
 

Libraries and Learning Services 
 

University of Auckland Research 
Repository, ResearchSpace 
 

Suggested Reference 

Elkind, E., & Slinko, A. M. (2016). Rationalizations of Voting Rules. In F. Brandt, 
V. Conitzer, U. Endriss, J. Lang, & A. Procaccia (Eds.), Handbook of 
Computational Social Choice (pp. 169-196). Cambridge: Cambridge University 
Press. doi:10.1017/CBO9781107446984.009 

 

Copyright 

Items in ResearchSpace are protected by copyright, with all rights reserved, 
unless otherwise indicated. Previously published items are made available in 
accordance with the copyright policy of the publisher. 

This material has been published in Handbook of Computational Social Choice 
edited by F. Brandt, V. Conitzer, U. Endriss, J. Lang, & A. Procaccia. This version 
is free to view and download for personal use only. Not for re-distribution, re-
sale or use in derivative works.  

©  Cambridge University Press 2016  

For more information, see General copyright, Publisher copyright. 

 

http://dx.doi.org/10.1017/CBO9781107446984.009
http://www.library.auckland.ac.nz/services/research-support/depositing-theses/copyright
https://www.cambridge.org/core/services/open-access-policies/open-access-books/green-open-access-policy-for-books


Handbook of Computational Social Choice

Edited by Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang,
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Rationalizations of Voting Rules

8.1 Introduction

From antiquity to these days, voting has been an important tool for making collec-

tive decisions that accommodate the preferences of all participants. Historically, a

remarkably diverse set of voting rules have been used (see, e.g., Brams and Fishburn,

2002), with several new voting rules proposed in the last three decades (Tideman,

1987; Schulze, 2003; Balinski and Laraki, 2010). Thus, when decision-makers need

to select a voting rule, they have plenty of choice: should they aggregate their opin-

ions using something as basic as Plurality voting or something as sophisticated as

Ranked Pairs? Or should they perhaps design a new voting rule to capture the

specific features of their setting?

Perhaps the best known way to answer this question is to use the axiomatic

approach, i.e., identify desirable properties of a voting rule and then choose (or

construct) a rule that has all of these properties. This line of work was initiated

by Arrow (1951) and led to a great number of impossibility theorems, as it turned

out that some desirable properties of voting systems are incompatible. By relaxing

these properties, researchers obtained axiomatic characterizations of a number of

classical voting rules, such as Majority (May, 1952), Borda (Young, 1975) and

Kemeny (Young and Levenglick, 1978); see the survey by Chebotarev and Shamis

(1998) as well as Chapter 2 (Zwicker, 2015).

However, early applications of voting suggest a different perspective on this ques-

tion. It is fair to say that in the Middle Ages voting was most often used by religious

organizations (Uckelman and Uckelman, 2010). The predominant view in ecclesias-

tical elections was that God’s cause needed the most consecrated talent that could

be found for leadership in the church. Moreover, it was believed that God knew who

the best candidate was, so the purpose of elections was to reveal God’s will. It is

therefore not surprising that when the Marquis de Condorcet (1785) undertook the

first attempt at systematization of voting rules, he was influenced by the philosophy

of church elections. His view was that the aim of voting is to determine the “best”
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2 Rationalizations of Voting Rules

decision for the society when voters are prone to making mistakes. This approach

assumes that there is an objectively correct choice, but voters have different opin-

ions due to errors of judgment; absent these errors, they would all agree on the most

suitable alternative. Thus, one should aim to design a voting rule that maximizes

the probability of identifying the best choice. Depending on the model of “noise”

or “mistakes” in voters’ judgment, we get different voting rules. In statistics, this

approach is known as maximum likelihood estimation (MLE): it tries to estimate

the state of the world (which is hidden) that is most likely to produce the observed

noisy data.

A somewhat different, but related approach, which takes its roots in ideas of

Charles Dodgson (1876), can be called consensus-based. The society agrees on a

notion of a consensus (for example, we could say that there is a consensus if all

voters agree which alternative is the best, or if there exists a Condorcet winner), and

the result of each election is viewed as an imperfect approximation to a consensus.

Specifically, if a preference profile R is a consensus, then we pick the consensus

winner, and otherwise we output the winners of consensus profiles R′ that are as

close to R as possible. Alternatively, we may say that the society looks for a minimal

change to the given preference profile that turns it into a profile with an indisputable

winner. At the heart of this approach is the agreement as to (1) which preference

profiles should be viewed as consensual and (2) what is the appropriate notion of

closeness among preference profiles. It turns out that many common voting rules

can be explained and classified by different choices of these parameters.

In this chapter we will survey the MLE framework and the consensus-based

framework, starting with the latter. We demonstrate that both frameworks can be

used to rationalize many common voting rules, with the consensus-based frame-

work being somewhat more versatile. We also establish some connections between

the two frameworks. We remark that these two frameworks are not the only alter-

natives to the axiomatic analysis. For instance, Camps et al. (2014) put forward

an approach that is based on propositional logic. Further, in economic literature

the term “rationalization” usually refers to explaining the behavior of an agent or

a group of agents via an acyclic (or transitive) preference relation, and there is

a large body of literature that investigates which voting rules are rationalizable

in this sense (see Bossert and Suzumura, 2010, for a survey). In this chapter, we

focus on the MLE framework and the consensus-based framework because these

two methods for rationalizing voting rules are interesting from a computational

perspective: as we will see, explaining a voting rule via a consensus and a “good”

measure of closeness implies upper bounds on its algorithmic complexity, whereas

MLE-based voting rules are desirable for many applications, such as crowdsourcing,

and therefore implementing them efficiently is of paramount importance.

In what follows, we assume that the set of alternatives is A and |A| = m; we

use the terms alternatives and candidates interchangeably. Also, unless specified

otherwise, voters’ preferences and ballots are assumed to be linear orders over A.
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8.2 Consensus-Based Rules

The goal of the consensus-based approach is to reach a compromise among all

voters, i.e., to arrive at a situation where there is agreement in society as to which

outcome is the best. This may require persuading some voters to modify their

opinions in minor ways, and, as a result, to make small changes to their ballots.

Obviously it is desirable to minimize the number and magnitude of these changes.

Thus, the best alternatives are the ones for which the agreement can be reached at

the smallest cost (measured by the total amount of changes). In other words, given

an arbitrary preference profile, we proceed by identifying the consensual profiles

that are most similar to it and outputting their winners. The result then depends

on how we define consensual profiles and how we measure the magnitude of change

in votes. The latter question is usually addressed by using a distance over the space

of profiles; this is why voting rules that can be obtained in this manner are called

distance rationalizable. Often, this distance is obtained by computing the number

of “unit changes” needed to transform one profile into the other, where the notion

of “unit change” may vary from one voting rule to another.

This method of constructing voting rules can be traced back to Dodgson (1876),

who was the first to define a voting rule in this manner (for a specific notion of

consensus and a specific distance between profiles, see Section 8.2.1). More recently,

it was formalized and studied by Nitzan (1981), Lerer and Nitzan (1985), Campbell

and Nitzan (1986), and Baigent (1987), and subsequently by Meskanen and Nurmi

(2008) and Elkind et al. (2010a,b, 2011, 2012); we also point the reader to the sur-

vey of Eckert and Klamler (2011). It turns out that many classic voting rules can

be obtained in this manner; Meskanen and Nurmi (2008) put together an extensive

catalogue of distance rationalizations of common voting rules, with additional ex-

amples provided by Elkind et al. (2010b, 2012). Furthermore, many properties of

voting rules can be derived from their distance rationalizations: a voting rule can

be shown to have “nice” properties if it can be rationalized via a “nice” consensus

class and a “nice” distance. This makes the distance rationalizability approach em-

inently suitable for constructing new voting rules: it allows us to combine known

distances and consensus classes, and derive conclusions about the resulting rules

based on the properties of their components.

We start by presenting a few examples that illustrate the concepts of consen-

sus and distance to consensus, followed by a formal definition and a discussion of

properties of distance rationalizable voting rules.

8.2.1 Examples

The examples in this section are taken from the work of Meskanen and Nurmi

(2008) and Elkind et al. (2012); see these papers for additional references. We
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provide brief descriptions of the voting rules we consider; for formal definitions the

reader is referred to Chapter 2 (Zwicker, 2015).

Dodgson. Perhaps the most canonical example of the consensus-based approach

is the Dodgson rule. Recall that winner determination under this rule pro-

ceeds as follows. If the given preference profile has a Condorcet winner, i.e.,

a candidate that beats every other candidate in a pairwise election, then

this candidate is declared the unique Dodgson winner. Otherwise, for every

candidate c we compute her Dodgson score, i.e., the number of swaps of

adjacent candidates in voters’ ballots that need to be performed in order to

make c a Condorcet winner. We then output all candidates with the small-

est Dodgson score. This definition follows the principles of the distance

rationalizability framework: the underlying notion of agreement is the ex-

istence of a Condorcet winner, and the unit changes are swaps of adjacent

candidates. This notion of unit change corresponds to a distance on rank-

ings known as the swap distance, which is the number of swaps of adjacent

candidates needed to transform one ranking into the other. We refer the

reader to Chapter 5 (Caragiannis et al., 2015) for a complexity-theoretic

analysis of the Dodgson rule.

Kemeny. The Kemeny rule is also defined in terms of the swap distance. While

it is more common to view this rule as a social preference function, i.e., a

mapping that, given a preference profile, outputs a set of rankings, in this

section we will be interested in the interpretation of this rule as a social

choice function. Under the Kemeny rule, we identify all rankings that min-

imize the total swap distance to the voters’ ballots. The associated social

preference function then outputs all such rankings, whereas the Kemeny

social choice function (which we will refer to as the Kemeny rule) out-

puts all candidates that are ranked first in at least one of these rankings.

