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Abstract

We prove that for every integer d ≥ 3 and every group U of units mod d, there
exists an orientably regular map of valency d with exponent group U .
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1 Introduction

An orientably-regular map M is a 2-cell embedding of a connected graph in an orientable
surface, such that the group of all orientation-preserving automorphisms Aut+M of the
embedding acts as regularly (sharply transitively) on the set of arcs of the graph. It follows
that every vertex of M has the same valency, say d, and every face of M is bounded by a
closed walk of the same length, say m.

If e is an arc at any vertex v of M , then regularity implies that Aut+M contains an
involution x acting like a 180-degree rotation ofM about the centre of e, and an element y of
order d acting like a d-fold rotation of M about v. Then by connectivity, the group Aut+M
is generated by x and y, and admits a presentation of the form Aut+M = 〈x, y | x2 = yd =
(xy)m = . . . = 1 〉. The pair (d,m) is called the type of the map. Conversely, given any
generating pair (x, y) for a group G with the above form, one may construct an orientably-
regular map M with Aut+M = G by taking edges, vertices and faces of M as the (right)
cosets in G of the subgroups 〈x〉, 〈y〉 and 〈xy〉, respectively, and with incidence given by
non-empty intersection of cosets. (Also the arcs may be taken as the elements of G.) Thus
orientably-regular maps of valency d and face length m may be identified with 2-generator
group presentations of the form 〈x, y | x2 = yd = (xy)m = . . . = 1 〉.
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Fundamentals of the theory of maps and orientably-regular maps are explained in [8],
some deep connections between such maps, Riemann surfaces and Galois groups are de-
scribed in in detail in [9], and a recent survey containing a large number of facts about
regular maps is given in [11].

Next, let M and G = Aut+M = 〈x, y〉 be as above. An integer j relatively prime to d is
said to be an exponent of M if the assignment (x, y) 7→ (x, yj) extends to an automorphism
of G. Algebraically, this means that (x, y) and (x, yj) satisfy the relations as each other,
while from the point of view of maps, it means that if a new map M j is constructed from
M by replacing the clockwise local cyclic order πv of arcs at each vertex v by π j

v , then then
resulting map M j is isomorphic to M . Orientably-regular maps admitting the exponent
−1 are isomorphic to their mirror image, and are therefore called reflexible.

The collection of all exponents of M forms a subgroup of the group of units Z∗d, and
is called the exponent group of M . The notion of an exponent was introduced in [10],
with applications in the classification of orientably-regular maps with a given underlying
graph. Previously, the mapping M →M j (even in the case when the two maps may not be
isomorphic) was known as a hole operator, and studied by Wilson [14], but this mapping
has also been attributed to Coxeter.

For the exponents of an orientably-regular map of given valency d, there are two ‘ex-
tremes’: one where the exponent group is trivial, or consists only of 1 and −1, and the
other where the map admits the ‘full’ exponent group Z∗d.

In [2] it was shown that for every d ≥ 3 there are infinitely many finite orientably-
regular maps of valency d with trivial exponent group. This was done with the help of a
method that allows one to forbid the creation of new automorphisms in lifted maps, but
unfortunately the method offers no control over the face length. Also it was proved in [12]
using residual finiteness of triangle groups that for every pair of positive integers d and m
with 1/d + 1/m ≤ 1/2, there exist infinitely many finite orientably-regular and reflexible
maps of type (d,m) that admit no exponents other than 1 and −1.

At the other end of the spectrum, it was shown in [13] that for every integer d ≥ 3 there
exist infinitely many finite orientably-regular maps with exponent group Z∗d. Again this was
achieved using residual finiteness of triangle groups, but this time losing control over the
face length of resulting maps. Such maps were called ‘kaleidoscopic’ in [1], where a covering
construction was given for a kaleidoscopic d-valent regular map invariant also under duality
and Petrie duality, for every even d. A different construction for such ‘super-symmetric’
d-valent maps was given for an infinite set of odd values of d in [6].

