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1 Introduction

Hotelling’s (1929) spatial model of competition has had a large and varied influ-
ence on a number of fields. It has been applied not only in the original context of
firms selecting geographic locations along “Main Street” so as to maximise their
share of the market, but also to that of producers deciding on how much variety
to incorporate into their products (see Chamberlin 1933). Downs (1957) adapted
it with minor modifications to model an election: in particular, the ideological
position-taking behaviour of political candidates in their effort to win votes.

The model in its simplest form features a number of candidates (firms) adopt-
ing positions on a one-dimensional manifold, usually taken to be the interval [0, 1],
along which voters’ ideal positions (consumers) are distributed. Voters cast their
votes for the candidate that is closest ideologically to them and candidates adopt
positions so as to maximise their share of the vote (market)1 and cannot opt out.
One can imagine parties competing for votes in an election under a system of
proportional representation. In the economic interpretation of this model, firms
compete for market share, competition on price is excluded, and customers buy
from the closest firm to minimise transportation costs.

In most of the literature, voters have only one vote, which they allocate to
their favourite candidate. That is, the electoral system is taken to be plurality
rule. The voters’ second, third and other preferences do not come into play.
Economically, this is akin to saying customers only patronise the nearest firm,
with the distribution of the more distant firms being irrelevant to them.

In many situations, however, preferences other than first do indeed matter.
Far from all elections are held under plurality rule: electoral systems, both in use
and theoretical, are diverse. So too are the incentives that candidates are faced
with under different electoral systems (Cox 1987). A thorough analysis of these
incentives is important for the design of voting institutions with desirable proper-
ties. In particular, a designer should know whether candidates pursuing rational
policies will cluster together, advocating identical or similar policy positions and
displaying what Hotelling called “excessive sameness”, or will they adopt diverse
positions that appeal to different groups of voters? It is also important to know
whether equilibria situations exist since their absence may lead to a permanent
instability. This was the theme of Myerson’s Schumpeter Lecture (1998, Berlin
meetings of the European Economic Association), later published in Myerson
(1999).

One very general class of electoral systems that Myerson advocates are the
scoring rules. In an election held under a scoring rule, each voter submits a
preference ranking of all m candidates, and then si points are assigned to the
candidate in the ith position on the voter’s ranking. The total number of points
is a measure of the support for a candidate in the society. Thus, we specify a

1See Stigler’s (1972) argumentation for this assumption and a discussion of it in Denzau et
al. (1985).



scoring rule by an m-vector of real nonnegative numbers, s = (s1, . . . , sm), with
s1 ≥ · · · ≥ sm ≥ 0 and s1 > sm. Well-known examples of scoring rules include
plurality, Borda’s rule and antiplurality, given by score vectors s = (1, 0, . . . , 0),
s = (m− 1,m− 2, . . . , 0) and s = (1, . . . , 1, 0), respectively.

In an election—according to Stigler’s thesis—the candidates would then adopt
positions with the aim of maximising the total number of points received from all
the electorate and hence the equilibrium strategies will depend on the particular
scoring rule in use. This dependence is the focus of our investigation.

This is not the only possible interpretation of scoring rules in the context of
Hotelling-Downs model; another plausible view is due to Cox (1990). For this
interpretation, we normalise the score vector s so that the sum of its coordinates
is 1. Then we may think that the voting rule is actually plurality and si is the
likelihood that a voter votes for the ith nearest candidate. Indeed, ideological
proximity is not the only factor at the ballot box: a single issue out of many may
put a voter off a candidate who, on the whole, is of a similar ideological bent; or, it
could simply be down to personal charisma, experience, prejudice or any number
of other nonpolicy reasons. In the economic interpretation, it is also natural
to assume that consumers buy from more distant firms with some probability—
occasionally, one is simply passing through the vicinity. The probability implied
by such an interpretation is of an ordinal nature—there is no dependency on
absolute distance, as occurs in most of the literature on probabilistic voting (see,
e.g., Coughlin 1992, Duggan 2005).

Cox (1987) provides valuable results on the existence of convergent Nash equi-
libria (CNE), that is, equilibria in which all candidates adopt the same policy
position. He identifies three classes to which a scoring rule may belong: “best-
rewarding” rules which never possess CNE; “worst-punishing” rules, to the con-
trary, do allow CNE in which all candidates adopt a common position located
within a certain interval; and, an intermediate case between the two, for which a
unique CNE exists at the median voter’s ideal position.

As one infers from the nomenclature, under each of these three classes of scor-
ing rules candidates are faced with different incentives. Myerson (1999, p. 677)—
who introduced the terminology2—explains the competing incentives as follows:
under a best-rewarding rule, “the candidate gains more from moving up in the
preferences of voters who currently rank her near the top”; on the contrary, un-
der a worst-punishing rule “the candidate gains more from moving up in the
preferences of voters who currently rank her near the bottom.”

Cox stopped short of investigating the existence of nonconvergent Nash equi-
libria (NCNE) for general scoring rules, i.e., those equilibria in which the posi-
tions adopted by the candidates are not all the same. For plurality, however,
the situation is well-studied and a full characterisation of NCNE was given by
Eaton and Lipsey (1975) and Denzau et al. (1985). The nonexistence of NCNE
for antiplurality was also known, as Cox (1987, p. 93) pointed out. For general
scoring rules the picture was unclear, and little work has previously been done
in this direction. Cox conjectured (1987, p. 93) that “nonconvergent equilibria

2Cox (1990) refers to “first-place rewarding”, “intermediate” and “last-place punishing” rules.
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were at best rare for [worst-punishing] scoring functions, but fairly common for
[best-rewarding] scoring functions.” We look to fill this gap in the literature.

Why should we care about nonconvergent Nash equilibria? First, a degree
of differentiation in policy platforms (firm locations) is socially desirable as it
provides a better representation of voters by candidates (transportation costs,
respectively). On the other hand, one may want to avoid a rule which leads
to excessively extreme positions. A rule for which equilibria do not exist is
also undesirable insofar as it entails inherent strategic instability and a lack of
predictability.

Second, nonconvergent equilibria are often observed. For example, fast food
restaurants of various chains are usually located in clusters at various points along
a main street. This effect was called the ‘Principle of Local Clustering’ by Eaton
and Lipsey (1975): “When a new firm enters a market, or when an existing
firm relocates, there is a strong tendency for that firm to locate as close as
possible to another firm. This behaviour tends to create local clusters of firms in
many equilibrium and disequilibrium situations.” The standard Hotelling-Downs
model cannot explain this phenomenon since nonconvergent Nash equilibria in
this model cannot have more than two firms in the same location (and there are
often more in the case of fast food restaurants). One of the aims of this paper is
to generalise the Hotelling-Downs model to explain this principle.

Since a general characterisation of NCNE appears to be intractable, our ap-
proach is to consider the problem in large classes of rules satisfying various ad-
ditional conditions. For two broad classes of scoring rules, we find that NCNE
do not exist at all or seldom exist. For rules having scores that are “convex”,
NCNE are impossible except for some derivatives of Borda rule (Theorem 6.3).
For rules with “symmetric” scores we find that NCNE do not exist either.

On the other hand, we identify two broad classes of rules that do allow NCNE.
The rules of the first class allow NCNE with multiple candidates clustered more
or less evenly along the issue space (Theorem 7.1). The rules of the second class
allow bipositional NCNE in which all candidates are split into two symmetrically
located clusters with the same number of candidates (Theorem 7.6).

In the special cases of four- and five-candidate elections, matters are simpler
and we provide a complete characterisation NCNE (Theorems 5.1 and 5.3). We
also examine six-candidate elections (Theorem 5.4).

The paper is organised as follows. Firstly, we briefly review the literature in
Section 2. In Section 3 we introduce our model and we derive some preliminary
results in Section 4. In Section 5, we examine the special cases of four-, five- and
six-candidate elections, and then we investigate rules that do not allow NCNE in
Section 6. In Section 7, we look at rules that do admit NCNE including those
that explain the Principle of Local Clustering. We conclude in Section 8. For
better readability, several proofs are relegated to the appendix.
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2 Related literature

There are several closely connected but distinct variants of the Hotelling-Downs
model in the literature. This model determines the general framework for compe-
tition but does not model candidates themselves. In particular, according to Cox
(1987), the candidates can be viewed as share maximisers, plurality maximis-
ers or complete plurality maximisers. Share maximisers aim to maximise their
support in the society as calculated by the voting rule. Share maximization is a
direct reformulation of Hotelling’s (1929) assumption that firms are competing for
customers, i.e., for market share. The original Downs (1957) paper talks about
competition of parties for voters, meaning election of a parliament under some
form of proportional representation. Stigler (1972, p. 98) strongly argues for the
“share maximisation” paradigm against the “winning the election” paradigm.