This rule can be viewed as another example of the distance rationalizabil-

ity approach: the consensual profiles are ones where all votes are identical,

and the unit changes are the same as for the Dodgson rule, i.e., swaps of

adjacent candidates.

Plurality. Under Plurality rule, each candidate gets one point from each voter who

ranks her first; the winners are the candidates with the largest number of

points. Since Plurality considers voters’ top candidates only, it is natural to

use a notion of consensus that also has this property: we say that there is

an agreement in the society if all voters rank the same candidate first. Now,

consider an n-voter preference profile. If some candidate a receives na ≤ n
Plurality votes, there are n− na voters who do not rank her first. Thus, if

we want to turn this profile into a consensus where everyone ranks a first,

and we are allowed to change the ballots in any way we like (at a unit cost

per ballot), we have to modify n−na ballots. In other words, if our notion
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of a unit change is an arbitrary modification of an entire ballot, then the

number of unit changes required to make a candidate a consensus winner

is inversely related to her Plurality score. In particular, the candidates for

whom the number of required unit changes is minimal are the Plurality

winners. Alternatively, we can define a unit change as a swap of two (not

necessarily adjacent) candidates; the argument above still applies, thereby

showing that this construction also leads to the Plurality rule.

Borda. Recall that the Borda score of a candidate a in an n-voter, m-candidate

profile is given by (m − r1) + · · · + (m − rn) = nm −
∑
i ri, where ri,

i = 1, . . . , n, is the rank of a in the i-th ballot. To distance rationalize this

rule, we use the same notion of consensus as for the Plurality rule (i.e.,

all voters agree on who is the best candidate) and the same notion of unit

change as for the Dodgson rule and the Kemeny rule, namely, a swap of

adjacent candidates. Indeed, to ensure that a is ranked first by voter i, we

need to perform ri−1 swaps of adjacent candidates. Consequently, making

a the unanimous winner requires
∑
i ri − n swaps. That is, the number

of swaps required to make a candidate a consensus winner is inversely

related to her Borda score. This construction, which dates back to Farkas

and Nitzan (1979), can be extended to scoring rules other than Borda, by

assigning appropriate weights to the swaps (Lerer and Nitzan, 1985).

Copeland. The Copeland score of a candidate a can be defined as the number

of pairwise elections that a wins (a may also get additional points for the

pairwise elections that end in a tie; in what follows we focus on elections

with an odd number of voters to avoid dealing with ties). The Copeland

winners are the candidates with the highest Copeland score. For this rule,

an appropriate notion of consensus is the existence of a Condorcet winner.

As for the notion of unit change, it is convenient to formulate it in terms of

the pairwise majority graph. Recall that the pairwise majority graph G(R)

of a profile R over a candidate set A is the directed graph whose vertex

set is A and there is a directed edge from candidate a to candidate b if a

strict majority of voters in R prefer a to b. Consider two n-voter profiles

R1 and R2 over a candidate set A; assume that n is odd. A natural notion

of a unit change in this setting is an edge reversal, i.e., a pair (a, b) ∈
A × A such that in G(R1) there is an edge from a to b, whereas in G(R2)

there is an edge from b to a. The distance between R1 and R2 is then

defined as the number of edge reversals. To see that this distance combined

with the Condorcet consensus rationalizes the Copeland rule, note that if

a candidate’s Copeland score is s, she can be made the Condorcet winner

by reversing m − 1 − s edges, so the number of edge reversals and the

candidate’s Copeland score are inversely related.

Maximin. The Maximin score of a candidate a in an n-voter profile R over a

candidate set A is the number of votes that a gets in her most difficult
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pairwise election (i.e., minb∈A nab, where nab is the number of voters in R

who prefer a to b); the winners are the candidates with the highest score.

Suppose that R has no Condorcet winner, and consider a candidate a ∈ A.

Let b be a’s most difficult opponent, i.e., a’s Maximin score is sa = nab;

note that sa ≤ n
2 <

n+1
2 , since a is not a Condorcet winner. Then if we add

n+1−2sa ballots where a is ranked first, a will be the Condorcet winner in

the resulting profile (which has 2n+ 1−2sa voters, with n+ 1−sa of these

voters ranking a above c for every c ∈ A). On the other hand, if we add

k < n+ 1− 2sa ballots, we obtain a profile where at least n− sa voters out

of n+ k prefer b to a; as 2(n− sa) ≥ n+ k, this means that at least half of

the voters in this profile prefer b to a, so a is not a Condorcet winner. Thus,

a candidate’s Maximin score is inversely related to the number of ballots

that need to be added in order to obtain a profile where this candidate is

the Condorcet winner.

This argument explains the Maximin rule in the language of agreement

and changes. However, this explanation does not quite fit our framework,

since it uses a notion of unit change (adding a single ballot) that does not

directly correspond to a distance. The problem here is that a distance is

supposed to be symmetric (see Section 8.2.2), whereas adding ballots is

an inherently asymmetric operation: if we can turn R into R′ by adding s

ballots, we cannot turn R′ into R by adding s ballots. It turns out, however,

that the Maximin rule can be rationalized via the distance that measures

the number of ballots that need to be added or deleted to turn one profile

into another (see Elkind et al., 2012, for details). Intuitively, this is because

for the purpose of reaching a Condorcet consensus adding a ballot is always

at least as useful as deleting a ballot.

We remark that there is another voting rule that is defined in terms of

deleting ballots so as to obtain a Condorcet consensus, namely the Young

rule, which is discussed in Chapter 5 (Caragiannis et al., 2015). While the

Young rule, too, can be distance-rationalized, the construction is quite a

bit more complicated than for Maximin (Elkind et al., 2012).

These examples raise a number of questions. First, is it the case that all voting

rules can be explained within the consensus-based framework? Second, what are

the appropriate notions of consensus and distance to consensus? Third, can we

derive any conclusions about a voting rule based on the notion of consensus and

distance that explain it? To answer these questions, we need to define our framework

formally.
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8.2.2 Formal Model

The consensus-based framework that has been introduced informally so far has two

essential components: the definition of what it means to have an agreement in the

society and the notion of distance between preference profiles. We will now discuss

both of these components in detail. Our presentation mostly follows Elkind et al.

(2010b).

Consensus Classes

Informally, we say that a preference profile R is a consensus if it has an undisputed

winner reflecting a certain concept of agreement in the society. Formally, a consensus

class for a set of candidates A is a pair K = (X , w) where X is a nonempty set of

profiles over A and w : X → A is a mapping that assigns a unique candidate to each

profile in X ; this candidate is called the consensus choice (winner).1 We require K to

be anonymous and neutral, in the following sense: For every profile R ∈ X a profile

R′ obtained from R by permuting voters satisfies R′ ∈ X and w(R′) = w(R), and

the profile R′′ obtained from R by renaming candidates according to a permutation

π : A → A satisfies R′′ ∈ X and w(R′′) = π(w(R)) (i.e., the winner under R′′ is

obtained by renaming the winner under R according to π).

The following classes of preference profiles have been historically viewed as situ-

ations of consensus:

Strong unanimity. This class, denoted S, consists of profiles where all voters

report the same preference order. The consensus choice is the candidate

ranked first by all voters. The reader may note that we have used this notion

of consensus in Section 8.2.1 to rationalize the Kemeny rule. Interestingly,

it can also be used to provide an alternative rationalization of the Plurality

rule (Elkind et al., 2010a).

Unanimity. This class, denoted U , consists of profiles where all voters rank some

candidate c first (but may disagree on the ranking of the remaining can-

didates). The consensus choice is this candidate c. This consensus class

appears in our rationalizations of Plurality and Borda. It is also used to

rationalize other scoring rules (Lerer and Nitzan, 1985; Elkind et al., 2009).

Majority. This class, denoted M, consists of profiles where more than half of

the voters rank some candidate c first. The consensus choice is this candi-

date c. This notion of consensus can be used to rationalize Plurality and a

simplified version of the Bucklin rule (Elkind et al., 2010b).

Condorcet. This class, denoted C, consists of profiles with a Condorcet winner.

The consensus choice is the Condorcet winner. This notion of consensus

1 One can also consider situations in which the voters reach a consensus that several candidates are
equally well qualified to be elected; this may happen, for example, under Approval voting when all
voters approve the same set of candidates. However, in what follows we limit ourselves to consensus
classes with unique winners.
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appears in our rationalizations of the Dodgson rule, the Copeland rule,

and Maximin.

Transitivity. This class, denoted T , consists of profiles whose majority relation is

transitive, i.e., for every triple of candidates a, b, c ∈ A it holds that if a

majority of voters prefer a to b and a majority of voters prefer b to c, then

a majority of voters prefer a to c. Such profiles always have a Condorcet

winner, so we define the consensus choice to be the Condorcet winner. This

consensus class can be used to rationalize the Slater rule (Meskanen and

Nurmi, 2008).

It is easy to see that we have the following containment relations among the

consensus classes: S ⊂ U ⊂ M ⊂ C and S ⊂ T ⊂ C. However, U and T are

incomparable, i.e., U 6⊆ T and T 6⊆ U . Similarly, we have M 6⊆ T and T 6⊆ M.

Remark 8.1 A consensus class (X , w) can be viewed as a voting rule with domain

X that always outputs a unique candidate. Conversely, every anonymous and neu-

tral voting rule f such that |f(R)| = 1 for at least one profile R defines a consensus

class: if f is defined on the set of all profiles over a candidate set A, we can define

a consensus class Kf = (Xf , wf ) by setting Xf = {R | |f(R)| = 1} and for each

R ∈ Xf defining wf (R) to be the unique candidate in f(R). That is, this consensus

class consists of all profiles on which f makes a definitive choice. The condition that

|f(R)| = 1 for some profile R is necessary to ensure that Xf 6= ∅.

