
 

Libraries and Learning Services 
 

University of Auckland Research 
Repository, ResearchSpace 
 

Version 

This is the Accepted Manuscript version of the following article. This version is 
defined in the NISO recommended practice RP-8-2008 
http://www.niso.org/publications/rp/  

 

Suggested Reference 

Bujalance, E., Cirre, F. J., & Conder, M. D. E. (2017). On automorphism groups of 
Riemann double covers of Klein surfaces. Journal of Algebra, 472, 146-171. 
doi:10.1016/j.jalgebra.2016.09.032 

 

Copyright 

Items in ResearchSpace are protected by copyright, with all rights reserved, 
unless otherwise indicated. Previously published items are made available in 
accordance with the copyright policy of the publisher. 

This manuscript version is distributed under the terms of the Creative Commons 
Attribution-NonCommercial-NoDerivatives License. 

For more information, see General copyright, Publisher copyright, 
SHERPA/RoMEO. 

 

http://www.niso.org/publications/rp/
http://dx.doi.org/10.1016/j.jalgebra.2016.09.032
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.library.auckland.ac.nz/services/research-support/depositing-theses/copyright
https://www.elsevier.com/about/our-business/policies/copyright
http://www.sherpa.ac.uk/romeo/issn/0021-8693/


On automorphism groups of Riemann double covers of
Klein surfaces

E. Bujalance∗, F.J. Cirre† and M.D.E. Conder‡

6 July 2016

Abstract

If G is a group of automorphisms of a compact Klein surface X, then the direct
product G × C2 is a group of automorphisms of the Riemann double cover X+

of X. In this paper we analyse the relationship between G and the full groups of
automorphisms Aut(X) and Aut(X+) of X and X+ respectively, in the special case
where the group G is uniformised by a non-Euclidean crystallographic group with
quadrangular signature (2, 2, 2, n). There is a difference in what happens between
bordered surfaces and unbordered non-orientable surfaces, and so we consider those
cases separately (including the special situation for n = 4 in the unbordered case).

1 Introduction

Let X be a compact Klein surface of algebraic genus g ≥ 2, and let X+ be its Riemann
double cover. As explained in [1], this means that X+ is a compact Riemann surface of
genus g which admits an anticonformal involution τ : X+ → X+, such that the orbit space
X+/τ is a compact Klein surface isomorphic to X. In terms of algebraic geometry, X is
a real algebraic curve and X+ is its complexification. It is well known that the full group
Aut(X) of automorphisms of X is isomorphic to the group of all conformal automorphisms
of X+ that commute with τ. Hence the full group Aut(X+) of all automorphisms of X+

(conformal or anticonformal) contains the direct product Aut(X) × C2 where C2 is the
cyclic group generated by the anticonformal involution τ ; see Proposition 2.1 below. The
following question arises naturally: Is Aut(X+) equal to Aut(X)× C2, or does X+ admit
additional automorphisms?

This question has been considered for bordered Klein surfaces X with the largest pos-
sible number of automorphisms, namely 12(g−1), by May in [13], and for those with the
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second largest possible number of automorphisms, namely 8(g−1), by Bujalance, Costa,
Gromadzki and Singerman in [5]. In both cases the authors showed that the equality
Aut(X+) = Aut(X) × C2 holds for almost all surfaces, with one single exception when
|Aut(X)| = 12(g−1) and five exceptions when |Aut(X)| = 8(g−1).

Subsequently, Costa and Porto showed in [15] that equality also holds except in a
finite number of cases when |Aut(X)| > 6(g− 1), while if |Aut(X)| = 6(g− 1) then
there are infinitely many Klein surfaces X (with different topological types) such that
Aut(X+) 6= Aut(X) × C2. If |Aut(X)| > 6(g− 1), then it follows from the Riemann-
Hurwitz formula that Aut(X) is uniformised by a non-Euclidean crystallographic (NEC)
group with quadrangular signature (2, 2, 2, 3), (2, 2, 2, 4) or (2, 2, 2, 5). Using techniques of
hyperbolic geometry, Costa and Porto investigated the case of signature (2, 2, 2, n) where
n is an odd prime, and showed the equality Aut(X+) = Aut(X)×C2 holds with one single
exception (for each odd prime n).

In this paper we consider the general case where a group G of automorphisms of X is
uniformised by some NEC group with quadrangular signature (2, 2, 2, n), for an arbitrary
value of n greater than 2. For brevity, we will say that in this case G acts with signature
(2, 2, 2, n) on X. We will investigate the relationship between G and the full automorphism
groups Aut(X) and Aut(X+) of X and X+, respectively. Furthermore, we will consider
actions not only on bordered Klein surfaces, but also on unbordered non-orientable surfaces.

In the case of bordered surfaces, we show in Section 3 that if G acts with signature
(2, 2, 2, n) and n 6= 4 then G is the full group Aut(X) of automorphisms of X, and that
the equality Aut(X+) = Aut(X) × C2 also holds with one single exception. Accordingly,
this extends the work by Costa and Porto to arbitrary values of n 6= 4. (When n = 4, the
equality holds with five exceptions, as shown in [5].)

The situation is rather different for unbordered non-orientable Klein surfaces, as we
show in Sections 4 and 5. In the unbordered case, G need not be the full group Aut(X),
and we give necessary and sufficient conditions for this to happen. Even if G coincides
with Aut(X), it can happen that Aut(X+) is strictly larger than Aut(X)× C2.

Here we note that groups acting on surfaces with quadrangular signature (2, 2, 2, n) have
occurred frequently in the literature. As partly mentioned earlier, the largest conceivable
orders of automorphism groups of bordered surfaces of genus g are 12(g−1), 8(g−1) and
20(g−1)/3, and these occur for such signatures when n = 3, 4 and 5, respectively.

Also group actions of type (2, 2, 2, n) arise in the study of sharp upper bounds for the
order of an automorphism group of a bordered Klein surface. For each g > 1, let µ(g)
denote the maximum order of the automorphism groups of all bordered Klein surfaces of
algebraic genus g. It was shown by May in [12] that in the orientable case, µ(g) ≥ 4(g+1),
with µ(g) = 4(g+1) for infinitely many g, and that the analogous sharp bound in the non-
orientable case is µ(g) ≥ 4g. These theorems were refined in [4], where it was shown that
a group of order 4(g+1) comes from an action with quadrangular signature (2, 2, 2, g + 1)
for all but three values of g, and that a group of order 4g comes from an action with
quadrangular signature (2, 2, 2, 2g), again for all but three values of g.
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Similarly, group actions with signature (2, 2, 2, n) were also used in [8] to obtain upper
bounds for the maximum order ν(g) of the automorphism groups of unbordered non-
orientable surfaces of algebraic genus g > 1. Specifically, it was shown by considering
group actions with signature (2, 2, 2, g + 1) that if g is even then ν(g) ≥ 4(g + 1), and by
considering group actions with signature (2, 2, 2, 4) that if g is odd then ν(g) ≥ 8(g − 1),
and that the latter bound is sharp for infinitely many such g. (The sharpness of the former
bound has been established so far for just three values of g, namely g = 2, 86 and 206.)

What we present in this paper can also be translated into the language of algebraic
geometry. The Riemann double cover X+ can be seen as a complex algebraic curve which
admits an anti-analytic involution τ , and the group G as a group of birational transfor-
mations of X+ that commute with τ . Our results show that in some important cases the
(full) automorphism group Aut(X+) is isomorphic to G× 〈τ〉, and that the former can be
characterised by the properties of G.

2 Preliminaries

In this section we recall the main facts about NEC groups that we need, and draw some
conclusions from these that will be helpful later. For a general account of NEC groups and
group actions on bordered Klein surfaces, we refer the reader to [6, Sections 0.2 and 1.3].

A non-Euclidean crystallographic group (or more simply, NEC group) is a cocompact
discrete subgroup of the group of orientation preserving or reversing isometries of the
hyperbolic plane H. The signature of an NEC group Γ, as introduced by Macbeath in [11],
is a collection of symbols and non-negative integers, of the form

σ(Γ) = (γ; ±; [m1, . . . ,mr]; {(n11, . . . , n1s1), . . . , (nk1, . . . , nksk)}) . (1)

The integers m1, . . . ,mr are all greater than 1 and are called proper periods ; each bracketed
expression of the form (ni1, . . . , nisi) is a period cycle; and the integers nij (which are also
greater than 1) are called link periods. An empty set of proper periods (where r = 0) is
denoted by [−], and an empty period-cycle (where si = 0) by (−).

The signature of Γ gives rise to a presentation for Γ by generators and relations. For
the purposes of this paper, it is enough to consider only certain kinds of signatures, but
before we describe the most important of those, we need to define a few other terms.

In the action of the NEC group Γ onH, some of the generators may preserve orientation
while others reverse it. If all of them preserve orientation, then Γ is a Fuchsian group, and
otherwise Γ is a proper NEC group. More generally, the orientation-preserving elements
of Γ constitute what is known as the canonical Fuchsian subgroup Γ+. An element of
Γ lies in this subgroup if and only if it can be expressed as a word in the generators of
Γ such that the total number of occurrences of orientation-reversing generators is even.
Such words may be called orientable words , while those in which the latter number is odd
are non-orientable words. In particular, Γ+ is the subgroup consisting of all the elements
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expressible as orientable words, and has index 1 or 2 in Γ, depending on whether Γ is
Fuchsian or a proper NEC group, respectively.

The two main kinds of signature we consider are triangular and quadrangular signatures.
These are signatures of the form (0; +; [−]; {(n1, n2, n3)}) and (0; +; [−]; {(n1, n2, n3, n4)}),
which we abbreviate to simply (n1, n2, n3) and (n1, n2, n3, n4) respectively.

Every NEC group with triangular signature (n1, n2, n3) is generated by three elements
c0, c1, c2 which act as reflections and satisfy the defining relations

c 2
0 = c 2

1 = c 2
2 = (c0c1)n1 = (c1c2)n2 = (c2c0)n3 = 1.