A plurality maximiser seeks to maximise (minimise) the margin by which he
or she wins (loses) the election. Complete plurality maximisers do the same,
except they also care about their position relative to more than just the first-
or second-placed candidate. Osborne (1993) brought a new dimension into this
type of model by allowing agents to stay out of the competition if they have no
chances of winning. This changes the whole game and the equilibria. This line of
research was further pursued in Osborne (1993, 1995), Sengupta and Sengupta
(2008), Brusco et al. (2012), and others.

Assuming that candidates are share maximisers, this paper is most closely
related to Eaton and Lipsey (1975) and Denzau et al. (1985). The former consider
plurality rule, and the latter extend these results to “generalised rank functions”.
That is, the candidates’ objectives depend to some degree both on vote share
and rank (say, the number of candidates with a larger share). For a review
emphasising multicandidate competition, see Shepsle (2001).

Another important assumption we adopt is the sincerity of the voters, which
results in the only strategic agents in our model being the candidates. Due to the
Gibbard-Satterthwaite theorem (Gibbard 1973, Satterthwaite 1975), stating that
in the case of more than two candidates all non-dictatorial single-winner elec-
tions are manipulable by a single voter, this assumption is quite restrictive in the
“winning the election” paradigm. However it is benign in the “share maximisa-
tion” paradigm. Indeed, as Slinko and White (2010) show, such a voting system
becomes manipulable only if a threshold for entry into parliament is introduced.

The last important assumption to be mentioned is the uniform distribution of
voters along the ideological spectrum. This is, of course, a simplifying assump-
tion. To its defense, however, as has been noted in other papers such as Aragonès
and Xefteris (2012), the distribution need not literally be uniform. Indeed, it is
enough that the agents believe the distribution to be uniform or are taking this as
a simplifying assumption in their calculations. Also, generalizing previous results
to arbitrary scoring rules, it is natural to keep the uniform distribution as the
first step.

Scoring rules and similar voting systems have appeared in spatial models be-
fore. However, apart from Cox (1987), all the work has been done in somewhat
different contexts. Myerson (1999) looks at the incentives inherent in different
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scoring rules and the political implications for such matters as corruption, bar-
riers to entry and strategic voting. His model consists of a simpler issue space,
with candidates deciding between two policy positions—“yes” or “no”. In My-
erson (1993), he compares various scoring rules with respect to the campaign
promises they encourage and, in Myerson (2002), he investigates scoring rules
from the voter’s perspective in Poisson voting games. Laslier and Maniquet
(2010) look at multicandidate elections under approval voting when the voters
are strategic. Myerson and Weber (1993) introduce the concept of a “voting
equilibrium”, where voters take into account not only their personal preferences
but also whether contenders are serious, and compared plurality and approval
voting in a three-candidate positioning game similar to ours. We focus only on
candidate strategies.

Many other more realistic refinements of the Hotelling-Downs model have been
constructed, incorporating uncertainty, incomplete information, incumbency and
underdog effects, and so on. However, the price of added realism is that the
models becomes more complicated, and considering more than two candidates is
often intractable. For a survey focusing on variations of the two candidate case,
see Duggan (2005) or Osborne (1995).

In light of the probabilistic interpretation of the scoring rule mentioned in the
introduction, we feel the need to emphasise the differences between our approach
and that taken in the probabilistic voting literature. For an introduction to the
field, see Coughlin (1992) or, for a survey, Duggan (2005). These works usually
involve some distance dependent function to give the probabilities as, for example,
in multinomial logit choice models. These functions lead to an expected vote
share that depends on distance and does not have discontinuities when agents’
positions coincide. A scoring rule is somewhat simpler: it behaves like a step
function that only depends on ordinal information (ranking) and not on relative
distances. Moreover, the discontinuities associated with the deterministic model
persist in our model. Other models include the stochastic model of Anderson
et al. (1994) and Enelow et al. (1999). The former again involves a function
depending on distance, and the latter involves a finite number of voters in a
multidimensional space. De Palma et al. (1990) look at a model incorporating
uncertainty and numerically calculate equilibria for up to six agents, comparing
them with the deterministic model. Interestingly, some of the observed equilibria
for four and five agents show similarities to those we find in our model (see the
footnote following Theorem 5.3).

As for the economic interpretation, our results are related only to those models
in which price competition and transport costs do not come into play, such as in,
again, Eaton and Lipsey (1975) and Denzau et al. (1985). The most basic models
incorporating price competition can be found in standard economics textbooks,
such as Vega-Redondo (2003, pp. 171–176).
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3 The model

There is a continuum of voters, assumed to have ideal positions uniformly dis-
tributedon the interval [0, 1], the issue space, on which candidates adopt positions.
Since the two- and three-candidate cases are well-known—in the former case we
have the classical median voter result, and in the latter no NCNE exist (see the
end of this section)—we assume there are m ≥ 4 candidates. Candidate i’s po-
sition is denoted xi. A strategy profile x = (x1, . . . , xm) ∈ [0, 1]m specifies the
positions adopted by all the candidates. For a given strategy profile x, denote by
x1, . . . , xq the distinct positions that appear in x, labelled so that x1 < · · · < xq.
In a NCNE, we will always have q ≥ 2. Let ni ∈ N denote the number of candi-
dates adopting position xi. Then we have

∑q
i=1 ni = m. For this strategy profile

x, we will often use the equivalent notation x = ((x1, n1), . . . , (x
q, nq)).

We use the notation [n] = {1, . . . , n}. If I = [a, b] ⊆ [0, 1] is an interval
with endpoints a and b (a ≤ b) then the length of that interval will be denoted
l(I) = b − a; since voters’ ideal positions are uniformly distributed, l(I) will be
the measure of voters with ideal positions in I.

Voters are not strategic and have single-peaked, symmetric utility functions.
Hence, a voter ranks the candidates according to the distance between her own
personal ideal position and the positions adopted by the candidates. If ni ≥ 2,
that is, two or more candidates adopt position xi, then all voters will be indifferent
between these candidates. In this case the voter will randomly choose a strict
ordering by way of a fair lottery.3

Candidate i’s score, vi(x), is the total number of points received on integrating
across all voters.4 The candidates maximise vi(x)—that is, they are score (share)
maximisers. Information is complete and candidates adopt positions simultane-
ously.

The following example shows how the scores are calculated.

Example 3.1. Consider a three-candidate election contested between candidates
i, j and k and held under a scoring rule s = (s1, s2, s3). Consider the profile
x = ((x1, 2), (x2, 1)), where xi = xj = x1 and xk = x2, illustrated in Figure 1.
Voters with ideal positions in the interval I1 = [0, (x1 + x2)/2] are indifferent
between candidates i and j, but prefer either of them to k. The voters in the
interval I2 = [(x1 + x2)/2, 1] have k as their unique favourite candidate, and
are indifferent between i and j. In this case, candidates i and j both receive
the score vi(x) = vj(x) =

(
s1+s2

2

)
`(I1) +

(
s2+s3

2

)
`(I2) while candidate k receives

vk(x) = s1`(I2) + s3`(I1).

Given a scoring rule s = (s1, . . . , sm), sometimes we will consider subrules of
s. A subrule of the rule s will be a vector s′ = (si, si+1, . . . , si+j) where i, j ≥ 1
and i+ j ≤ m. Thus, if si > si+j , a subrule is itself a scoring rule corresponding
to an election with j + 1 candidates. If si = · · · = si+j , then s′ does not define a
scoring rule and we say s′ is a constant subrule of s.

3Alternatively we could allow indifferences on voters’ ballots and modify the scoring rule
accordingly.

