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Abstract

Abstract polytopes are combinatorial structures with certain properties drawn
from the study of geometric structures, like the Platonic solids, and of maps on
surfaces. Of particular interest are the polytopes with maximal possible symmetry
(subject to certain natural constraints). Symmetry can be measured by the effect of
automorphisms on the ‘flags’ of the polytope, which are maximal chains of elements
of increasing rank (dimension). An abstract polytope of rank n is said to be chiral
if its automorphism group has precisely two orbits on the flags, such that two flags
that differ in one element always lie in different orbits. Examples of chiral polytopes
have been difficult to find and construct. In this paper, we introduce a new covering
method that allows the construction of some infinite families of chiral polytopes, with
each member of a family having the same rank as the original, but with the size of
the members of the family growing linearly with one (or more) of the parameters
making up its ‘type’ (Schlafli symbol). In particular, we use this method to construct
several new infinite families of chiral polytopes of ranks 3, 4, 5 and 6.

Keywords: Abstract polytopes; chiral polytopes; coverings

1 Introduction

Abstract polytopes are combinatorial structures obeying certain axioms that generalise the
classical properties of convex geometric polytopes. Highly symmetric examples include not
only classical regular polytopes such as the Platonic solids and more exotic structures such
as the 120-cell and 600-cell, but also regular maps on surfaces (such as Klein’s quartic).
Roughly speaking, an abstract polytope P is a partially-ordered set endowed with a
rank function, satisfying certain conditions that arise naturally from a geometric setting.
Such objects were proposed by Griinbaum in the 1970s, and their definition (initially as
‘incidence polytopes’) and theory were developed by Danzer and Schulte. Every auto-
morphism of an abstract polytope is uniquely determined by its effect on any flag, which
is a maximal chain in the poset P. The most symmetric examples are regular, with all



flags lying in a single orbit, and a comprehensive description of these is given in a book
on the subject by McMullen and Schulte [19]. These objects are also known as ‘thin
residually-connected geometries with a linear diagram’.

Quite a lot is known about regular polytopes, and small examples and some infinite
families are easily constructible via their automorphism groups, which are quotients of
‘string” Coxeter groups (viz. Coxeter groups with a linear Coxeter-Dynkin diagram). For
example, the automorphism group of a regular n-simplex is the symmetric group S, 1,
via its representation as a quotient of the Coxeter group [3,3, ..., 3] of rank n. Others are
described in [19] and in other references listed there.

An interesting class of examples which are not quite regular are the chiral polytopes,
for which the automorphism group has two orbits on flags, with any two flags that differ
in just one element lying in different orbits. The study of chiral abstract polytopes was
pioneered by Schulte and Weiss (see [26, 27| for example). Chiral polytopes of rank 3 are
much the same as chiral maps on surfaces (see Coxeter and Moser [12]), with modest extra
geometric conditions.

The first family of chiral maps was constructed by Heffter [17] in 1898; see also Doro
and Wilson [15]. Contributions to the more general study of chiral polytopes were first
made by Weber and Seifert [30], and also later by Coxeter [11]. After Coxeter, several
families of chiral regular maps on surfaces of higher genus were found by Sherk [29], Garbe
[16], and Bujalance, Conder and Costa [3]. In 2001, Conder and Dobcsanyi [7] determined
all chiral regular maps on orientably surfaces of genus 7 to 15, and this list has subsequently
been extended to genus 300 at [5]. Also Schulte [25] constructed three families of infinite
chiral 3-polytopes in ordinary space that are geometrically chiral.

For quite some time, the only known finite examples of chiral polytopes had ranks 3 and
4 (see [13, 20, 21, 26] for example), while some infinite examples of chiral polytopes of rank
5 had been constructed by Schulte and Weiss in [28]. But then some finite examples of rank
5 were constructed about 10 years ago by Conder, Hubard and Pisanski [8]. The latter
included the smallest examples in each of three classes: properly self-dual, improperly self-
dual, and non-self-dual. Now quite a few such examples are known. In early 2009 Conder
and Devillers devised a construction for chiral polytopes whose facets are simplices, and
used this to construct examples of finite chiral polytopes of ranks 6, 7 and 8 [unpublished).
Also Breda, Jones and Schulte developed a method of ‘mixing’ a chiral d-polytope with a
regular d-polytope to produce a larger example of a chiral polytope of the same rank d;
see [2].

At about the same time, Pellicer devised a quite different method for constructing
finite chiral polytopes, with given regular facets, and used this construction to prove the
existence of finite chiral polytopes of every rank d > 3; see [22]. A few years later,
Cunningham and Pellicer proved every finite chiral d-polytope with regular facets is itself
the facet of a chiral (d + 1)-polytope; see [14]. Then the work of Conder and Devillers
was taken up by Conder, Hubard, O’Reilly Regueiro and Pellicer [9] to prove that all
but finitely many alternating groups A, and symmetric groups S,, are the automorphism
group of a chiral 4-polytope of type {3, 3, k} for some k (dependent on n). This will be
extended to ranks greater than 4 by the authors of [9].



These examples are very large, however. It is still an open problem to find alternative
constructions for families of chiral polytopes of relatively small order, with easily described
automorphism groups. Many other questions about chiral polytopes were posed in [23].
Chiral polytopes continue to be surprisingly rare in comparison with regular polytopes,
even though the latter possess a higher degree of symmetry.

In this paper, we introduce a new method for constructing chiral polytopes, as covers of
a given ‘base’ example, with a covering group that is abelian, and sometimes cyclic. This
method is similar to the ‘mixing’ approach of [2], in that it produces chiral polytopes of
the same rank as the given one, but with different type and larger automorphism group.
On the other hand, it can produce an infinite family of chiral polytopes from a given
one, with the sizes of members of the family growing linearly with one (or more) of the
parameters making up its ‘type’ (Schléafli symbol). We illustrate and apply this method
in the construction of several new infinite families of chiral polytopes of ranks 3 to 6.

Before that, we give some further background on polytopes and their properties in
Section 2. Then we describe our new approach in Section 3, and summarise some of the
new families it produces in Section 4.

In a subsequent paper, we will take a somewhat different approach, to construct chiral
polytopes as abelian covers of regular polytopes. In contrast to other methods, this enables
the construction of chiral polytopes without needing a ‘base’ chiral polytope to build on.

2 Further background

Below we give some further background on abstract polytopes, especially those that are
regular or chiral. Additional details may be found in [4, 8, 9, 19, 26], for example.

2.1 Abstract polytopes

An abstract d-polytope (or abstract polytope of rank d) is a partially ordered set P, the ele-
ments and maximal totally ordered subsets of which are called faces and flags respectively,
such that certain properties are satisfied, which we explain below.