The abstract group with this presentation is called the extended (n1, n2, n3) triangle group.
The elements x1 = c0c1, x2 = c1c2 and x3 = c2c0 generate the canonical Fuchsian subgroup
Γ+, and satisfy the relations x1x2x3 = xn1

1 = xn2
2 = xn3

3 = 1, which are defining relations
for the ordinary (n1, n2, n3) triangle group.

Analogously, every NEC group with quadrangular signature (n1, n2, n3, n4) is generated
by four elements c0, c1, c2, c3, all of which act as reflections, subject to the defining relations

c 2
0 = c 2

1 = c 2
2 = c 2

3 = (c0c1)n1 = (c1c2)n2 = (c2c3)n3 = (c3c0)n4 = 1,

and the abstract group with this presentation is called the extended (n1, n2, n3, n4) quad-
rangle group. The elements x1 = c0c1, x2 = c1c2, x3 = c2c3 and x4 = c3c0 generate Γ+, and
satisfy the relations x1x2x3x4 = xn1

1 = xn2
2 = xn3

3 = xn4
4 = 1, which are defining relations

for the ordinary (n1, n2, n3, n4) quadrangle group.

Another important type of signature we consider has the form (0; +; [m]; {(n)}). Every
NEC group with this signature is generated by two elements x1 and c0, which preserve and
reverse orientation, respectively, and satisfy the defining relations

xm1 = c 2
0 = [c0, x1]n = 1.

Here the elements x1 and x2 = (c0x1c0)−1 and x3 = c0x1c0x
−1
1 generate the canonical

Fuchsian subgroup Γ+, and satisfy the defining relations x1x2x3 = xm1 = xm2 = xn3 = 1,
which imply that Γ+ isomorphic to the ordinary (m,m, n) triangle group.

In all the above cases, we will call any set of generators for the NEC group Γ or its
Fuchsian subgroup Γ+ that satisfy the given relations a canonical set of generators for the
corresponding group.

Next, when the NEC group Γ has signature (1), the area of a fundamental region for Γ
is 2πµ(Γ), where

µ(Γ) = αγ + k − 2 +
r∑
i=1

(
1− 1

mi

)
+

1

2

k∑
i=1

si∑
j=1

(
1− 1

nij

)
, (2)

with α = 2 if the sign is +, and α = 1 otherwise. The expression µ(Γ) is usually called the
reduced area of Γ.
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If Λ is a subgroup of finite index in Γ, then Λ is also an NEC group, and its area is
given by the Riemann-Hurwitz formula:

µ(Λ) = |Γ : Λ| · µ(Γ). (3)

The NEC group Γ is said to be maximal if it is not contained in any other NEC group
with finite index. The NEC group signature σ is said to be maximal if it has the property
that for every NEC group Γ1 containing an NEC group Γ2 with signature σ, such that Γ1

and Γ2 have the same Teichmüller dimension (the dimension of their Teichmüller spaces,
see [6, Section 0.3]), we have Γ1 = Γ2.

There is a curious relationship between the notions of maximal signature and maximal
NEC group, as explained in [6, Theorem 5.1.2]: Given a maximal NEC group signature
σ, there exists a maximal NEC group Λ with σ(Λ) = σ. But on the other hand, it can
happen that some NEC group Γ whose signature is maximal is contained with finite index
in another NEC group Γ′. For triangular signatures, whose Teichmüller dimension is zero,
this does not happen; indeed for a given triangular signature σ, either all NEC groups with
signature σ are maximal, or none of them can be.

Now let X be a compact Klein surface of topological genus γ with k boundary compo-
nents. Then the algebraic genus g of X is defined as

g =

{
2γ + k − 1 if X is orientable, or
γ + k − 1 otherwise.

(4)

By the Uniformisation Theorem, if g ≥ 2 then X is isomorphic to the orbit space H/∆ for
some proper NEC group ∆ with signature

(γ; ±; [−]; {(−), k. . ., (−)}),

where the sign is ‘+’ if X is orientable, and ‘−’ otherwise. We will call any NEC group ∆
with such a signature a surface NEC group. Note that the bordered and unbordered cases
can be distinguished according to whether k is positive or zero.

Moreover, a finite group G acts (faithfully) as a group of automorphisms of such a
surface X = H/∆ if and only if there exist an NEC group Γ and an epimorphism θ : Γ→ G
whose kernel is the surface NEC group ∆. In this case, we say (for short) that θ is a smooth
epimorphism, and that G acts on X with signature σ(Γ).

Next, let X+ be the Riemann double cover of X = H/∆, and let τ be the associated
anticonformal involution. Then X+ is isomorphic to H/∆+, where ∆+ is the canonical
Fuchsian subgroup of ∆ (and this helps to explain why the superscript ‘+’ can be used for
both the group ∆+ and the surface X+). Observe that ∆+ is a surface Fuchsian group,
and is therefore torsion-free. Also it is easy to see that if G is a group of automorphisms
of X, then G× 〈τ〉 ∼= G× C2 is a group of automorphisms of X+. For later purposes, we
prove a slight generalisation of this fact, as follows.
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Proposition 2.1 Under the above conditions, the group Aut(X+) of all automorphisms

of X+ contains a subgroup G̃ isomorphic to the direct product G × C2, where G is the
subgroup of all conformal automorphisms of X+ in G̃, and the factor C2 is generated by
an anticonformal involution. Also G and G̃ are uniformised by the same NEC group.

Proof : Let Γ be the NEC group uniformising G, so that ∆ is normal in Γ, and Γ/∆ ∼= G.
Then since conjugation preserves orientability, also ∆+ is normal in Γ. The quotient
group Γ/∆+ contains the normal subgroups Γ+/∆+ and ∆/∆+, the intersection of which
is trivial and the product of which is the whole group Γ/∆+, and therefore Γ/∆+ is the
direct product Γ+/∆+ × ∆/∆+. The first factor Γ+/∆+ represents orientation preserving
elements, and by the second isomorphism theorem for groups,

Γ+/∆+ ∼= Γ+/(Γ+ ∩∆) ∼= Γ+∆/∆ = Γ/∆ ∼= G.

As ∆/∆+ has order 2, we find that G̃ = Γ/∆+ is a group of automorphisms of X+ ∼= H/∆+

isomorphic to G× C2, and is uniformised by the same NEC group as G, namely Γ.

In order to determine whether G is a proper subgroup of Aut(X), or G̃ ∼= G× C2 is a
proper subgroup of Aut(X+), by Proposition 2.1 we have to determine whether or not Γ is
strictly contained in another NEC group Γ′ which also normalises ∆ or ∆+, respectively.

When Γ has quadrangular signature (2, 2, 2, n), the possible signatures for the NEC
group Γ′ are given by Proposition 2.2 below. In proving it, we make use of some combina-
torial group theory, and in particular, methods for finding subgroups of small finite index
in finitely-presented groups, and Reidemeister-Schreier theory, which gives presentations
for such subgroups and can then determine their abelianisations. Implementations of these
methods are available in the Magma system [2], via the LowIndexSubgroups, Rewrite
and AQInvariants commands. Before proceeding, we note that the abelianisation of the
extended (2, 2, 2, n) quadrangle group is Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2 if n is even, and Z2 ⊕ Z2 ⊕ Z2

if n is odd, while that of the ordinary (2, 2, 2, n) quadrangle group is Z2 ⊕ Z2 ⊕ Z2 if n is
even, and Z2 ⊕ Z2 if n is odd.

Proposition 2.2 Suppose the NEC group Γ has quadrangular signature (2, 2, 2, n), and
is contained as a subgroup with finite index in another NEC group Γ′. If n = 4, then Γ′

has triangular signature (2, 4, 8), (2, 4, 6), (2, 4, 5) or (2, 3, 8), while if n 6= 4, then Γ′ has
triangular signature (2, 4, 2n).

Proof : This is already known when n = 3 and n = 4 (see [5, Theorems 4.4 and 6.1]), and
also when n is a prime greater than 3 (see [15, Lemma 1.1]). Hence we may assume that
n ≥ 6, and n is not prime. We proceed by considering the reduced areas of Γ and Γ′.

By formula (2), we know that µ(Γ) = n−2
4n

= 1
4
− 1

2n
< 1

4
, and then because |Γ′ : Γ| ≥ 2,

it follows from the Riemann-Hurwitz formula (3) that µ(Γ′) ≤ µ(Γ)
2
< 1

8
.

Now suppose Γ′ has signature (γ; ±; [m1, . . . ,mr]; {(n11, . . . , n1s1), . . . , (nk1, . . . , nksk)}),
so that µ(Γ′) = αγ + k − 2 +

∑r
i=1

(
1− 1

mi

)
+ 1

2

∑k
i=1

∑si
j=1

(
1− 1

nij

)
. In this formula,
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the term
∑r

i=1(1 − 1
mi

) is at least r
2

(since mi ≥ 2 for each i). Similarly, the term∑k
i=1

∑si
j=1(1 − 1

nij
) is at least s

4
, where s is the total number of link periods nij in the

signature of Γ′. Thus we find that

αγ + k − 2 +
r

2
+
s

4
≤ µ(Γ′) <

1

8
. (5)

Next, we note that k ≥ 1 and s ≥ 1, since Γ′ contains Γ, which in turn contains pairs of
reflections whose product has order 2. Hence the inequality (5) forces αγ + 1 ≤ αγ + k <
1
8

+ 2 − r
2
− 1

4
< 2, and from this we deduce that γ = 0 and k = 1, and therefore

r
2

+ s
4
< 1

8
+ 2 − k ≤ 9

8
. This gives 4r + 2s < 9, and the only solutions with s ≥ 1 are

(r, s) = (0, 1), (0, 2), (0, 3), (0, 4), (1, 1) and (1, 2). From these, however, the possibilities
(0, 1) and (0, 2) can be discarded, because they give µ(Γ′) < 0 + 1− 2 + 0 + 1

2
(1 + 1) = 0,

but µ(Γ′) must be positive (to give genus g ≥ 2). Also if (r, s) = (0, 4) or (1, 2), then by
[6, Corollary 2.2.5] the canonical Fuchsian subgroup (Γ′)+ of Γ′ has signature of the form
(0; +; [t1, t2, t3, t4]; {−}), and since its reduced area must satisfy 0 < µ((Γ′)+) = 2µ(Γ′) < 1

4
,

the only possibility is (0; +; [2, 2, 2, 3]; {−}). But a group with this signature does not
contain any element of order n (since n ≥ 6), so these two cases can be eliminated as well.
Thus (r, s) = (0, 3) or (1, 1).