4This function is deterministic by the tie-breaking assumption.
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Figure 1: The situation in Example 3.1

Our equilibrium concept is the pure strategy Nash equilibrium (NE). A strat-
egy profile x∗ = (x∗1, . . . , x

∗
m) is in NE if, for all i ∈ [m] and xi ∈ [0, 1], we have

vi(x
∗) ≥ vi(xi, x

∗
−i), where (xi, x

∗
−i) = (x∗1, . . . , x

∗
i−1, xi, x

∗
i+1, . . . , x

∗
m). A NE x is

said to be a convergent Nash equilibrium (CNE) if all candidates adopt the same
position, i.e., x = ((x1,m)). If, in a NE, at least two candidates adopt distinct
positions, it is a nonconvergent Nash equilibrium (NCNE). If a strategy profile
x = ((x1, n1), . . . , (x

q, nq)) is an NE then we will say that (n1, . . . , nq) is its type.
Let us restate Cox’s (1987) characterisation of CNE for arbitrary scoring rules.

Theorem 3.2 (Cox 1987). Given a scoring rule s, the profile x = ((x1,m)) is a
CNE if and only if

c(s,m) ≤ x1 ≤ 1− c(s,m),

where c(s,m) =
s1 − s̄
s1 − sm

and s̄ = 1
m

∑m
i=1 si is an average score.

For the inequality in Theorem 3.2 to be satisfied for some x1, it must be
that c(s,m) ≤ 1/2. The number c(s,m) encodes important information about
the competing incentives characteristic of a given scoring rule: in particular, it
measures the first-to-average drop in the value of the points relative to the first-
to-last drop. Motivated by the above theorem, Cox defined rules with c(s,m) >
1/2, c(s,m) < 1/2 and c(s,m) = 1/2 as best-rewarding, worst-punishing and
intermediate, respectively.5 Hence, CNE exist if and only if the rule is worst-
punishing or intermediate.

Cox also observed that in any NCNE the most extreme positions, x1 and
xq, must be occupied by at least two candidates and, hence, in the case of a
three-candidate election, no NCNE exist.

4 Preliminaries

We begin by deriving a number of key lemmas. We first investigate how candidate
i’s score changes on deviating—that is, we are interested in the function vi(t, x−i).

Proposition 4.1. Let x be a profile, i be a candidate, and suppose the other
m− 1 candidates besides i are located at positions x1, . . . , xq. Then

(a) In the intervals (0, x1) and (xq, 1) the function vi(t, x−i) is linear with slopes
(s1 − sm)/2 and −(s1 − sm)/2, respectively.

5Terminology of R. Myerson (1999).
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(b) Suppose that, apart from candidate i, for some ` there are j candidates
in positions x1, . . . , x`−1 and k candidates in positions x`, . . . , xq, where
j + k = m − 1. Then in the interval (x`−1, x`) the function vi(t, x−i) is
linear with slope (sj+1 − sk+1)/2.

We note that at x1, . . . , xq the function vi(t, x−i) is in general discontinuous
and all three values vi(x

j−, x−i) = limt→xj− v(t, x−i), vi(x
j , x−i), vi(x

j+, x−i) =
limt→xj+ v(t, x−i), where the limits are one-sided, may be different. Continu-
ity, even linearity of this function in the intervals between candidates’ positions,
proved in Proposition 4.1, will be an important tool in identifying Nash equilibria.
It allows us to conclude that unpaired candidates are actually quite rare.

Corollary 4.2. If m is even and sm/2 6= sm/2+1, there can be no unpaired can-
didate. If m is odd and s(m−1)/2 6= s(m+3)/2 then the only candidate that could
possibly be unpaired is the median candidate.

We continue investigating the behaviour of the function vi(t, x−i), this time in
the neighborhood of a pair of candidates occupying the same position. We prove
that in this case there can be no discontinuity as mentioned above.

Lemma 4.3. Suppose at profile x candidate i is at x` and n` = 2. Then
vi(x

`−, x−i)+vi(x
`+, x−i) = 2vi(x). In particular, when x is a NCNE, vi(x

`−, x−i) =
vi(x

`+, x−i) = vi(x).

The following powerful fact relates to NCNE where n1 or nq is equal to two.

Lemma 4.4. If n1 = 2 or nq = 2 then a necessary condition for NCNE is
s2 = . . . = sm−1.

Lemmas 4.3 and 4.4 tell us the only rules that allow paired candidates at the
end positions are the rules of the form s = (a, b, . . . , b, c). The following lemma
places a lower bound on the number of candidates at extreme positions. This is
a generalisation of Cox’s (1987, p. 93) observation that there can be no less than
two candidates at any of the two extreme positions.

Lemma 4.5. Given a scoring rule s, let 1 ≤ k ≤ m − 1 be such that s1 =
· · · = sk > sk+1. Then a necessary condition for a profile x to be a NCNE is
min(n1, nq) > k.

This already allows us to rules out NCNE for a large class of scoring rules.

Corollary 4.6. Any scoring rule s with s1 = · · · = sk > sk+1 for some k ≥ bm/2c
does not allows an NCNE.

Proof. By Lemma 4.5, min(n1, nq) > k ≥ bm/2c. Hence, n1 + nq > m, a contra-
diction.

The rules specified in Corollary 4.6 are usually worst-punishing. However,
there are some that are slightly best-rewarding ones, such as k-approval6 with m

6That is, s = (1, . . . , 1, 0, . . . , 0), where the first k components are ones.
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odd and k = (m− 1)/2. This shows that there exist best-rewarding rules which,
unlike plurality, do not allow NCNE (and, hence, no Nash equilibria at all).

The next lemma says that in a NCNE no candidates may occupy the most
extreme positions of the issue space, 0 and 1.

Lemma 4.7. Let s be a scoring rule. In a NCNE x no candidate may adopt the
most extreme positions. That is, 0 < x1 and xq < 1.

Finally, for a given scoring rule, we place an upper bound on the length of
the interval between two occupied positions, or between the boundary of the
issue space and the nearest occupied position. It also gives a lower bound on the
number of occupied positions.

Lemma 4.8. Given a scoring rule s, if x is a NCNE, then the following condi-
tions must be satisfied:

(a) x1 ≤ 1− c(s,m) and xq ≥ c(s,m);

(b) xi − xi−1 ≤ 2(1− c(s,m)) for any i such that 2 ≤ i ≤ q.

(c) the number of occupied positions q is at least
⌈

1
2(1−c(s,m))

⌉
.

Note that condition (a) of the this lemma generalises Cox’s (1987, p. 88)
argument that in a plurality election the most extreme candidates on either side
are located outside the interval (1/m, 1 − 1/m). We note that the interval (1 −
c(s,m), c(s,m)) reaches its maximal width under plurality rule.

5 The four-, five- and six-candidate cases

This section is devoted to the analysis of special cases where the number of
candidates is small. When m = 4 and m = 5 we will provide a complete char-
acterisation of the rules allowing NCNE. For m = 6 we will identify all types of
equilibria that might exist.

Theorem 5.1. Given m = 4 and scoring rule s = (s1, s2, s3, s4), NCNE exist
if and only if both the following conditions are satisfied: (a) c(s, 4) > 1/2; (b)
s1 > s2 = s3. Moreover, the NCNE is unique and symmetric with equilibrium
profile x = ((x1, 2), (x2, 2)), where

x1 =
1

4

(
s1 − s4
s1 − s2

)
and x2 = 1− x1. (1)

Proof. By Lemma 4.5, a NCNE with m = 4 must have exactly two distinct
positions, x1 < x2, with n1 = n2 = 2 (agents 1 and 2 at x1, 3 and 4 at x2).
Hence, by Lemma 4.4, it is necessary that s2 = s3. By Lemma 4.5, we also need
s1 > s2. Hence, (b) is necessary.

By Lemma 4.7, we have 0 < x1 and x2 < 1. By Lemma 4.3, in any NCNE we
have v1(x

2+, x−1) ≤ v1(x
1−, x−1) = v1(x). That is, v1(x

2+, x−1) = s1(1 − x2) +

s2

(
x2−x1

2

)
+ s4

(
x1+x2

2

)
≤ s1x

1 + s2

(
x2−x1

2

)
+ s4

(
1− x1+x2

2

)
= v1(x

1−, x−1),
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which implies s1(1−x1−x2) ≤ s4(1−x1−x2). This is only possible if x1+x2 ≥ 1.
Considering the symmetric moves by candidate 4 gives (1− x1) + (1− x2) ≥ 1 or
x1 + x2 ≤ 1. Hence, x2 = 1− x1.

Then, since v1(x
1−, x−1) = v1(x), we have s1x

1 + s2

(
x2−x1

2

)
+ 1

2s4 = 1
4s1 +

1
2s2 + 1

4s4, from which, after substituting for x2, equation (1) follows. For this to
be a valid position, we need x1 < 1/2, from which it follows that 2s2 < s1 + s4.
This is equivalent to c(s, 4) > 1/2, so (a) is also necessary.

