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Effects of corrugation shape on frequency band-gaps
for longitudinal wave motion in a periodic elastic layer
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(Received 29 September 2015; revised 29 January 2016; accepted 26 March 2016; published online
18 April 2016)

The paper concerns determining frequency band-gaps for longitudinal wave motion in a periodic

waveguide. The waveguide may be considered either as an elastic layer with variable thickness or

as a rod with variable cross section. As a result, widths and locations of all frequency band-gaps are

determined by means of the method of varying amplitudes. For the general symmetric corrugation

shape, the width of each odd band-gap is controlled only by one harmonic in the corrugation series

with its number being equal to the number of the band-gap. Widths of even band-gaps, however,

are influenced by all the harmonics involved in the corrugation series, so that the lower frequency

band-gaps can emerge. These are band-gaps located below the frequency corresponding to the low-

est harmonic in the corrugation series. For the general non-symmetric corrugation shape, the mth

band-gap is controlled only by one, the mth, harmonic in the corrugation series. The revealed

insights into the mechanism of band-gap formation can be used to predict locations and widths of

all frequency band-gaps featured by any corrugation shape. These insights are general and can be

valid also for other types of wave motion in periodic structures, e.g., transverse or torsional vibra-

tion. VC 2016 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4945988]

[LC] Pages: 1898–1908

I. INTRODUCTION

An essential feature of periodic structures is the pres-

ence of frequency band-gaps, i.e., frequency ranges in which

waves cannot propagate (Brillouin, 1953). Determination of

band-gaps and the corresponding attenuation levels is an im-

portant practical problem because periodic structures are

used everywhere from vibration isolators and mechanical fil-

ters to building frames, bridge trusses, railway tracks, and

similar. The present paper concerns determining frequency

band-gaps for longitudinal wave motion in a periodic

straight elastic layer. More specifically the effects of corru-

gation shape on widths and locations of band-gaps are to be

revealed. The waveguide may be considered either as an

elastic layer with the variable thickness or as a rod with the

variable cross section with the classical Bernoulli-Euler

model being employed.

Analysis of plane elastic waves in one-dimensional

waveguides is a popular topic, and Shen and Cao (1999),

Ruzzene and Bas (2000), Tongele and Chen (2004), and Wu

et al. (2009) are just a few examples. Usually such analysis

is conducted numerically by means of the transfer matrix

method or the spectral element method (cf., e.g., Shen and

Cao, 1999; Ruzzene and Bas, 2000; Tongele and Chen,

2004; Wu et al., 2009). The present paper, however, implies

widths and locations of the frequency band-gaps to be deter-

mined analytically. In this sense, the paper follows Nayfeh

(1974) in which acoustic wave propagation in a periodic

duct was studied by the multiple scales method (Nayfeh and

Mook, 1979). Bostrom (1983), El-Bahrawy (1994), and

Banerjee and Kundu (2006) consider similar problems in

elastodynamics. Here, however, another mathematical model

of the corrugated elastic layer is used. In Sorokin (2015),

longitudinal wave motion in a periodic straight elastic layer

was studied and the lowest band-gaps were determined for

four specific corrugation shapes, namely, piece-wise con-

stant, piece-wise linear, biquadratic, and pure harmonic cor-

rugations. Thus in the previously published papers within the

topic (e.g., Nayfeh, 1974; Bostrom, 1983; El-Bahrawy,

1994; Banerjee and Kundu, 2006; Sorokin, 2015), only some

specific corrugation shapes were considered. Consequently,

band-gaps were predicted only for these specific corrugation

shapes without revealing the essential relationship between

the amplitudes of the harmonics involved in the corrugation

series and the widths of the frequency band-gaps. The pres-

ent paper considers corrugation shape of a general form and

provides important insights into the mechanism of the band-

gaps formation. For example, it reveals the dependencies of

the band-gaps widths on the amplitudes of the harmonics

involved in the corrugation series enabling one to predict

locations and widths of the frequency band-gaps for any cor-

rugation shape of interest. A novel analytical approach, the

method of varying amplitudes (Sorokin and Thomsen,

2015a,b), is employed that has a broader applicability range

than the classical methods based on Floquet theorem

(Brillouin, 1953; Yakubovich and Starzhinskii, 1975) and

the asymptotic methods (Nayfeh and Mook, 1979). The

method has been proposed in Sorokin and Thomsen

(2015a,b); these papers differ from the present one both in

terms of the physical problem considered and the results
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obtained. The problem under study is a model problem; how-

ever, it allows one to reveal some important insights into the

mechanism of the band-gaps formation that can be present

for any periodic structure and any type of wave motion.

II. GOVERNING EQUATIONS

Consider the following equation describing propagation

of a plane longitudinal wave in a non-uniform waveguide

with the variable property ~hð~xÞ:

@

@~x
~h ~xð Þ @~u ~x;~tð Þ

@~x

� �
� 1

c2
~h ~xð Þ @

2 ~u ~x;~tð Þ
@~t

2
¼ 0: (1)

The waveguide may be viewed as an elastic layer with the

variable thickness ~hð~xÞ, so that the wave speed c in Eq. (1) is

defined by c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=ðqð1� t2ÞÞ

p
, here E is the elastic modu-

lus, q density, and t Poisson’s ratio of the plate material.

Equation (1) also describes axial waves in a non-uniform

rod, with the Bernoulli–Euler model being employed. In this

case, c ¼
ffiffiffiffiffiffiffiffiffi
E=q

p
, and ~hð~xÞ is the variable cross-sectional

area of the rod. For both cases, ~uð~x;~tÞ is the axial displace-

ment of the layer at the axial coordinate ~x and time ~t.
Torsional vibrations of straight rods with spatially vary-

ing cross-sections are also described by equations similar to

Eq. (1). For example, for a rod with a circular cross section,
~hð~xÞ will be the varying polar moment of inertia, and

c ¼
ffiffiffiffiffiffiffiffiffi
G=q

p
, where G is the shear modulus. The equation of

transverse vibrations of a string with spatially varying mass

per unit length and tension also turns to be similar to Eq. (1).