There are other consensus classes one could consider: for example, one could study

a 2/3-variant of the majority consensusM, where more than 2/3 of the voters rank

the same candidate first (this choice of threshold stems from the observation that

in many countries changes to the constitution require the support of two thirds of

the eligible voters). However, these five classes appear to be representative enough

to rationalize many interesting voting rules.

Distances

To capture the idea of measuring the magnitude of changes in a preference profile,

we use distances on profiles. Recall that a distance on a set X is a mapping d : X ×
X → R ∪ {+∞} such that for every x, y, z ∈ X the following four conditions are

satisfied:

(a) d(x, y) ≥ 0 (nonnegativity);

(b) d(x, y) = 0 if and only if x = y (identity of indiscernibles);

(c) d(x, y) = d(y, x) (symmetry);

(d) d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality).

A mapping that satisfies (a), (c), and (d), but not (b), is called a pseudodistance.

For distance rationalizability constructions, we need distances that are defined

on pairs of profiles. Usually, it is enough to only consider pairs of profiles with the
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same set of candidates (this will be the case for all distances considered in this

chapter), and in many cases it suffices to only consider pairs of profiles with the

same number of voters. In particular, to construct a distance on the space of all

n-voter profiles over a fixed set of candidates A, we can take a suitable distance d

on the space L(A) of all linear orders over A and extend it to a distance d̂ over the

space of all n-voter preference profiles Ln(A) by setting

d̂ ((u1, . . . , un), (v1, . . . , vn)) = d(u1, v1) + . . .+ d(un, vn). (8.1)

It can be shown that d̂ satisfies all distance axioms whenever d does. This method

of building distances over profiles from distances over votes will play an important

role in our analysis (see Section 8.2.4).

We will now present several examples of distances on the space of preference

profiles. Some of these distances should look familiar to the reader, as they were

used to rationalize voting rules in Section 8.2.1.

Discrete distance. The discrete distance is defined on pairs of profiles with the

same set of candidates A and the same number of voters n using for-

mula (8.1); the underlying distance on L(A) is given by

ddiscr(u, v) =

{
0 if u = v,

1 if u 6= v.

This distance was used in our rationalization of the Plurality rule.

Swap distance. The swap distance, which is also known as the Kendall tau dis-

tance, the Kemeny distance, the Dodgson distance, and the bubble-sort

distance (Kendall and Gibbons, 1990), is also defined using formula (8.1).

The underlying distance on L(A) is the swap distance between individual

votes: dswap(u, v) is the number of pairs (c, c′) ∈ A × A such that u ranks

c above c′, but v ranks c′ above c.

(Weighted) footrule distance. This distance is also known as Spearman dis-

tance, or Spearman footrule (Kendall and Gibbons, 1990). Let pos(u, c)

denote the position of candidate c in vote u (the top candidate in u has po-

sition 1, and the bottom candidate in u has position m). Then the footrule

distance on L(A) is given by

dfr(u, v) =
∑
c∈A
|pos(u, c)− pos(v, c)|.

That is, we measure the displacement of each candidate as we move from

u to v, and then we take the sum over all candidates. This distance is

extended to preference profiles using formula (8.1). The reader can verify

that we can use the footrule distance d̂fr instead of the swap distance in

our rationalization of the Borda rule.
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Further, let α = (α1, . . . , αm) be a vector of m nonnegative rationals

(weights). We define a (pseudo)distance dfr-α(u, v) on L(A) by setting

dfr-α(u, v) =
∑
c∈A
|αpos(u,c) − αpos(v,c)|. (8.2)

When all weights are distinct, dfr-α is a distance. However, when some of the

weights coincide, dfr-α is a pseudodistance, but not a distance. The reader

can verify that for α = (m−1, . . . , 1, 0) the distance dfr-α coincides with dfr.

It can be shown that by using d̂fr-α we can rationalize the scoring rule with

the score vector α (Elkind et al., 2009), i.e., the rule that, given a profile

R = (v1, . . . , vn), outputs the set argmaxa∈A(αpos(v1,a) + · · ·+ αpos(vn,a)).

`∞-Sertel distance. This distance, denoted by d̂sert
∞, is also obtained by ex-

tending a distance on rankings to n-voter profiles; however, in contrast

with all distances considered so far, it is not defined via formula (8.1). Let

u(i) denote the candidate ranked in position i in vote u. We define the

distance dsert : L(A)× L(A)→ R by setting

dsert(u, v) = max{i | u(i) 6= v(i)},

with the convention that dsert(u, v) = 0 if u = v. The `∞-Sertel distance

on n-voter preference profiles is then defined by setting

d̂sert
∞((u1, . . . , un), (v1, . . . , vn)) = max

i=1,...,n
dsert(ui, vi).

The reason for having the symbol `∞ in the name of this distance and the

notation d̂sert
∞ will become clear in Section 8.2.4. This distance, together

with the majority consensus, can be used to provide a rationalization of a

simplified version of the Bucklin rule (Elkind et al., 2010b).

Edge reversal (pseudo)distance. This distance is defined over the set of all

profiles with an odd number of voters. Given two profiles R1, R2 over A,

we set

drev(R1, R2) = |{(a, b) ∈ A×A | a >R1 b, b >R2 a}|,

where we write a >R b to denote that a majority of voters in the profile

R prefer a to b. This distance counts the number of edges in the pair-

wise majority graph of R1 that need to be reversed to obtain the pairwise

majority graph of R2. The edge reversal distance was used in our rational-

ization of the Copeland rule; it can also be used to rationalize the Slater

rule (Meskanen and Nurmi, 2008).

Note that, technically speaking, drev is a pseudodistance rather than a

distance: we have drev(R1, R2) = 0 whenever R1 and R2 have the same

pairwise majority graph. It is perhaps more natural to think of the domain

of drev as the space of all tournaments over A, in which case drev satisfies

all distance axioms.
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Vote insertion (pseudo)distance. This distance is also defined over the set of

all profiles with a given candidate set. Consider two profiles R1 and R2

over a candidate set A whose multisets of votes are given by V 1 and V 2

respectively. The vote insertion distance dins between R1 and R2 is the size

of the symmetric difference between V 1 and V 2. This distance computes

the cost of transforming R1 into R2 (or vice versa) if we are allowed to add

or delete votes at a unit cost. Elkind et al. (2012) show that by combining

this distance with the Condorcet consensus we obtain the Maximin rule.

Again, dins is a pseudodistance rather than a distance: dins(R
1, R2) = 0 if

R1 and R2 have the same multiset of votes. It can be viewed as a distance

on the space of voting situations, i.e., multisets of votes over A.

We are now ready to put together the two components of our framework.

Definition 8.2 Let d be a (pseudo)distance on the space of preference profiles

over a candidate set A, and let K = (X , w) be a consensus class for A. We define

the (K, d)-score of a candidate a in a profile R to be the distance (according to d)

between R and a closest profile R′ ∈ X such that a is the consensus winner of

R′. The set of (K, d)-winners in a profile R consists of all candidates in A whose

(K, d)-score is the smallest.

Definition 8.3 A voting rule f is distance rationalizable via a consensus class

K and a distance d over profiles (or, (K, d)-rationalizable) if for every profile R a

candidate is an f -winner in R if and only if she is a (K, d)-winner in R.

We can now formalize our analysis of the six examples in Section 8.2.1: our

arguments show that the Dodgson rule is (C, d̂swap)-rationalizable, the Kemeny rule

is (S, d̂swap)-rationalizable, Plurality is (U , d̂discr)-rationalizable, the Borda rule is

(U , d̂swap)-rationalizable, the Copeland rule is (C, drev)-rationalizable, and Maximin

is (C, dins)-rationalizable. Observe that three of these well-known voting rules can

be rationalized using the same distance (but different consensus classes). Further

examples can be found in the work of Nitzan (2010): Chapter 6 of his book provides

a summary of rules that are rationalizable with respect to the unanimity consensus.

Meskanen and Nurmi (2008) describe distance rationalizations for several other

voting rules; while some of these rationalizations are very appealing, others appear

less intuitive. Motivated by this observation, we will now try to formalize what it

means to have a “good” distance rationalization.

8.2.3 Universal Distance Rationalizability

It turns out that the unrestricted distance rationalizability framework defined in

Section 8.2.2 is too powerful: Lerer and Nitzan (1985) show that if we do not

impose any restrictions on the distance used, then essentially any voting rule is
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rationalizable with respect to all the standard consensus classes. This result was

subsequently rediscovered by Elkind et al. (2010b), and our presentation follows

their work.

To formally state this universal distance rationalizability result, we need a notion

of compatibility between a voting rule and a consensus class.

Definition 8.4 A voting rule f is said to be compatible with a consensus class

K = (X , w), or K-compatible, if f(R) = {w(R)} for every profile R in X .2

We will now show that every voting rule is distance rationalizable with respect

to every consensus class that it is compatible with.

Theorem 8.5 Let A be a set of candidates, let f be a voting rule over A, and

let K = (X , w) be a consensus class for A. Then f is (K, d)-rationalizable for some

distance d if and only if it is K-compatible.

Proof Let f be a voting rule that is (K, d)-rationalizable for some consensus class

K = (X , w) and distance d. Let R be some profile in X . There is only one profile at

distance 0 from R—namely, R itself. Hence, the unique (K, d)-winner in R is w(R).