For sufficiency, it is easy to check that (1) is actually a NCNE. However this
is not necessary since, as we will see later, a rule satisfying conditions (a) and
(b) also satisfies the conditions of Theorem 7.6, from which we conclude that the
profile given by (1) is a NCNE.

For the five-candidate case, we could either have: q = 2 and (n1, n2) = (2, 3)
or (n1, n2) = (3, 2); or, q = 3 with (n1, n2, n3) = (2, 1, 2). In fact, q = 2 is not
possible. To show this we need the following lemma. It will be also used later so
we formulate it in a more general setting.

Lemma 5.2. If s = (s1, . . . , sm) = (a, b, . . . , b, 0), where a > 2b, then in any
NCNE we have n1 = nq = 2.

We are ready to describe all the rules that have NCNE for m = 5.

Theorem 5.3. Given m = 5 and scoring rule s = (s1, s2, s3, s4, s5), NCNE
exist if and only if both the following conditions are satisfied: (a) c(s, 5) > 1/2;
(b) s1 > s2 = s3 = s4. Moreover, the NCNE is unique and symmetric with
equilibrium profile x = ((x1, 2), (1/2, 1), (x3, 2)), where

x1 =
1

6

(
s1 + s2
s1 − s2

)
and x3 = 1− x1. (2)

Equation (2) shows that, when s2 grows towards s1/2, the positions of can-
didates become less extreme, converging at the median voter position when
s2 = s1/2. As s2 increases beyond this point, by Theorem 3.2 we know that
infinitely many CNE are possible in an interval that becomes increasingly wide.7

Since for m > 5 the equilibria are no longer unique even for plurality (1975),
it makes sense to describe only their types.

Theorem 5.4. Given m = 6 and scoring rule s = (s1, s2, s3, s4, s5, s6). Then
there are four possible types of Nash equilibria that may occur; they can be split
in two groups:

{(2, 2, 2), (2, 1, 1, 2)} and {(3, 3), (6)}.
7We note that this equilibrium behaviour shows certain similarities to some of the equilibria

numerically calculated by De Palma et al. (1990) using a probabilistic model. When the level
of uncertainty is low (which corresponds roughly to when c(s,m) is large), they observe NCNE
where the candidates are configured as in our NCNE. As the level of uncertainty increases from
zero (the value of c(s,m) decreases), they also observe the candidates’ positions becoming less
extreme. Beyond a certain point, only convergent equilibria are observed. However, in addition
to these, they also observe other kinds of equilibria that do not arise in our model.
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The equilibria of the first group occur for rules s that satisfy: (a) c(s, 6) > 1/2;
(b) s1 > s2 = s3 = s4 = s5. The equilibria within each group can coexist. No
equilibrium of the first group can coexist with an equilibrium of the second group.

Proof. We have to show that equilibria of types (2, 4), (2, 1, 3), (3, 1, 2) and (4, 2)
do not exist. What they all have in common is that they have two candidates
at one of the extreme positions and more than two the other. Without loss of
generality, we can assume s6 = 0. By Lemma 4.4, for NCNE, we must have
s2 = s3 = s4 = s5 and by Lemma 4.5 we have s1 > s2. Hence, our rule is one of
those studied in Lemma 5.2. Then there cannot be three or more candidates at
any given position, which rules out all equilibrium types above and shows that
equilibria of the first group are incompatible with those of the second.

Example 7.8(i) demonstrates that equilibria of the type (3, 3) exist and may
coexist with CNE as the rule in that example is worst punishing. The two types
of equilibria of the first group are shown to exist for plurality in Eaton and Lipsey
(1975).

6 Nonexistence of NCNE

In this section we will identify two broad classes of scoring rules for which NCNE
do not exist or do not exist with a few well-defined exceptions.

The first class is all scoring rules with convex scores. These are best-rewarding
rules and hence do not allow CNE. We show that such rules do not have NCNE
(in fact, they have no NE whatsoever) with the exception of some derivatives of
Borda rule. The second class consists of rules with a certain symmetry condition.
These rules are intermediate, hence, allow a unique CNE at the median voter’s
ideal position by Theorem 3.2. However, we show that they do not allow NCNE.

Convex rules

We say that the rule s = (s1, . . . , sm) is convex if

s1 − s2 ≥ s2 − s3 ≥ . . . ≥ sm−1 − sm. (3)

We note that as soon as si = si+1 for some i, all the subsequent scores must
also be equal for convexity to be satisfied. We aim to show that such rules,
with one class of possible exceptions, have no NCNE; moreover they have no
Nash equilibria at all. Firstly we show that a convex scoring rule s is either
best-rewarding or intermediate. In fact, we show a bit more.

Proposition 6.1. Let s be a scoring rule. Then s is convex if and only if every
nonconstant m′-candidate subrule s′, where 2 ≤ m′ ≤ m, has c(s′,m′) ≥ 1/2.

Proof. Suppose s satisfies (3). It suffices to show the rule itself is best-rewarding
or intermediate, since any nonconstant subrule also satisfies (3). We have, for
any 1 ≤ i ≤ bm/2c, si − si+1 ≥ si+1 − si+2 ≥ . . . ≥ sm−i − sm−i+1. In particular,

si − si+1 ≥ sm−i − sm−i+1. (4)
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Suppose m is even. Equation (4) implies s1 + sm ≥ s2 + sm−1 ≥ · · · ≥ sm/2 +
sm/2+1. Then

s̄ =
1

m

m∑
i=1

si =
(s1 + sm) + (s2 + sm−1) + · · ·+ (sm/2 + sm/2+1)

m

≤ m/2

m
(s1 + sm) =

1

2
(s1 + sm).

A similar calculation shows that 2s̄ ≤ s1 + sm if m is odd. So in both cases
s1 + sm ≥ 2s̄, which is equivalent to c(s,m) ≥ 1/2.

Conversely, suppose every nonconstant subrule s′ is best-rewarding or inter-
mediate. Then any 3-candidate subrule s′ = (si, si+1, si+2) has c(s′, 3) ≥ 1/2,
which is equivalent to si − si+1 ≥ si+1 − si+2, so (3) is satisfied.

The following lemma is crucial for the proof of Theorem 6.3, the main result
of this section.

Lemma 6.2. Let s be a convex scoring rule. Then the two conditions:

(a) all inequalities in (3) are equalities,

(b) s satisfies s1 + sm = 2
m

∑m
i=1 si,

are jointly equivalent to s being a Borda rule.8

Proof. (a) Let d be the common value of all the differences in (3). Then si =
(m− i)d+ sm. Subtracting sm from all scores does not change the rule. Dividing
all scores by d after that does not change it either. But then we get the canonical
Borda score vector with si = m− i.

(b) The condition (3) implies s1 + sm ≥ s2 + sm−1 ≥ s3 + sm−2 ≥ . . . from
which s1 + sm ≥ 2

m

∑m
i=1 si. An equality in the latter inequality is possible only

if we had all equalities in the former, and this is possible only if we had equalities
in (3). Now the result follows from (a).

Now we can prove the main theorem of this section.

Theorem 6.3. Let s be a scoring rule with convex scores and let 1 ≤ n < m be
such that sn > sn+1 = · · · = sm. Then there are no NCNE, unless the subrule
s′ = (s1, · · · , sn, sn+1) is Borda and n+1 ≤ bm/2c (i.e., more than half the scores
are constant).

Proof. Let x be a profile. Consider candidate 1 at x1. Without loss of generality,
assume n1 ≤ bm/2c, since at least one of the two end positions has less than
half the candidates. Let I1 = [0, x1] and I2 = [x1, (x1 + x2)/2]. The rest of
the issue space to the right of (x1 + x2)/2 can be partitioned into subintervals

J1 =
[
x1+x2

2 , x
1+x3

2

)
, . . . , Jj =

[
x1+xj+1

2 , x
1+xj+2

2

)
, . . . , Jq−1 =

[
x1+xq

2 , 1
]
, where

8Borda rule was defined in the introduction.
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voters in each of these intervals rank candidate 1 in the same way. More specifi-
cally, candidate 1 shares ki-th through to (ki + n1 − 1)-th place in the rankings
of all voters in Ji, for some ki ≥ 1 such that ki + n1 − 1 ≤ m. Then 1’s score is

v1(x) =

(
1

n1

n1∑
i=1

si

)
(`(I1) + `(I2)) +

q−1∑
j=1

 1

n1

kj+n1−1∑
i=kj

si

 `(Jj).