First, P contains a minimum face F_; and a maximum face Fjy, and there is a rank
function from P to the set {—1,0,...,d} such that rank(F_;) = —1 and rank(Fy) = d.
Every flag of P contains precisely d+2 elements, including F'; and Fj. The faces of rank
1 are called i-faces, the O-faces are called wvertices, the 1-faces are called edges, and the
(d —1)-faces are called facets (or co-vertices).

If F and G are faces of ranks r and s with F' < G, then we say that F' and G are
incident, and define the section G/F as {H | F < H < G}; such a section of P is said to
have rank s —r — 1, and may be called an (s —r — 1)-section of P. For any face G of P,
the section G/F_; may be identified with G itself in P; hence, for example, a facet may
be viewed as a (d — 1)-face, or as the section F = G/F_; for some (d —1)-face G of P.
Similarly, if G is a j-face then the ‘complementary’ section F;/G is sometimes called a
co-j-face, or the co-face at G. In particular, a co-vertex is a vertex-figure, and a co-edge
is a (d—2)-section F,;/G (where G is an edge).
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One important property that has to be satisfied is the diamond condition, which says
that whenever G/F is a 1-section, with rank(G) = rank(F') +2 = i + 2 (say), there are
precisely two intermediate faces Hy and Hj of rank i + 1 with F' < H; < G for j € {1,2}.
This implies that for any flag ® and for every i € {0,...,d—1}, there is a unique flag
®' that differs from ® in precisely the i-face. We call ®¢ the i-adjacent flag for ®. More
generally, two flags of P are said to be adjacent if they differ in only one face.

The final important property is strong connectivity, which says that if ® and &’ are
any two given flags of P, then there exists a sequence Wy, Wq,...,¥,, of flags of P from
Uy =® to ¥,, = & such that ¥,_; is adjacent to ¥y, and NP’ C ¥y, for 1 < k < m.

This completes the definition of an abstract d-polytope.

2.2 Equivelar polytopes, Schlafli type, isomorphism and duality

Let P be any abstract regular polytope of rank d > 3, and suppose (as we will throughout
this paper) that P is finite, in that it has only finitely many faces of each rank j.

Every 2-section G//F of P is isomorphic to the face lattice of a polygon, and if the
number of sides of every such polygon depends only on the rank of G, and not on F' or G
itself, then we say that P is equivelar. When that happens, if k; is the number of edges
of every 2-section between an (i—2)-face and an (i+1)-face of P, for 1 <i < d, then the
expression {ky, ko, ..., kq_1} is called the Schlifli type (or Schlifli symbol) of P. Note that
this definition carries no assumption of symmetry. Also by convention, we assume that
each such polygon is non-degenerate, so has at least 3 edges, and therefore k; > 3 for all i.

Two polytopes P and Q of the same rank d are said to be isomorphic (to each other)
if there exists an order-preserving bijection from P to Q, taking j-faces of P to j-faces
of Q@ for 0 < j < d. The automorphisms from P to P form a group denoted by Aut(P),
or sometimes by I'(P). By the diamond condition and strong flag-connectivity, it is easy
to see that every automorphism of P is uniquely determined by its effect on any given
flag of P, and it follows that the number of automorphisms of P is bounded above by the
number of flags of P.

Two polytopes P and Q of the same rank d are said to be dual (to each other) if there
exists an order-reversing bijection from P to Q, taking j-faces of P to (d — 1 — j)-faces
of Q for 0 < j < d. When this happens, we call Q the dual of P and denote it by P*,
and vice versa, giving (P*)* = Q* = P. Moreover, if P is equivelar, with Schlafli type
{k1, ko, ... kg2, kq1}, then also P* is equivelar, with Schlafli type {kq_1, kq_o2,. .., ko, k1}.
Any such order-reversing bijection from P to Q is called a duality, and if it has order 2
then it is called a polarity. The polytope P is self-dual if it is isomorphic to its dual P*.

2.3 Regular polytopes

A d-polytope P is said to be regular whenever I'(P) acts transitively (and therefore regu-
larly) on the set of all flags of P. In that case, I'(P) acts transitively on the j-faces of P
for all j, and so P is equivelar.

Also when P is regular, its automorphism group I'(P) is generated by a canonical set



of involutions py, . . ., ps_1, where p; is the unique automorphism mapping a given base flag
® to its i-adjacent flag ®!, for 0 < i < d. It is not difficult to see that these generators
satisfy the relations

pi =1 for0<i<d, (1)
(pi_ips)® =1 for1<j<d, (2)
(pip;)? = 1 whenever |i — j| > 2. (3)

Moreover, by the polytope axioms, they must satisfy the following intersection condition:
(piriel)n(pj:jed)=(p:kelInJ) foralll,JC{0,1,...,d-1}. (4)

The relations given in (1) to (3) above are precisely the defining relations for the
Cozxeter group [ki, ko, ..., k1], and in particular, I'(P) is a smooth homomorphic image
of the latter group, where ‘smooth’ (here) means that the orders of the generators and
their pairwise products are preserved.

The rotation group T'H(P) of P is the image of the orientation-preserving subgroup of
the Coxeter group, or in other words, the subgroup of T'(P) consisting of words of even
length in the generators pg, p1,- .., pa_1. In particular, T (P) is generated by the abstract
rotations o; = p;_1p; for 1 < j < d, and has index at most 2 in I'(P). We say that P is
directly regular (or sometimes orientably-reqular) when this index is 2.

Also the stabiliser in I'(P) of the i-face of the base flag ® is the subgroup generated by
{pos p1,---ypa-1} \ {p:i}, for 0 < i < d. In particular, the stabiliser of the vertex (0-face)
of @ is (p1,p2, ..., pa_1 ), while the stabiliser of the facet of ® is (g, p1,.- ., pa—2)-

2.4 Chiral polytopes

A d-polytope P is said to be chiral if its automorphism group I'(P) has two orbits on
flags, with every two adjacent flags lying in different orbits. In this case, for a given base
flag @, and for 1 < j < d, the polytope P admits an automorphism o; that takes ® to the
flag (®7)7~! which differs from @ in precisely its (j—1)- and j-faces. This automorphism
o; is the analogue of the abstract rotation p;_;p; in the regular case, for each j, and in
particular, it follows that P is equivelar. Moreover, P has maximum possible ‘rotational’
symmetry (because it admits the analogues of all the abstract rotations), but on the other
hand, it admits none of the ‘reflections’ p;.

Every non-degenerate orientably-regular map on a surface can be regarded as an ab-
stract 3-polytope, and each one is either regular or chiral depending on whether or not
it admits reflections. In fact 3 is the smallest rank of a chiral polytope, because every
abstract 2-polytope is combinatorially isomorphic to a regular convex polygon with at
least 3 sides (by our non-degeneracy assumption), and hence is regular. The facets and
vertex-figures of a chiral d-polytope P may be regular or chiral, but the (d —2)-faces and
the co-edges are always regular, by a nice argument given in [26, Proposition 9].