Thus, f is K-compatible.

Conversely, suppose that f is K-compatible. We will now define a distance d over

the set of all profiles over the candidate set A as follows. We set d(R,R′) = 0 if

R = R′. We set d(R,R′) = 1 if (a) R ∈ X and w(R) ∈ f(R′) or (b) R′ ∈ X and

w(R′) ∈ f(R). In all other cases, we set d(R,R′) = 2. It is easy to check that d

satisfies all distance axioms. It remains to argue that f is (K, d)-rationalizable.

Consider a profile R ∈ X . Since f is K-compatible, we have f(R) = {w(R)}.
Furthermore, we have d(R,R) = 0 and there is no profile R′, R′ 6= R, such that

d(R,R′) = 0. Thus, the unique (K, d)-winner in R is w(R), too.

On the other hand, consider a profile R 6∈ X . Note that d(R,R′) ≥ 1 for every

profile R′ ∈ X . Since K is neutral and X 6= ∅, for each a ∈ f(R) there exists a

consensus profile Ra in which a is the consensus winner. By construction, we have

d(R,Ra) = 1. Further, we have d(R,R′) = 2 for every profile R′ ∈ X such that

w(R′) 6∈ f(R). Thus, the set f(R) is exactly the set of (K, d)-winners in R, and the

proof is complete.

Theorem 8.5 implies that being compatible with any of our five standard con-

sensus classes suffices for distance rationalizability. Now, almost all common voting

rules are compatible with the strong unanimity consensus S, and hence distance ra-

tionalizable. This argument does not apply to voting rules that do not have unique

winners on strongly unanimous profiles, such as Veto and k-Approval for k > 1

2 One might think that the term “K-consistent” would be more appropriate than “K-compatible.”
Indeed, a voting rule that elects the Condorcet winner whenever one exists is usually referred to as
Condorcet-consistent. We chose to use the term “K-compatible” to avoid confusion with the
normative axiom of consistency.
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(recall that k-Approval is the scoring rule with the score vector (1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
m−k

),

and Veto is simply the (m−1)-Approval rule). However, both Veto and k-Approval

can be shown to be distance rationalizable by a slightly different argument.

Corollary 8.6 For every anonymous neutral voting rule f over a set of candidates

A such that |f(R)| = 1 for some profile R there exist a consensus class K = (X , w)

and a distance d such that f is (K, d)-rationalizable.

Proof We can use the consensus class Kf = (Xf , wf ) defined in Remark 8.1: by def-

inition, f is Kf -compatible, so Theorem 8.5 implies that f is (Kf , d)-rationalizable

for some distance d.

Clearly, both Veto and k-Approval satisfy the conditions of Corollary 8.6, so they

are distance rationalizable as well.

Yet, intuitively, the distance used in the proof of Theorem 8.5 is utterly unnatu-

ral. For instance, we have seen that the Dodgson rule and the Kemeny rule can be

rationalized via the swap distance, which is polynomial-time computable. In con-

trast, Elkind et al. (2010b) show that applying Theorem 8.5 to either of these rules

results in a rationalization via a distance that is not polynomial-time computable

(assuming P 6= NP)—this follows from the fact that winner determination for these

rules is computationally hard, as discussed in Chapter 5 (Caragiannis et al., 2015).

Thus, knowing that a rule is distance rationalizable—even with respect to a stan-

dard notion of consensus—by itself provides no further insight into the properties

of this rule; for a rationalization to be informative, the distance used must be nat-

ural. Consequently, we will now shift our focus from distance rationalizability per

se to quality of rationalizations, and seek an appropriate subclass of distances that

would be expressive enough to capture many interesting rules while allowing us to

draw nontrivial conclusions about rules that they rationalize.

8.2.4 Votewise Distances

In this section, we focus on distances that are obtained by first defining a distance

on preference orders and then extending it to profiles. The reader may observe that

the distances d̂discr, d̂swap, d̂fr, and d̂sert
∞ defined in Section 8.2.2 are constructed

in this way. This class of distances was identified by Elkind et al. (2010b), and our

presentation in this section is based on their work.

Definition 8.7 A norm on Rn is a mapping N : Rn → R that has the following

properties:

(a) positive scalability: N(αu) = |α|N(u) for all u ∈ Rn and all α ∈ R;

(b) positive semidefiniteness: N(u) ≥ 0 for all u ∈ Rn, and N(u) = 0 if and only if

u = (0, 0, . . . , 0);
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(c) triangle inequality: N(u+ v) ≤ N(u) +N(v) for all u, v ∈ Rn.

A well-known class of norms on Rn is that of p-norms `p, p ∈ Z+ ∪ {∞}, given by

`p(x1, . . . , xn) =

(
n∑
i=1

|xi|p
) 1
p

for p ∈ Z+, `∞(x1, . . . , xn) = max{|x1|, . . . , |xn|}.

In particular, `1(x1, . . . , xn) = |x1|+ · · ·+ |xn|.

Definition 8.8 Let A be a fixed set of candidates, fix n > 0, let d be a distance

on L(A), and let N be a norm on Rn. We say that a distance D on the space of

n-voter profiles over the candidate set A is N -votewise if for every pair of profiles

R and R′ over A with R = (u1, . . . , un) and R′ = (v1, . . . , vn) we have

D(R,R′) = N(d(u1, v1), . . . , d(un, vn)). (8.3)

It is easy to check that for every distance d on L(A) and every norm N on Rn the

function defined by (8.3) is a (pseudo)distance. We will denote this (pseudo)distance

by d̂N . If N = `p for some p ∈ Z+ ∪ {∞}, we will write d̂ p instead of d̂ `p . Further,

since many distance rationalizations use `1 as the underlying norm, we will write d̂

instead of d̂ 1 (note that this notation is consistent with the one used earlier in this

chapter for d̂swap, d̂discr, d̂fr, and d̂sert
∞).

Given a norm N , we say that a rule is N -votewise if it can be distance rationalized

via an N -votewise distance; we say that a rule is votewise if it is N -votewise for

some norm N .

Votewise distances are expressive enough to rationalize many classic voting rules.

For instance, the rationalizations of the Dodgson rule, the Kemeny rule, Plurality,

and the Borda rule described in Section 8.2.1 demonstrate that all these rules are

`1-votewise, and the results of Lerer and Nitzan (1985) and Elkind et al. (2009,

2010b) imply that the class of votewise rules includes essentially all scoring rules,3

a simplified version of the Bucklin rule, and several other less common voting rules.

We will now demonstrate that votewise rules have a number of desirable proper-

ties, both from a normative and from a computational perspective.

Normative Properties of Votewise Rules

An important feature of the votewise distance rationalizability framework is that

one can derive properties of votewise rules from the properties of their components,

i.e., the underlying distance on votes, the norm, and the consensus class. Elkind

et al. (2010b, 2011) consider such classic normative properties of voting rules as

anonymity, neutrality, continuity, consistency, homogeneity and monotonicity, and,

3 The exceptions are rules like Veto, which are not compatible with any standard consensus class;
however, even such rules are votewise rationalizable via a pseudodistance.
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for each of them, derive sufficient conditions on the components of a votewise ra-

tionalization for the resulting rule to have the respective property. We present a

sample of these results below.

Anonymity. Recall that a voting rule is said to be anonymous if its result does not

change when the ballots are permuted. It turns out that anonymity of a votewise

rule is inherited from the corresponding norm. Specifically, a norm N on Rn is

said to be symmetric if it satisfies N(x1, . . . , xn) = N(xσ(1), . . . , xσ(n)) for every

permutation σ of {1, . . . , n}; note that all p-norms are symmetric. Elkind et al.

(2010b) show the following easy result.

Proposition 8.9 Suppose that a voting rule f is (K, d̂N )-rationalizable for some

pseudodistance d over L(A), a consensus class K, and a symmetric norm N . Then

f is anonymous.

Neutrality. A voting rule is said to be neutral if its result does not depend on

the candidates’ names. Neutrality of a votewise rule is a property of the underlying

distance on votes. Namely, a distance d on L(A) is said to be neutral if for every

permutation π : A→ A and every pair of votes u, v ∈ L(A) it holds that d(u, v) =

d(u′, v′) where u′ and v′ are obtained from, respectively, u and v by renaming the

candidates according to π. The following proposition is due to Elkind et al. (2010b).

Proposition 8.10 Suppose that a voting rule f is (K, d̂N )-rationalizable for some

norm N , a consensus class K, and a neutral pseudodistance d over L(A). Then f

is neutral.

Consistency. A voting rule f is said to be consistent if for every pair of profiles

R1, R2 such that f(R1) ∩ f(R2) 6= ∅, the preference profile R1 + R2 obtained

by concatenating R1 and R2 satisfies f(R1 + R2) = f(R1) ∩ f(R2). Consistency

is a very demanding property: while all common voting rules are anonymous and

neutral, the class of voting rules that are anonymous, neutral and consistent consists

of compositions of scoring rules (Young, 1975). Nevertheless, Elkind et al. (2010b)

obtain a sufficient condition for a distance rationalizable voting rule to be consistent.

Proposition 8.11 Suppose that a voting rule f is (U , d̂ p)-rationalizable for some

p ∈ Z+ and some pseudodistance d over L(A). Then f is consistent.

Homogeneity. A voting rule f is said to be homogeneous if for every profile R and

every positive integer k it holds that f(R) = f(kR), where kR is the preference

profile obtained by concatenating k copies of R. This notion can be seen as a

relaxation of the notion of consistency. Elkind et al. (2011) present several sufficient

conditions for homogeneity of a votewise rule. For instance, they show that many

of the voting rules that can be rationalized via the `∞ norm are homogeneous.

