily is a non-proper one. Note that, this time,

we cannot use Lemma 4.15 anymore to apply induction. The idea is now to

use Lemma 4.12 in a completely different way, namely, to use wrinkles as

centers to project the residues in order to get the dimensions small enough

so that (MM3) is satisfied. Lemma 4.12 assures that (MM2) is preserved,

which is not the case for arbitrary projections.

Proposition 6.9. — Proper Mazzocca-Melone set of split type d > 10

do not exist.

Proof. — We use induction to show this, including the cases d = 8, 9,

which were already handled. For d = 8, we moreover assume that the
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ambient projective space has dimension at most 19. Then the cases d = 8, 9

do not occur by Propositions 5.9 and 6.8. The cases d = 8, 9 are the base

of our inductive argument.

Now let d > 10. Let p ∈ X be arbitrary, and let x ∈ X be collinear to p.

Our principal aim is to show that Tp ∩ Tx has dimension at most 2d− 3.

Consider an arbitrary symp H through x which does not contain p,

and which exists by Lemma 4.8. Suppose first that Tp intersects 〈H〉 in a

subspace Up of dimension at most d−3. Then, as Tx(H)∩Up has dimension

at most d− 3, we can find a plane π in Tx(H) disjoint from Up. Since the

plane π has empty intersection with Tp, we have dim(Tp ∩ Tx) 6 2d− 3.

Now suppose that Up has dimension at least d − 2. By Lemma 4.2, the

set of points of H collinear with p is contained in a maximal singular

subspace M1 of H. We can now take a second maximal singular subspace

M2 of H disjoint from M1. The intersection M2∩Up has dimension at least

bd2c+(d−2)−(d+1) = bd2c−3 > 2. Hence we can find a plane π ⊆M2∩Up.
All points of π are wrinkles of p.

Let X ′p be the set of points of X collinear with p. Lemma 4.12 implies

that the projection Y ′p of X ′p with center π onto a subspace U of Tp com-

plementary to π (and of dimension at most 2d − 3) and containing p is

injective and induces an isomorphism on the span of any two subspaces

Tp(H1), Tp(H2). Let Ξ′p be the family of projections of subspaces Tp(ξ),

with ξ ranging through all quadratic spaces containing p. Now we con-

sider a hyperplane V of U not containing p and put Yp,π = U ′ ∩ Y ′p and

Ξp,π = {ξ′ ∩ U ′ : ξ′ ∈ Ξ′p}. Clearly, Yp.π ∩ ξ∗ is a split quadric and every

member of Ξp,π is a (d − 1)-dimensional space. Moreover, the choice of π

implies that the pair (Yp,π,Ξp,π) satisfies (MM1) and (MM2). Now U ′ has

dimension at most 2d − 4, so (MM3) is satisfied trivially. By induction,

such a pair does not exist.

Hence our principal aim is proved. Hence we know that, for all x collinear

with p, the space Tp ∩ Tx has dimension at most 2d− 3. This implies that

the residue (Xp,Ξp) is a proper Mazzocca-Melone set of split type d− 2 in

a projective space of dimension at most 2d − 1. By induction, such a set

does not exist. �

7. Verification of the axioms

In this section we verify that the Mazzocca-Melone axioms hold in all

examples listed in the Main Result. Our approach is almost completely geo-

metric. We only have to know that an embedding in a projective space with
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given dimension exists. For that, we can refer to the literature (note these

embeddings are always established in an algebraic way). The advantage is

that we do not have to introduce the rather long algebraic formulae leading

to every construction. It also shows that the Mazzocca-Melone axioms are

really natural, and we can see geometrically why they have to hold.

So let (X,Ξ) be either a Segre variety Sp,q(K), p, q > 1, p+q 6 4, where Ξ

is the family of 3-spaces spanned by the subvarieties isomorphic to S1,1(K);

or a line Grassmannian variety Gp,1(K), p ∈ {4, 5}, where Ξ is the family of

5-spaces spanned by the subvarieties isomorphic to G3,1(K); or the half-spin

variety D5,5(K), where Ξ is the family of 7-spaces spanned by subvarieties

isomorphic to a half-spin variety D4,4(K); or the variety E6,1(K), where Ξ

is the family of 9-spaces spanned by subvarieties isomorphic to the variety

D5,1(K). Suppose X spans PN (K).