In both of these two cases, (Γ′)+ has triangular Fuchsian signature (0; +; [t1, t2, t3]; {−}),
where at least one period ti is a multiple of n, and 1

4
> µ((Γ′)+) = 1− 1

t1
− 1

t2
− 1

t3
.

Now let d = |(Γ′)+ : Γ+|, and note that Γ+ has Fuchsian signature (0; +; [2, 2, 2, n]; {−}),
so that µ(Γ+) = 1

2
− 1

n
, and therefore 1

2
− 1

n
= µ(Γ+) = dµ((Γ′)+) = d(1− 1

t1
− 1

t2
− 1

t3
) < d

4
.

We may also suppose that t1 ≤ t2 ≤ t3, and then a straightforward arithmetical exercise
gives only the possibilities below:

(a) [t1, t2, t3] = [2, 3, 3n], with d = 3 for arbitrary non-prime n ≥ 6;

(b) [t1, t2, t3] = [2, 4, 2n], with d = 2 for arbitrary non-prime n ≥ 6;

(c) [t1, t2, t3] = [2, 3, 8], with d = 9 for n = 8;

(d) [t1, t2, t3] = [2, 3, 9], with d = 7 for n = 9;

(e) [t1, t2, t3] = [2, 3, 10], with d = 6 for n = 10;

(f) [t1, t2, t3] = [2, 3, 12], with d = 4 for n = 6;

(g) [t1, t2, t3] = [2, 3, 12], with d = 5 for n = 12;

(h) [t1, t2, t3] = [2, 3, 18], with d = 4 for n = 18;

(i) [t1, t2, t3] = [2, 4, 6], with d = 4 for n = 6;

(j) [t1, t2, t3] = [2, 4, 8], with d = 3 for n = 8;

(k) [t1, t2, t3] = [2, 5, 10], with d = 2 for n = 10;

(l) [t1, t2, t3] = [2, 6, 6], with d = 2 for n = 6;

(m) [t1, t2, t3] = [3, 3, 6], with d = 2 for n = 6.

All but the second of these cases can be eliminated with the help of some group theory.

First, we show that (r, s) 6= (1, 1). For suppose the contrary. Then Γ′ has signature
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of the form (0; +; [m]; {(n)}), which forces the group (Γ′)+ to have Fuchsian triangular
signature (0; +; [m,m, n]; {−}). The only such possibilities in the above list are [2, 6, 6] and
[3, 3, 6], with d = 2 for n = 6. In the former case, (Γ′)+ is isomorphic to the ordinary (6, 6, 2)
triangle group. This group has three subgroups of index 2, but their abelianisations are
Z3 ⊕ Z6, Z3 ⊕ Z6 and Z6, and so (Γ′)+ contains no subgroup of index 2 isomorphic to Γ+

(whose abelianisation is Z2 ⊕ Z2 ⊕ Z2). And in the latter case, Γ+ is isomorphic to the
ordinary (3, 3, 6) triangle group, which has no subgroup of index 2 at all.

Thus (r, s) = (0, 3), and so Γ′ has triangular signature.

Next, in some cases the group (Γ′)+ has no subgroup of index d, or the group Γ′ itself
has no subgroup of index |Γ′ : Γ| = |(Γ′)+ : Γ+| = d. This happens in cases (c), (d), (g),
(j) and (m), which can all therefore be ruled out. On the other hand, in cases (e), (f),
(h), (i), (k) and (l), both Γ′ and (Γ′)+ have one or more subgroups of the required index
d, but none of those subgroups has the same abelianisation as the extended or ordinary
(2, 2, 2, n) quadrangle group, respectively.

In case (a), where [t1, t2, t3] = [2, 3, 3n], we know that Γ′ is isomorphic to the ex-
tended (2, 3, 3n) triangle group. When n is odd, this group has just one conjugacy class
of subgroups of index d = 3, all of which are generated by three involutions, and have
abelianisation Z2⊕Z2, which means they cannot be isomorphic to the extended (2, 2, 2, n)
quadrangle group. On the other hand, when n is even, the extended (2, 3, 3n) triangle
group has two conjugacy classes of such subgroups, all generated by three involutions, and
these all have abelianisation Z2 ⊕ Z2 or Z2 ⊕ Z2 ⊕ Z2, and so once again they cannot be
isomorphic to the extended (2, 2, 2, n) quadrangle group.

Finally we are left with case (b), where [t1, t2, t3] = [2, 4, 2n]. In this case, we find that
for each n there is just one subgroup of index d = 2 in the extended (2, 4, 2n) triangle NEC
group Γ′ isomorphic to the extended (2, 2, 2, n) quadrangle group, namely the subgroup
generated by c′0, c′1, c′2c

′
1c
′
2 and c′2c

′
0c
′
2, where {c′0, c′1, c′2} is a canonical set of generators

for Γ′. (When n is odd, there is one other subgroup of index 2 with the abelianisation
Z2⊕Z2⊕Z2 required (for odd n), namely the one generated by c′2, c′1c

′
2c
′
1 and c′0, but this

is isomorphic to the extended (2, 2n, 2n) triangle group.) This completes the proof.

Remark 2.3 The above proof shows that if Γ′ is any NEC group with signature (2, 4, 2n)
for n ≥ 2, then Γ′ contains a unique subgroup Γ with signature (2, 2, 2, n). Here we note
that this is the unique subgroup of index 2 containing the first two but not the third of
the three canonical generating reflections for Γ′.

Remark 2.4 If G acts on X = H/∆ with signature (2, 2, 2, n) where n 6= 4, then the NEC
group Γ realising such an action (that is, with σ(Γ) = (2, 2, 2, n) and G ∼= Γ/∆) is unique.
Indeed if the normaliser Γ′ of ∆ in PGL(2,R) is not Γ, then Γ′ has signature (2, 4, 2n) by
Proposition 2.2, but then Γ′ contains a unique NEC group with signature (2, 2, 2, n), by
Remark 2.3.
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3 Bordered Klein surfaces with a group acting with

signature (2, 2, 2, n)

The maximum number of boundary components of a compact Klein surface of algebraic
genus g ≥ 2 is g + 1. This is known as Harnack’s bound, and surfaces attaining it are
called M-curves. The Riemann double covers of M-curves were studied by Natanzon in
[14]. If X is any M-curve, then by (4) its topological genus satisfies αγ = g − k + 1 = 0,
and so topologically, X is a sphere with g + 1 holes. We will say that X is a regular
sphere with g + 1 holes if it admits a group of automorphisms isomorphic to the direct
product Dg+1 × C2. Except for a small number of values of g, this is the largest group of
automorphisms that a sphere with g + 1 holes may admit; see [3]. Also a regular sphere
with holes is unique within its algebraic genus, and so it makes sense to speak about the
regular sphere with g + 1 holes. We can now prove the following.

Theorem 3.1 Let X be a compact bordered Klein surface of algebraic genus g ≥ 2 that
admits an automorphism group G acting with signature (2, 2, 2, n), where n ≥ 3. Also let
X+ be the Riemann double cover of X, and let Aut(X+) be the full group of conformal and
anticonformal automorphisms of X+. If n 6= 4, then Aut(X+) ∼= G×C2 except when X is
the regular sphere with g + 1 holes, in which case X+ is the Accola-Maclachlan surface of
genus g. On the other hand, if n = 4 then also Aut(X+) ∼= G×C2, but now there are five
exceptions : the regular sphere with holes, and four more surfaces, which topologically are
a projective plane with two holes, and a torus with one, two or four holes.

Proof : This is already known when n = 3 and n = 4 (see [5, Theorems A and B]), and
also when n is a prime greater than 3 (see [15, Theorem 2.1]). Hence we may assume that
n ≥ 6, and n is not prime.

Now let us write X = H/∆, where ∆ is a surface NEC group. Then X+ = H/∆+ and
G ∼= Γ/∆, where Γ is an NEC group with quadrangular signature (2, 2, 2, n), and ∆+ is the
canonical Fuchsian subgroup of ∆. By Proposition 2.1, the full group Aut(X+) contains a
copy of Γ/∆+ ∼= G×C2. We have to show that if Aut(X+) strictly contains G×C2, then
X is the regular sphere with g + 1 holes.

So suppose that Aut(X+) strictly contains G× C2. Then Aut(X+) ∼= Γ′/∆+ where Γ′

is an NEC group containing Γ and normalising ∆+. By Proposition 2.2, we find that Γ′

has triangular signature (2, 4, 2n), and in particular, µ(Γ′) = 1
8
− 1

4n
.

Next, let {c′0, c′1, c′2} be a canonical set of generating reflections of Γ′, so that (c′0c
′
1)2 =

(c′1c
′
2)4 = (c′2c

′
0)2n = 1. Then by our proof of Proposition 2.2, taking

c0 = c′0, c1 = c′1, c2 = c′2c
′
1c
′
2 and c3 = c′2c

′
0c
′
2 (6)

gives a canonical set of generating reflections of an NEC group with quadrangular signature
(2, 2, 2, n), satisfying (c0c1)2 = (c1c2)2 = (c2c3)2 = (c3c0)n = 1. Moreover, by Remark 2.3,
this NEC group has to be Γ, since Γ′ contains only one subgroup with signature (2, 2, 2, n).
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Next, let θ : Γ → Γ/∆ and θ′ : Γ′ → Γ′/∆+ be the canonical smooth epimorphisms.
Since ∆ = ker θ is a bordered surface NEC group, it must contain at least one of the
generating reflections ci of Γ. If c0 ∈ ∆ then also (c0c3)2 = c0 c

c3
0 ∈ ∆, which is impossible

because ∆ has no non-trivial orientation preserving elements of finite order. Thus c0 /∈ ∆,
and similarly c3 /∈ ∆. Hence ∆ contains either c1 or c2, but not both (since otherwise ∆
contains c1c2, of order 2). Without loss of generality we may assume that c1 ∈ ∆, since
the other possibility c2 ∈ ∆ can be achieved by conjugating by c′2 (and then gives an
isomorphic surface). Then since c1 ∈ ∆ we have (c1c3)2 = c1 c

c3
1 ∈ ∆, indeed (c1c3)2 ∈ ∆+,

and so by (6) we have
(c′1c

′
2c
′
0c
′
2)2 ∈ ∆+. (7)

Now let a, b and c be the images in Γ′/∆+ of c′0, c
′
1 and c′2 respectively. Since ∆+

is torsion-free, these elements are involutions, and ab, bc and ac have orders 2, 4 and 2n
respectively. Also [b, cac] = (bcac)2 = 1 by (7), but bcac 6= 1 since otherwise ab = (ac)2,
which is impossible because ac has order 2n > 4. Thus bcac is an involution in Γ′/∆+.