If P has Schlafli type {ki, ko, ..., kqs_1}, then its automorphism group is a smooth quo-
tient of the orientation-preserving subgroup of the Coxeter group [k1,..., ks 1]. Indeed
the elements o1, 09, ...,04_1 satisfy the relations



afj =1 forl<j<d, (5)

(0i0i41..05) = 1 for1<i<j<d. (6)

It also follows that o; commutes with o; whenever j —¢ > 2, since if w = 011042 ... 0,1

then each of w, o;w, wo; and o;wo; is an involution, and therefore 1 = (o;wo;)? =

oWo;0;W0; = Uz-aj*lw_lw_la;laj = Jiaj*lw_Qaflaj = Ul-ajflajlaj.

The stabiliser in I'(P) of the i-face of the base flag ® is the subgroup generated by

09,03, ...,04-1 when ¢ =0
01,02,-.-,04-1,0i0i4+1,0i42,---,04-1 when 1 <1< d—2
01,09, ...,04_9 when i =d—1.

Moreover, these generators o; must satisfy the following chiral form of the intersection
condition, which is provable using [26, Proposition 7] and [26, Lemma 10]:

(01,09, ....;0;) N {(0},0j11, ..., 0k) = (0j,...,0;) for 1 <i<k and 2<j<k<d (7)

Here we note that chiral polytopes occur in pairs (or enantiomorphic forms), such that
each member of the pair is the ‘mirror image’ of the other. If one of them, say P, has
Schlafli type {k1, ko, ..., kq_1}, and ¥ is the corresponding epimorphism to I'(P) from the
orientation-preserving subgroup of the Coxeter group [k1, ..., kq_1], then the kernel K of
1 is not normal in the full Coxeter group, but is conjugated by any orientation-reversing
element (in the full Coxeter group) to another subgroup K¢ which is the kernel of the
epimorphism ¢ corresponding to the mirror image P¢ of P. In fact the automorphism
groups of P and P¢ are the same, but have different canonical generating sets: a base
flag of P¢ can be chosen such that o', 0105 07", 03,04, ...,04-2,04_1 are the canonical
generators for I'(P¢). Note that these would be the conjugates of oy, 09,...,04_1 by the
reflection pg if P were regular.

A chiral polytope P can sometimes be self-dual, but there are two kinds of self-duality.
If 9: P — P is a duality, and ® is a base flag for P, then we say that P is properly
self-dual if 6 takes ® to a flag in the same orbit as ® under the automorphism group I'(P),
or improperly self-dual if ® lies in the other orbit of I'(P).

2.5 Construction of regular and chiral polytopes from groups

Some of the properties of the automorphism group of a regular or chiral polytope described
above can be turned around to give constructions for regular and chiral polytopes from
particular kinds of generating sets for groups.

If T is any finite group generated by d involutions po, p1,...,ps—1 that satisfy the
relations (1) to (3) above, as well as the intersection condition (4), then we may construct
a regular d-polytope P with automorphism group I'(P) isomorphic to I', by taking as
its i-faces the (right) cosets of the subgroup generated by {po, p1,-..,p4-1} \ {p:i}, for
0 <i < d, and defining incidence by non-empty intersection; see [19, Theorem 2E11].
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Similarly, if I' is any finite group generated by d — 1 elements o01,05,...,04_1 that
satisfy the relations (5) and (6) and the intersection condition (7), then we may construct
a directly regular or chiral d-polytope P with rotation group I'*(P) isomorphic to T', by
taking as its j-faces the (right) cosets of the subgroup generated by

09,03, ...,04-1 when j =0
01,02,...,04-1,040541,0442,...,04-1 when 1 S ] S d—2
01,02, ...,04-2 when j =d—1,

and defining incidence by non-empty intersection.

We will denote this polytope by P(o1,09,...,04-1). If F and G are incident faces
of P of ranks i —2 and j + 1 with ¢ < j, then the section G/F' is isomorphic to the
(j—i+2)-polytope P(0;,0it1,...,0;). Also we observe that P(oy,09,...,04-1) is regular
if and only if the group I' has an automorphism p that takes (o1, 09, 03,04, ...,04-2,04-1)
to (o; ', 010507, 03,04,...,04-9,04-1), and in that case, the polytope is directly regular.

Similarly, if P (01,09, ...,04_1) is chiral, then it is properly self-dual if I has an auto-
morphism § that takes (01,09, ...,04 2,041) to (6, Y, 0, %,...,05",07"), and improperly
self-dual if I' has an automorphism & that takes (o, ', 0105 ‘o7, 03,04, ...,04-2,04-1) to

(o 00, o5t oY), See [18] for further details.

2.6 Flatness and tightness

An abstract polytope is said to be flat if each of its facets contains every vertex. An easy
example is the hemicube. A regular polytope P is flat if and only if its automorphism
group I'(P) is the set-theoretic product of the stabilisers of a vertex and an incident facet
(see [19, Proposition 4E4]), and the same holds also for a chiral polytope P (see the
remarks following Lemma 1.2 in [24]).

If P is a regular polytope of type {ki,ko,...,kqs_1}, then by multiple applications of
the intersection condition it is easy to prove that |I'(P)| > 2kiks ... ks 1, and then P is
called tight if this lower bound on |I'(P)| is attained; see [4]. Similarly, if P is a chiral
polytope of type {k1, ko, ..., kg 1}, then P is called tight if the corresponding lower bound
ID(P)| > kiks...kg—1 is attained. In both cases, the order of I'(P) is equal to k; times
the order of the stabiliser of a vertex, and also to k4_; times the order of the stabiliser of
a facet, and it follows that every tight regular or chiral polytope is flat.

3 Coverings

Let P and Q be any two polytopes of the same rank. Then a function v : Q — P is called
a covering if it preserves incidence, rank and adjacency of flags. By flag-connectivity, we
note that any such ~ is surjective. Also we say that Q covers P if there exists such a
covering v : Q +— P. This terminology is adopted from the theory of maps and surfaces.
Next, we note that if P and Q are polytopes of the same rank d that are either chiral or
directly regular, then their rotation groups are both quotients of the orientation-preserving
subgroup W of the rank d—1 Coxeter group [oo, - ,00]. This group W is generated
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by d—1 elements 01,09, ...,04-1, subject to the defining relations (c;0;41...0;)? = 1 for
1<i<j<d-—1. Alsoif J and K are the corresponding kernels, with I'*(P) = W+ /J
and I'"(Q) 2 W /K, then it is easy to see that Q covers P if and only if K < J. Indeed
in that case, we have I'"(Q)/(J/K) = (W*/K)/(J/K) = W*/J =2 T*(P), and then we
may call the quotient J/K the covering group, or the group of covering transformations.