Proposition 8.12 Suppose that a voting rule f is (K, d̂∞)-rationalizable for some
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pseudodistance d over L(A) and a consensus class K ∈ {S,U ,M}. Then f is ho-

mogeneous.

Monotonicity. A voting rule f is said to be monotone if moving a winning candi-

date upwards in some voters’ preference orders (without changing the relative order

of other candidates) does not make him a loser. To identify sufficient conditions for

monotonicity of a votewise rule, Elkind et al. (2011) introduce several notions of

monotonicity for distances over votes. In particular, they define relatively monotone

distances. These are the distances over L(A) such that for every candidate a ∈ A
the following condition holds. Suppose that we have:

(i) two votes y, y′ ∈ L(A) such that y and y′ rank all candidates in A \ {a} in the

same order, but y′ ranks a higher than y does, and

(ii) two votes x, z ∈ L(A) such that x ranks a first and z does not.

Then

d(x, y)− d(x, y′) ≥ d(z, y)− d(z, y′). (8.4)

Elkind et al. (2011) show that the relative monotonicity condition is satisfied by

the swap distance. Moreover, they prove the following result.

Proposition 8.13 Suppose that a voting rule f is (K, d̂)-rationalizable for some

relatively monotone distance d over L(A) and a consensus class K ∈ {S,U}. Then

f is monotone.

Algorithmic Properties of Votewise Rules

Votewise rules are also appealing from a complexity-theoretic perspective: it turns

out that we can show tractability results for them under a mild condition on the

underlying distance. For the definitions of the complexity classes mentioned in this

section, we refer the reader to the book of Hemaspaandra and Ogihara (2002).

Definition 8.14 We say that a distanceD on the space of profiles over a candidate

set A is normal if:

(a) D is polynomial-time computable;

(b) D takes values in the set Z+ ∪ {+∞};
(c) if R1 and R2 have a different number of votes, then D(R1, R2) = +∞.

Given a voting rule f , we consider the problem of determining whether a given

candidate is one of the winners in a given profile under f ; we refer to this problem as

f -Winner. Elkind et al. (2010b) show the following set of results for this problem.

Suppose that a voting rule f is (K, D)-rationalizable for some normal distance D

and a consensus class K ∈ {S,U ,M, C}. Then:

(i) f -Winner is in PNP;
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(ii) if there exists a polynomial p such that for every pair of n-voter m-candidate

profiles R1, R2 it holds that D(R1, R2) ≤ p(m+ n), then f -Winner is in Θp
2;

(iii) if there exists a distance on votes d such that D = d̂, then f -Winner is in FPT

with respect to the number of candidates;

(iv) if there exists a distance on votes d such that D = d̂ or D = d̂∞, K ∈ {U ,M},
and D is neutral, then f -Winner is in P/poly.

The first two results extend to the transitivity consensus T (which was not consid-

ered by Elkind et al. (2010b)); note also that for these results the distance D is not

required to be votewise. However, it is not clear if the FPT algorithm in (iii) can

be extended to T as well.

We emphasize that it is not the case that for every votewise rule the winner de-

termination problem is in P (unless P = NP). In fact f -Winner may be intractable

even if f is `1-votewise rationalizable with respect to a standard consensus class via

an easy-to-compute distance on votes: examples are provided by the Dodgson rule

and the Kemeny rule, which are known to be computationally hard (Hemaspaandra

et al., 1997, 2005).

Votewise Distances: Discussion

We have seen that many common voting rules admit votewise distance rationaliza-

tions, and that distance rationalizable voting rules have several desirable properties.

On the other hand, the “trivial” distance rationalization presented in Theorem 8.5

is clearly not votewise. Furthermore, some voting rules (most notably, STV) can be

shown not to admit a votewise distance rationalization with respect to the standard

consensus classes (Elkind et al., 2010a); we remark that the known distance rational-

ization for STV (Meskanen and Nurmi, 2008) is rather complex. Thus, the concept

of a votewise distance appears to be useful for distinguishing between “good” and

“bad” rationalizations.

Note, however, that the rationalizations of the Copeland rule and Maximin given

in Section 8.2.1 are not votewise, despite being quite simple and intuitive. In fact,

it is not known whether these rules are votewise distance rationalizable. It remains

a challenge to come up with a definition of a “good” distance rationalization that

covers all intuitively appealing rationalizations, but excludes the rationalization

described in Theorem 8.5.

8.3 Rules as Maximum Likelihood Estimators

We will now turn our attention to voting rules that can be represented as maximum

likelihood estimators. We start by revisiting the probabilistic model put forward by

Condorcet (1785), and its interpretation by Young (1988).

Briefly, the basic assumption of Condorcet’s model is that there always exists a

correct ranking of the alternatives, which, however, cannot be observed directly.
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Voters derive their preferences over the alternatives from this ranking: when com-

paring two alternatives, each voter is more likely to make the correct judgment than

the incorrect one. Moreover, voters make their decisions independently from each

other, and a priori each ranking is equally likely to be correct.

Formalizing Condorcet’s ideas turned out to be a challenging task; below, we dis-

cuss some of the reasons for this. However, from a historical perspective, his ideas

are very important, as they represent one of the earliest applications of what is now

known as the maximum likelihood estimation approach. Under this approach, one

computes the likelihood of the given preference profile for each possible “state of the

world”, i.e., the true ranking of the alternatives. The best ranking(s) of the alter-

natives are then the one(s) that have the highest likelihood of producing the given

profile. If we assume a uniform prior over the space of all possible rankings, this

procedure can be interpreted as estimating the most likely state of the world given

the preference data (the equivalence of the two interpretations follows immediately

from the Bayes rule).

Condorcet’s approach can be extended in two different directions: First, we can

consider different noise models, i.e., ways in which voters’ preferences may arise

from the true state of the world. Second, instead of associating a state of the

world with a ranking of the alternatives, we can associate it with the identity of

the best alternative (or, more generally, a set of pairwise comparisons between the

alternatives); this approach is particularly attractive if the goal is to determine a

single election winner rather than a full ranking of the alternatives (and in particular

if there is indeed a unique “correct solution” to the decision problem at hand). Below

we survey recent research that explores these directions.

8.3.1 Two Alternatives: Condorcet Jury Theorem

When there are only two alternatives to choose from, it is natural to use majority

voting, i.e., select an alternative that is supported by at least half of the voters

(breaking ties arbitrarily). It turns out that this is also the right strategy in Con-

dorcet’s model; in fact, as the number of voters grows, the probability that majority

voting identifies the better alternative approaches 1. This result is known as the

Condorcet Jury Theorem, and dates back to the original paper of Condorcet (1785).

Theorem 8.15 Suppose that |A| = 2, and a priori each of the alternatives in A

is equally likely to be the better choice. Suppose also that there are n voters, and

each voter correctly identifies the better alternative with probability p, 1/2 < p ≤ 1;

further, each voter makes her judgment independently from the other voters. Then

the probability that the group makes the correct decision using the simple majority

rule approaches 1 as n→ +∞.

Theorem 8.15 follows immediately from the Chernoff bound (see, e.g., Alon and

Spencer, 2008); Condorcet’s proof was based on a direct combinatorial argument.
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Theorem 8.15 can be extended in a variety of ways. For instance, it can be gener-

alized to the case where voters are a priori not identical, i.e., voter i’s probability

to make the correct choice is pi and not all pis are equal: Nitzan and Paroush

(1982) and Shapley and Grofman (1984) show that in this case it is optimal to use

weighted voting, assigning a weight of log pi
1−pi to voter i. However, in practice the

probabilities pi are often not known; to mitigate this, Baharad et al. (2011, 2012)

propose a procedure for estimating them. Other extensions deal with settings where

voters are not independent (see, e.g., Shapley and Grofman, 1984; Berg, 1993a,b;

Ladha, 1992, 1993, 1995; Dietrich and List, 2004) or strategic (Austen-Banks and

Smith, 1994; McLennan, 1998; Peleg and Zamir, 2012), or a priori the alternatives

are not symmetric and the voters’ probabilities of making the correct choice depend

on the state of nature (Ben-Yashar and Nitzan, 1997).

When |A| > 2, the analysis becomes more complicated. In particular, it depends

on whether the goal is to identify the most likely ranking of alternatives or the

alternative that is most likely to be ranked first. We will now consider both of these

options, starting with the former.

8.3.2 Condorcet’s Model and Its Refinements

In his original paper, Condorcet made the following assumptions.

(1) In every pairwise comparison each voter chooses the better alternative with some

fixed probability p, where 1/2 < p ≤ 1.

(2) Each voter’s judgment on every pair of alternatives is independent of her judg-

ment on every other pair.

(3) Each voter’s judgment is independent of the other voters’ judgments.

(4) Each voter’s judgment produces a ranking of the alternatives.

However, assumptions (2) and (4) are incompatible. Indeed, if a voter ranks every

pair of alternatives correctly with some fixed probability, then she may end up with

a non-transitive judgment, which is prohibited by (4). In other words, if we insist

that voters always produce a linear order as their judgment, then their judgments

on different pairs of alternatives are no longer independent.

There are two differing opinions on how exactly Condorcet’s model should be

understood. Some believe that we should allow intransitive preferences, arguing

that the vote is not really a preference, but rather the voter’s best approximation to

the correct ranking as she perceives it. It may happen that the best approximation

is in fact intransitive (see, e.g., Truchon, 2008); however, it cannot be ignored, as

it provides useful information.