Here we note that b commutes with cac and hence also with a(cac) = (ac)2, and it
follows that the cyclic group N of order n generated by (ac)2 is normal in Γ′/∆+ (with
each of a and c conjugating (ac)2 to its inverse). The factor group (Γ′/∆+)/N is generated
by three involutions, such that one (namely Na) commutes with each of the other two,
and the product of those two (Nb and Nc) has order 4. Thus (Γ′/∆+)/N is isomorphic to
D4×C2, of order 16, and it follows that Aut(X+) ∼= Γ′/∆+ has order 16n, and presentation

Γ′/∆+ = 〈 a, b, c | a2 = b2 = c2 = (ab)2 = (bc)4 = (ac)2n = (bcac)2 = 1 〉. (8)

Since ∆+ is a Fuchsian surface group, we have µ(∆+) = 2g−2, where g is the algebraic
genus of X, and then by the Riemann-Hurwitz formula (3) we find that

2g − 2 = 16n · µ(Γ′) = 16n · (1

8
− 1

4n
) = 2(n− 2),

and therefore g = n−1. Also by [6, Theorem 2.3.3] and since acbc is conjugate to bcac and
therefore has order 2, the number of boundary components of X is

1

2
· |Γ/∆|

order of θ(c0c2)
=

1

2
· 4(g + 1)

order of (acbc)
= g + 1.

Thus X is a sphere with holes, as required. To determine the full group Aut(X), we observe
that

X ∼= H/∆ ∼= (H/∆+)/(∆/∆+) ∼= X+/〈c1∆+〉 ∼= X+/〈c′1∆+〉 ∼= X+/〈b〉.

In particular, it follows that Aut(X) consists of the conformal automorphisms in Aut(X+)
that commute with b. It is easy to see that (ac)2, ab and (bc)2 commute with b. Also
since ab(ac)2 = abacac = bcac which has order 2, the first two of these generate a dihedral
subgroup of order 2n = 2(g + 1), while the third centralises (ac)2 (by observations made
above about the normal subgroupN), and the third also centralises ab (by an easy exercise).
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Hence (ac)2, ab and (bc)2 generate a subgroup of order 4(g + 1) isomorphic to Dg+1 × C2,
and of index 4 in 〈a, b, c〉 = Γ′/∆+. On the other hand, ac does not commute with b, since
otherwise 1 = [b, ca] = bcabac = bcbc = (bc)2, contradicting the fact that bc has order 4.

We conclude that Aut(X) ∼= 〈(ac)2, ab, (bc)2〉 ∼= Dg+1 × C2, and hence that X is the
regular sphere with g + 1 holes.

Finally, the double cover X+ of X is a compact Riemann surface of genus g with
Aut(X+) having order 16(g + 1) and presentation (8) with n = g + 1. Any such surface is
isomorphic to the Accola-Maclachlan surface of genus g, given by the algebraic equation
w2 = z2g+2 − 1; see [10]. This completes the proof.

Another consequence of part of the above proof is the following.

Corollary 3.2 Let X be a compact bordered Klein surface of algebraic genus g ≥ 2 which
admits an automorphism group G acting with signature (2, 2, 2, n) where n ≥ 3. Then G is
the full automorphism group of X.

Proof : With the same notation as in the proof of Theorem 3.1, suppose that G = Γ/∆ is
not (isomorphic to) the full group Aut(X) of X = H/∆. Then Aut(X) ∼= Γ′/∆, where Γ′ is
an NEC group containing Γ with finite index, and normalising ∆. By Proposition 2.2, the
group Γ′ would have triangular signature (2, 4, 2n), (2, 4, 6), (2, 4, 5) or (2, 3, 8). Repeating
the arguments in the beginning of the proof of Theorem 3.1, however, we see that for each
of these signatures, none of the generating reflections c′i of Γ′ can lie in the surface NEC
group ∆. This contradicts the fact that X is a bordered surface.

In contrast, we will see in Example 4.4 below that for unbordered non-orientable Klein
surfaces, the full group Aut(X) can sometimes be strictly larger than G.

4 Unbordered Klein surfaces with a group acting with

signature (2, 2, 2, n), where n 6= 4

We now turn to the case of unbordered non-orientable Klein surfaces. Let X = H/∆
be such a surface, where ∆ is an unbordered non-orientable surface NEC group, and let
G = Γ/∆ be a group of automorphisms of X acting with signature (2, 2, 2, n). Then G
admits a (partial) presentation of the form

G = 〈 a, b, c, d | a2 = b2 = c2 = d2 = (ab)2 = (bc)2 = (cd)2 = (ad)n = w = . . . = 1 〉 (9)

where w = w(a, b, c, d) is a ‘non-orientable’ word, with odd length greater than 1, in the
generators a, b, c, d. (Note that if c0, c1, c2 and c3 constitute a canonical set of generating
reflections for Γ, then their images a, b, c and d under the smooth epimorphism θ : Γ→ G
must satisfy the same relations as the reflections ci, because ∆ is torsion free. Also since
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∆ is non-orientable, it must contain a non-orientable word of Γ, and so such a word has
odd length greater than 1 in the generators c0, c1, c2, c3, and then its image under θ is a
word w of odd length greater than 1 in a, b, c, d.)

A presentation of G of the form (9) induced by a smooth epimorphism θ : Γ→ G will
be called a (partial) monodromy presentation. For any such presentation, we will consider
the effect of interchanging the generators a and b with the generators d and c respectively,
which we will refer to simply as the assignment

a↔ d, b↔ c. (10)

Theorem 4.1 Let X be a compact unbordered non-orientable Klein surface of algebraic
genus g ≥ 2, which admits an automorphism group G acting with signature (2, 2, 2, n),
where n 6= 4. Let X+ be the Riemann double cover of X. Then the condition

(i) Aut(X) strictly contains G

is equivalent to the combination of the two conditions

(ii) Aut(X+) strictly contains G× C2,

(iii) every monodromy presentation (9) for G is preserved by the assignment (10).

Proof : First, we have X ∼= H/∆ and G ∼= Γ/∆ with σ(Γ) = (2, 2, 2, n), and also we know
that Γ is unique, by Remark 2.4.

Now suppose that Aut(X) strictly contains G. Then Aut(X+) strictly contains G×C2,
by Proposition 2.1. Hence (i) implies (ii).

Moreover, Aut(X) ∼= Γ′/∆ where Γ′ is an NEC group containing Γ and normalising
∆, and then Γ′ also normalises ∆+, since conjugation preserves orientability. By Propo-
sition 2.2, we find that that Γ′ has triangular signature (2, 4, 2n). Also if {c′0, c′1, c′2} is a
canonical set of generating reflections of Γ′ satisfying (c′0c

′
1)2 = (c′1c

′
2)4 = (c′2c

′
0)2n = 1, then

c0 = c′0, c1 = c′1, c2 = c′2c
′
1c
′
2 and c3 = c′2c

′
0c
′
2 (11)

make up a canonical set of generating reflections for an NEC group with quadrangular
signature (2, 2, 2, n), and this NEC group has to be Γ, by Remark 2.3. The respective
images a, b, c and d of c0, c1, c2 and c3 under the smooth epimorphism θ : Γ → Γ/∆ = G
satisfy the relations in (9), and so give a monodromy presentation of G. Also both Γ and
∆ are normal subgroups in Γ′, and therefore conjugation by any element of Γ′ induces an
automorphism of G = Γ/∆. In particular, conjugation by c′2 induces an automorphism of
G that takes a, b, c and d respectively to θ(c′2c0c

′
2) = θ(c3) = d, θ(c′2c1c

′
2) = θ(c2) = c,

θ(c′2c2c
′
2) = θ(c1) = b and θ(c′2c3c

′
2) = θ(c0) = a. Hence this monodromy presentation is

preserved by the assignment (10).

Next, consider an arbitrary monodromy presentation of G. For this, there exists a
canonical set of generating reflections ĉ0, ĉ1, ĉ2 and ĉ3 of Γ, such that their images in
G satisfy the same form of relations as in the partial presentation (9). But there exists a
unique embedding of Γ in Γ′, up to conjugacy in Γ′, and so there exists some element γ′ ∈ Γ′
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such that ĉi = γ′−1ciγ
′ for 0 ≤ i ≤ 3, where the reflections ci are given by (11). It then

follows that conjugation by γ′−1c′2γ
′ induces an automorphism of G which interchanges the

images of ĉ0 and ĉ1 with the images of ĉ3 and ĉ2, and so the given monodromy presentation
is preserved by the assignment (10) as well.

(In fact, since conjugation by γ′ takes the generators ci for Γ to the generators ĉi for Γ,
the given monodromy presentation for G satisfied by the images of the ĉi is equivalent to
the one satisfied by a, b, c and d.)