We now introduce an approach for constructing covers of chiral polytopes with cyclic
covering group. The main idea is to take a chiral d-polytope P of type {ki, ks, ..., ka_1}
and construct an infinite family {Q™ : n = 1,2,3,...} of chiral polytopes of the same
rank d, such that each member Q™ of this family is a cover of P having almost the same
type as P, with just one of the k; replaced by nk;. In particular, Q) = P. For example,
below we will exhibit such a family of chiral 4-polytopes having types {3n, 6,9} for every
positive integer n, and covering a particular chiral 4-polytope P of type {3,6,9}.

Our approach is based on the following key theorem:

Theorem 3.1 Let U be a group generated by d — 1 elements xy,xo,...,xq_1, with the
property that for some ¢ € {1,2,...,d — 1}, the following hold:
(a) (Timig1...2;)2=1for1<i<j<d,
(b) x; has finite order k; > 3 for all i # ¢, while xy has infinite order,
(c) xf"' generates a cyclic normal subgroup N of U, for some integer k, > 3,
(d)
)

d
(e

the intersection of N with the subgroup generated by all the x; other than x, is trivial,
the images of the generators 1, s, ..., xq_1 in the factor group U/N = U/(x}")
satisfy the intersection condition (7), and make U/N the automorphism group of a
chiral d-polytope P of type {ki, ko, ... kq_1}.

Then for every positive integer n, the factor group U™ = U/(xf’% is the automorphism
group of a chiral d-polytope Q™ of type {ki,... ke_1,nke, kosr, ... ka_1}, covering the
chiral polytope Q) = P. Moreover, if P is flat, then so is Q™ for alln, and if P is tight,
then so is Q™ for all n.

Proof. First, note that N = (") is the only subgroup of index n in (z,") = N, and
so is characteristic in NV and hence normal in U. Also N intersects trivially the subgroup
generated by {z; | i # ¢}, by (b), and therefore the images of z1, ..., x_1,2s, Top1, ..., Ta1
in the factor group U/N™ = U/(x?kQ = U™ have orders ki, ..., ko_1, nke, keg1, - .., ka1
respectively. Furthermore, NV = (z,*) = N, so U) = U/N = T*(P).

Next, we show that the images Z1, ..., Z4_1 in U™ of the generators of U satisfy the
intersection condition (7). To do this, let I = {1,2,...i} and J = {j,j + 1,...,k} where
1<i<kand2<j<k<d, and then define A= (Z,:r € I)and B=(Z,:s¢€ J) and
C=(z,:telInJ), andalso U =U™ = U/N™ and N = N/N™. The intersection
condition requires AN B = C, but as usual, it is easy to see that AN B contains C, and
hence all we need do is prove the reverse inclusion. Next, if we let N = N/N™ | then
by (e) we know that the images of Z1,Zs,...,Tq 1 in the quotient UV = U/N = U/N
satisfy the intersection condition, and therefore AN B C C'N. Now if £ € I N J, then
N=@"c@)c(z:teInJ)=0C,s0 ANB C CN = C; while on the other



hand, if ¢ & I N J, then by (d) either (x, : r € I') or (xs: s € J) intersects N trivially,
so ANN =0 or BAN = (), and therefore (ANB)NN =0, s0o ANB CC.

Hence the intersection condition is satisfied, making U™ the orientation-preserving
subgroup of the automorphism group of a chiral or directly regular d-polytope Q™ of
type {ki1, ..., ke—1,nke, koyay ..o ka1}

In fact, Q™ is chiral. For suppose the contrary, namely that Q™ is directly regular.
Then there exists an automorphism 6 of the group U = U™ that takes (71, T2, 3, . . ., Tq_1)
to (z; ', 7175 "2, ", @3, ..., Za_1). Now if £ # 2, then 6 takes 7, to ;" and so preserves
(z¢) = N, while on the other hand if ¢ = 2, then 0 takes 7, to 7,7, '7,' = 7,7, 7",
which generates N (because N is cyclic and normal in U), and so again 6 preserves N. But
then 6 induces an analogous automorphism of U/N = U/N = U () making the polytope
QM = P reflexible, a contradiction.

Finally, we consider flatness and tightness. If P is flat, then U)) = U/N is expressible
as the product of the images of (x1,z,..., 24 2) and (x9,23,...,241). When we move
from P to its cover Q™ the analogues of these two subgroups are (Z, Ty, ..., T4 o) and
(Tg,T3,...,Tq_1). At least one of these contains Z, and hence contains N, so their product
must be U™ . Thus Q™ is also flat. Also if P is tight, then [UV| = |T(P)| = kiks ... kq_1,
and so [[(QM)| = |[U™| = |[U/N®| = |U/ND|INO/N®| = |[UD|n = nkiky... ke,
which is the product of the entries of the Schlafli type {k1, ..., ki1, ke, ko1, ..., ka1} of
Q(”), and so Q™ is tight as well. O

As our first application of this theorem, we have the following:

Example 3.2 An infinite family of chiral 4-polytopes of type {3n, 6,9}

To construct this family, take U as the group with presentation

(u,v,w | (uv)2 = (vw)? = (wvw)? =1 = w? = (v "1u?)? = [w,v’] = vw?v 3w =1).

Note that (v'u?)? = 1 can be rewritten as 1 = v '3u o ? = v Mdvun? = v udoud,

which implies that v='u?v = w3, and it follows that the cyclic subgroup N generated by
u? is centralised by v and w and normalised by v. Adding the relation u® = 1 gives the
quotient U/N, which by a relatively easy calculation in MAGMA [1] is a group of order
486, and is the automorphism group of the mirror image P of the chiral 4-polytope of
type [3,6,9] with 486 automorphisms listed at [6]. Moreover, the Reidemeister-Schreier
process, implemented via the Rewrite command in MAGMA, shows that the subgroup
N is infinite cyclic. Hence the hypotheses (a), (b), (¢) and (e) in the above theorem are
satisfied, for (z1,xq,z3) = (u,v,w).

But also v and w satisfy the relations (vw)? = v® = w® = vw?v 3w~ = 1, which by
another MAGMA computation define a group of order 54. Moreover, in the factor group
U/N of order 486, the image of the subgroup generated by v and w has order 54, and has
trivial intersection with the image of the cyclic subgroup generated by w. (Indeed U/N is
the complementary product of the images of (u) and (v, w,u 'wu), which have orders 3
and 162 respectively.) Then since the order of the subgroup generated by v and w in U
cannot be greater than 54, it follows that the intersection (u) N (v, w) is trivial in U, and
therefore (x7) N (xg, 23) = (u?) N (v,w) = N N (v, w) is trivial as well, so (d) holds too.
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Hence by Theorem 3.1 we obtain an infinite family {Q™ : n = 1,2,3,...} of chiral
4-polytopes of type {3n, 6,9}, as indicated earlier.