Thus the present study covers different types of wave motion

in periodic structures, emphasizing generality and impor-

tance of the results.

Assuming a solution of the form ~uð~x;~tÞ ¼ ~Uð~xÞei~x~t , Eq.

(1) reduces to the second order ordinary differential equation

for the complex amplitude ~Uð~xÞ

d

d~x
~h ~xð Þ d

~U ~xð Þ
d~x

� �
þ ~x2

c2
~h ~xð Þ ~U ~xð Þ ¼ 0: (2)

The varying property ~hð~xÞ of the waveguide is assumed to

be a periodic function of the coordinate ~x with period 2l, so

that the size of the periodicity cell is 2l. Consequently, the

displacement ~Uð~xÞ and the coordinate ~x are scaled with

respect to l, and the new non-dimensional variables are intro-

duced as x ¼ ~x=l, UðxÞ ¼ ~UðxÞ=l, giving

d

dx
h xð Þ dU xð Þ

dx

� �
þ x2h xð ÞU xð Þ ¼ 0; (3)

where x ¼ ~xl=c, and hðxÞ ¼ ~hðxÞ=l for the plate and hðxÞ
¼ ~hðxÞ=l2 for the rod. Equation (3) is the non-dimensional

equation describing longitudinal wave propagation in the

considered non-uniform periodic waveguide. It may be

rewritten in the form

U00 þ x2U þ h0

h
U0 ¼ 0; (4)

where primes denote derivatives with respect to the non-

dimensional coordinate x. As it is seen, Eq. (4) involves

modulation of the coefficient at the first derivative, and thus

differs considerably from the classical Hill’s equation (see

e.g., Yakubovich and Starzhinskii, 1975) which was used as

the simplest model of a periodic structure in the classical

monograph (Brillouin, 1953).

Corrugation shape of the considered periodic waveguide

is assumed to be of a general symmetric form defined by

h xð Þ ¼ 1� e
2
½N1 cos pxþ N3 cos 3pxþ � � �

þ N2n�1 cos 2n� 1ð Þpx�: (5)

Note that due to the choice of the dimensionless parameters,

the period of hðxÞ is equal to 2. Expression (5) in particular,

covers the important case of the piece-wise constant corruga-

tion shape

h xð Þ ¼ 1þ e
2
; for x 2 �1;�1=2ð Þ [ 1=2; 1ð Þ

h xð Þ ¼ 1� e
2
; for x 2 �1=2; 1=2ð Þ; (6)

and expanding Eq. (6) into trigonometric Fourier series

gives

h xð Þ ¼ 1� 2e
p

cos pxþ � � � � �1ð Þn

2n� 1
cos 2n� 1ð Þpx

� �
:

(7)

The piece-wise linear corrugation shape,

hðxÞ ¼ 1� eðxþ 1=2Þ; for x 2 ð�1; 0Þ;
hðxÞ ¼ 1þ eðx� 1=2Þ; for x 2 ð0; 1Þ; (8)

can be also described by the series [Eq. (5)]

h xð Þ ¼ 1� 4e
p2

cospxþ � � � þ 1

2n� 1ð Þ2
cos 2n� 1ð Þpx

" #
:

(9)

Expanding the corrugation shape with discontinuity of the

second order

h xð Þ ¼ 1þ e
2

1� 4 xþ 1ð Þ2
� �

; for x 2 �1;�1=2ð Þ;

h xð Þ ¼ 1þ e
2
�1þ 4x2ð Þ; for x 2 �1=2; 1=2ð Þ;

h xð Þ ¼ 1þ e
2

1� 4 x� 1ð Þ2
� �

; for x 2 1=2; 1ð Þ;

(10)

into trigonometric Fourier series, one gets

h xð Þ ¼ 1� 16e
p3

cospxþ�� �� �1ð Þn

2n� 1ð Þ3
cos 2n� 1ð Þpx

" #
:

(11)

As an illustration, these corrugation shapes are pre-

sented in Fig. 1, with the pure harmonic corrugation shape
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h xð Þ ¼ 1� e
2

cos px; for x 2 �1; 1ð Þ; (12)

also shown for comparison.

The aim of the paper is to reveal essential insights into

the mechanism of the band-gap formation, in particular, the

relationship between the amplitudes of the harmonics

involved in the corrugation series and widths of the fre-

quency band-gaps, and thus the general corrugation form

described by expression (5) is considered.

III. SOLUTION BY THE METHOD OF VARYING
AMPLITUDES

To determine widths and locations of the frequency

band-gaps corresponding to the general corrugation shape

[Eq. (5)], the method of varying amplitudes is employed (cf.,

e.g., Sorokin and Thomsen, 2015a,b). Following the method,

a solution of Eq. (3) is sought in the form of series of spatial

harmonics with varying amplitudes

UðxÞ ¼
X1

j¼�1
bjðxÞ expðijpxÞ ¼ b0ðxÞ þ b1ðxÞ expðipxÞ

þ b�1ðxÞ expð�ipxÞ þ b2ðxÞ expði2pxÞ

þ b�2ðxÞ expð�i2pxÞ þ � � �; (13)

where the complex-valued amplitudes bjðxÞ are not

required to vary slowly in comparison with expðijpxÞ so

that no restrictions on the solution are imposed. We simply

reformulate the problem with respect to the new variables

bjðxÞ.
The shift from the original dependent variable uðxÞ to

the new variables bjðxÞ implies that additional constraints

on these variables should be imposed. With the MVA, the

constraints are introduced in the following way: substitute

Eq. (13) into the governing Eq. (3) and require the coeffi-

cients of the spatial harmonics involved to vanish identi-

cally. As the result, one obtains the following infinite set of

differential equations for the amplitudes bjðxÞ:

b00j þ i2jpb0j þ x2 � j2p2
	 


bj

� e
4

�X1
k¼1

N2k�1½ x2 � j jþ 1� 2kð Þp2
	 


bjþ1�2k

þ x2 � j j� 1þ 2kð Þp2
	 


bj�1þ2k

þ ip 2jþ 1� 2kð Þb0jþ1�2k þ 2j� 1þ 2kð Þb0j�1þ2k

	 

þ b00jþ1�2k þ b00j�1þ2k�

�
¼ 0; (14)

where j belongs to Z, the set of integer numbers. Solving Eq.