Conversely, suppose that (ii) and (iii) both hold. We have to prove that Aut(X) strictly
contains G = Γ/∆. By (ii), we know that Aut(X+) strictly contains G × C2

∼= Γ/∆+,
and so there exists an NEC group Γ′ strictly containing Γ and normalising ∆+. It now
suffices to show that Γ′ also normalises ∆, because in that case, Γ′/∆ will be a group of
automorphisms of X strictly larger than Γ/∆. Here we note that Γ′ = 〈Γ, c′2〉, and that Γ
normalises ∆; hence it suffices to show that c′2 normalises ∆. So with the same notation
as used above, let δ = w(c0, c1, c2, c3) ∈ ∆ be a non-orientable word (of odd length greater
than 1) in c0, c1, c2, c3, such that its image θ(δ) = w = w(a, b, c, d) is trivial in G. Then
∆ = 〈∆+, δ〉, and since c′2 ∈ Γ′ normalises ∆+, all we have to do is show that δc

′
2 ∈ ∆, or

equivalently, that θ(δc
′
2) = 1. To do this, observe that

δc
′
2 = w(c0, c1, c2, c3)c

′
2 = w(c

c′2
0 , c

c′2
1 , c

c′2
2 , c

c′2
3 ) = w(c3, c2, c1, c0),

and hence that

θ(δc
′
2) = θ(w(c3, c2, c1, c0)) = w(θ(c3), θ(c2), θ(c1), θ(c0)) = w(d, c, b, a).

But the latter word is the image of w(a, b, c, d) under the assignment (10), and hence must
be trivial. Thus θ(δc

′
2) = 1, so δc

′
2 ∈ ∆, and therefore Γ′ normalises ∆, as required.

Remark 4.2 Condition (iii) in Theorem 4.1 does not imply condition (i), or condition (ii).
Indeed in most cases, G is the full group Aut(X), and G× C2 is the full group Aut(X+),
regardless of any automorphisms that G might have, because in most cases an NEC group
with signature (2, 2, 2, n) is maximal.

Remark 4.3 For n 6= 4, the triangular NEC signature (2, 4, 2n) is maximal, since the
same is true of its canonical Fuchsian signature (0; +; [2, 4, 2n]; {−}), as shown in [16] and
[6, Remark 5.1.1]. Accordingly, any NEC group Γ′ with signature (2, 4, 2n) where n 6= 4
is not contained with finite index in any other NEC group. Hence if Γ is as above, with
|Γ′ : Γ| = 2, we find that if Aut(X) strictly contains G then Aut(X) is a C2-extension
of G, and in fact, Aut(X) ∼= G oφ C2 where φ is the automorphism of G given by (10).
Analogously, if Aut(X+) strictly contains G×C2, then Aut(X+) ∼= (G×C2)oφ C2 where
φ acts trivially on the C2-factor of G× C2.

In Examples 4.4 and 4.5 below, we see that there exist cases where a group G acts with
signature (2, 2, 2, n) on an unbordered non-orientable surface, for which the assignment
(10) gives an automorphism of G, and other cases for which it does not.
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Example 4.4 This example comes from a family of groups acting on non-orientable sur-
faces given in [7, Example 3.1] (and used again in [8, §3.3.3]).

For each positive integer m, there exists an extension Gm of a cyclic group of order m
by the symmetric group S4, with presentation

Gm = 〈 a, b, c | a2 = b2 = c2 = (ab)3m = (bc)4 = (ac)2 = (ab)−1(cb)2abc = 1 〉,

such that the cyclic normal subgroup of order m is generated by (ab)3. Now in this group,
define â = b, b̂ = (bc)2, ĉ = c and d̂ = a. Then Gm has the alternative presentation

〈 â, b̂, ĉ, d̂ | â2 = b̂ 2 = ĉ 2 = d̂ 2 = (âb̂)2 = (b̂ĉ)2 = (ĉd̂)2 = (âd̂)3m = b̂(âĉ)2 = ĉ(b̂d̂)2 = 1 〉.

The relator b̂(âĉ)2 has odd length in the generators â, b̂, ĉ, d̂, and so the group Gm acts with
signature (2, 2, 2, 3m) on an unbordered non-orientable Klein surface X. This surface has
algebraic genus g = 6m− 3, by the Riemann-Hurwitz formula (3).

It is easy to see from the second presentation for Gm that the assignment â↔ d̂, b̂↔ ĉ
gives an automorphism φ of Gm. Hence by Theorem 4.1, the action of Gm on X extends
to the action of a larger group if and only if the same happens for the action of Gm × C2

on the Riemann double cover X+ of X. In turn, this happens if and only if the NEC group
Γ with signature (2, 2, 2, 3m) uniformising the action of Gm on X is contained in an NEC
group Γ′ with signature (2, 4, 6m). If this is the case, then the full group Aut(X) will be
the semidirect product G′ = Go 〈φ〉, and Aut(X+) will be G′ × C2.

As noted above, this contrasts with the case of bordered surfaces, where the action of
the given group G cannot extend (by Corollary 3.2).

Example 4.5 For each integer n > 1, let Hn be the group with presentation

Hn = 〈 a, c, d | a2 = c2 = d2 = (ac)2 = (cd)2 = (ad)n = 1 〉.

Then Hn is isomorphic to the direct product Dn ×C2, of order 4n, where the Dn factor is
generated by a and d, and the C2 factor is generated by c. Next, let b = ac, which is an
involution that commutes with a and c. Then Hn has alternative presentation

〈 a, b, c, d | a2 = b2 = c2 = d2 = (ab)2 = (bc)2 = (cd)2 = (ad)n = abc = 1 〉,

and since the final relator abc has odd length, it follows that Hn acts as a group of au-
tomorphisms with signature (2, 2, 2, n) on an unbordered non-orientable Klein surface X.
This surface has algebraic genus g = n − 1, by the Riemann-Hurwitz formula. Here the
assignment a ↔ d, b ↔ c does not give an automorphism of Hn, since otherwise the
relation b = ac would imply that c = db = dac, and therefore ad = 1, which is impossible
Hence Hn is the full group Aut(X), by Theorem 4.1.

The next example is a family for which Aut(X+) strictly contains G×C2, but Aut(X)
coincides with G. In particular, this shows that in Theorem 4.1, condition (ii) does not
imply condition (i).
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Example 4.6 For each integer m 6= 2, let Jm be the group with presentation

Jm = 〈 a, b, z | a2 = b2 = z2 = (ab)2 = (bz)4 = (az)4m = (bzaz)2 = 1 〉.

In this group, take c = zbz and d = zaz. Then a, b, c and d generate a subgroup Km of
index 2 (containing a and b but not z), with presentation

Km = 〈 a, b, c, d | a2 = b2 = c2 = d2 = (ab)2 = (bc)2 = (ad)2m = (bd)2 = (cd)2 = (ac)2 = 1 〉.

This group is isomorphic to the direct product D2m × C2 × C2, with a and d generating a
dihedral subgroup of order 4m, and b and c being central involutions. In particular, Km

has order 16m, and so Jm has order 32m.

Now let Γ′ be an NEC group with triangular signature (2, 4, 4m), with canonical gen-
erating reflections c′0, c

′
1 and c′2. Then the assignment

c′0 7→ a, c′1 7→ b, c′2 7→ z

induces an epimorphism θ : Γ′ → Jm whose kernel Λ is a surface Fuchsian group, and
the orbit space Y = H/Λ is a compact Riemann surface, admitting Jm as a group of
automorphisms. In fact Jm is the full group Aut(Y ) of all conformal and anticonformal
automorphisms of Y, since any NEC group with triangular signature (2, 4, 4m) is maximal.
The subgroup of Γ′ generated by the reflections

c0 = c′0, c1 = c′1, c2 = c′2c
′
1c
′
2 and c3 = c′2c

′
0c
′
2

is an NEC group Γ with quadrangular signature (2, 2, 2, 2m), whose image under θ is
precisely the subgroup D2m × C2 × C2 generated by a = θ(c0), b = θ(c1), c = θ(c2) and
d = θ(c3). Also the element t = c(ad)m is an anticonformal involution in Aut(Y ), and so
the orbit space X = Y/〈t〉 is a compact Klein surface.

Next, let X = H/∆ where ∆ = 〈Λ, c2(c0c3)m〉, which is the pre-image of 〈t〉 under θ.
Then ∆ is a surface NEC group, and we claim that X is unbordered and non-orientable.
To see this, we note that t = c(ad)m is not conjugate in Jm to a, b, c or d, and therefore
δ = c2(c0c3)m is not conjugate to a reflection of Γ. Hence δ is a glide reflection in Γ, and it
follows that ∆ = 〈Λ, δ〉 is an unbordered non-orientable surface NEC group.

It also follows that the compact Riemann surface Y is the double cover X+ of X, as
Λ is the canonical Fuchsian subgroup ∆+ of ∆. Moreover, ∆ = 〈∆+, δ〉 is normal in Γ,
since ∆+ itself is normal in Γ, and the fact that θ(δ) = t = c(ad)m is central in Km = θ(Γ)
implies that θ(δγ) = tθ(γ) = t and therefore δγ ∈ ∆, for each γ ∈ Γ.

The quotient group G = Γ/∆ can be obtained by adding the relation t = 1 to the above
presentation for Km. This forces the image c̄ of c to be equal to the image of (ad)m and
hence redundant, giving

Γ/∆ ∼= 〈 ā, b̄, d̄ | ā2 = b̄ 2 = d̄ 2 = (āb̄)2 = (ād̄)2m= (b̄d̄)2 = 1 〉 ∼= 〈ā, d̄〉 × 〈b̄〉 ∼= D2m × C2.
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ThusX is a compact unbordered non-orientable Klein surface which admits G = Γ/∆ ∼=
D2m × C2 as a group of automorphisms, acting with signature (2, 2, 2, 2m), such that its
double cover X+ = Y admits G× C2

∼= D2m × C2 × C2.

This example was constructed so that G × C2 is strictly contained in the full group
Aut(X+) ∼= Jm, but G is not strictly contained in Aut(X). In fact G = Aut(X) by
Theorem 4.1, since there is clearly no automorphism of G = Γ/∆ interchanging ā with d̄
and b̄ with c̄ = (ād̄)m.

5 Unbordered Klein surfaces with a group acting with

signature (2, 2, 2, 4)

In this final section we consider the exceptional case of quadrangular signature (2, 2, 2, n)
with n = 4. By Proposition 2.2, if an NEC group Γ with quadrangular signature (2, 2, 2, 4)
is contained in another NEC group Γ′, then σ(Γ′) = (2, 4, 8), (2, 4, 6), (2, 4, 5) or (2, 3, 8).