If candidate 1 moves infinitesimally to the left, then v1(x
1−, x−1) = s1`(I1) +

sn1`(I2)+
∑q−1

j=1 skj+n1−1`(Jj). Similarly, if she moves infinitesimally to the right,

then v1(x
1+, x−1) = s1`(I2) + sn1`(I1) +

∑q−1
j=1 skj`(Jj). Let x be a NCNE. Then

v1(x
1−, x−1) ≤ v1(x) and v1(x

1+, x−1) ≤ v1(x). This implies that v1(x
1−, x−1) +

v1(x
1+, x−1) ≤ 2v1(x). That is,

(s1 + sn1)(`(I1) + `(I2)) +

q−1∑
j=1

(skj + skj+n1−1)`(Jj)

≤

(
2

n1

n1∑
i=1

si

)
(`(I1) + `(I2)) + 2

q−1∑
j=1

 1

n1

kj+n1−1∑
i=kj

si

 `(Jj),

which implies(
s1 + sn1 −

2

n1

n1∑
i=1

si

)
(`(I1) + `(I2))

+

q−1∑
j=1

skj + skj+n1−1 −
2

n1

kj+n1−1∑
i=kj

si

 `(Jj) ≤ 0. (5)

We know that the convexity of the scores implies sl + sl+n1−1 ≥ 2
n1

∑l+n1−1
i=l si

for all l ≥ 1 such that l + n1 − 1 ≤ m. Thus, each term on the left-hand side
of (5) is nonnegative. If one or more of these terms is positive, then we have
a contradiction and hence no NCNE exist. The only other possibility is that
all these terms are equal to zero, which by Proposition 6.2 implies each of the
n1-candidate subrules appearing in the expression is equal to Borda or is constant
(in particular, the rule s′ = (s1, . . . , sn1) must be Borda, since s1 > sn1 by Lemma
4.5). In particular we get n1 ≤ n+ 1.

If this is the case then v1(x
1−, x−1) + v1(x

1+, x−1) = 2v1(x), so for x to
be a NCNE we must have v1(x

1−, x−1) = v1(x
1+, x−1) = v1(x). Then, for

x to be a NCNE we must have v1(t, x−1) ≤ v1(x) = v1(x
1+, x−1) for any

t ∈ (x1, x2), that is, the score cannot increase as 1 moves to the right from x1.
By Proposition 4.1(b), the slope of the linear function v1(t, x−1) for t ∈ (x1, x2)
is 1

2sn1 − 1
2sm−n1+1 and since it is nonincreasing we have 1

2sn1 − 1
2sm−n1+1 ≤ 0.

On the other hand, 1
2sn1 − 1

2sm−n1+1 ≥ 0 since n1 < m − n1 + 1. We conclude
therefore that sn1 = sm−n1+1. This means that the scores have stabilised on or
earlier than sn1 , whence n1 ≥ n+ 1. As n1 ≤ n+ 1, we must now conclude that
n1 = n+ 1. Hence, there are no NCNE unless the subrule s′ = (s1, . . . , sn, sn+1)
is Borda and n+ 1 ≤ bm/2c.
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For any rule s for which the subrule s′ = (s1, . . . , sn+1) is Borda and the
scores from sn+1 through sm are constant, Theorem 6.3 says nothing and for good
reason since here NCNE can actually exist. This will follow from Theorem 7.1
and Example 7.4. Rules that do satisfy the conditions of Theorem 6.3 include
Borda as well as the following example.

Example 6.4. The rule s = (1, s2, 0, . . . , 0), for any 0 < s2 < 1/2, has convex
scores and, hence, no NCNE. Thus, even a slight deviation from plurality destroys
the NCNE which plurality is known to possess.

Symmetric scores

We say that the rule s = (s1, . . . , sm) is symmetric if

si − si+1 = sm−i − sm−i+1, (6)

for all 1 ≤ i ≤ bm/2c. That is, for every drop between consecutive scores at the
top end there is an equal drop at the symmetric position at the bottom end.

Proposition 6.5. A symmetric rule is intermediate.

Proof. Note that (6) is condition (4) with equalities instead of inequalities. Hence,
replacing all the inequalities in Proposition 6.1 with equalities, we obtain c(s,m) =
1/2.

We now show a symmetric rule has no NCNE. Note that a symmetric rule
satisfies, for any valid n1,

1

n1

m∑
i=m−n1+1

si +
1

n1

n1∑
i=1

si =
1

n1

n1∑
i=1

(si + sm−i+1) = sn1 + sm−n1+1. (7)

Theorem 6.6. A symmetric rule does not allow NCNE.

Proof. Consider candidate 1 at position x1, which is occupied by n1 candidates.
Consider intervals I1 = [0, x1] and I2 = [(x1+xq)/2, 1]. If 1 makes an infinitesimal
move to the right of x1, then in the rankings of voters in I1 she falls behind the
other n1−1 candidates originally at x1. On the other hand, 1 rises ahead of these
n1 − 1 candidates in the rankings of all other voters. Then the score candidate 1

loses by making this move is slost =
(

1
n1

∑n1
i=1 si − sn1

)
`(I1). On the other hand,

1’s gain from this move, sgained, is at least the gain from I2:

sgained ≥

(
sm−n1+1 −

1

n1

m∑
i=m−n1+1

si

)
`(I2) =

(
1

n1

n1∑
i=1

si − sn1

)
`(I2), (8)

where we have used (7). For this profile to be a NCNE, we need this move not be
beneficial for candidate 1. That is, we need slost ≥ sgained, which, since s1 > sn1 ,
implies `(I1) ≥ `(I2) or, equivalently, x1 ≥ 1− (x1 + xq)/2.

Similar considerations for candidate q give that `([xq, 1]) ≥ `([0, (x1 + xq)/2]).
That is, 1−xq ≥ (x1+xq)/2. Hence, x1 ≥ xq, which is impossible for a NCNE.

Some examples of rules with symmetric scores are single-positive and single-
negative voting, given by s = (2, 1, . . . , 1, 0), and the rule s = (4, 3, 2, . . . , 2, 1, 0).
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7 Existence of NCNE

We will now turn our attention to rules for which NCNE do exist in general.
First, we look at a class of best-rewarding rules for which we can find NCNE
in which candidates cluster at positions spread across the issue space. Then,
we characterise NCNE with two symmetric clusters when m is even. These
results have implications for the Principle of Local Clustering, demonstrating
how candidates (firms) are led to cluster at different points on the issue space
(linear city).

Clustered NCNE

Here we provide a method of constructing rules for which multipositional NCNE
exist. We introduce some additional notation. Let I1 = [0, (x1 + x2)/2], Ii =
[(xi−1 + xi)/2, (xi + xi+1)/2] for 2 ≤ i ≤ q − 1, and Iq = [(xq−1 + xq)/2, 1] be
the “full-electorates” corresponding to each occupied position. For each i ∈ [q]
let ILi = {y ∈ Ii : y ≤ xi} and IRi = {y ∈ Ii : y ≥ xi} be the left and right
“half-electorates” whose union is the full-electorate Ii, that is Ii = ILi ∪ IRi . We
note that `(IRi ) = `(ILi+1) for i ∈ [q − 1].

Theorem 7.1. Let m = qr be a composite number with q ≥ 2. Consider an
m-candidate scoring rule s = (s1, . . . , sr−1, 0, 0, . . . , 0), where only the first r − 1
scores can be non-zero. Then the profile given by x = ((x1, r), . . . , (xq, r)) is a
NCNE if and only if the following two conditions hold:

(a) maxi∈[q] max{`(ILi ), `(IRi )} ≤ (1− c(s′, r)) mini∈[q]{`(Ii)},

(b) maxi∈[q]{`(Ii)} ≤
(
1 + 1

r

)
mini∈[q]{`(Ii)},

where s′ = (s1, . . . , sr−1, 0).