(14) is a trivial matter leading to

b ¼ fb0 b1 b�1 b2 b�2 :::gT; bðxÞ ¼ bc expð�jxÞ;
(15)

where �j is a root of the characteristic equation of the system

[Eq. (14)], and bc the associated vector. Thus to determine

�j, the infinite determinant of the matrix of the system [Eq.

(14)] should be calculated. The diagonal elements of this

matrix are given by

A½j; j� ¼ ð�j þ ijpÞ2 þ x2; j 2 Z ; (16)

and all other elements are defined by

A j; jþ 1� 2k½ � ¼ � e
4

N2k�1

�
x2 þ p2 1

2
� k

� �2

þ ip jþ 1

2
� k

� �
þ �j

� �2�
;

j; k 2 Z ; k > 0; (17)

A j; j� 1þ 2k½ � ¼ � e
4

N2k�1

�
x2 þ p2 1

2
� k

� �2

þ ip j� 1

2
þ k

� �
þ �j

� �2�
;

j; k 2 Z ; k > 0: (18)

Note that from expressions (17) and (18), it follows that this

matrix is symmetric,

A½j; jþ 1� 2k� ¼ A½jþ 1� 2k; j�: (19)

Taking into account expression (15), the obtained solu-

tion of the Eq. (3) can be written as

UðxÞ ¼
X1

j¼�1
bc j expðijpxÞ expð�jxÞ: (20)

So for the problem considered the MVA gives solution of the

same form as direct employing of Floquet theorem (Brillouin,

1953; Yakubovich and Starzhinskii, 1975). From this theo-

rem, it follows that equations with periodic coefficients, in

particular, Eq. (3), can have solutions only of the form of Eq.

(20). These solutions can be determined by means of the cor-

responding analytical methods, e.g., the classical Hill’s

method of infinite determinants (Brillouin, 1953; Yakubovich

FIG. 1. (Color online) The corrugation shapes for e ¼ 0:1: piece-wise con-

stant (dotted line), piece-wise linear (dashed line), corrugation with disconti-

nuity of the second order (dashed-dotted line), and pure harmonic corrugation

(solid line).
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and Starzhinskii, 1975; Bolotin, 1964). And the problem

reduces to calculating the infinite determinant of the matrix A.

Note, however, that the MVA has a broader applicability

range than the methods based on Floquet theorem, e.g., it can

be employed for nonlinear problems and problems involving

multiple excitations with incommensurate frequencies (cf.

Sorokin and Thomsen, 2015a,b).

From expression (20), it follows that the solution of the

initial governing Eq. (1) takes the form

~uðx; tÞ ¼ ~FðxÞ expðiðxt� jxÞÞ; (21)

where time t is dimensionless, t ¼ ðc=lÞ~t, j ¼ i�j, and ~FðxÞ
is periodic with respect to x

~FðxÞ ¼ lFðxÞ ¼ l
X1

j¼�1
bc j expðijpxÞ: (22)

Equation (21) is of the same form as the one obtained by the

method of space-harmonics (Mead, 1996). According to

Mead (1996) and Brillouin (1953), this solution describes a

“compound wave” (Brillouin, 1953) or a “wave package”

(Mead, 1996) propagating (or attenuating) in a periodic layer

with dimensionless frequency x. In Brillouin (1953, Sec.

43), j is named as the wavenumber of the compound wave

and in Mead (1996) as the phase constant of the wave

motion; real values of j correspond to propagating waves

and complex values to attenuating waves. Note that the

notion of the wavenumber as a feature of the compound

wave (Brillouin, 1953) differs from the one implied in the

asymptotic method of G. Wentzel, H. Kramers, and L.

Brillouin (the WKB method) (Pierce, 1970; Nielsen and

Sorokin, 2014). The WKB operates with the “local” wave-

number of a wave propagating in a non-uniform structure

with this local wavenumber being a function of the spatial

coordinate (Pierce, 1970; Nielsen and Sorokin, 2014).

However, for studying wave motion in periodic structures,

the notion implied in the classical work (Brillouin, 1953)

seems to be more convenient.

According to the phase closure principle [Mead, 1996;

Nielsen and Sorokin, 2015 (p. 10)] for pure axial waves, fre-

quencies corresponding to boundaries of band-gap regions

for linear periodic structures are those where an integer num-

ber n of compound half-waves fit exactly into a unit cell of

the structure, i.e., these frequencies correspond to the wave-

numbers (phase constants)

j ¼ p
2

n; n ¼ 61;62;63; :::: (23)

In the present paper, the relatively weakly modulated wave-

guide is considered, e� 1. Consequently, the frequencies

corresponding to boundaries of the band-gap regions, i.e., to

wavenumbers [Eq. (23)], are sought in the form of a series

x ¼ x0 þ ex1 þ e2x2 þ Oðe3Þ: (24)

This series is then introduced into the algebraic equation

detðAÞ ¼ 0; (25)

along with the values of wavenumbers [Eq. (23)]. Subsequently,

x0, x1, and x2 are determined following the classical

procedure of expansion in the small parameter e (Nayfeh and

Mook, 1979).

IV. WIDTHS AND LOCATIONS OF ODD BAND-GAPS

First, odd band-gaps are considered which correspond to

odd values of n in Eq. (23) (cf. Mead, 1996). Gathering the

coefficients of e0 in Eq. (25), we obtain the following equa-

tion for x0, which involves only the diagonal elements of

the matrix A because all other elements depend on e

Y1
m¼1

x2
0 �

2m� 1ð Þ2p2

4

 !2

¼ 0: (26)

This equation can be solved explicitly, giving the following

positive solutions:

x0;2m�1 ¼
2m� 1ð Þp

2
; m ¼ 1; 2; 3; :::: (27)

These values of x0 define “seeds” of the band-gaps, i.e.,

where the band-gaps emerge, with 2m� 1 being the number

of the band-gap. For example, the first band-gap emerges at

x0;1 ¼ p=2, the third at x0;3 ¼ 3p=2, etc. Note that seeds of

the band-gaps do not depend on the coefficients N1, N3, N5

etc.