For these four triangular signatures, the index |Γ′ : Γ| is 2, 3, 5 and 6 respectively.
When σ(Γ′) = (2, 4, 8), the subgroup Γ is normal in Γ′, but in the other cases it is not. (In
fact the index in Γ′ of the core of Γ is 6, 10 and 24 respectively.) This makes the study of
the (2, 2, 2, 4) case more tricky, but still possible. We will maintain previous notation.

A group G acting with signature (2, 2, 2, 4) on an unbordered non-orientable Klein
surface X admits the following partial monodromy presentation:

G = 〈 a, b, c, d | a2 = b2 = c2 = d2 = (ab)2 = (bc)2 = (cd)2 = (ad)4 = w = . . . = 1 〉 (12)

where w = w(a, b, c, d) is a non-orientable word — that is, a word of odd length greater
than 1 in the generators a, b, c, d. Also G has order 8(g−1), where g is the algebraic genus
of X, by the Riemann-Hurwitz formula (3).

If the action of G extends to an action of a larger group with signature (2, 4, 8), then
that could extend further to the action of an even larger group with signature (2, 3, 8), since
every NEC group with triangular signature (2, 4, 8) is contained as a subgroup of another
NEC group with signature (2, 3, 8), by [9, Table 4] or an easy extension of [16, Thm 2].

On the other hand, if the action of G extends to an action of a larger group with
signature (2, 4, 6), (2, 4, 5) or (2, 3, 8), then the latter group has order 24(g−1), 40(g−1) or
48(g−1) respectively, and moreover, must be the full group Aut(X), because these three
signatures are maximal. Analogously, if the action of G×C2 on the Riemann double cover
X+ extends to an action with signature (2, 4, 6), (2, 4, 5) or (2, 3, 8), then the full group
Aut(X+) has order 48(g−1), 80(g−1) or 96(g−1) respectively.

We consider each of these four possible extensions in turn. In the case of the three
non-normal extensions, we have to look deeper into the NEC group Γ and to consider its
core Λ in Γ′ (that is, the largest subgroup of Γ which is normal in Γ′, or equivalently,
the intersection of all conjugates of Γ by elements of Γ′). The case of triangular signature
(2, 4, 6) will be described in detail, and the other three possibilities explained only briefly.
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5.1 σ(Γ′) = (2, 4, 8)

In this case we can repeat the arguments from the previous Section 4 to obtain the following
analogue of Theorem 4.1:

Theorem 5.1 With G and X and X+ as above, the condition

(i) the action of G on X extends to an action with signature (2, 4, 8)

is equivalent to the combination of the two conditions

(ii) the action of G× C2 on X+ extends to an action with signature (2, 4, 8),

(iii) every monodromy presentation (12) for G is preserved by the assignment (10).

5.2 σ(Γ′) = (2, 4, 6)

This is the case we describe in detail, in the following variant of Theorems 4.1 and 5.1:

Theorem 5.2 With G and X and X+ as above, the condition

(i) |Aut(X)| = 24(g−1)

is equivalent to the combination of the two conditions

(ii) |Aut(X+)| = 48(g−1),

(iii) for every monodromy presentation (12) for G, there exists a non-orientable word
in G expressible as a word w0 in the four elements a, b, dad and cd such that
w0(a, b, dad, cd) = w0(a, dad, b, cd) = 1 in G.

Proof : First we have X ∼= H/∆ where ∆ is the kernel of a smooth epimorphism θ : Γ→ G.

Now suppose that (i) holds, so that Aut(X) has order 24(g−1). Then there exists an
NEC group Γ′ containing Γ with index 3, such that ∆ is normal in Γ′ and Aut(X) ∼= Γ′/∆,
and by Proposition 2.2, the group Γ′ has triangular signature (2, 4, 6). Also ∆+ is normal
in Γ′ (since conjugation preserves orientability), and therefore Γ′/∆+ extends the action of
Γ/∆+ ∼= G× C2 on X+ ∼= H/∆+. Moreover, since (2, 4, 6) is a maximal signature, Γ′/∆+

is in fact the full group Aut(X+), which therefore has order 48(g−1). Thus (ii) holds.

Next, if {c′0, c′1, c′2} is a canonical set of generating reflections for Γ′, which satisfy
(c′0c

′
1)2 = (c′1c

′
2)4 = (c′0c

′
2)6 = 1, then an embedding of Γ in Γ′ is given by

c0 = c′1, c1 = c′0c
′
2c
′
1c
′
2c
′
0, c2 = c′0c

′
2c
′
0c
′
2c
′
0, c3 = c′2. (13)

This embedding is unique up to conjugation, since the extended (2, 4, 6) triangle group has
just one conjugacy class of subgroups of index 3. Verifying this is an easy exercise — for
example using magma [2] — and a little further computation shows that the core Λ of Γ in
Γ′ has index 6, and is generated by x = c′1 = c0, y = c′2c

′
1c
′
2 = c3c0c3, z = c′0c

′
2c
′
1c
′
2c
′
0 = c1

and u = (c′0c
′
2)3 = c2c3, which satisfy the defining relations

x2 = y2 = z2 = u2 = (xy)2 = (xz)2 = (yuzu)2 = 1.
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The signature of Λ is (0; +; [2]; {(2, 2, 2)}), and the quotient Γ′/Λ is isomorphic to D3, of
order 6. Also Λ contains ∆, since Λ is the core of Γ in Γ′, and ∆ = ker θ is contained in
Γ and is normal in Γ′, and so Λ contains a non-orientable word δ = w(c0, c1, c2, c3) of ∆.
The respective images a, b, c and d of c0, c1, c2 and c3 under the epimorphism θ satisfy the
relations in (12), and so give a monodromy presentation of G.

Moreover, K = Λ/∆ is the core of Γ/∆ ∼= G in Γ′/∆ = Aut(X), and K is generated
by a, dad, b and cd (the images under θ of x = c0, y = c3c0c3, z = c1 and u = c2c3),
and with Aut(X)/K ∼= (Γ′/∆)/(Λ/∆) ∼= Γ′/Λ ∼= D3. The image θ(δ) = w(a, b, c, d) in
G of the non-orientable word δ = w(c0, c1, c2, c3) is trivial, so lies in K = Λ/∆, and so
δ can be expressed as a word w0(c0, c3c0c3, c1, c2c3) in the generators of Λ. In particu-
lar, w0(c0, c3c0c3, c1, c2c3) lies in ∆, with trivial image w0(a, dad, b, cd) in G. Also it is
easy to see from the relations (13) that conjugation by the reflection c′0 ∈ Γ′ \ Γ fixes
c0 = c′1 and c2c3 = (c′0c

′
2)3 and interchanges c3c0c3 = c′2c

′
1c
′
2 with c1 = c′0c

′
2c
′
1c
′
2c
′
0.

Thus w0(c0, c1, c3c0c3, c2c3) = w0(c0, c3c0c3, c1, c2c3)c
′
0 lies in ∆, and it follows that 1 =

θ(w0(c0, c1, c3c0c3, c2c3)) = w0(a, b, dad, cd), so this monodromy presentation satisfies (iii).

Next, consider an arbitrary monodromy presentation of G. For this, there exists a
canonical set of generating reflections ĉ0, ĉ1, ĉ2 and ĉ3 of Γ, whose images in G satisfy
the same form of relations as in the partial presentation (12). But we know there exists
a unique embedding of Γ in Γ′, up to conjugacy in Γ′, and so there exists some element
γ′ ∈ Γ′ such that ĉi = γ′−1ciγ

′ for 0 ≤ i ≤ 3, where the reflections ci are given by (13). It
follows that conjugation by γ′−1c′0γ

′ induces an automorphism of the normal subgroup K
of Γ′/∆ = Aut(X), fixing the images of ĉ0 and ĉ2ĉ3, and interchanging the image of ĉ3ĉ0ĉ3

with the image of ĉ1. Hence the given monodromy presentation satisfies (iii) as well.

Conversely, suppose that (ii) and (iii) both hold. Then by (ii), we know there exists an
NEC group Γ′ with triangular signature (2, 4, 6) such that Γ′ contains Γ, and ∆+ is normal
in Γ′, and we need to show that ∆ is also normal in Γ′ (so that the group Γ′/∆ extends
the action of G = Γ/∆ on X). Since Γ′ = 〈Γ, c′0〉, and Γ normalises ∆, we need only show
that c′0 normalises ∆. By (iii), there exists a non-orientable word in Γ expressible as a
word w0 in the four elements c0, c1, c3c0c3 and c2c3 such that both w0(c0, c1, c3c0c3, c2c3)
and w0(c0, c3c0c3, c1, c2c3) lie in ker θ = ∆. In particular, if δ = w0(c0, c1, c3c0c3, c2c3) then
∆ = 〈∆+, δ〉, and then since ∆+ is normal in Γ′, all we have to do is show that δc

′
0 ∈ ∆.

But this is easy: again since conjugation by c′0 fixes c0 and c2c3 and interchanges c3c0c3

with c1, we find that

δc
′
0 = w0(c0, c1, c3c0c3, c2c3)c

′
0 = w0(c

c′0
0 , c

c′0
1 , (c3c0c3)c

′
0 , (c2c3)c

′
0) = w0(c0, c3c0c3, c1, c2c3),

and we know that w0(c0, c3c0c3, c1, c2c3) lies in ∆, by (iii). Thus (i) holds, as required.

Remark 5.3 Suppose the smooth epimorphism θ : Γ → G above can be extended to
θ′ : Γ′ → Aut(X), with |Aut(X)| = 24(g−1). Then with the embedding of Γ in Γ′ given
in (13), we can take a = θ(c0) = θ′(c′1) and d = θ(c3) = θ′(c′2), and then if we take
α = θ′(c′0), we see that the group Aut(X) is generated by a, d and α, which satisfy the
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relations α2 = a2 = d2 = (αa)2 = (ad)4 = (αd)6 = 1. Note that α does not normalise
G, but it normalises the core K of G in Aut(X), which has index 6 in Aut(X), and is
generated by a, dad, b and cd, where b = θ(c1) = αdadα and c = θ(c2) = αdαdα. Also
Aut(X+) ∼= Aut(X)×C2, by Proposition 2.1 and the maximality of the signature (2, 4, 6).