We first show that for every member ξ of Ξ, the intersection X ∩ ξ is the

desired subvariety (which is always isomorphic to some hyperbolic quadric).

This is clear for the Segre varieties and the line Grassmannian varieties

since their definition implies immediately that every Segre or line Grass-

mannian, respectively, subvariety induced by a suitable subspace of the

underlying projective space is also induced by a suitable subspace of the

ambient projective space. Since the half-spin variety D5,5(K) appears as

residue in the variety E6,1(K), it suffices to show the result for the latter.

We know that N = 26 in this case and that the residue in a point

p ∈ X is isomorphic to a half-spin variety D5,5(K), which lives in a space of

dimension at most 15 (note that we ignore Remark 4.16 here, which says

that this dimension is precisely 15); hence the space Tp generated by all

singular lines through p has dimension at most 16 (which already shows

(MM3)). Now consider any sympH which is opposite p in the corresponding

building of type E6. Then no point of H is collinear with p in X. We claim

that Tp and H generate the whole space P26(K). Indeed, let x ∈ X be

an arbitrary point, which does not belong to H and which is not collinear

with p. By 3.7 of [34], there is a unique symp H ′ containing p and x. Then,

by the same reference, H ∩ H ′ is some point x′. Then x′ and the points

of H ′ collinear with p generate 〈H ′〉, hence x belongs to that space and

the claim is proved. It follows that all points lie in the space generated

by Tp and H. Since the former has dimension at most 16 and the latter

dimension 9, and since the whole space has dimension 26, we see that Tp
and 〈H〉 are disjoint. In particular, 〈H〉 does not contain p. Since p and

H are essentially arbitrary, this shows that the space generated by any

symp does not contain any point “opposite” that symp. Now suppose 〈H〉
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contains a point x ∈ X \ H not opposite H. Then, by 3.5.4 and 3.9 of

[34], there is a 4-space U in H contained in a singular 5-space U ′ together

with x. But Lemma 4.9 implies that U ′ contains points of H outside U , a

contradiction. Our assertion is proved.

Remark 7.1. — In the previous argument, the two symps H and H ′

can be regarded as an arbitrary pair of symps meeting in one point. Since

Tp(H
′) belongs to Tp and is hence disjoint from 〈H〉, we see that 〈H〉 ∩

〈H ′〉 = {x′}, proving (MM2) in this case.

We now verify the axioms for (X,Ξ).

Axiom (MM1) follows in each case directly from the (geometric) defini-

tion of the variety.

It is readily seen that the validity of (MM2) is inherited by the residues.

Hence we only need to check (MM2) for the three varieties S2,2(K), G5,1(K)

and E6,1(K). Let us concentrate on the latter; for the former the proofs are

similar.

Let H and H ′ be two symps. There are two possibilities. If H ∩ H ′ is

a singleton, then (MM2) follows from Remark 7.1. If H ∩H ′ is a 4-space,

then (MM2) follows from Lemma 4.9 and the fact that 〈H〉 does not contain

points of H ′ \H.

Axiom (MM3) follows immediately from the dimensions of the universal

embeddings of the residues.

This completes the proof of the Main Result.

Remark 7.2. — The assumptions of Theorem 5.1 of [26] present a varia-

tion of Axiom (MM3) involving the dimension of the space generated by the

tangent spaces at a point x to the symps intersecting a given singular line

none of whose points is collinear to x. In that case, one characterizes the

same varieties as in the Main Result with d > 2, but additionally all Segre

varieties Sp,q(K) for arbitrary p, q > 1, and all line Grassmannian varieties

Gp,1(K), for p > 3. The proofs rely on the Main Result of the present paper.

This result shows that our approach can also include the higher dimensional

FTMS (the North-West 3× 3 square for higher dimensions).
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