Introducing the obtained expression for x0 into Eq. (25),

one obtains that the coefficient of e1 in this equation vanishes.

Expressions for x1 are then determined from the equation

implying the coefficient of e2 in Eq. (25) to equal zero

x2
1 �

2m� 1ð Þ2p2

64
N2

2m�1 ¼ 0; (28)

which allows for a relatively simple solution of the form

x1;2m�1 ¼ 6
2m� 1ð Þp

8
N2m�1; m ¼ 1; 2; 3; :::; (29)

with 2m� 1 being the number of the band-gap. Combining

expression (29) with Eqs. (27) and (24), we obtain that the

width of the 2m� 1’th band-gap is determined by

Dx2m�1 ¼ e
2m� 1ð Þp

4
jN2m�1j þ O e2ð Þ: (30)

Results (27) and (30) indicate that the width and loca-

tion of the 2m� 1’th band-gap, m ¼ 1; 2; 3; :::, for the gen-

eral corrugation shape [Eq. (5)] are controlled by the

2m� 1’th harmonic in the corrugation series. For example,

the width and location of the first band-gap are governed by

the first harmonic in the series [Eq. (5)], the third band-gap

is controlled by the third harmonic in Eq. (5), etc. Thus it is

valid to take into account only the 2m� 1’th harmonic in the

series Eq. (5), to determine the width and location of the

2m� 1’th band-gap.

For example, from expression (30), we obtain that the

width of the first band-gap for the piece-wise constant corru-

gation shape Eq. (7) is Dx1 ¼ e, for the piece-wise linear

shape Eq. (9) Dx1 ¼ 2e=p; for the shape with discontinuity
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of the second order [Eq. (11)] Dx1 ¼ 8e=p2, and for the pure

harmonic modulation [Eq. (12)] Dx1 ¼ pe=4. These results

coincide with those obtained in the paper (Sorokin, 2015),

where the first four band-gaps for the piece-wise constant,

piece-wise linear, and pure harmonic corrugation shapes

were considered. The present paper, however, provides

much more general results than those obtained previously

because they are applicable for any corrugation shape and

concern not only the lowest frequency band-gaps but all of

them. For example, general expressions defining widths of

all odd band-gaps for the piece-wise constant and the piece-

wise linear corrugation shapes, as well as the corrugation

shape with discontinuity of the second order, can be derived

from expression (30). For the piece-wise constant corruga-

tion shape, we obtain that all odd band-gaps are of the same

width

Dx2m�1 ¼ e; m ¼ 1; 2; 3; :::; (31)

for the piece-wise linear shape we get

Dx2m�1 ¼
2

p
1

2m� 1
e; m ¼ 1; 2; 3; :::; (32)

so that the width of the band-gap decreases with increasing

its number. And for the shape with discontinuity of the sec-

ond order we obtain

Dx2m�1 ¼
8

p2

1

2m� 1ð Þ2
e; m ¼ 1; 2; 3; :::; (33)

so that the decrease of the band-gap width with increasing its

number is even more pronounced. Thus increasing the order

of the discontinuity of the corrugation shape leads to a reduc-

tion of the widths of the higher band-gaps. The width of the

first band-gap, however, approaches the width of the band-

gap for the pure harmonic corrugation. Figure 2 illustrates

the obtained dependencies of the band-gap width on its num-

ber with the one for the corrugation shape with discontinuity

of the third order also shown for comparison

h xð Þ ¼ 1� 48e
p4

cospxþ �� �þ 1

2n� 1ð Þ4
cos 2n� 1ð Þpx

" #
:

(34)

Also, Fig. 3 presents the dispersion relations obtained by

direct solving of Eq. (25) for x as a function of the wave-

number j with e ¼ 0:3; case (a) corresponds to the piece-

wise constant corrugation shape, (b) to the piece-wise linear

shape, and (c) to the pure harmonic corrugation. As appears

from Fig. 3, the dispersion relation is symmetric with respect

to the vertical axis and periodic with the wavenumber j;

these results correspond well to those obtained in the classi-

cal monograph (Brillouin, 1953).

From expression (30) it also follows that for pure har-

monic corrugation shapes described by

h xð Þ ¼ 1� e
2

cos 2n� 1ð Þpx; n ¼ 1; 2; 3; :::; (35)

the widths of the band-gaps increase linearly with increasing

n. For example, for the first corrugation shape, n ¼ 1, from

(30) we get Dx1¼ (p/4)e, for the second shape, n ¼ 2, obtain

Dx3¼ (3p/4)e, and for n ¼ 3 get Dx5¼ (5p/4)e.

FIG. 2. (Color online) The dependencies of the width Dx2m�1=e of the band-

gap on its number 2m� 1 for piece-wise constant corrugation (circles), piece-

wise linear corrugation (squares), corrugation with discontinuity of the second

order (triangles), corrugation with discontinuity of the third order (inverted

triangles), and pure harmonic corrugation (crosses).

FIG. 3. (Color online) Dispersion relations obtained by direct solving of Eq. (25) for x as a function of the wavenumber j, with e ¼ 0:3; (a) piece-wise con-

stant corrugation shape, (b) piece-wise linear shape, and (c) pure harmonic corrugation.
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From expression (30) one finds that if 2m� 1’th har-

monic in the series [Eq. (5)] is equal to zero, N2m�1 ¼ 0,

then x1;2m�1 ¼ 0, and the width of the 2m� 1’th band-gap

is of order of e2 or smaller. To obtain an explicit expression

for the width of the band-gap for this case, we take into

account the third term in the series [Eq. (24)]. Introducing

this series into Eq. (25), one obtains that for x0 defined by

expression (27), and x1;2m�1 ¼ 0, coefficients of e0, e1, e2, e3

in this equation vanish identically. So that x2 is to be deter-

mined from the equation implying the coefficient of e4 in Eq.