The ‘base’ polytope P = QM) has 9 vertices, 27 edges, 81 2-faces and 9 facets (and
972 flags), with each facet F being a directly regular 3-polytope of type {3,6} having full
automorphism group of order 108, and each vertex-figure V being a chiral 3-polytope of
type {6,9} having automorphism group of order 54 (isomorphic to (v, w)). It follows that
Q™ has 9n vertices, 27n edges, 81 2-faces, 9 facets and 972n flags. Moreover, each facet
F™ of QM is a directly regular 3-polytope of type {3n, 6}, with 9n vertices, 27n edges
and 18 faces, and full automorphism group of order 108n, while each vertex-figure V™ is
isomorphic to the same tight chiral 3-polytope of type {6,9} as for P, with 6 vertices, 27
edges and 9 faces, and automorphism group of order 54.

Next, the above approach can be extended to produce families of covers for which the
covering group is abelian but not necessarily cyclic:

Theorem 3.3 Let U be a group generated by d — 1 elements xy,xo,...,xq_1, with the
property that for some subset L of {1,2,...,d — 1}, the following hold:

(a) (Timig1...2;)2=1for1<i<j<d,

(b) x; has finite order k; > 3 for all i ¢ L, while x; has infinite order for all ¢ € L,

(c) for all ¢ € L, there exists an integer ky > 3 such that xfﬁ generates a cyclic normal
subgroup Ny of U that intersects (x; 11 # £) trivially,

(d) the normal subgroup N = (x;* :{ € L) = [Lser, Ne intersects (x; 11 & L) trivially,

(e) the images of the generators x1,%s,...,xq 1 in U/N satisfy the intersection condi-
tion (7), and make U/N the automorphism group of a chiral d-polytope P of type
{k1,koy ... ka_1}.

Then for every indexed sequence S;, = (ng)er, of positive integers, the factor group US) =
U/(xg”k‘ . 0 € L) is the automorphism group of a chiral d-polytope Q1) that covers P
and has type {s1,Sa,...,84-1}, where s; = k; for all i & L and s; = ngky for all £ € L,
and the covering group for QL) over P is isomorphic to the abelian group [Lcr Chn,-
Moreover, if P is flat, then so is QL) and if P is tight, then so is QL) . Also if P is
properly (resp. improperly) self-dual, then QL) is properly (resp. improperly) self-dual if
and only if d —{ € L and ng_y = ny whenever ¢ € L.

Proof. Most of this follows easily from Theorem 3.1, by induction on |L|. Note that
N = (x}* . ¢ € L) is the product of the normal subgroups N; = (z}*) for £ € L, which
are cyclic and have trivial pairwise intersections, and hence N is abelian. In turn, this
implies that the covering group is the direct product of the quotients N,/ (x?‘k"> = (,, for
¢ € L. For the final claims about duality, necessity follows from the fact that the type of
the dual of an equivelar polytope is the reverse of the given type, while sufficiency can be
proved by showing that when d — ¢ € L and n,_y, = ny, whenever ¢ € L, any duality of P
can be extended to a duality of QSL) O

As an application of this more general theorem, we have the following:
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Example 3.4 An infinite family of chiral 3-polytopes of type {4m,4n}

To construct this family, take U as the group with presentation

(u,v | (ww)? = (vu?)? = (v 1) = wotuwtu2?u=2072 = 1).

Note that (v"'u3)? = 1 can be rewritten as 1 = v lutv o3 = v lutoun® = v 1utou?,

which implies that v~'u*v = u™*, and hence that the cyclic subgroup generated by u* is
centralised by u and normalised by v. Similarly, the relation (u~'v3)? = 1 implies that
u vty = v, and hence that the cyclic subgroup generated by v* is normalised by u and
centralised by v. Thus N = (u?, v?) is normal in U. Adding the relations u* = v* = 1 gives
the quotient U/N, which by a calculation in MAGMA is a group of order 80, and is the
automorphism group of a chiral 3-polytope of type {4,4} listed at [6]. In particular, the
intersection of the images of (u) and (v) in U/N is trivial. Moreover, the Reidemeister-
Schreier process shows that the subgroup N is free abelian of rank 2 (with just a single
defining relation [u*,v%] = 1), and it follows that the cyclic subgroups generated by u and
v have trivial intersection in U. Hence the hypotheses (a), (b), (c¢) and (e) in the above
theorem are satisfied, for (x1,z9) = (u,v). The hypothesis (d) is vacuous.

By Theorem 3.3, we obtain for every ordered pair of positive integers m and n a chiral
4-polytope Q™™ of type {4m,4n}, with automorphism group of order 80mn. The ‘base’
polytope P = QY is an improperly self-dual chiral polytope of type {4,4} mentioned
above, with 20 vertices, 40 edges, 20 2-faces and automorphism group of order 80, and it
follows that the covering polytope QU™ is also improperly self-dual, with 20m vertices,
40mn edges, 20n 2-faces, and 160mn flags.

Before giving more examples, we note that analogues of Theorems 3.1 and 3.3 can be
proved also in finite cases — where one or more of the selected generators x, has finite
order, and then the subgroup (z}) has order s, (divisible by k), and the integer n or
ny is restricted to divisors of s;/k,. The proofs are essentially the same, and applications
appear in §§4.2, 4.14, 4.19, 4.22, 4.23, 4.26, 4.27 and 4.29-4.31 below.

4 Infinite and finite families

This section exhibits further applications of Theorems 3.1 and 3.3, to the construction of
infinite families of chiral polytopes of ranks 3 to 6, and some additional finite families in
the rank 6 case.

We use much the same notation as above, but for simplicity we write group presen-
tations in the form (X |R) where X is the generating set and R is the set of defining
relators (with a relation of the form w = z written as the relator wz~'. Also we use
R(d) as an abbreviation for the set of relators (z;z;41...x;)? for 1 < i < j < d and the
implied relators [x;,x;] when j — 4 > 2, and we use the symbols u,v,w,z and y in place
of x1, 19, 23, x4 and xs.

In each case we give the finitely-presented group U and indicate the relevant normal
subgroup N, and then summarise particular properties of the polytopes in the resulting
family, but without the kind of detail given in Examples 3.4 and 3.2.
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4.1 Chiral 3-polytopes of type {4m,4n}

U= (u,v|R(3), (v ) (u )2 vvluvo lu?v?u=2v"?)
N = (u*,v?) 2 Z ®Z (free abelian of rank 2), with quotient U/N of order 80
Q(m™) has 20m vertices, 40mn edges, 20n 2-faces, and 160mn flags, for all m,n > 1

e Q" is improperly self-dual, for all n > 1.

4.2 Chiral 4-polytopes of type {3,4m,4n} for m = 1, 2, 3 or 6

U= (u,v,w | R(4),v*, 3, [u,v?], (w0 [u, w?], (v w?)? v luw?o ™ lwuw )

N = (vhwt) 2 Zg @ Z, with quotient U/N of order 480
Q™) has 6 vertices, 60m edges, 80mn 2-faces, 20n facets, and 960mn flags,
for all n > 1, whenever m € {1,2, 3,6}
Each facet is a directly regular 3-polytope of type {3,4m} with 48m automorphisms

Each vertex-figure is a chiral 3-polytope of type {4m,4n} with 80mn automorphisms,
isomorphic to the one of type {4m,4n} in §4.1 above when m = 1 or 3.