Another interpretation of Condorcet’s proposal is as follows: a voter forms her

opinion by considering pairs of alternatives independently, but if the result happens

to be intransitive, she discards it and tries to form her opinion again until a valid

(acyclic) preference order is obtained. In statistics, the resulting probabilistic model
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is known as the Mallows noise model (Mallows, 1957). Note, however, that this

model violates condition (2) (see, e.g., Gordon and Truchon, 2008).

Commenting on Condorcet’s writings, Young (1988) wrote: “One must admit

that the specific probabilistic model by which Condorcet reached his conclusions

is almost certainly not correct in its details.” He went further to say that the

plausibility of any solution based on Condorcet’s ideas must therefore be subjected

to other tests. However, he went on and developed Condorcet’s framework to see

what Condorcet would have obtained if he possessed the necessary technical skills

to perform his analysis to the end. We will now present Young’s analysis, together

with some refinements and extensions.

8.3.3 MLE for Choosing a Ranking

In this section, we describe an MLE approach to selecting the best ranking(s) of

the alternatives. Recall that a social preference function is a mapping that given a

list of rankings of the alternatives outputs a non-empty set of aggregate rankings;

thus, in this section we focus on representing social preference functions within the

MLE framework.

We start by presenting Young’s analysis of Condorcet’s proposal (see Young,

1988), followed by a discussion of a more general approach put forward by Conitzer

and Sandholm (2005) and Conitzer et al. (2009).

Let u ∈ L(A) be the true state of the world, and let v ∈ L(A) be some ranking

that agrees with u on k pairs of alternatives. Note that we have dswap(v, u) =
(
m
2

)
−k.

Then under both interpretations of Condorcet’s model discussed in Section 8.3.2

the probability that a voter forms opinion v is proportional to

pk(1− p)(
m
2 )−k = p(

m
2 )−dswap(v,u)(1− p)dswap(v,u).

If each voter forms her opinion independently from other voters, the probability

of a profile (v1, . . . , vn) given that u is the true state of the world is proportional to

n∏
i=1

(
p

1− p

)−dswap(vi,u)

=

(
p

1− p

)−∑n
i=1 dswap(vi,u)

.

If each state of the world is a priori considered equally likely, the rankings that

are most likely to be correct are the ones that maximize the probability of the

observed data, or, equivalently, minimize
∑n
i=1 dswap(vi, u) (note that p > 1/2 and

hence p
1−p > 1). Thus, Condorcet’s approach results in a social preference function

fCond that given a profile R = (v1, . . . , vn) over a candidate set A, outputs the

set argminu∈L(A)

∑n
i=1 dswap(vi, u). This is exactly the social preference function

associated with the Kemeny rule (see Section 8.2.1).
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General r-Noise Models

Young’s analysis is based on a specific noise model, i.e., a way voters’ judgments are

formed given an underlying state of the world. By considering other noise models,

we can obtain other social preference functions. To pursue this agenda, we need a

formal definition of a noise model.

Definition 8.16 A noise model for rankings, or an r-noise model, over a can-

didate set A is a family of probability distributions P(· | u)u∈L(A) on L(A). For a

given u ∈ L(A), P(v | u) is the probability that a voter forms a preference order v

when the correct ranking is u.

We emphasize that the parameters of a noise model are assumed to be the same

for all voters and do not depend on the number of voters. That is, we think of voters

as independent agents that are influenced by the same factors in the same way.

Example 8.17 The Mallows model (Mallows, 1957) is a family of r-noise models(
Pdswap,p

)
1/2<p<1

given by

Pdswap,p(v | u) =
1

µp
ϕ−dswap(v,u), where ϕ =

p

1− p
and µp =

∑
v∈L(A)

ϕ−dswap(v,u).

Here, µp is the normalization constant; since dswap is a neutral distance, the value

of µp does not depend on the choice of u (Mallows, 1957).

Under the MLE approach, every r-noise model leads to a social preference func-

tion.

Definition 8.18 A social preference function f over A is the maximum likelihood

estimator (MLE) for an r-noise model P over A if for every positive integer n and

every n-voter profile R = (v1, . . . , vn) it holds that

f(R) = argmax
u∈L(A)

n∏
i=1

P(vi | u).

A very general method of constructing r-noise models was proposed by Conitzer

et al. (2009), who introduced the notion of a simple ranking scoring function.

Definition 8.19 A social preference function f over A is said to be a simple

ranking scoring function (SRSF) if there exists a mapping ρ : L(A) × L(A) → R
such that for every positive integer n and every n-voter profile R = (v1, . . . , vn) it

holds that

f(R) = argmax
u∈L(A)

n∑
i=1

ρ(vi, u). (8.5)

Intuitively, ρ(v, u) assigns a score to v based on the similarity between v and u,

and f chooses u so as to maximize the total score of the given profile. We say that a
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mapping ρ : L(A)×L(A)→ R is neutral if ρ(v′, u′) = ρ(v, u), where rankings v′ and

u′ are obtained by renaming alternatives in v and u according to some permutation

π : A→ A. Conitzer et al. (2009) show that a simple ranking scoring function f is

neutral if and only if there exists a neutral mapping ρ satisfying (8.5).

Example 8.20 Every distance d on L(A) defines a simple ranking scoring func-

tion: we can set ρ(v, u) = −d(v, u). The corresponding social preference function

maps a profile R = (v1, . . . , vn) to the set of rankings argminu∈L(A)

∑n
i=1 d(vi, u).

Observe that this social preference function is closely related to the voting rule that

is distance rationalizable via d̂ and the strong unanimity consensus S.

Every SRSF corresponds to an infinite family of r-noise models: If f is the SRSF

defined by a mapping ρ, then for every ϕ ∈ (1,+∞) we can set

Pρ,ϕ(v | u) =
1

µρ,ϕ,u
ϕ ρ(v,u), where µρ,ϕ,u =

∑
v∈L(A)

ϕ ρ(v,u); (8.6)

Conitzer et al. (2009) use ϕ = 2 in their paper. By construction, f is the maximum

likelihood estimator for Pρ,ϕ for every ϕ ∈ (1,+∞).

Conitzer et al. (2009) show that for social preference functions that are neutral

(i.e., their output does not depend on the names of the candidates) the converse is

also true. More precisely, they prove the following characterization result.

Theorem 8.21 A neutral social preference function is an MLE if and only if it

is an SRSF.

Theorem 8.21 provides a convenient way to show that a given social preference

function f is an MLE: it suffices to exhibit a mapping ρ witnessing that f is an

SRSF. Conitzer et al. (2009) apply this method to show that for every score vec-

tor α = (α1, . . . , αm) the corresponding social preference function fα is an MLE.

In the rest of this section, we give a sketch of their argument.

Recall that fα is the social preference function that orders the candidates by their

α-scores, where the α-score of a candidate a in a profile R = (v1, . . . , vn) is given

by sα(R, a) =
∑n
i=1 αpos(vi,a); if some candidates have the same score, fα outputs

all rankings that can be obtained by breaking such ties in some way.

To show that fα is an SRSF, let β1, . . . , βm be a monotonically decreasing se-

quence (e.g., we can take βj = m− j), and set

ρα(v, u) =
∑
a∈A

βpos(u,a)αpos(v,a), (8.7)

We claim that fα is the simple ranking scoring function that corresponds to ρα.

Indeed, for a given profile R = (v1, . . . , vn) we obtain

n∑
i=1

ρα(vi, u) =
∑
a∈A

βpos(u,a)

(
n∑
i=1

αpos(vi,a)

)
=
∑
a∈A

βpos(u,a)sα(R, a).
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Thus, for u to maximize the expression
∑n
i=1 ρα(vi, u), we should have βpos(u,a) >

βpos(u,b) (and hence pos(u, a) < pos(u, b)) whenever sα(R, a) > sα(R, b), i.e., u

orders the candidates by their α-score from the highest to the lowest, breaking ties

arbitrarily. Theorem 8.21 then implies the following corollary.

Corollary 8.22 The social preference function fα is an MLE.

8.3.4 MLE for Choosing a Winner

In the previous section we described an MLE approach to selecting the best rank-

ing(s). However, typically our goal is to select a single winner (or possibly a set of

winners) rather than a ranking of the candidates. To extend the MLE framework

to this setting, we can simply output the top candidate(s) in the best ranking(s).

Alternatively, we can estimate the likelihood that a given candidate is the best. To

this end, for each candidate we determine the total probability mass (with respect

to the uniform distribution) of the rankings where she is the top choice, and output

the candidate(s) that maximize this quantity; the validity of this method follows

from the Bayes rule. We will now discuss these approaches in more detail.

Deducing Winners from Rankings: MLERIV Rules

In Section 8.2.1 we transformed the social preference function associated with the

Kemeny rule into a voting rule, by picking the top candidate in each ranking output

by this social preference function. By extending this procedure to arbitrary MLE

social preference functions, we obtain a class of rules known as MLERIV (Conitzer

and Sandholm, 2005).

Definition 8.23 Let f be a social preference function that is MLE for an r-

noise model P. Let f̂ be a voting rule defined by f̂(R) = {top(u) | u ∈ f(R)},
where top(u) denotes the top candidate in ranking u. This rule is called the maxi-

mum likelihood estimator for ranking under identically distributed independent votes

(MLERIV) for P.

According to Definition 8.23, the Kemeny rule is MLERIV for the Mallows noise

model. Another family of MLERIV rules is provided by Example 8.20: Theorem 8.21

implies that for every neutral distance d over L(A) the (S, d̂)-rationalizable voting

rule is MLERIV. Further, Corollary 8.22 implies that every scoring rule is MLERIV.