(25) to be equal to zero. This equation is of the following

form:

ðx2 � f ðm;N1;N3;N5; :::;N2n�1ÞÞ2 ¼ 0; (36)

here f is a function of m;N1;N3;N5; :::;N2n�1, which is

rather lengthy, and thus not given here. Equation (36) has

two identical roots,

x2;2m�1 ¼ f ðm;N1;N3;N5; :::;N2n�1Þ: (37)

Consequently, from expressions (24) and (37) it follows that

Dx2m�1 ¼ Oðe3Þ; for N2m�1 ¼ 0; (38)

i.e., if 2m� 1’th harmonic in the series (5) equals zero,

N2m�1 ¼ 0, then the width of the corresponding 2m� 1’th

band-gap is of order of e3.

Expressions (27), (30), and (38) specify widths and loca-

tions of all odd band-gaps for the general symmetric corru-

gation shape [Eq. (5)]. It is notable that locations of the

band-gaps do not depend on the modulation amplitudes,

while the width of each band-gap is controlled only by one

harmonic in the series [Eq. (5)] with the number of this har-

monic being equal to the number of the band-gap. The

revealed dependency of the odd band-gaps widths on the

modulation amplitudes, apparently, has not yet been dis-

cussed in the literature, although it seems to be of consider-

able practical and theoretical importance because it is valid

for any corrugation shape.

V. WIDTHS AND LOCATIONS OF EVEN BAND-GAPS

Now we proceed to determining even band-gaps which

correspond to even values of n in expression (23) (cf. Mead,

1996). The first three terms are taken into account in the

expansion [Eq. (24)] for x. Gathering the coefficients of e0

in Eq. (25), we obtain the following equation for x0:

Y1
m¼1

ðx2
0 � m2p2Þ2 ¼ 0: (39)

The positive solutions for Eq. (39) are

x0;2m ¼ mp; m ¼ 1; 2; 3; ::: : (40)

Thus similarly to the odd band-gaps, locations of even band-

gaps do not depend on the modulation amplitudes N1, N3, N5

etc. In Eq. (40), 2m is the number of the band-gap, e.g.,

the second band-gap emerges at x0;2 ¼ p, the fourth at x0;4

¼ 2p etc.

The obtained expression (40) for x0 leads to vanishing

of the coefficient of e1 in Eq. (25). The equation for the coef-

ficient of e2 in Eq. (25) allows only for the trivial solution

x1;2m ¼ 0; m ¼ 1; 2; 3; :::; (41)

so that widths of even band-gaps for the general symmetric

corrugation shape [Eq. (5)] are of order of e2 or smaller.

For x0 and x1 defined by expressions (40) and (41),

respectively, the coefficient of e3 in Eq. (25) vanishes.

Consequently, x2 is determined from the equation implying

the coefficient of e4 in Eq. (25) to equal zero. This equation

is quadratic with respect to x2 and rather lengthy, and thus

not given here. For m ¼ 1 and x0;2 ¼ p, i.e., for the second

band-gap, it allows for the following solutions:

x2;2 ¼
p
16

�
6

1

2
N2

16
X1
n¼1

N2n�1N2nþ1

�
X1
n¼1

2n� 1ð Þ2

2n� 3ð Þ 2nþ 1ð ÞN
2
2n�1

�
: (42)

Consequently, the width of the second band-gap is deter-

mined by

Dx2 ¼
p
16

e2

����N2
1 þ 2

X1
n¼1

N2n�1N2nþ1

����þ O e3ð Þ: (43)

As it is seen from expression (43), the width of the sec-

ond band-gap depends on all the harmonics involved in the

series [Eq. (5)]. For example, for the pure harmonic corruga-

tion shape (12) we obtain: Dx2¼ (p/16)e2. For the piece-wise

constant corrugation shape described by the series [Eq. (7)],

so that N2n�1¼�(4/p)(�1)n/(2n�1), expression (43) immedi-

ately gives zero value for the width of the second band-gap

Dx2 ¼
1

p
e2

����1� 2
X1
n¼1

1

4n2 � 1

����! 0: (44)

For the piece-wise linear corrugation [Eq. (9)],

N2n�1¼ (8/p2) [1/(2n�1)2], we get

Dx2 ¼
4

p3
e2

����1þ 2
X1
n¼1

1

4n2 � 1ð Þ2

����! 1

2p
e2: (45)

The same results for the second band-gap featured by the

piece-wise constant and the piece-wise linear corrugation

shapes were obtained in Sorokin (2015). Expression (43),

however, enables one to get much more general results that

cover any symmetric corrugation shape. For example, for the

corrugation shape with discontinuity of the second order

[Eq. (11)], N2n�1 ¼ �ð32=p3Þ½ð�1Þn=ð2n� 1Þ3�, from Eq.

(43) we get

Dx2 ¼
64

p5
e2

����1� 2
X1
n¼1

1

4n2 � 1ð Þ3

����! 6

p3
e2: (46)
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As an illustration, Fig. 4 shows the dependencies of the

frequencies defining boundaries of the second band-gap on

the parameter e for the pure harmonic, the piece-wise con-

stant and the piece-wise linear corrugation shapes, as well as

the corrugation shape with discontinuity of the second order.

It is notable that, in contrast to the odd band-gaps, fre-

quencies defining boundaries of the even band-gaps are not

symmetric with respect to the seed of the band-gap x0. In par-

ticular, as appears from Fig. 4, the second band-gap is shifted

to higher frequencies. Expressions (42)–(46) and Fig. 4 indi-

cate that among the presented four corrugation shapes the

pure harmonic one features the largest second band-gap.