Remark 5.4 It follows from the proof of Proposition 2.1 that the surface kernel epimor-
phism θ+ : Γ → Γ/∆+ ∼= G × C2 is given by θ+(c0) = at, θ+(c1) = bt, θ+(c2) = ct
and θ+(c3) = dt, where a, b, c and d represent orientation-preserving automorphisms that
generate G, and t is an orientation-reversing involution that generates the factor C2.
Moreover, if θ+ can be extended to a surface kernel epimorphism Γ′ → Aut(X+), with
|Aut(X+)| = 48(g−1), then Aut(X+) is generated by at, dt and an element β such that
β2 = (at)2 = (dt)2 = (βat)2 = (ab)4 = (βdt)6 = 1, with bt = βdadtβ and ct = βdtβdtβ.

5.3 σ(Γ′) = (2, 4, 5)

Suppose that the NEC group Γ with signature (2, 2, 2, 4) is contained as a non-normal
subgroup of index 5 in some NEC group Γ′ with signature (2, 4, 5), and that {c0, c1, c2, c3}
and {c′0, c′1, c′2} are canonical sets of generating reflections for Γ and Γ′ respectively, with
(c′0c

′
1)2 = (c′1c

′
2)4 = (c′0c

′
2)5 = 1. Then an embedding of Γ in Γ′ is given by

c0 = c′2, c1 = c′0c
′
2c
′
0c
′
2c
′
1c
′
2c
′
0c
′
2c
′
0, c2 = c′0c

′
2c
′
1c
′
2c
′
0, c3 = c′1,

and this is unique up to conjugation because Γ′ has just one conjugacy class of subgroups
of index 5 isomorphic to Γ. (There is one other class of subgroups of index 5, but those are
isomorphic to NEC groups with signature (0; +; [2]; {(2, 4)}).)

The core Λ of Γ in Γ′ has index 10 in Γ′, with quotient Γ′/Λ isomorphic to D5, and
is generated by the five elements x = c′1 = c3, y = c′2c

′
1c
′
2 = c0c3c0, z = c′0c

′
2c
′
1c
′
2c
′
0 = c2,

u = c′2c
′
0c
′
2c
′
1c
′
2c
′
0c
′
2 = c0c2c0 and v = (c′0c

′
2)2c′1(c′2c

′
0)2 = c1, which satisfy defining relations

x2 = y2 = z2 = u2 = v2 = (xy)2 = (xz)2 = (yu)2 = (zv)2 = (uv)2 = 1.

In particular, Λ has signature (0; +; [−]; {(2, 2, 2, 2, 2)}). Also conjugation by the reflection
c′0 ∈ Γ′ \ Γ fixes c3 and interchanges c1 and c2 with c0c2c0 and c0c3c0 respectively. All of
this gives the following analogue of Theorem 5.2, the proof of which is omitted.

Theorem 5.5 With G and X and X+ as above, |Aut(X)| = 40(g−1) if and only if
|Aut(X+)| = 80(g − 1) and for every monodromy presentation (12) for G, there exists a
non-orientable word in G expressible as a word w0 in the five elements b, c, d, aca and
ada such that w0(b, c, d, aca, ada) = w0(aca, ada, d, b, c) = 1 in G.

Remark 5.6 If the epimorphism θ : Γ → G can be extended to θ′ : Γ′ → Aut(X), with
|Aut(X)| = 40(g−1), then Aut(X) is generated by a = θ(c0) = θ′(c′2), d = θ(c3) = θ′(c′1)
and α = θ′(c′0), which satisfy the relations α2 = d2 = a2 = (αd)2 = (da)4 = (αa)5 = 1.
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Again α does not normalise G, but normalises the core K of G in Aut(X), which has index
10 in Aut(X) and is generated by b, c, d, aca and ada, where b = θ(c1) = (αa)2d(aα)2 and
c = θ(c2) = αadaα. Also Aut(X+) ∼= Aut(X)× C2, by Proposition 2.1 and maximality of
the signature (2, 4, 5).

Remark 5.7 If |Aut(X+)| = 80(g−1), and t is an orientation-reversing involution that
generates the factor C2 in the image of the epimorphism θ+ : Γ → Γ/∆+ ∼= G × C2, then
Aut(X+) is generated by at, dt and an element β such that β2 = (dt)2 = (at)2 = (βdt)2 =
(da)4 = (βat)5 = 1, with bt = (βat)2dt(atβ)2 and ct = βadatβ.

5.4 σ(Γ′) = (2, 3, 8)

In this last case, we suppose that the NEC group Γ with signature (2, 2, 2, 4) is contained
as a non-normal subgroup of index 6 in an NEC group Γ′ with signature (2, 3, 8), and
that {c0, c1, c2, c3} and {c′0, c′1, c′2} are canonical sets of generating reflections for Γ and Γ′

respectively, with (c′0c
′
1)2 = (c′1c

′
2)3 = (c′0c

′
2)8 = 1. An embedding of Γ in Γ′ is given by

c0 = c′1, c1 = c′0, c2 = c′2c
′
0c
′
2c
′
0c
′
2c
′
0c
′
2, c3 = c′2c

′
0c
′
2c
′
1c
′
2c
′
0c
′
2,

and this is unique up to conjugation because Γ′ has just one conjugacy class of subgroups
of index 6 isomorphic to Γ. (There are six other classes of subgroups of index 6, but
those are isomorphic to NEC groups with signatures (0; +; [2, 4, 8]; {−}), (0; +; [4]; {(4)}),
(0; +; [8]; {(2)}), (0; +; [2]; {(2, 4)}), (0; +; [−]; {(2, 8, 8)}) and (0; +; [−]; {(4, 4, 4)}).)

The core Λ of Γ in Γ′ has index 24 in Γ′, with quotient Γ′/Λ ∼= S4, and is generated
by x = (c′0c

′
2)4 = c1c2, y = c′0c

′
2c
′
0c
′
1c
′
2c
′
1c
′
0c
′
2c
′
1 = c1c3c0 and z = c′0c

′
1c
′
2c
′
0c
′
1c
′
2c
′
1c
′
0c
′
2 = c0c1c3,

which satisfy the defining relations x2 = (yz−1)2 = (xyz)2 = 1. These can be rewritten as

d 2x1x2x3 = x 2
1 = x 2

2 = x 2
3 = 1,

where d = y−1, x1 = x, x2 = xyz and x3 = z−1y, so Λ has signature (1;−; [2, 2, 2]; {−}).
Conjugation by the reflection c′2 ∈ Γ′ \Γ fixes x and interchanges y and z with xy and z−1

respectively, and using this, we obtain the following analogue of Theorem 5.2:

Theorem 5.8 With G and X and X+ as above, |Aut(X)| = 48(g−1) if and only if
|Aut(X+)| = 96(g − 1) and for every monodromy presentation (12) for G, there exists a
non-orientable word in G expressible as a word w0 in the three elements bc, bda and abd
such that w0(bc, bda, abd) = w0(bc, cda, dba) = 1 in G.

Remark 5.9 If the epimorphism θ : Γ → G can be extended to θ′ : Γ′ → Aut(X), with
|Aut(X)| = 48(g−1), then Aut(X) is generated by a = θ(c0) = θ′(c′1), b = θ(c1) = θ′(c′0)
and α = θ′(c′2), which satisfy the relations b2 = a2 = α2 = (ba)2 = (aα)3 = (αb)8 = 1.
Once again α does not normalise G, but normalises the core K of G in Aut(X), which has
index 24 in Aut(X) and is generated by bc, bda and abd, where c = θ(c2) = αbαbαbα and
d = θ(c3) = αbαaαbα. Also Aut(X+) ∼= Aut(X)× C2, by Proposition 2.1 and maximality
of the signature (2, 3, 8).
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Remark 5.10 If |Aut(X+)| = 96(g−1), and t is an orientation-reversing involution that
generates the factor C2 in the image of the epimorphism θ+ : Γ → Γ/∆+ ∼= G × C2, then
Aut(X+) is generated by at, bt and an element β such that (bt)2 = (at)2 = β2 = (ba)2 =
(atβ)3 = (βbt)8 = 1, with ct = βbtβbtβbtβ and dt = βbtβatβbtβ.

5.5 Examples with exceptional signature (2,2,2,4)

To complete our study of unbordered Klein surfaces admitting the action of a group G
with exceptional signature (2, 2, 2, 4), we show in Examples 5.11 to 5.15 below that there
are cases where the action can extend, and others where it cannot be extended.

Example 5.11 Let G be the symmetric group G = S8, and take a = (1, 2)(3, 4)(5, 6)(7, 8),
b = (5, 6), c = (4, 7) and d = (1, 3)(2, 5)(4, 7)(6, 8). These elements satisfy the relations
for the extended (2, 2, 2, 4) quadrangle group, and it is easy to show that they generate S8,
for example using transitivity and the fact that b is a single 2-cycle. Also the subgroup
generated by ab = (1, 2)(3, 4)(7, 8), bc = (5, 6)(4, 7) and cd = (1, 3)(2, 5)(6, 8) is S8, and
hence there exists a non-orientable word on the generators a, b, c and d. It follows that
the corresponding action of G (with signature (2, 2, 2, 4)) is on a non-orientable surface X,
which by the Riemann-Hurwitz formula has algebraic genus g = |G|/8 + 1 = 5041.

Next, conjugation by the involutory permutation (2, 3)(4, 5)(6, 7) is an automorphism
of G which interchanges a with d, and b with c. Hence by Theorem 5.1, the action of S8

on X extends to the action with signature (2, 4, 8) of a larger group G′ if and only if the
same happens for the action of S8×C2 on its Riemann double cover X+ of X. In turn, this
happens if and only if the NEC group Γ with signature (2, 2, 2, 4) uniformising the action
of G on X is contained in an NEC group Γ′ with signature (2, 4, 8). If that happens, then
since the automorphism is inner, the group G′ will be S8 × C2.