The idea is that for this kind of scoring rule, each occupied position is “iso-
lated” from the rest of the issue space, since a candidate at this position receives
nothing from voters who rank her rth or worse. So the candidates have to com-
pete “locally”. Note that condition (a) can only be satisfied if c(s′, r) ≤ 1/2,
since it implies

max
i∈[q]

max{`(ILi ), `(IRi )} ≤ (1− c(s′, r)) min
i∈[q]
{`(Ii)}

≤ 2(1− c(s′, r)) max
i∈[q]

max{`(ILi ), `(IRi )},

from which c(s′, r) ≤ 1/2 follows. That is, though the scoring rule is best-
rewarding, the subrule s′, for x to be a NCNE, must be worst-punishing or
intermediate. Hence, comparing this with Theorem 3.2, we see that locally each
occupied position behaves with respect to the rule s′ in a similar way to a CNE
on the whole issue space.

Proof. Consider candidate i at position xk. Since all of i’s score is garnered from

the immediate full-electorate Ik, i’s score is vi(x) =
(
1
r

∑r
j=1 sj

)
`(Ik). Suppose
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that i moves to some position t between two occupied positions or between an
occupied position and the boundary of the issue space. In the latter case, i is
now ranked first by, at best, all voters in the intervals IL1 or IRq . In the former

case, when xl < t < xl+1 for some l, candidate i is ranked first by voters in the
interval [(xl+t)/2, (t+xl+1)/2], which is equal in length to `(IRl ) = `(ILl+1). From
the rest of the issue space, i is ranked at best rth, so receives nothing. In each
case, i’s score is now vi(t, x−i) = s1`(J), for the half-electorate J that i moves
into. For NCNE we need this move not be beneficial, that is, vi(t, x−i) ≤ vi(x).

Thus, for NCNE we must have s1`(J) ≤
(
1
r

∑r
j=1 sj

)
`(Ik), which occurs if and

only if `(J) ≤ (1 − c(s′, r))`(Ik). This must hold when i moves into any of the
half-electorates, and for any candidate at any initial position. This yields the
necessity of condition (a).

Also, there is a possibility that i moves to some position xl that is already

occupied. In this case her score becomes vi(x
l, x−i) =

(
1

r+1

∑r+1
j=1 sj

)
`(Il) =(

1
r+1

∑r
j=1 sj

)
`(Il), which again must not exceed vi(x). Hence, we must have(

1
r+1

∑r
j=1 sj

)
`(Il) ≤

(
1
r

∑r
j=1 sj

)
`(Ik) or `(Il) ≤

(
1 + 1

r

)
`(Ik). This must hold

for any pair of full-electorates, which implies that condition (b) is necessary. With
no other possible moves, so (a) and (b) are sufficient for NCNE.

We note that the degree to which the positions can be nonsymmetric depends
on how small c(s′, r) is. If c(s′, r) = 1/2, for example, then by condition (a)
of Theorem 7.1 we must have that all the electorates are the same size and the
occupied positions are at the halfway point of each one. If the profile is symmetric,
with the candidates positioned so as to divide the issue space into equally sized
full-electorates, Theorem 7.1 simplifies.

Corollary 7.2. Let there be m = qr candidates, q ≥ 2, and consider the scoring
rule s = (s1, . . . , sr−1, 0, 0, . . . , 0), where only the first r − 1 scores can be non-
zero. Then the profile given by x = ((x1, r), . . . , (xq, r)) such that `(Ii) = 1/q for
all i ∈ [q], is a NCNE if and only if c(s′, r) ≤ 1/2, where s′ = (s1, . . . , sr−1, 0).

Proof. Since each Ii is the same length, condition (b) of Theorem 7.1 is satisfied.
Condition (a) reduces to 1/2q ≤ (1− c(s′, r))/q or c(s′, r) ≤ 1/2.

Example 7.3. Consider r-candidate k-approval s′ = (1, . . . , 1, 0, . . . , 0) with r ≥
k + 1. The condition c(s′, r) ≤ 1/2 holds if and only if r ≤ 2k, suppose this is
true. By appending zeros to the end of s′, we can extend s′ to k-approval with
m = qr candidates for any q ≥ 2. Then Theorem 7.1 implies there exist NCNE
in which r candidates position themselves at each of the q distinct locations.

As a special case, consider plurality: s = (1, 0, . . . , 0). For any even m, set
r = 2 to obtain s′ = (1, 0) with c(s′, 2) = 1/2. So the profile where two candidates
locate at each position so as to divide the space into equally sized intervals is a
NCNE, the only one in which there are two candidates at each position. We
cannot have r > 2, as then we would have c(s′, r) > 1/2. So plurality has no
equilibria in which more than two candidates locate at each position, as is well-
known by Eaton and Lipsey (1975) and Denzau et al. (1985).
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Example 7.4. Let s′ = (r − 1, r − 2, . . . , 2, 1, 0), that is, s′ is Borda. Let s,
of length m = qr, q ≥ 2, be the rule resulting from appending (q − 1)r zeros
to s′. Then c(s′, r) = 1/2, so there exists a NCNE in which r candidates position
themselves at the q halfway points of q equally sized full-electorates.

Recall that Theorem 6.3 stated that a rule with convex scores has no NCNE,
unless the nonconstant part of the scoring rule is exactly Borda and is shorter
than the constant part. The rule s in Example 7.4 is precisely such a rule. Hence,
the exception in Theorem 6.3 does indeed need to be made.

Example 7.5. For a given scoring rule, NCNE with different partitions of the
candidates can exist simultaneously. Consider 3-approval, s = (1, 1, 1, 0, . . . , 0),
with m = 20. It can be verified that there exist equilibria with five distinct
positions with four candidates apiece, as well as equilibria with four positions
and five candidates apiece.

Bipositional clustered NCNE

A CNE is the simplest kind of Nash equilibrium that may exist. The next simplest
would be a NCNE in which there are only two occupied positions. To keep things
straightforward, we restrict to the case where m is even and the equilibrium
positions are symmetric.

Theorem 7.6. Suppose m is even. Then the profile x = ((x1,m/2), (x2,m/2)),
with 0 < x1 < 1/2 and x2 = 1− x1, is a NCNE if and only if both

sm/2 + sm/2+1

2
< s̄ (9)

and
s1 + sm/2 − 2s̄

2(s1 − sm/2+1)
≤ x1 ≤

2s̄− sm − sm/2

2(s1 − sm/2)
. (10)

If in addition c(s,m) ≤ 1/2, then the profile x is a NCNE whenever

s1 + sm/2 − 2s̄

2(s1 − sm/2+1)
≤ x1 < 1

2
. (11)

Moreover, (11) can always be satisfied.

Proof. By the symmetry of the positions, (x1 + x2)/2 = 1/2 and (x2 − x1)/2 =
1/2 − x1. At x, all candidates receive 1/m-th of the points, so vi(x) = s̄ for all
i = 1, . . . ,m. Note that it is necessary that s1 > sm/2, since otherwise there
would need to be more than m/2 candidates at each position by Lemma 4.5.

By symmetry, for NCNE it is enough to require candidate 1 not be able to
deviate profitably, and there are only three moves to consider: a move to x1−,
which is always better than a move to x2+, since 1 is ranked one place higher
for half of voter in the middle interval; a move to x2−, which is the best move
out of any into the middle interval since the slope of v1(t, x−1) in that interval is
nonnegative by Proposition 4.1(b); and, finally, a move to x2.
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For the first one we have v1(x
1−, x−1) = s1x

1 + sm/2

(
1
2 − x

1
)

+ 1
2sm. For

NCNE, it must be that v1(x
1−, x−1) ≤ v1(x), which yields the requirement

x1 ≤
2s̄− sm − sm/2

2(s1 − sm/2)
. (12)

For the second move we have v1(x
2−, x−1) = s1

(
1
2 − x

1
)

+ 1
2sm/2+sm/2+1x

1. The
fact that v1(x

2−, x−1) ≤ v1(x) yields

x1 ≥
s1 + sm/2 − 2s̄

2(s1 − sm/2+1)
. (13)

Finally,

v1(x
2, x−1) =

1

m/2 + 1

m/2+1∑
i=1

si +
m∑

i=m/2

si

 1

2
=

1

m+ 2

(
ms̄+ sm/2 + sm/2+1

)
.

Since in a NCNE v1(x
2, x−1) ≤ v1(x), it must be that sm/2 + sm/2+1 ≤ 2s̄.

There are no other moves to consider, so if the position x1 is valid, that is,
satisfies (12), (13) and is in the range 0 < x1 < 1/2, then we have a NCNE. The
condition x1 < 1/2 combined with (13) implies the strict inequality in (9). The
condition x1 > 0 means that we need the right-hand side of (12) to be strictly
greater than zero, which is always true.