4.3 Chiral 4-polytopes of type {3n,6,9}

U= (u,v,w| R(4),v%w (v u?)? [w,v?],vw?v3w™")

N = (u?) 2 Z, with quotient U/N of order 486

Q™ has 9n vertices, 27n edges, 81 2-faces, 9 facets, and 972n flags, for all n > 1
Each facet is a directly regular 3-polytope of type {3n,6} with 108n automorphisms

Each vertex-figure is a tight chiral 3-polytope of type {6,9} with 54 automorphisms.

4.4 Chiral 4-polytopes of type {4,3n,6}

o U= {(uv,w|R(4),u*,ws (u 10?2 (w1 v?)? (uwv=tw)?)

o N =(v*¥)=7Z, with quotient U/N of order 576

e O has 8 vertices, 48n edges, 72n 2-faces, 24 facets, and 1152n flags, for all n > 1

e Each facet is a directly regular 3-polytope of type {4,3n} with 48n automorphisms

e FEach vertex-figure is a directly regular 3-polytope of type {3n,6} with 144n auto-
morphisms.

4.5 Chiral 4-polytopes of type {3m,4,6n}

o U= (u,v,w|R(4),v* (v u?? (viw)* v twvw louw=?)
o N = (ulw®)~Z®Z, with quotient U/N of order 576
e QU™ has 6m vertices, 48m edges, 96n 2-faces, 24n facets, and 1152mn flags,
for all m,n > 1
e Fach facet is a directly regular 3-polytope of type {3m, 4} with 48m automorphisms

e Fach vertex-figure is a directly regular 3-polytope of type {4,6n} with 192n auto-
morphisms.
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4.6 Chiral 4-polytopes of type {3m,8,3n}

U= (u,v,w| R(4),v% (v 'u?)? (v w?)?, (v *)?, uvwouwo ™l uwv ™ fwuwo )

N = (u?, w?) 2 Z & Z, with quotient U/N of order 576
Q(m™) has 12m vertices, 96m edges, 96n 2-faces, 12n facets, and 1152mn flags,
for all m,n > 1
Each facet is a directly regular 3-polytope of type {3m, 8} with 96m automorphisms

Each vertex-figure is a directly regular 3-polytope of type {8,3n} with 96n auto-
morphisms

Q™) ig properly self-dual, for all n > 1.

4.7 Chiral 4-polytopes of type {4,4,3n}

U= (u,v,w| R(4),u*, v (v w?)? v toutou?v?)

N = (w?) 2 Z, with quotient U/N of order 720

Q™ has 30 vertices, 120 edges, 90n 2-faces, 18n facets, and 1440n flags, for all n > 1
Each facet is a chiral 3-polytope of type {4,4} with 40 automorphisms

Each vertex-figure is a directly regular 3-polytope of type {4,3n} with 48n auto-
morphisms.

4.8 Chiral 4-polytopes of type {3n, 8,8}

U= (u,v,w| R(4),v%w (v u?)? (v*w?)% vwv luw20ow™1)

N = (u®) 2 Z, with quotient U/N of order 768

Q™ has 6n vertices, 48n edges, 128 2-faces, 16 facets, and 1536n flags, for all n > 1
Each facet is a directly regular 3-polytope of type {3n,8} with 96n automorphisms

Each vertex-figure is a directly regular 3-polytope of type {8,8} with 256 auto-
morphisms.

4.9 Chiral 4-polytopes of type {4,4,4n}

U= (u,v,w | R(4),u*, vt vvo " luv a0, uv v 2w u w2 tw)

N = (w*) 2 Z, with quotient U/N of order 800
Q™ has 10 vertices, 100 edges, 100n 2-faces, 20n facets, and 1600n flags, for all n > 1
Each facet is a chiral 3-polytope of type {4,4} with 40 automorphisms

Each vertex-figure is a chiral 3-polytope of type {4,4n} with 80n automorphisms,
isomorphic to the mirror image of the one of type {4,4n} in §4.1 above.

4.10 Chiral 4-polytopes of type {3n, 6,18}

U= (u,v,w | R(4),v° (v 'u?)? v wodw™, v lw v2uwv™3)
N = (u®) 2 Z, with quotient U/N of order 972
Q™ has 9n vertices, 27n edges, 162 2-faces, 18 facets, and 1944n flags, for all n > 1
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Each facet is a directly regular 3-polytope of type {3n,6} with 108n automorphisms
Each vertex-figure is a chiral 3-polytope of type {6, 18} with 108 automorphisms.

4.11 Chiral 4-polytopes of type {3m, 18,3n}

U= (u,v,w| R(4), (v u?)? (v w??, [u, v%], [w, 5], v v?u" v2u?v?,
(uwv™fwuw)?, v Mvdwedw? )
N = (u?, w?) 2 Z & Z, with quotient U/N of order 1458
Q™) has 9m vertices, 243m edges, 243n 2-faces, 9n facets, and 2916mn flags,
for all m,n > 1
Each facet is a directly regular 3-polytope of type {3m, 8} with 324m automorphisms

Each vertex-figure is a directly regular 3-polytope of type {8,3n} with 324n auto-
morphisms

Q) is properly self-dual, for all n > 1.

4.12 Chiral 4-polytopes of type {3n, 6,6}

U= (u,v,w | R(4),v5 w5, [u,v?], (v w)*, u lowdu " wow ™)

N = (u?) 2 Z, with quotient U/N of order 1728

Q™ has 3n vertices, 144n edges, 288 2-faces, 96 facets, and 3456n flags, for all n > 1
Each facet is a directly regular 3-polytope of type {3n,6} with 36n automorphisms
Each vertex-figure is a chiral 3-polytope of type {6,6} with 576 automorphisms.

4.13 Chiral 4-polytopes of type {3m, 24,3n}

U= (u,v,w | R(4), (v u?? (v w?)?, [u,v!], [w, v*], vwvvwuwvuwv =2 )
N = (u*,w®) =2 Z & Z, with quotient U/N of order 1728
Q(m™) has 12m vertices, 288m edges, 288n 2-faces, 12n facets, and 3456mn flags,
for all m,n > 1
Each facet is a directly regular 3-polytope of type {3m, 24} with 288m automorphisms

Each vertex-figure is a directly regular 3-polytope of type {24,3n} with 288n auto-
morphisms

Q) ig properly self-dual, for all n > 1.