From expression (43) it also follows that the width of

the second band-gap can be non-zero in the case when

N1 ¼ 0, so that the corrugation shape

h xð Þ ¼ 1� e
2

N3 cos 3pxþ N5 cos 5px½

þ � � � þ N2n�1 cos 2n� 1ð Þpx� (47)

implies a lower frequency band-gap, i.e., a band-gap below

the frequency x0 ¼ 3p=2, which is the seed of the lowest

band-gap for

h xð Þ ¼ 1� e
2

N3 sin 3px: (48)

This result indicates that additional higher harmonics in the

corrugation shape can lead to the lower frequency band-

gaps. For example, the corrugation shape

h xð Þ ¼ 1� e
2

N7 cos 7px (49)

features the lowest band-gap at x0 ¼ 7p=2. However, adding

the higher harmonic �ðe=2ÞN9 cos 9px in expression (49)

results in the band-gap emerging at the frequency x0 ¼ p
which is below 7p=2. These lower frequency band-gaps can

be of certain practical and theoretical interest, although they,

apparently, have not yet been mentioned in the literature.

For m ¼ 2 and x0 ;4 ¼ 2p, i.e., for the fourth band-gap,

the following expressions for x2 are obtained from the equa-

tion implying the coefficient of e4 in Eq. (25) to equal zero

x2;4 ¼
p
8

�
6N1N36

X1
n¼1

N2n�1N2nþ3

�
X1
n¼1

2n� 1ð Þ2

2n� 5ð Þ 2nþ 3ð ÞN
2
2n�1

�
: (50)

Consequently, the width of the fourth band-gap is deter-

mined by

Dx4 ¼
p
4

e2

����N1N3 þ
X1
n¼1

N2n�1N2nþ3

����þ O e3ð Þ: (51)

For example, for the piece-wise constant corrugation shape

described by the series [Eq. (7)], expression (51) gives zero

value for the width of the fourth band-gap

Dx4 ¼
4

p
e2

���� 13�
X1
n¼1

1

4n2 þ 4n� 3

����! 0: (52)

For the piece-wise linear corrugation shape [Eq. (9)] we get

Dx4 ¼
16

p3
e2

���� 19þ
X1
n¼1

1

4n2 þ 4n� 3ð Þ2

����! 1

4p
e2; (53)

which agrees well with the results obtained in Sorokin

(2015). The pure harmonic corrugation shape [Eq. (12)]

gives the fourth band-gap of the zero width, while the corru-

gation shape with discontinuity of the second order [Eq.

(11)] results in

Dx4 ¼
256

p5
e2

���� 19�
X1
n¼1

1

4n2 þ 4n� 3ð Þ3

����! 3

4p3
e2:

(54)

As an illustration, Fig. 5 shows the dependencies of the fre-

quencies defining boundaries of the fourth band-gap on the

parameter e for these corrugation shapes.

As appears from Fig. 5, the fourth band-gap is shifted

to higher frequencies with respect to x0 ;4 ¼ 2p, and the

FIG. 4. (Color online) The dependencies of the frequencies defining bounda-

ries of the second band-gap on the parameter e for piece-wise constant cor-

rugation (dotted line), piece-wise linear corrugation (dashed line),

corrugation with discontinuity of the second order (dashed-dotted line), and

pure harmonic corrugation (solid line).

FIG. 5. (Color online) The dependencies of the frequencies defining bounda-

ries of the fourth band-gap on the parameter e for piece-wise constant corru-

gation (dotted line), piece-wise linear corrugation (dashed line), and

corrugation with discontinuity of the second order (dashed-dotted line).
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piece-wise linear corrugation shape features the largest

band-gap. Expression (51) also suggests possible emer-

gence of the lower frequency band-gaps. For example, the

corrugation shape

h xð Þ ¼ 1� e
2

N5 cos 5px (55)

features the lowest band-gap at x0 ¼ 5p=2. However, add-

ing the higher harmonic �ðe=2ÞN9 cos 9px in expression (55)

results in the band-gap emerging at the frequency x0 ¼ 2p
which is below 5p=2.

For m ¼ 3 and x0 ;6 ¼ 3p, i.e., for the sixth band-gap,

the following expressions for x2 are obtained

x2;6 ¼
3p
16

�
6

1

2
N2

36N1N56
X1
n¼1

N2n�1N2nþ5

�
X1
n¼1

2n� 1ð Þ2

2n� 7ð Þ 2nþ 5ð ÞN
2
2n�1

�
: (56)

So that the width of the sixth band-gap is determined by

Dx6 ¼
3p
16

e2

����N2
3 þ 2N1N5 þ 2

X1
n¼1

N2n�1N2nþ5

����þ O e3ð Þ:

(57)

And again for the piece-wise constant corrugation shape

[Eq. (7)], we get band-gap of the zero width, Dx6 ¼ 0. For

the piece-wise linear shape [Eq. (9)], expression (57) gives

Dx6 !
1

6p
e2; (58)

while for the corrugation shape with discontinuity of the sec-

ond order one gets

Dx6 !
2

9p3
e2: (59)

For the mth band-gap, expressions for x2 take the fol-

lowing form:

x2;2m ¼
mp
16

�
6

1

2

Xm

n¼1

N2n�1N2m�2nþ1

6
X1
n¼1

N2n�1N2nþ2m�1

�
X1
n¼1

2n� 1ð Þ2

2n� 2m� 1ð Þ 2nþ 2m� 1ð ÞN
2
2n�1

�
;

(60)

and the width of the mth band-gap is determined by

Dx2m ¼
mp
16

e2

����Xm

n¼1

N2n�1N2m�2nþ1

þ 2
X1
n¼1

N2n�1N2nþ2m�1

����þ O e3ð Þ: (61)

Expressions (60)–(61) are general in the sense that they

specify widths of all even band-gaps featured by any sym-

metric corrugation shape; this is in contrast to the previously

published results (e.g., Nayfeh, 1974; Bostrom, 1983; El-

Bahrawy, 1994; Banerjee and Kundu, 2006; Sorokin, 2015),

which correspond to some specific corrugation shapes and

predict only the lowest band-gaps.

For the piece-wise constant corrugation shape [Eq.