Estimating the Winners: Young’s Interpretation of Condorcet’s Proposal

The MLERIV-based approach provides a simple way to cast many voting rules

within the MLE framework. However, it is not appropriate if our goal is to output

the candidate that is most likely to be ranked first. Indeed, under an r-noise model

the probability that a candidate is ranked first in the true ranking is obtained by

adding together the probabilities of all rankings where she appears on top, and it
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is entirely possible that the top candidate in the most likely ranking is a, but the

cumulative probability of rankings that have a on top is lower than the cumulative

probability of rankings that have some other candidate b on top.

This was clearly understood by Condorcet himself, who probably did not have

the technical skills to pursue this line of reasoning. Young (1988) argues that this

approach would lead him to the Borda rule, at least when p is sufficiently close to
1/2. Young also speculates on reasons why Condorcet might have chosen to abandon

this train of thought (see Young, 1988, for an amusing account of the relationship

between Condorcet and Borda).

We will now present Young’s extension of Condorcet’s analysis. While it aims to

estimate the most likely winner under the Mallows model, it makes the simplifying

assumption that in the prior distribution over the states of the world all pairwise

comparisons between the alternatives are independent from each other. For the

Mallows model this assumption is not true: if A = {a, b, c} and the prior distribution

over the states of the world is uniform over L(A), knowing that in the true state

of the world a is ranked above b influences our beliefs about the outcome of the

comparison between a and c. Thus, Young’s analysis can be seen as a heuristic

algorithm for computing the most likely winner; later, we will see that its output

may differ from that of the exact algorithm (see also Xia, 2014a).

Given a pair of candidates a, b ∈ A, let nab denote the number of voters in a

given profile (v1 . . . , vn) who prefer a to b. Let S be a fixed set of voters of size nab,

and consider the event that the voters in S prefer a to b, while the remaining voters

prefer b to a; denote this event by ES . If in the true state of the world a is preferred

to b, then the probability of ES is exactly pnab(1− p)nba . Conversely, if in the true

state of the world b is preferred to a, then the probability of ES is (1 − p)nabpnba .

The prior probability that in the true state of the world a is preferred b is exactly
1/2. Therefore, the probability of the event ES is 1

2 (pnab(1− p)nba + (1− p)nabpnba).

Hence, by the Bayes rule, the probability that in the true state of the world a is

preferred to b is proportional to

pnab(1− p)nba
pnab(1− p)nba + (1− p)nabpnba

. (8.8)

To compute the probability that in the true state of the world a is preferred to

every other candidate, we take the product of probabilities (8.8) over all b 6= a;

note that this step makes use of the assumption that in the prior distribution over

the states of the world all pairwise comparisons are independent. It follows that the

probability that a is the true winner given that the observed profile is (v1, . . . , vn)

is given by

∏
b∈A\{a}

pnab(1− p)nba
pnab(1− p)nba + (1− p)nabpnba

=
∏

b∈A\{a}

1

1 +
(

1−p
p

)nab−nba .
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Thus, the most likely winners are the candidates that minimize the expression

κa(ϕ) =
∏

b∈A\{a}

(
1 + ϕnba−nab

)
, where ϕ =

p

1− p
. (8.9)

Now, the behavior of this expression crucially depends on the value of ϕ = p
1−p .

We will consider two cases: (1) p is very close to 1 and hence ϕ→ +∞ (i.e., a voter

is almost always right) and (2) p is very close to 1/2 and hence ϕ → 1 (a voter

has only a slight advantage over a random coin toss). We denote the corresponding

voting rules by MLE∞intr and MLE1
intr, respectively (the reasons for this notation

are explained in Remark 8.24). The analysis below is based on the work of Elkind

and Shah (2014).

p → 1, ϕ → +∞ The rate of growth of κa(ϕ) as ϕ → +∞ depends on the de-

gree of its highest-order term, i.e.,
∑
b∈A\{a}:nba>nab (nba − nab): slowest-

growing functions correspond to the most likely candidates.

Thus, to determine the MLE∞intr-winners, we first compute the score of

each candidate a ∈ A as the sum of a’s loss margins in all pairwise elec-

tions she loses: sT (a) =
∑
b∈A\{a}:nba>nab (nba − nab). If there is a unique

candidate with the minimum score, this candidate wins. In case of a tie

among a1, . . . , ak, MLE∞intr takes into account the coefficients of the highest-

order terms as well as the lower-order terms of κa1(ϕ), . . . , κak(ϕ); the

resulting tie-breaking procedure is quite complicated (but can be shown

to be polynomial-time computable). The voting rule that outputs the set

arg mina∈A sT (a) was proposed by Tideman (1987) as an approximation to

the Dodgson rule, and is now known as the Tideman rule; thus, our analysis

shows that MLE∞intr is a refinement of the Tideman rule. The Tideman rule

has been studied by McCabe-Dansted et al. (2008), as well as by Caragian-

nis et al. (2014), who refer to it as the simplified Dodgson rule; an overview

of their results can be found in Chapter 5 (Caragiannis et al., 2015)4.

p → 1/2, ϕ → 1 In this case, we are interested in the behavior of κa(ϕ) as ϕ→ 1.

We have κa(1) = 2m−1 for all a ∈ A. Further, the derivative of κa(ϕ)

at ϕ = 1 is
∑
c 6=a(nca − nac)2m−2 =

∑
c6=a(n − 2nac)2

m−2. To minimize

this expression, we need to maximize
∑
c 6=a nac, which is the Borda score

of a. Hence, MLE1
intr is a refinement of the Borda rule: it selects the Borda

winner when it is unique, and if there are several Borda winners, it breaks

ties by taking into account higher-order derivatives of κa(ϕ) at ϕ→ 1.

Remark 8.24 One can think of Young’s procedure as estimating the most likely

winner under a different noise model, namely, one where the prior distribution as-

signs equal probability to all tournaments over A, i.e., the state of the world is

described by the outcomes of
(
m
2

)
comparisons, and all vectors of outcomes are

4 Young (1988) appears to suggest that MLE∞
intr is Maximin; our argument shows that this is not the

case.
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considered to be equally likely. Voters’ preferences are tournaments as well; in each

vote, the direction of every edge agrees with the ground truth with probability p and

disagrees with it with probability 1− p, with decisions for different edges made in-

dependently from each other. We emphasize that this distribution assigns non-zero

probability to “states of the world” that violate transitivity. For this noise model,

Young’s procedure correctly identifies the candidate with the largest cumulative

probability of the states of the world where she wins all her pairwise elections.

It is often claimed that MLE1
intr is the Borda rule. We will now show that this

claim is inaccurate: while MLE1
intr chooses among the Borda winners, it may fail to

select some of them.

Example 8.25 Let A = {a, b, c, d} and consider a 4-voter profile over A given by

(adcb, bcad, abdc, bcad) (where we write xyzt as a shorthand for x � y � z � t).

The Borda winners in this profile are a and b, and their Borda score is 8. On the

other hand, we have κa(ϕ) = 4(1 + ϕ−4), κb(ϕ) = 2(1 + ϕ−2)2. The reader can

verify that κa(1.2) ≈ 5.93, κb(1.2) ≈ 5.74, and

dκa
dϕ

∣∣∣
ϕ=1

=
dκb
dϕ

∣∣∣
ϕ=1

= −16, but
d2κa
(dϕ)2

∣∣∣
ϕ=1

= 48,
d2κb
(dϕ)2

∣∣∣
ϕ=1

= 32,

so b emerges as the unique winner under MLE1
intr.

Estimating the Winners Under an r-noise Model

It is natural to ask whether we can estimate the most likely winner under the Mal-

lows model without making the simplifying assumption that in the prior distribution

over the states of the world all pairwise comparisons are independent. To the best

of our knowledge, Procaccia et al. (2012) were the first to do this for p→ 1/2; their

argument extends to more general noise models and to settings where the goal is to

select a fixed-size subset of candidates. They have also considered the case p → 1

(see also the work of Elkind and Shah, 2014). Just as in Young’s analysis, the result

turns out to depend on the value of p: when p→ 1 (and ϕ = p
1−p → +∞), we ob-

tain a refinement of the Kemeny rule, and when p→ 1/2 (and ϕ→ 1), we obtain a

refinement of the Borda rule. We will now present the arguments both for ϕ→ +∞
and for ϕ→ 1; we refer to the resulting rules as MLE∞tr and MLE1

tr, respectively.

For every candidate a ∈ A let La denote the set of all rankings in L(A) where

a is ranked first. Recall that under the Mallows noise model the probability of a

profile (v1, . . . , vn) given that the true state of the world is described by a ranking

u is proportional to ϕ−
∑n
i=1 dswap(vi,u). Thus, to compute the most likely winner,

we need to find the candidates that maximize the expression

τa(ϕ) =
∑
u∈La

ϕ−
∑n
i=1 dswap(vi,u).

p → 1, ϕ → +∞ The rule MLE∞tr returns a set of candidates S such that for
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every a ∈ S, b ∈ A \ S we have τa(ϕ) > τb(ϕ) for all sufficiently large

values of ϕ. To see that S is not empty, note that functions τa(ϕ), a ∈ A,

are Laurent polynomials (i.e., sums of powers of ϕ), and therefore any

two of these functions either coincide or have finitely many intersection

points. Moreover, for each a ∈ A the most significant summand of τa(ϕ) at

ϕ→ +∞ is

ϕ−
∑n
i=1 dswap(vi,u

′), where u′ ∈ argmin
u∈La

n∑
i=1

dswap(vi, u).

Hence, MLE∞tr is a refinement of the Kemeny rule.

p → 1/2, ϕ → 1 We have τa(1) = (m− 1)! for all a ∈ A. Further, the derivative of

τa(ϕ) at ϕ = 1 is given by

dτa
dϕ

∣∣∣
ϕ=1

= −
∑
u∈La

n∑
i=1

dswap(vi, u) = −
n∑
i=1

∑
u∈La

dswap(vi, u).