4.14 Chiral 4-polytopes of type {4n,4s,4t} for s,t = 1 or 2

U= (u,v,w| R(4),v%w® (v u3)? [w,u!], (u 1032 (w32, [u,w?], (v1w3)?
T T D Ve e T VO Ve Vi Vo VA Vo )
N = (u*, v, wt) X Z & Zy ® Zy, with quotient U/N of order 3200
Qs has 20n vertices, 400ns edges, 400st 2-faces, 40t facets, and 6400nst flags,
for all n > 1, whenever s,t € {1,2}
Each facet is a chiral 3-polytope of type {4n,4s} with 80ns automorphisms,
as in §4.1 above (with (n, s) in place of (m,n)).
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Each vertex-figure is a chiral 3-polytope of type {4s, 4t} with 160st automorphisms
Q™ is never self-dual.

.15 Chiral 4-polytopes of type {3n,6,12}

U= (u,v,w | R(4),v% w2 [u,v?, (v iw)?, v vwdu " w?vw")

N = (u®) 2 Z, with quotient U/N of order 6912

Q™ has 3n vertices, 288n edges, 1152 2-faces, 384 facets, and 13824n flags, for all n > 1
Each facet is a directly regular 3-polytope of type {3n,6} with 36n automorphisms
Each vertex-figure is a chiral 3-polytope of type {6, 12} with 2304 automorphisms.

.16 Chiral 5-polytopes of type {3n,4,6,3}

U= (u,v,w,z | R(5),vws 23 (v"'u?)?, (v"w)?, (vu) wouw? ve w2we v zw)

N = (u®) 2 Z, with quotient U/N of order 2304

Q™ has 6n vertices, 48n edges, 128 2-faces, 48 3-faces, 4 facets, and 4608n flags,
forall n >1

Each facet is a chiral 3-polytope of type {3n,4,6} with 576n automorphisms

Each vertex-figure is a directly regular 3-polytope of type {4,6,3} with 768 auto-
morphisms.

4.17 Chiral 5-polytopes of type {3,8,8,4n}

U= (u,v,w,x | R(5),u®v5ws (v 0?2 (vw )2 uwo tluw2vw™!,

v iz lorw?, (vew™1)?)

N = (z*) 2 Z, with quotient U/N of order 3072

Q™ has 6 vertices, 48 edges, 128 2-faces, 32n 3-faces, 4n facets, and 6144n flags,
forall n >1

Each facet is a chiral 4-polytope of type {3, 8,8} with 768 automorphisms,
isomorphic to the one of type {3,8,8} in §4.8 above

Each vertex-figure is a directly regular 4-polytope of type {8, 8,4n} with 1024n
automorphisms.

4.18 Chiral 5-polytopes of type {3,4,4,3n}

U= (u,v,w,z | R(5),u® v w (wz?)? v wo  wo?w?, vwuwu™ v 2w=?)

N = (%) 2 Z, with quotient U/N of order 4320

Q™ has 6 vertices, 90 edges, 240 2-faces, 90n 3-faces, 18n facets, and 8640n flags,
foralln >1

Each facet is a chiral 4-polytope of type {3,4,4} with 240 automorphisms

Each vertex-figure is a chiral 4-polytope of type {4,4, 3n} with 720n automorphisms,
as in §4.7 above.

15



4.19 Chiral 5-polytopes of type {3k,3m,4,6n} for k, m = 1,2,4

o U= <’LL, v, w,x | R(E)), u12’ U127 ’UJ4, [Ua ug]a [u7 Ug}a (wflf)zl, (w*1v2)2, vawvx2w>

o N = (u?v32%) 27 Zs®Z, with quotient U/N of order 4608
o QFmn) hag 8k vertices, 24km edges, 128m 2-faces, 192n 3-faces, 24n facets,
and 9216kmn flags, for all n > 1 whenever k,m € {1,2,4}

e FEach facet is a directly regular 4-polytope of type {3k, 3m, 4} with 384km auto-
morphisms

e FEach vertex-figure is a chiral 4-polytope of type {3m,4,6n} with 576mn auto-
morphisms, as in §4.5 above (but with m restricted to {1,2,4}).

4.20 Chiral 5-polytopes of type {3m,6,6,3n}

o U= (u,v,w,x | R(5),v%ws [u,v*], [z, w?], (v w)! v Tvwduw?vw)

o N=(u12?)27Z®Z, with quotient U/N of order 5184
e QU™ has 3m vertices, 144m edges, 288 2-faces, 144n 3-faces, 3n facets,
and 10368mn flags, for all m,n > 1,

e FEach facet is a chiral 4-polytope of type {3m, 6,6} with 1728m automorphisms,
as in §4.12 above (with m in place of n)

e Fach vertex-figure is a chiral 4-polytope of type {6,6,3n} with 1728n automorphisms,
dual to the mirror image of the one of type {3n,6,6} in §4.12 above

e O is improperly self-dual, for all n > 1.

4.21 Chiral 5-polytopes of type {3m,4,6,3n}

o U= (uv,w,x|R(5),vHw (v71u?)? (wz?)?, (v-iw)?,
u o M wtouw?, wrw rwdzw 2t )
o N = (u12?)27Z&Z, with quotient U/N of order 6912
e QU™ has 6m vertices, 48m edges, 384 2-faces, 144n 3-faces, 12n facets,
and 13824mn flags, for all m,n > 1,

e FEach facet is a chiral 4-polytope of type {3m, 4,6} with 576m automorphisms,
isomorphic to the one of type {3m,4,6} in §4.5 above

e FEach vertex-figure is a directly regular 4-polytope of type {4, 6,3n} with
2304n automorphisms.

4.22 Chiral 5-polytopes of type {3,3m,8,3n} for m = 1,2,4

o U= {(uv,w,x|R(5),uv?wd (wv?)? (wa?)? [u,v?], (v w?)?, (z71w3)?,
vrwvrwow tvzwlz)
o N=(v}2a)~7Z,®Z, with quotient U/N of order 9216
e QU™ has 16 vertices, 96m edges, 512m 2-faces, 384n 3-faces, 24n facets,
and 18432mn flags, for all n > 1 when m = 1,2 or 4

e Fach facet is a directly regular 4-polytope of type {3,3m, 8} with 768m automorphisms
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e Each vertex-figure is a chiral 4-polytope of type {3m, 8, 3n} with 576mn auto-
morphisms, as in §4.6 above (but with m restricted to {1,2,4}).

4.23 Chiral 5-polytopes of type {3m,3,8,3n} for m = 1,2,4

o U= {(uv,w,x|R(5),v>w v,u], (w'z?)? (7 w?)? vewvzwow lvzwz)
N = (u? 2*) 2 7, & Z, with quotient U/N of order 9216

Q™) has 16m vertices, 96m edges, 512 2-faces, 384n 3-faces, 24n facets,

and 18432mn flags, for all n > 1 when m = 1,2 or 4

Each facet is a directly regular 4-polytope of type {3m, 3,8} with 768m automorphisms

Each vertex-figure is a chiral 4-polytope of type {3,8,3n} with 576n automorphisms,
isomorphic to the one of type {3,8,3n} in §4.6 above.