Finally, note that the requirement that s1 > sm/2 is implied by (9), since if

sm/2 = s1 then we have sm/2+sm/2+1 = s1+sm/2+1 < 2s̄ = s1+ 2
m

∑m
i=m/2+1 si ≤

s1 + sm/2+1, a contradiction.
To prove the second statement, suppose a scoring rule satisfies both c(s,m) ≤

1/2 and (9). Since c(s,m) ≤ 1/2 is equivalent to s1 + sm ≤ 2s̄, the right-hand
side of (10) always satisfies

1

2
≤

2s̄− sm − sm/2

2(s1 − sm/2)
. (14)

Similarly, the left-hand side satisfies

s1 + sm/2 − 2s̄

2(s1 − sm/2+1)
<

1

2
. (15)

Putting together (14) and (15), we see that it will always be possible to find valid
values of x1 in the desired range.

Example 7.7. Again consider k-approval with k < m/2. Clearly, (9) is satisfied.
Then we have symmetric bipositional NCNE whenever 1/2− k/m ≤ x1 ≤ k/m,
which is valid whenever k ≥ m/4.

Theorem 7.6 allows us to conclude that bipositional NCNE may exist for both
best-rewarding and worst-punishing rules, as we will see in the examples below.
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Example 7.8. Letm = 6. The rules s = (2, 2, 1, 1, 1, 0), s = (10, 10, 4, 3, 3, 0) and
s = (4, 3, 1, 1, 0, 0) have bipositional NCNE of the form x = ((x1, 3), (1 − x1, 3))
when, respectively: 1/3 ≤ x1 < 1/2; 2/7 ≤ x1 < 1/2; and, x1 = 1/3. These rules
are worst-punishing, intermediate and best-rewarding, respectively. In particular,
we see CNE and NCNE can coexist for the same rule.

Though Theorem 7.6 restricts to even m, it is possible to have bipositional
equilibrium in which the number of candidates is different at the two positions.
Here is an example.

Example 7.9. Let m = 7 and consider the rule s = (10, 10, 4, 3, 3, 1, 0). It can be
verified that the profile ((x1, 4), (x2, 3)) with x1 = 1/3 and x2 = 2/3, is a NCNE.

8 Conclusion

We have investigated how the particular scoring rule in use influences the candi-
dates’ position-taking behaviour. We have looked at the equilibrium properties
of a number of different classes of scoring rules. We were able to identify sev-
eral broad classes of scoring rules under which NCNE are impossible. For other
large classes, we found that NCNE can exist and we calculated a number of them.
Many of the rules most frequently appearing in the literature—Borda, k-approval,
plurality and so on—fall nicely into the cases considered.

A strong argument in favour of using scoring rules more general than plu-
rality is that some of them give us a more realistic set of nonconvergent Nash
equilibria. Indeed, plurality does not allow more than two candidates in a Nash
equilibrium to cluster together while some of the rules we discovered do allow
this behaviour, providing an explanation for Eaton and Lipsey’s (1975) Principle
of Local Clustering.

A number of questions remain open. A particularly interesting class for further
investigation is the class of concave rules which are defined similarly to convex
rules but with inequalities in (3) reversed. Also, there are a number of simplifying
assumptions that we would like to relax. One is the assumption that the voters are
uniformly distributed along the issue space9 and another is the unidimensionality
of the issue space10. Whether any of our results can be extended in some form is
not known.
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Appendix

Proof of Proposition 4.1. (a) Let t ∈ [0, x1). We split the issue space into intervals

I1 =
[
0, t+x

1

2

)
, . . . , Ik =

[
t+xk−1

2 , t+x
k

2

)
, . . . , Iq+1 =

[
t+xq

2 , 1
]
. The voters in Ik rank

candidate i in the same position on their ballots. For 1 6= k 6= q+ 1 the length of Ik does
not depend on t (and hence the contribution to i’s score from voters in Ik). So when
t changes, only the contributions to i’s score from the voters in the two end intervals

change. The sum of these is s1

(
t+x1

2

)
+sm

(
1− t+xq

2

)
, so the result follows. The second

statement follows from the first due to an obvious symmetry.
(b) Suppose candidate i is currently at t. We split the issue space into intervals

[0, t] and [t, 1] (so that candidate i belongs to both of them) and apply the previous
proposition to rules (s1, . . . , sj+1) and (s1, . . . , sk+1). Then the nonconstant contribu-

tions to the score vi(t, x−i) from both intervals will be
[
s1

(
xl−t
2

)
+ sk+1

(
1− t+xq

2

)]
+[

s1

(
t−xl−1

2

)
+ sj+1

(
t+x1

2

)]
=

(sj+1−sk+1)
2 t+ const, which proves the proposition.
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Proof of Lemma 4.3. Again, the issue space can be divided into subintervals of voters
who all rank i in the same position. The immediate interval around xl is Il = ILl ∪ IRl ,
where: ILl = [(xl−1 + xl)/2, xl] if l > 1 or ILl = [0, x1] if l = 1; and, IRl = [xl, (xl +
xl+1)/2] if l < q or IRl = [xl, 1] if l = q. The contribution to vi(x) from the interval
Il is s1+s2

2 (`(ILl ) + `(IRl )). The contribution to vi(x
l−, x−i) from this interval is then

s1`(I
L
l ) + s2`(I

R
l ) and the contribution to vi(x

l+, x−i) is s2`(I
L
l ) + s1`(I

R
l ).

The contribution to vi(x) from any interval J to the left of Il, consisting of voters
who all rank i similarly, is st+st+1

2 `(J) for some 2 ≤ t ≤ m − 1. The contribution to
vi(x

l−, x−i) is st`(J) since when candidate i moves infinitesimally to the left she rises
one place in the rankings of these voters. The contribution to vi(x

l+, x−i) is st+1`(J),
since this move causes i to fall one place in these voters’ rankings.

In the same way, the contribution to vi(x) from any interval J ′ to the right of Il,
consisting of voters who all rank i identically, is st+st+1

2 `(J ′) for some 2 ≤ t ≤ m − 1
while the contribution to vi(x

l−, x−i) is st+1`(J
′) and the contribution to vi(x

l+, x−i) is
st`(J

′).
Hence, vi(x

l−, x−i) + vi(x
l+, x−i) = 2vi(x) since for any subinterval Il, J or J ′ the

sum of the contributions to vi(x
l−, x−i) and vi(x

l+, x−i) is twice the contribution to vi(x)
from the same subinterval. For x to be a NCNE we need both vi(x

l−, x−i) ≤ vi(x) and
vi(x

l+, x−i) ≤ vi(x). This is only possible when vi(x
l−, x−i) = vi(x

l+, x−i) = vi(x).

Proof of Lemma 4.4. Let n1 = 2. By Lemma 4.3 we have v1(x1+, x−1) = v1(x). Hence,
if 1 moves to a position t ∈ (x1, x2) then for NCNE we need v1(t, x−1) ≤ v1(x) =
v1(x1+, x−1). Hence, the slope of the linear function v1(t, x−1) is nonpositive. By Propo-
sition 4.1(b) we then have s2 − sm−1 ≤ 0, which can happen only if s2 = sm−1.

Proof of Lemma 4.5 . Suppose n1 ≤ k and candidate 1 is located at x1. We split the is-

sue space into intervals I1 =
[
0, x

1+x2

2

)
, . . . , Ij =

[
x1+xj

2 , x
1+xj+1

2

)
, . . . , Iq =

[
x1+xq

2 , 1
]
.

At x the contribution to candidate 1’s score v1(x) from the interval I1 = [0, (x1 +

x2)/2] is
(

1
n1

∑n1

i=1 si

)
`(I1) = s1`(I1), and the contribution from the interval Ij is(

1
n1

∑kj+n1−1
i=kj

si

)
`(Jj), for some kj , since candidate 1 is tied in the rankings of all voters

in Ij . If 1 moves infinitesimally to the right, then these contributions to v1(x1+, x−1)
become s1`(I1) and skj `(Ij), respectively. Indeed, 1 is still ranked at worst kth by
voters in I1 and hence loses nothing. Also, 1 rises in all other voters’ rankings. If
skj > skj+n1−1 for at least one j, this move is strictly beneficial. This infinitesimal
“move” is not a real move. However, if it is strictly beneficial, then by Proposition 4.1(b)
we may conclude that a sufficiently small move to the right will also be beneficial. If
skj = skj+n1−1 for all j, then we consider the move by candidate 1 to the right, to a
position t ∈ (x1, x2). The intervals where voters rank candidate 1 similarly will then be

I ′1 =
[
0, t+x

2

2

)
, . . . , I ′j =

[
t+xj

2 , t+x
j+1

2

)
, . . . , I ′q =

[
t+xq

2 , 1
]
. We see that candidate 1 has

increased the length of the first interval, from which she receives s1, at the expense of
the far-right interval, from which she receives sm−n1+1 = sm < s1, while keeping the
lengths of all other intervals unchanged. So this move is beneficial.