It is easy to show by induction on j that if pos(vi, a) = j then we have∑
u∈La dswap(vi, u) = j(m − 1)! + Cm, where Cm is a function of m (i.e.,

does not depend on vi). As
∑n
i=1(m−pos(vi, a)) is exactly the Borda score

of a, it follows that a ∈ argminc∈A
dτc
dϕ

∣∣
ϕ=1

if and only if a is a Borda

winner. Hence, MLE1
tr is a refinement of the Borda rule. Further, it can

be checked that it is distinct from the Borda rule, i.e., it may fail to elect

some Borda winners; this can happen when τa(ϕ) and τb(ϕ) are different

from each other, even though their derivatives at ϕ = 1 coincide. Further,

it can also be shown that MLE1
tr 6= MLE1

intr (Elkind and Shah, 2014), i.e.,

these two rules are two distinct refinements of the Borda rule.

We can apply a similar procedure to other r-noise models. It turns out that for

noise models that are derived from neutral simple ranking scoring functions via

equation (8.6) in the case ϕ → 1 we obtain a voting rule that is a refinement of

some scoring rule.

In more detail, consider a neutral SRSF given by a mapping ρ : L(A)×L(A)→
R, a value ϕ ∈ (1,+∞), and the corresponding r-noise model Pρ,ϕ(v | u) =

1
µρ,φ,u

ϕρ(v,u). Since ρ is neutral, µρ,ϕ,u is the same for all u ∈ L(A). Assume that

each ranking of the aletrnatives is a priori equally likely. A direct application of the

Bayes rule shows that the probability that the true state of the world is a ranking

where a is placed first given that the input profile is (v1, . . . , vn) is proportional to∑
u∈La

ϕ
∑n
i=1 ρ(vi,u). (8.10)

Let MLE1
ρ be the voting rule that maps (v1, . . . , vn) to the set of candidates that

maximize expression (8.10) for values of ϕ that are close to 1.
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We can view expression (8.10) as a function of ϕ; its derivative at ϕ = 1 equals∑
u∈La

n∑
i=1

ρ(vi, u) =

n∑
i=1

∑
u∈La

ρ(vi, u).

This means that the set of MLE1
ρ-winners is a (possibly strict) subset of W =

argmaxa∈A
∑n
i=1

∑
u∈La ρ(vi, u). Let MLE1

ρ be a coarsening of MLE1
ρ that, given a

profile (v1, . . . , vn), outputs the entire set W . Since ρ is neutral, the value of the

expression
∑
u∈La ρ(vi, u) only depends on the position of a in vi. Thus, MLE1

ρ is a

scoring rule. Conversely, every scoring rule can be obtained as MLE1
ρ for a suitable

function ρ: e.g., for the rule fα we can use the function ρα defined by (8.7).

Noise Models for Winners: MLEVIW Rules

We have seen how to derive a voting rule from an r-noise model by considering the

cumulative probability of rankings with a given winner. Conitzer and Sandholm

(2005) put forward a direct MLE-based approach for defining voting rules. It is

based on a simplified noise model, where the “state of the world” is simply the

identity of the best candidate, and the likelihood of a given vote depends on the

position of this candidate in the vote.

Definition 8.26 A noise model for winners, or a w-noise model, over a candidate

set A, |A| = m, is a family of probability distributions P(· | a)a∈A on {1, . . . ,m}.
For a given a ∈ A, P(j | a) is the probability of a vote where a is ranked in

position j given that a is the correct winner. We require P(j | a) > 0 for all a ∈ A,

j = 1, . . . ,m.

A voting rule f over a candidate set A is a maximum likelihood estimator for

winner under identically distributed independent votes (MLEWIV) with respect to

a w-noise model P over A if for every positive integer n and every preference profile

R = (v1, . . . , vn) ∈ L(A)n it holds that

f(R) = argmax
a∈A

n∏
i=1

P(pos(vi, a) | a). (8.11)

However, the power of this approach is somewhat limited, at least if we require

neutrality: neutral MLEWIV rules are simply scoring rules (Conitzer and Sand-

holm, 2005; Elkind et al., 2010b). Note the some form of neutrality is implicit in

the definition of a w-noise model: by construction, this model assigns the same

probability to any two votes that rank a in the same position, irrespective of how

they rank the remaining candidates.

Proposition 8.27 For every score vector α = (α1, . . . , αm) the scoring rule fα
is MLEWIV. Conversely, every neutral MLEWIV rule is a scoring rule.

Proof Given a score vector α = (α1, . . . , αm), define a w-noise model Pα as
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Pα(j | a) = 1
µα

2αj , where µα =
∑m
j=1 2αj . Now, consider an arbitrary pro-

file R = (v1, . . . , vn) over A and a candidate a ∈ A. For each i = 1, . . . , n, let

pi = pos(vi, a). The α-score of a in R is given by sα(R, a) =
∑n
i=1 αpi . On the

other hand, we have

n∏
i=1

Pα(pos(vi, a) | a) =
1

µnα

n∏
i=1

2αpi =
1

µnα
2 sα(a,R). (8.12)

Hence, the set of most likely candidates under Pα is exactly the set of fα-winners.

Conversely, let f be a neutral MLEWIV rule for a w-noise model P. It is easy

to verify that P is neutral, i.e., P(j | a) = P(j | b) for every j = 1, . . . ,m and

every a, b ∈ A. Now, fix some a ∈ A and set αj = log2 P(j | a) for all j = 1, . . . ,m.

Equation (8.12) shows that the scoring rule fα coincides with f .

Proposition 8.27 provides an alternative characterization of scoring rules, thus

complementing the well-known results of Smith (1973) and Young (1975). Equiva-

lently, one can say that the results of Smith and Young provide a characterization of

MLEWIV rules in terms of standard axiomatic properties. A natural open question,

which was suggested by Conitzer et al. (2009), is whether a similar characterization

can be obtained for MLERIV rules.

To conclude our discussion of the MLEWIV rules, we note that these rules arise

naturally from the ranking-based model considered in the previous section. Indeed,

for a neutral function ρ the rule MLE1
ρ is MLEWIV. To see this, note that given

a candidate a ∈ A, we can pick ϕ ∈ (1,+∞) and m rankings v1, . . . , vm such that

pos(vj , a) = j for j = 1, . . . ,m, and set

P(j | a) =
1

µ
ϕ
∑
u∈La ρ(v

j ,u), where µ =

m∑
j=1

ϕ
∑
u∈La ρ(v

j ,u).

It is easy to verify that for any choice of ϕ ∈ (1,+∞) and v1, . . . , vm the MLEWIV

rule that corresponds to this noise model is exactly MLE1
ρ.

Finally, we remark that Ben-Yashar and Paroush (2001) consider another ap-

proach to estimating winners under noise: in their model, each voter has to specify

one candidate (rather than a ranking of the candidates), and a voter’s probabil-

ity of voting for the true winner depends on the identity of the winner, and may

vary from one voter to another. Ben-Yashar and Paroush present an extension of

Condorcet’s Jury Theorem (see Section 8.3.1) to this setting.

8.4 Conclusions and Further Reading

We have discussed two approaches to rationalizing voting rules: a consensus-based

approach that leads to the distance rationalizability framework and a probabilistic

approach that leads to the MLE framework. We showed how to rationalize many
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common voting rules in each of these frameworks. For some rules, such as the

Kemeny rule, the rationalizations provided by both frameworks are closely related,

while for others (e.g., scoring rules), they seem to be quite different, and thus

provide different perspectives on the rule in question.

Due to space constraints, we were not able to overview the entire body of research

on these two frameworks; we will now briefly mention some of the relevant papers.

Service and Adams (2012) consider randomized strategyproof approximations

to distance rationalizable voting rules. Boutilier and Procaccia (2012) relate the

concept of distance rationalizability to the framework of dynamic social choice

(Parkes and Procaccia, 2013). Distance-based approaches have also been considered

in the context of judgment aggregation (Lang et al., 2011; Dietrich, 2014), as well

as in other areas of social choice (see Eckert and Klamler, 2011, and references

therein).

Xia et al. (2010) apply the MLE framework to voting in multi-issue domains, and

Xia and Conitzer (2011) extend it to partial orders, and a more general notion of

“state of the world”; for instance, they consider settings where the goal is to esti-

mate the top k alternatives for k ≥ 1. The latter problem is explored in more detail

by Procaccia et al. (2012). Caragiannis et al. (2013b) investigate a complementary

issue: given a noise model and a fixed voting rule, how many samples do we need

to generate so that this rule identifies the correct winner? They also consider vot-

ing rules that perform well with respect to families of noise models; such rules are

further explored by Caragiannis et al. (2013a) and Xia (2014b). Drissi-Bakhkhat

and Truchon (2004) modify the Mallows model by relaxing the assumption that

the probability of correctly ordering two alternatives is the same for all pairs of

alternatives. They let this probability increase with the distance between the two

alternatives in the true order, to reflect the intuition that a judge or voter is more

prone to errors when confronted with two comparable alternatives than when con-

fronted with a good alternative and a bad one. Truchon (2008) shows that when this

probability increases exponentially with the distance, the resulting ranking orders

the candidates according to their Borda scores. MLE analysis admits a Bayesian

interpretation: if we assume the uniform prior over the true states of the world, then

an MLE rule outputs the maximum a posteriori estimate. Pivato (2012) considers

a more general class of statistical estimators (in particular, settings where the prior

distribution over the possible states of the world need not be uniform) and domains

other than preference aggregation (including judgment aggregation and committee

selection).
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