In this paper we deal with the ‘intermediate’ cases, by considering arbitrary subgroups
of the group of units modulo the valency d. We prove that for every d ≥ 3 and every given
subgroup U of Z∗d, there exist infinitely many finite orientably-regular maps of valency d
with exponent group equal to (and not just isomorphic to) U .
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2 The main result

Theorem 1 For every d ≥ 3 and every subgroup U of Z∗d, there are infinitely many finite
orientably-regular maps of degree d with exponent group equal to U .

Proof. Let G be the free product Z2 ∗ Zd of the cyclic groups of order 2 and d ≥ 3, with
presentation 〈X, Y | X2 = Y d = 1 〉, and let D = G′ be the derived subgroup of G, of index
2d in G, with quotient G/D ∼= Z2 × Zd. By Reidemeister-Schreier theory [5], the group D
is free of rank d−1, generated by the commutators Wj = [X, Y j] for j ∈ {1, 2, ..., d−1}.

We will construct for any given subgroup U of Z∗d an infinite family of quotients of G
that give rise to orientably-regular maps of degree d with exponent group U .

For any prime p, let Np = D′D(p) be the subgroup of D generated by the commutators
and p th powers of all elements of D. This subgroup is characteristic in D and hence normal
in G, and the quotient D/Np is isomorphic to the direct product Zd−1p of d − 1 copies of
Zp. Also G/Np is an extension of D/Np

∼= Zd−1p by (G/Np)/(D/Np) ∼= G/D ∼= Z2×Zd, and
hence G/Np has order 2dpd−1.

Next, for any u ∈ Z∗d, let ku be the automorphism of G that takes the generating pair
(X, Y ) to the generating pair (X, Y u). Note that this permutes the generators Wj = [X, Y j]
of D among themselves, and therefore preserves D, and its characteristic subgroup Np, and
so induces an automorphism hu of Gp = G/Np, with (Ng)hu = N(gku) for all g ∈ G.

Now let U be any subgroup of Z∗d. Then KU = {ku : u ∈ U} and HU = {hu : u ∈ U} are
groups of automorphisms of G and Gp (respectively), both isomorphic to U .

We will show that if the prime p is congruent to 1 mod d, then there exists a normal
subgroup LU of Gp = G/Np contained in D/Np such that LU is preserved by HU , and
further, that LU can be chosen so that it is not preserved by hr for any r ∈ Z∗d \U . Under
these circumstances, the quotient Gp/LU determines a finite orientably-regular map M
of valency d with exponent group containing U , and then finally, we will show that the
exponent group of M is equal to U . We break this up into three steps below.

Step 1. Let x and y be the images of X and Y under the natural quotient homomorphism
from G to G/Np = Gp, and let wj = [x, yj] = xy−jxyj, which is the image of Wj = [X, Y j],
for j ∈ {1, 2, ..., d−1}. Then these wj are elements of the elementary abelian p-group
Vp = D/Np

∼= Zd−1p , and so commute with each other. Moreover, it is easy to see that

xwjx = y−jxyjx = w−1j and y−1wjy = y−1xy−jxyj+1 = y−1xyxxy−(j+1)xyj+1 = w−11 wj+1,

for all j ∈ {1, 2, ..., d−1}, if we define also wd = [x, yd] = 1.

Next, suppose p ≡ 1 mod d, and let t be any non-trivial d th root of 1 mod p, so that
1+ t+ t2+ . . .+ td−1 ≡ 0 mod p. Define

vt = w t
1w

t2

2 . . . w td−2

d−2 w td−1

d−1 ,
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which is an element of the abelian p-group Vp = D/N . Conjugation by x inverts vt, while

y−1vty = (y−1w1y)t(y−1w2y)t
2
. . . (y−1wd−2y)t

d−2
(y−1wd−1y)t

d−1

= (w−11 w2)
t(w−11 w3)

t2 . . . (w−11 wd−1)
td−2

(w−11 )t
d−1

= w
−(t+t2+...+td−2+td−1)
1 wt2w

t2

3 . . . w
td−3

d−2 w
td−2

d−1

= w1w
t
2w

t2

3 . . . w
td−3

d−2 w
td−2

d−1

= (vt)
t−1
.

It follows that the cyclic subgroup Lt of Vp = D/Np generated by vt is normal in Gp.