(7)], expression (61) gives zero widths for all even band-

gaps

Dx2m ¼
m

p
e2

����Xm

n¼1

1

2n� 1

1

2m� 2nþ 1

� 2
X1
n¼1

1

2n� 1

1

2nþ 2m� 1

����! 0: (62)

The piece-wise linear corrugation shape [Eq. (9)] results in

Dx2m ¼
4m

p3
e2

����Xm

n¼1

1

2n� 1ð Þ2
1

2m� 2nþ 1ð Þ2

þ 2
X1
n¼1

1

2n� 1ð Þ2
1

2nþ 2m� 1ð Þ2

����! 1

2mp
e2;

(63)

while the corrugation shape with discontinuity of the second

order gives

Dx2m !
6

m3p3
e2: (64)

Expressions (40) and (61) specify widths and locations

of all even band-gaps for the general symmetric corrugation

shape [Eq. (5)]. Similarly to the odd band-gaps, locations of

even band-gaps do not depend on the modulation ampli-

tudes. However, widths of even band-gaps are influenced by

all the harmonics involved in the series [Eq. (5)] in the way

specified by expression (61). The obtained expressions pro-

vide essential insights into the mechanism of the band-gaps

formation and enable one to predict widths of all even fre-

quency band-gaps featured by any symmetric corrugation

shape.

VI. GENERAL NON-SYMMETRIC CORRUGATION
SHAPE

Although the general symmetric corrugation shape [Eq.

(5)] is of primary interest for applications, e.g., because it

covers the important cases of the piece-wise linear and the

piece–wise constant corrugations, the case of the general

non-symmetric corrugation shape is also to be considered

h xð Þ ¼ 1� e
2

N1 cospxþN2 cos 2pxþ � � � þNn cos npx½ �:

(65)

Employing the MVA and searching the solution in the form

[Eq. (13)], we obtain the following infinite set of differential

equations for the amplitudes bjðxÞ:
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b00j þ i2jpb0j þ x2 � j2p2
	 


bj

� e
4

�X1
k¼1

Nk x2 � j j� kð Þp2
	 


bj�k

h
þ x2 � j jþ kð Þp2
	 


bjþk þ ip 2j� kð Þb0j�k

	
þ 2jþ kð Þb0jþkÞ þ b00j�k þ b00jþk�

�
¼ 0: (66)

Equation (66) have solutions of the form [Eq. (15)], so that

the problem reduces to calculating the infinite determinant

of the matrix of the system [Eq. (66)]. The diagonal elements

of this matrix are given by expressions (16), and all other

elements are defined by

A j; j� k½ � ¼ � e
4

Njkj

�
x2 þ p2

4
k2

þ i
p
2

2j� kð Þ þ �j
� �2�

; j; k 2 Z ; k 6¼ 0:

(67)

Following the same procedure as in Sec. IV, we obtain simi-

lar expressions for the “seeds” of the band-gaps

x0 ;m ¼
mp
2
; m ¼ 1; 2; 3; :::: (68)

Here m is the number of the band-gap. As expected, loca-

tions of all band-gaps do not depend on the modulation

amplitudes N1, N2, N3 etc.

Expressions for x1 are then determined from the equa-

tion implying the coefficient of e2 in Eq. (25) to equal zero.

This equation allows for the following solutions:

x1 ;m ¼ 6
mp
8

Nm; m ¼ 1; 2; 3; :::; (69)

here again m is the number of the band-gap. Consequently,

for the width of the mth band-gap we get

Dxm ¼ e
mp
4
jNmj þ O e2ð Þ: (70)

Expressions (68)–(70) are in good agreement with those

obtained for the general symmetric corrugation shape [Eq.

(5)]; for odd band-gaps, they give the same results as

obtained in Sec. IV, i.e., Eqs. (27), (29), and (30), and for

even band-gaps they reduce to expressions (40) and (41).

From relations [Eqs. (68)–(70)], it follows that for the gen-

eral non-symmetric corrugation shape [Eq.(65)], the width

and location of the mth band-gap are controlled by the mth

harmonic in the corrugation series. For example, the width

and location of the first band-gap are governed by the first

harmonic in the series (65), the second band-gap is con-

trolled by the second harmonic in [Eq.(65)] etc. Thus it is

valid to take into account only one, mth, harmonic in the se-

ries (65), to determine the width of the mth band-gap to the

leading order. These results also spread much beyond those

previously published, e.g., in Sorokin (2015).

It should be also noted that the corrugation shape involv-

ing only even harmonics

h xð Þ ¼ 1� e
2

N2 cos 2pxþ � � � þ N2n cos 2npx½ �; (71)

can be reduced to the considered general non-symmetric cor-

rugation shape [Eq. (65)] by introducing the new spatial

coordinate x1 ¼ 2x,

h x1ð Þ ¼ 1� e
2

N2 cos px1 þ � � � þ N2n cos npx1½ �: (72)

Equation (3) then transforms into

d

dx1

h x1ð Þ
dU x1ð Þ

dx1

� �
þ �x2h x1ð ÞU x1ð Þ ¼ 0; (73)

here �x ¼ x=2. So that from expression (68) for the “seeds”

of the band-gaps corresponding to the corrugation shape (71)

we get

x0 ;m ¼ 2�x0 ;m ¼ mp; m ¼ 1; 2; 3; ::: : (74)

Here m is the number of the band-gap. From relation [Eq.

(69)] for x1 ;m we then get

x1 ;m ¼ 2�x1 ;m ¼ 6
mp
4

N2m; m ¼ 1; 2; 3; ::: ; (75)

so that the width of the mth band-gap is determined by

Dxm ¼ 2D�xm ¼ e
mp
2
jN2mj þ O e2ð Þ: (76)

Results [Eqs. (74)–(76)] indicate that the corrugation shape

[Eq. (71)] involving only even harmonics cannot feature odd

band-gaps, i.e., band-gaps corresponding to odd harmonics

in the corrugation series. This is in contrast to the general

symmetric corrugation shape [Eq. (5)] involving only odd

harmonics but featuring even band-gaps. This qualitative dif-

ference can be explained by the fact these corrugation shapes

have different periodicities: period of Eq. (5) is equal to 2,

while period of Eq. (71) is equal to 1.