On the other hand, the possible extensions described in Subsections 5.2, 5.3 and 5.4 to
actions with signatures (2, 4, 6), (2, 4, 5) and (2, 3, 8) respectively cannot occur. In the first
case, the subgroup generated by a, dad, b and cd has index 1 in S8, rather than index 2 (see
Remark 5.3); in the second case, the subgroup generated by d, ada, c, aca and b has index 1
in S8, rather than index 2 (see Remark 5.6); and in the third case, the subgroup generated
by bc, bda and abd has index 1 in S8, rather than index 4 (see Remark 5.9). Hence if the
initial extension occurs, then no further extension is possible, and G′ = S8 ×C2 is the full
group Aut(X), and G′ × C2 is the full group Aut(X+).

Example 5.12 In the direct product S4 × C2, let z be the generator of the central C2

factor, and then define a = (1, 2)(3, 4)z, b = (1, 3)(2, 4)z, c = (2, 4)z and d = (2, 4).
These elements satisfy the relations for the extended (2, 2, 2, 4) quadrangle group, and it is
easy to prove that they generate a group G isomorphic to D4 ×C2. Also conjugation by a
takes bd = (1, 3)z to c, so abdac is trivial. This gives a non-orientable word, and it follows
that the corresponding action of D4 × C2 with signature (2, 2, 2, 4) is on a non-orientable
surface X, with algebraic genus g = 3. Moreover, b commutes with (1, 4)(2, 3)z = dad,
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and so the non-orientable word w0(a, b, dad, cd) = abdac = ab(dad)cd can be expressed
equally as w0(a, dad, b, cd) = a(dad)bcd in G. (This also follows from conjugation by (1, 2)
in S4 × C2, which fixes a and cd (= z) and interchanges b with dad.)

Hence, by Theorem 5.2, if the NEC group Γ with signature (2, 2, 2, 4) uniformising the
action of G on X is contained in some NEC group Γ′ with signature (2, 4, 6), then the
actions of G and G × C2 on X and X+ respectively will both extend to larger actions
with signature (2, 4, 6). Indeed, if this happens then the action of G can be extended to an
action of the group G′ = S4 × C2 with signature (2, 4, 6) via the generators A = (3, 4)z,
B = (1, 2)(3, 4)z and C = (2, 4), which satisfy the relations for the extended (2, 4, 6)
triangle group. In that case, an embedding of G in G′ is given by a = B, b = ACBCA,
c = ACACA and d = C; also no further extension is possible since the triangular NEC
signature (2, 4, 6) is maximal, and therefore Aut(X) = G′ and Aut(X+) = G′ × C2.

Example 5.13 Let G be the subgroup of S16 generated by the permutations

a = (2, 3)(4, 7)(6, 8)(10, 13)(11, 14)(12, 15),

b = (1, 9)(2, 12)(3, 15)(4, 11)(5, 16)(6, 8)(7, 14)(10, 13),

c = (1, 4)(2, 6)(3, 13)(5, 14)(7, 16)(8, 12)(9, 11)(10, 15),

d = (1, 2)(3, 5)(4, 6)(7, 10)(8, 11)(9, 12)(13, 14)(15, 16).

These four elements satisfy the relations for the extended (2, 2, 2, 4) quadrangle group.
Also letting e = [a, c] = (ac)2 = (1, 16)(2, 15)(3, 12)(4, 7)(5, 9)(6, 10)(8, 13)(11, 14), we
see that b, c, d and e are four commuting involutions, which generate an elementary
abelian 2-group of order 16, and furthermore, that conjugation by the involution a takes
(b, c, d, e) to (b, ce, bde, e). Thus G is isomorphic to a semi-direct product of (C2)4 by C2,
of order 32. Also b = (acd)2, hence b(acd)2 is a non-orientable word, and it follows that
the corresponding action of G with signature (2, 2, 2, 4) is on a non-orientable surface X,
with algebraic genus g = 5. Moreover, the non-orientable word b(acd)2 is expressible as
b · aca · ada · c · d = w0(b, c, d, aca, ada), and the relations b = (acd)2 and cdc = d give also

w0(aca, ada, d, b, c) = aca · b · c · ada · d = aca(acd)2cadad = (ad)4 = 1.

Hence, by Theorem 5.5, if the NEC group Γ with signature (2, 2, 2, 4) uniformising the
action of G on X is contained in an NEC group Γ′ with signature (2, 4, 5), then the actions
of G and G×C2 on X and X+ respectively will both extend to larger actions with signature
(2, 4, 5). Indeed, if this happens then the action of G can be extended to an action of the
subgroup G′ of S16 of order 160 generated by

A = (3, 4)(5, 6)(7, 9)(8, 11)(10, 12)(15, 16),

B = (1, 2)(3, 5)(4, 6)(7, 10)(8, 11)(9, 12)(13, 14)(15, 16),

C = (2, 3)(4, 7)(6, 8)(10, 13)(11, 14)(12, 15),

which satisfy the relations for the extended (2, 4, 5) triangle group. In that case, an em-
bedding of G in G′ is given by a = C, b = ACACBCACA, c = ACBCA and d = B. The
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group G′ itself is a semi-direct product of the abelian group of order 16 generated by b, c,
d and e, by the dihedral subgroup of order 10 generated by A and C.

Example 5.14 Let G be the direct product PGL(2, 7) × C2, of order 672, and in this
group, let u be the central involution, and define elements a, b, c and d in G such that

au is the transformation z 7→ z/(5z − 1) in PGL(2, 7),

bu is the transformation z 7→ (4z + 4)/(z − 4) in PSL(2, 7),

cu is the transformation z 7→ 3/z in PSL(2, 7),

d is the transformation z 7→ (z − 5)/(4z − 1) in PGL(2, 7).

Then a, b, c and d are involutions that generate G, and satisfy the relations for the
extended (2, 2, 2, 4) quadrangle group. Also it is easy to see that the elements bda =
bu · d · au and cda = cu · d · au both have order 7. (In fact, these are the transformations
z 7→ (6z + 3)/(z − 5) and z 7→ (4z − 1)/(z − 1) in PSL(2, 7).) Therefore both (bda)7 and
(cda)7 are non-orientable words in G, and so the corresponding group action with signature
(2, 2, 2, 4) is on a non-orientable surface X, with algebraic genus g = 85. Furthermore, since
bcb = c we can write (cda)7 as (bc · bda)7 = w0(bc, bda, abd), and the corresponding word
w0(bc, cda, dba) is (bc · cda)7 = (bda)7, which is trivial as well.

Hence, by Theorem 5.8, if the NEC group Γ with signature (2, 2, 2, 4) uniformising
the action of G on X is contained in an NEC group Γ′ with signature (2, 3, 8), then the
actions of G and G×C2 on X and X+ respectively will both extend to larger actions with
signature (2, 4, 5). Indeed, if this happens then the action of G can be extended to an action
of the group G′ defined as the semi-direct product of PSL(2, 7) by S4, where every even
permutation in S4 centralises PSL(2, 7), and every odd permutation acts in the same way
as conjugation in PGL(2, 7) by the linear fractional transformation v : z 7→ 1/z (which lies
outside PSL(2, 7)). The group G can be embedded into G′, via a homomorphism that takes
u and v to the permutations (1, 2)(3, 4) and (1, 2), respectively. (This is possible because
G = PGL(2, 7)×C2 is isomorphic to a semi-direct product of PSL(2, 7) by 〈u, v〉 ∼= C2×C2.)
Moreover, the action of G extends to one of G′ with signature (2, 3, 8), via the generators

A = b = (bu)(1, 2)(3, 4), B = a = (auv)(3, 4), C = (dv)−1(1, 4),

with a = B, b = A, c = CACACAC and d = CACBCAC, and for this action, (ABC)21

is a non-orientable word. Note also that the given action of G with signature (2, 2, 2, 4)
extends partially to one of a subgroup of order 2|G| = 1344 and index 3 in G′, isomorphic
to the obvious semi-direct product of PSL(2, 7) by D4, and acting with signature (2, 4, 8).

Our final example is actually a whole family of examples, in which the given group
action with signature (2, 2, 2, 4) does not extend in any of the ways we have considered.

Example 5.15 For each positive integer n we consider the group Gn with presentation

Gn = 〈a, b, c, d | a2 = b2 = c2 = d2 = (ab)2 = (bc)2 = (cd)2 = (ad)2c = (ac)2 = (bd)2n = 1〉.
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This group is an extension of its cyclic normal subgroup of order n generated by (bd)2 by
the group D4 × C2 of order 16, and as such, Gn has order 16n. It acts with signature
(2, 2, 2, 4) on an unbordered surface Xn, which is non-orientable (since (ad)2c is a non-
orientable word) and has algebraic genus g = 2n+1. We claim that the action of Gn on Xn

does not extend to any larger action with triangular signature (2, 4, 8), (2, 4, 6), (2, 4, 5) or
(2, 3, 8), and so in fact Gn is the full automorphism group Aut(Xn) of Xn, for all n.

To begin with, there is no extension to an action with signature (2, 4, 8) as described
in Subsection 5.1, because any automorphism of Gn that interchanges a with d would have
to fix the involution c = (ad)2, and so cannot interchange c with b. Next, the possible
extensions described in Subsections 5.2 and 5.4 to actions with signatures (2, 4, 6) and
(2, 3, 8) respectively cannot occur, because in the first case the subgroup generated by a,
dad, b and cd has index 1 in Gn, rather than index 2 (see Remark 5.3), and in the second
case the subgroup generated by bc, bda and abd has index 2 in Gn, rather than index 4 (see
Remark 5.9). Finally, suppose there is an extension to an action with signature (2, 4, 5),
as described in Subsection 5.3. Then the index 2 subgroup of Gn generated by d, ada, c,
aca and b is preserved by some automorphism ϕ of Aut(X) outside Gn that fixes d and
interchanges b and c with aca and ada respectively. But the defining relations for Gn give
aca = c and ada = cd, so it follows that ϕ interchanges b with c, and hence that b = ada.
Thus Gn is generated by the involutions a and d, so Gn is dihedral, and hence cannot have
D4 × C2 as a quotient, contradiction. This proves our claim, for all n.
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