Now take LU = 〈Lhu
t : u ∈ U〉. Since Lt is a normal subgroup of Gp, the image Lhu

t of
Lt under each automorphism hu is also a normal subgroup of Gp, and hence LU is normal
in Gp. Moreover, LU is clearly preserved by HU , as required.

Step 2. Suppose further that t is a primitive d th root of 1 mod p, and for each j ∈ Z∗d,

define the element v
(j)
t of Vp by

v
(j)
t = hj−1(vt) =

∏
i∈Z∗

d

hj−1(w ti

i ) =
∏
i∈Z∗

d

(wj−1i)
ti =

∏
`∈Z∗

d

w
(tj)`

` .

We claim that these φ(d) = |Z∗d| elements v
(j)
t generate a subgroup of order pφ(d) in Vp,

or equivalently, that they are linearly independent over Zp when Vp is considered as a vector
space over Zp of dimension d−1. To see this, if we take the set {w1, w2, . . . , wd−1} as a basis
for Vp, and write any element w a1

1 w a2
2 . . . w

ad−1

d−1 of Vp as a (d−1)-tuple (a1, a2, . . . , ad−1),

then by its definition above, v
(j)
t can be written as the (d−1)-tuple (tj, t2j, . . . , t(d−1)j).

Hence the set {v(j)t : j ∈ Z∗d} can be represented by a φ(d) × (d−1) sub-matrix of the
Vandermonde matrix 

t t2 t3 . . . td−1

t2 t4 t6 . . . t2(d−1)

t3 t6 t9 . . . t3(d−1)

: : : : :

td−1 t2(d−1) t3(d−1) . . . t(d−1)(d−1)

 .

This matrix has determinant
∏

1≤ i< j≤ d−1(t
j − ti), which is non-zero in Zp since t is a

primitive d th root of 1 mod p, and it follows that for any subset S of Z∗d, the rows with
first entry tj with j ∈ S are linearly independent over Zp. In particular, taking S = Z∗d, we
see the above claim is true.

But also this shows that hr(LU) 6= LU for any r ∈ Z∗d \U , because if hr(LU) = LU then

LU = hr−1(LU) and so the vector corresponding to v
(r)
t = hr−1(vt) is a linear combination

of the vectors corresponding to the the elements v
(u)
t for u ∈ U , which is impossible.
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Step 3. It remains to show that the exponent group of the orientable-regular map M
arising from the quotient Gp/LU of G is equal to U . By Step 1, we know that this exponent
group contains U . To prove the reverse inclusion, suppose that j is any exponent of this
map M . Then also j−1 is an exponent of M , and hence there exists an automorphism θ
of Gp/LU that fixes the element xLU and takes yLU to yj

−1
LU . But now vt ∈ Lt ⊆ LU , so

the coset vtLU is trivial in Gp/LU , and it follows that the coset containing v
(j)
t = hj−1(vt)

is trivial as well. Thus v
(j)
t lies in LU , and by Step 2, we deduce that j ∈ U .

This completes the proof. 2

3 Concluding remarks

The method we have used does not enable control over the face length of the resulting
maps. This is no accident, as it is not true that there exist orientably-regular maps of
given type (d,m) with 1/d+ 1/m ≤ 1/2 and having a given exponent group. For example,
in the case of triangulations (with m = 3), it was shown in [13] that an orientably-regular
map of type (d, 3) with valency d ≡ ±1 mod 6 cannot have more than φ(d)/2 exponents,
and that if d is a prime such that d ≡ −1 mod 8 and (d−1)/2 is also prime, then such a
triangulation cannot have exponents other than ±1.

Finally, for completeness, we mention some interesting connections with the case where
the exponent group U does not contain −1. Orientably-regular maps with this property
are known as chiral. In [4] it was shown by a direct permutation construction that for
every pair (d,m) such that 1/d+ 1/m ≤ 1/2, there exists infinitely many finite orientably-
regular but chiral maps of type (d,m). The same thing was was proved in [7] by a different
method, with the help of holomorphic differentials.
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[13] J. Širáň and Y. Wang, Maps with highest level of symmetry that are even more
symmetric than other such maps: Regular maps with largest exponent groups,
Contemporary Mathematics 531 (2010), 95–102.

[14] S. Wilson, Operators over regular maps, Pacific J. Math. 81 (1979), 559–568.

6