VII. VALIDATION OF THE RESULTS

As appears form the theoretical analysis described in the

preceding text, the only approximation employed is con-

cerned with the representation of the frequency x in the

form of series [Eq. (24)] and subsequent solving of the alge-

braic equation [Eq. (25)] using the classical procedure of

expansion in the small parameter e. This procedure has been

given strict mathematical justification, cf., e.g., Nayfeh and

Mook (1979) with both the applicability range and the solu-

tion accuracy being explicitly specified. Thus the obtained

expressions for the frequency band-gaps are valid and accu-

rate to the given order of e.
However, to further validate the results obtained in the

present paper, a series of numerical experiments was con-

ducted. Employing the non-dimensional variables x and t,
and introducing uðx; tÞ ¼ ~uðx; tÞ=l, we first rewrite the ini-

tial governing equation [Eq. (1)] in the non-dimensional

form
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@

@x
h xð Þ

@u x; tð Þ
@x

� �
� h xð Þ

@2u x; tð Þ
@t2

¼ 0: (77)

This equation is then numerically integrated directly using

WOLFRAM MATHEMATICA 7.0 (NDSolve), with periodic bound-

ary conditions and the following initial conditions imposed:

u x;0ð Þ ¼ F xð Þexp �ijxð Þ ¼
X1

j¼�1
bcj exp ijpxð Þexp �ijxð Þ

@u

@t
x;0ð Þ ¼ 0: (78)

These initial conditions correspond to the obtained analytical

solution [Eqs. (21) and (22)]. Consequently, in accordance

with the theoretical predictions, at such initial conditions the

considered periodic structure should oscillate with the fre-

quency x. This allows for validating the obtained dispersion

relations between frequency x and wavenumber j and the

expressions for the frequency band-gaps as well as the

obtained solution [Eq. (21)] itself.

Typical results of the numerical experiments are shown

in Fig. 6, where lines represent analytical results and filled

circles numerical data for various values of the parameters.

Figure 6(a) shows the dispersion relation for the piece-wise

constant corrugation shape for e ¼ 0:3. As it appears there is

no discrepancy between numerical and analytical values of

the frequency x. Similar results were obtained for the other

corrugation shapes. Figure 6(b) shows the dependency of the

width of the first frequency band-gap Dx1 on the amplitude

N1 for e ¼ 0:2; here numerical data correspond to various

values of the corrugation amplitudes N3, N5, and N7, which

are specified near the filled circles. As appears the width of

the band-gap does not depend on the amplitudes N3, N5, and

N7, as it was predicted theoretically. Similar results were

obtained also for the higher odd frequency band-gaps, and

thus the insights revealed in Sec. IV were validated numeri-

cally. Figure 6(c) shows the dependency of the width of

the second frequency band-gap Dx2 on the amplitude N1 for

e ¼ 0:2 and various values of the other corrugation ampli-

tudes N3, N5, and N7; solid line corresponds to N3 ¼ N5 ¼ N7

¼ 0, dashed line to N3 ¼ N5 ¼ N7 ¼ 0:2, and dotted line to

N3 ¼ 0:3, N5 ¼ 0:2, and N7 ¼ 0:1. As appears there is a good

agreement between numerical and analytical results, which is

present also for the higher even frequency band-gaps. Thus

the insights into the band-gap formation revealed in Sec. V

were also validated numerically.

VIII. CONCLUSIONS

The paper concerns determining widths and locations of

the frequency band-gaps for longitudinal wave motion in a

periodic waveguide. The considered waveguide models both

FIG. 6. (Color online) Validation by numerical experiments; lines represent analytical results and filled circles numerical data: (a) the dispersion relation for

the piece-wise constant corrugation shape for e ¼ 0:3; (b) the dependency of the width of the first frequency band-gap Dx1 on the amplitude N1 for e ¼ 0:2
and various values of the corrugation amplitudes N3, N5, and N7 specified near the filled circles; (c) the dependency of the width of the second frequency

band-gap Dx2 on the amplitude N1 for e ¼ 0:2; solid line corresponds to N3 ¼ N5 ¼ N7 ¼ 0, dashed line to N3 ¼ N5 ¼ N7 ¼ 0:2, and dotted line to N3 ¼ 0:3,

N5 ¼ 0:2, and N7 ¼ 0:1.
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an elastic layer with a variable periodic thickness and a rod

with a variable periodic cross section, with the classical

Bernoulli–Euler approximation being employed. As the

result, general expressions for the widths and locations of all

frequency band-gaps that are featured by the general corru-

gation shape are determined by means of the method of vary-

ing amplitudes. In particular, the dependency of the band-

gaps widths on the amplitudes of the harmonics involved in

the corrugation series is revealed; it is also shown that loca-

tions of the band-gaps do not depend on these amplitudes.

The obtained results can be used to predict locations and

widths of all frequency band-gaps for any corrugation shape

of interest and thus are of certain practical and theoretical

importance.

For the general symmetric corrugation shape, the width

of each odd band-gap is controlled only by one harmonic in

the corrugation series with the number of this harmonic

being equal to the number of the band-gap. Widths of even

band-gaps, however, are influenced by all the harmonics

involved in the corrugation series. The emergence of the

lower frequency band-gaps is revealed. Such band-gaps,

apparently, have not yet been mentioned in the literature,

although they seem to be of certain practical and theoretical

interest because they are located below the frequency corre-

sponding to the lowest harmonic in the corrugation series.

For the general non-symmetric corrugation shape, the

width and location of the mth band-gap are controlled by

one, the mth, harmonic in the corrugation series. It is shown

therefore that the method of varying amplitudes is a simple

and effective tool to determine all frequency band-gaps fea-

tured by a periodic structure, without limitations on the

shape or size of the modulation. The insights into the mecha-

nism of the band-gaps formation revealed in the paper, in

particular, the relationship between the amplitudes of the

harmonics involved in the corrugation series and the widths

of the frequency band-gaps, are general in the sense that

they can be present also for other types of wave motion in

periodic structures, e.g., transverse or torsional vibration.
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