4.24 Chiral 5-polytopes of type {3m,4,4,3n}

o U= {(u,v,w,z|R(5),vHw (v u?? (w2?)? vw lvw?v?w ! vwvzw lvu vrw?e )
o N=(u12*)27Z®Z, with quotient U/N of order 12960
e Q™" has 18m vertices, 270m edges, 720 2-faces, 270n 3-faces, 18n facets,

and 25920mn flags, for all m,n > 1

e Each facet is a chiral 4-polytope of type {3m, 4,4} with 720m automorphisms,
dual to the mirror image of the one of type {4,4,3m} in §4.7 above

e FEach vertex-figure is a chiral 4-polytope of type {4, 4,3n} with 720n automorphisms,
as in §4.7 above

e Q" is improperly self-dual for all n > 1.

4.25 Chiral 5-polytopes of type {3m,4,12,3n}

o U= (u,v,w,z|R(5),vHw? (v u?)? (wz?)?, (v iw) [z, w8, v v lvzwe 2,

utwow  vuw ™2 wrT wier T wdr Tl )
o N = (u?z3) X7 &7Z, with quotient U/N of order 13824
e QU™ has 6m vertices, 48m edges, 768 2-faces, 288n 3-faces, 12n facets,
and 27648 mn flags, for all m,n > 1

e FEach facet is a chiral 4-polytope of type {3m, 4,12} with 1152m automorphisms,
isomorphic to the one of type {3m, 4,12} in §4.5 above

e FEach vertex-figure is a directly regular 4-polytope of type {4,12,3n} with 4608n
automorphisms.

4.26 Chiral 6-polytopes of type {4m, 3,8,8,4n} for m = 1 or 2

o U= {(uv,w,x,y | R(6),v*ws 28 (v"1u3)? v?w?uw? vew vz 2wz, (w2r=2)?,
(wyz~1)?, w™ly lwya?)
o N=(u'y!) = 7Zy®Z, with quotient U/N of order 24576
e QU™ has 8m vertices, 24m edges, 96 2-faces, 128 3-faces, 32n 4-faces, 4n facets,
and 49152mn flags, for all n > 1, when m =1 or 2
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e FEach facet is a chiral 5-polytope of type {4m, 3, 8,8} with 6144m automorphisms

e Each vertex-figure is a chiral 5-polytope of type {3, 8, 8,4n} with 3072n automorphisms,
as in §4.17 above.

4.27 Chiral 6-polytopes of type {3k,3m,4,6,3n} for k, m =1,2,4

o U= {(uv,w,x,y | R(6),u? v2 w28 (wv?)? (27 %2, [v,u?], [u, v3], (w™z)?,
v iw P wer?, py e 2yadye 2y )
o N = (uv3y®) X 7Z)®ZyDZ, with quotient U/N of order 55296
o QM) hag 8k vertices, 24km edges, 128m 2-faces, 768 3-faces, 144n 4-faces, 12n facets,
and 110592kmn flags, for all n > 1 when k. =1,2 or 4 and m =1,2 or 4
e FEach facet is a chiral 5-polytope of type {3k, 3m, 4,6} with 4608km automorphisms

e Fach vertex-figure is a chiral 5-polytope of type {3m,4,6,3n} with 6912mn auto-
morphisms, as in §4.21 above (but with m restricted to {1,2,4}).

4.28 Chiral 6-polytopes of type {3,3,4,12,3n}

o U= {(uv,w,x,y | R(6),u v3wt % [v,u3], (w ), (7 y?)? [y, 2%],
v w2wua?, py ety ety ety )

o N = (y3)27Z, with quotient U/N of order 110592

e O has 8 vertices, 24 edges, 128 2-faces, 1536 3-faces, 288n 4-faces, 12n facets,

and 221184n flags, for all n > 1
e Fach facet is a chiral 5-polytope of type {3, 3,4, 12} with 9216 automorphisms

e Fach vertex-figure is a chiral 5-polytope of type {3,4,12,3n} with 13824n auto-
morphisms, isomorphic to the one of type {3,4,12,3n} in §4.25 above.

4.29 Chiral 6-polytopes of type {3m, 3,8,3,3n} for m,n =1,2,4

o U= {(u,v,w,z,y|R(6),u? v3wd 23 y2 [v,u3], (a7 w?)?, [x,y®], vewvzwow lvzw z)
o N = (udy?) =74 ®7Zy, with quotient U/N of order 294912
e QU™ has 32m vertices, 384m edges, 4096 2-faces, 4096 3-faces, 384n 4-faces,

32n facets, and 589824mn flags, for all m,n € {1,2,4}

e Fach facet is a chiral 5-polytope of type {3m, 3, 8,3} with 9216m automorphisms,
as in §4.23 above (with n = 1)

e FEach vertex-figure is a chiral 5-polytope of type {3,8,3,3n} with 9216n auto-
morphisms, dual to the polytope of type {3n,3,8,3} from §4.23 above

e Q™" is properly self-dual for all n € {1,2,4}
e QWY is currently the smallest known self-dual chiral polytope of rank 6; see [10].
4.30 Chiral 6-polytopes of type {3,3m, 8,3n,3} for m,n =1,2,4

o U= {(u,v,w,x,y | R(6),u3 v wd z2 13 [u,v3], (w 0?2 [v,w!], [z, w?], (wz?)?,

T, VTWUTWIOW  “UxTW X
ly, 2%, ! ')
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N = (v3,23) 2 Zy @ Zy, with quotient U/N of order 294912
Q(mm™) hag 32 vertices, 384m edges, 4096m 2-faces, 4096n 3-faces, 384n 4-faces,
32 facets, and 589824mn flags, for all m,n € {1,2,4}

Each facet is a chiral 5-polytope of type {3,3m,8, 3n} with 9216mn automorphisms,
as in §4.22 above

Each vertex-figure is a chiral 5-polytope of type {3m, 8,3n,3} with 9216mn auto-
morphisms, dual to the polytope of type {3,3n,8,3m} from §4.22 above

e QM is properly self-dual for all n € {1,2,4}.

4.31 Chiral 6-polytopes of type {3m, 3,8,3n,3} for m,n =1,2,4

o U= {(uv,w,x,y | R(6),u? v wd z2 33 [v,u?], (w1 v?)? [z, w], (wz?)?, [y, 2%,
vrwvzwow tvzwlr)

N = (u? 2*) 2 7, ® Z4, with quotient U/N of order 294912

Q™) has 32m vertices, 384m edges, 4096 2-faces, 4096n 3-faces, 384n 4-faces,
32 facets, and 589824mn flags, for all m,n € {1,2,4}

Each facet is a chiral 5-polytope of type {3m, 3,8, 3n} with 9216mn automorphisms,
as in §4.23 above

Each vertex-figure is a chiral 5-polytope of type {3, 8,3n,3} with 9216n auto-
morphisms, dual to the polytope of type {3,3n,8,3} from §4.22 above.
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