So for NCNE we must have n1 > k. Similarly, nq > k.

Proof of Lemma 4.7. Suppose x1 = 0. Let 1 ≤ k ≤ m − 1 be such that s1 = · · · =
sk > sk+1. Then by Lemma 4.5 we have n1 > k. Candidate 1’s score is v1(x) =(

1
n1

∑n1

i=1 si

)
x2

2 + S, where S is the contribution to v1(x) from voters in the interval

I = [x2/2, 1]. Now suppose candidate 1 moves infinitesimally to the right. Then, in the

limit, 1’s score is v1(x1+, x−1) = s1
x2

2 +S′, where S′ is the new contribution to 1’s score
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from the interval I. Since 1 has moved up in the ranking of all the voters in I, S′ ≥ S.
Also, since s1 = sk > sn1

we have

v1(x1+, x−1) = s1
x2

2
+ S′ >

(
1

n1

n1∑
i=1

si

)
x2

2
+ S′ ≥

(
1

n1

n1∑
i=1

si

)
x2

2
+ S = v1(x).

Hence, candidate 1 benefits from moving to the right, and hence x is not a NCNE. Thus,
x1 > 0. Similarly, xq < 1.

Proof of Lemma 4.8. (a) Since sm < s̄ < s1, there exists a real number α with the
property that 0 < α < 1 and αs1 + (1 − α)sm = s̄. Rearranging this equation, one
verifies that α = 1− c(s,m).

At any profile x, there will be at least one candidate j who garners a total score
vj(x) ≤ s̄. Hence, if I is an end interval, namely [0, x1] or [xq, 1], then we must have
`(I) ≤ α. To show this we assume without loss of generality that `(I) > α for I = [0, x1]
and we show that candidate j would be able to make a profitable move to x1 − ε for
some very small ε. By Proposition 4.1(a), this would be proved if we could show that
vj(x

1−, x−j) > vj(x). The idea is that by locating incrementally to the left from x1

candidate j captures s1 from all the voters in I and at the very worst sm from all other
voters. So vj(x

1−, x−j) ≥ s1`(I) + sm(1− `(I)) > αs1 + (1− α)sm = s̄ ≥ vj(x).

(b) Similarly, suppose xi − xi−1 > 2α for some 2 ≤ i ≤ q. Note that we can assume
candidate j is not an unpaired candidate located at xi or xi−1, since then j already
receives a score greater than αs1 + (1 − α)sm, which contradicts that j’s score is no
more than s̄. Hence, we may assume that position xi and xi−1 remains occupied when j
moves. Now, if j moves to any point t in the interval I = (xi−1, xi), we have

vj(t, x−j) ≥ s1
(
xi − xi−1

2

)
+ sm

(
1− xi − xi−1

2

)
> αs1 + (1− α)sm ≥ vj(x).

Hence, for x to be a NCNE it must be that xi − xi−1 ≤ 2α.

(c) If c(s,m) ≤ 1/2 it is clearly true as the right-hand side is equal to 1. If c(s,m) >
1/2, only NCNE can exist with q ≥ 2 occupied positions. Then the issue space can
be partitioned into two end intervals, [0, x1) and [xq, 1], together with q − 1 intervals
of the form [xi−1, xi) for 2 ≤ i ≤ q. So, using Lemma 4.8, we see that 1 = x1 + (1 −
xq) +

∑q
i=2(xi − xi−1) ≤ 2q(1 − c(s,m)), whence the result. We round up since q is an

integer.

Proof of Lemma 5.2. Define α = x1, β = (x2 − x1)/2 and γ = 1 − (x1 + xq)/2. Note

that v1(x) = s1
n1

(α+ β) + s2 − s2
n1

(α+ β + γ) = (s1−s2)
n1

(α+ β) + s2

(
1− γ

n1

)
. Consider

if 1 moves to x1−. Then v1(x1−, x−1) = s1α + s2(1 − α − γ) = (s1 − s2)α + s2(1 − γ).
If 1 moves to x1+ then v1(x1+, x−1) = s1β + s2(1− β) = (s1 − s2)β + s2. For NCNE we
require that these moves not be beneficial to candidate 1. That is, v1(x1−, x−1) ≤ v1(x)

which implies (s1 − s2)α+ s2(1− γ) ≤ (s1−s2)
n1

(α+ β) + s2

(
1− γ

n1

)
or

(s1 − s2)

(
1− 1

n1

)
α ≤ (s1 − s2)

n1
β + s2

(
1− 1

n1

)
γ. (16)

Similarly, for the other move we have v1(x1+, x−1) ≤ v1(x) whence (s1−s2)
(

1− 1
n1

)
β ≤

(s1−s2)
n1

α − s2 γ
n1

or (s1 − s2)
[(

1− 1
n1

)
β − α

n1

]
≤ −s2 γ

n1
≤ 0. The latter implies that
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β(n1 − 1) ≤ α since we know that s1 > s2. In addition, rearranging this inequality gives
s2γ ≤ (s1 − s2)(α+ β − n1β) and multiplying through by the positive number 1− 1/n1

s2

(
1− 1

n1

)
γ ≤

(
1− 1

n1

)
(s1 − s2)(α+ β − n1β). (17)

Substituting (17) into (16) and dividing through by s1 − s2 > 0 we get
(

1− 1
n1

)
α ≤

β
n1

+
(

1− 1
n1

)
(α+ β − n1β) or 0 ≤ β(2− n1). Since β > 0, this equation requires that

n1 ≤ 2. So n1 = 2. A similar argument gives nq = 2.

Proof of Theorem 5.3. First note that, without loss of generality, we can assume s5 = 0,
since it is easy to see that subtracting s5 from each score does not change the rule. By
Lemma 4.4 we have s2 = s3 = s4 and by Lemma 4.5 we have s1 > s2, so condition (b) is
necessary. Hence our rule is one of those studied in Lemma 5.2, which tells us that there
are no NCNE of the forms x = ((x1, 2), (x2, 3)) and x = ((x1, 3), (x2, 2)).

By Lemma 4.7, the end points of the issue space are not occupied. As in the proof of
Theorem 5.1, considering moves by candidate 1 to x1− and x3+, together with Lemma
4.3, gives x1 ≥ 1 − x3. Similar considerations for candidate 5 give x1 ≤ 1 − x3, hence
x1 = 1− x3.

Let t ∈ (x1, x2) and t′ ∈ (x2, x3) (all positions in these intervals yield the same

score by Proposition 4.1(b)). Again by Lemma 4.3, we need v1(t′, x−1) = s1

(
x3−x2

2

)
+

s2

(
1− x3−x2

2

)
≤ v1(x) = v1(t, x−1) = s1

(
x2−x1

2

)
+ s2

(
1− x2−x1

2

)
, which implies

x3 − x2 ≤ x2 − x1 and hence 1
2 (x1 + x3) ≤ x2. The same considerations with respect to

candidate 5 give that x2 ≤ 1
2 (x1 +x3). So we have equality and, consequently, x2 = 1/2.

We know that v1(x1−, x−1) = v1(x) = v1(x1+, x−1). This yields s1x
1+ s2

(
x3−x1

2

)
=

s1

(
x2−x1

2

)
+ s2

(
1− x2−x1

2

)
, from which, after substituting x2 = 1/2 and x3 = 1 − x1,

equation (2) follows. For this to be a valid position, we need x1 < x2 = 1/2. This gives
s1 > 2s2, which is equivalent to c(s, 5) > 1/2, so condition (a) is necessary.

The proof of sufficiency is straightforward and is omitted: we simply check that if (a)
and (b) are satisfied, then x = ((x1, 2), (1/2, 1), (x3, 2)), calculated according to (2), is
an equilibrium with no profitable deviation for any candidate.
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