Libraries and Learning Services

University of Auckland Research Repository, ResearchSpace

Suggested Reference

Bandyopadhyay, D., \& Binning, A. (2016). Appendix for a migration based theory of the exchange rate and the New Zealand's experience.

Copyright

Items in ResearchSpace are protected by copyright, with all rights reserved, unless otherwise indicated. Previously published items are made available in accordance with the copyright policy of the publisher.

For more information, see General copyright.

APPENDIX FOR
 A MIGRATION BASED THEORY OF THE EXCHANGE RATE AND THE NEW ZEALAND'S EXPERIENCE ${ }^{1}$

Debasis Bandyopadhyay
Department of Economics
University of Auckland, Auckland
New Zealand

Andrew Binning

Norges Bank, Oslo
Norway

January 2016

[^0]
1. Figures 3 - 22:

Figure 1
Nöminal TWI exchange rate

Source: RBNZ.
Figure 2
Net migration
(annual total)

Source: Statistics New Zealand.

Figure 3.

Figure 4.

Note: the exchange rate $=1 / S_{t}$, i.e. the exchange rate (as defined here) is how much foreign currency is required to buy one unit of domestic currency. All migration data is annual, measured quarterly.

Figure 5.

Case1 Immigrants's Goods Market Participation

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.

Figure 15.

Figure 16.

Figure 17.

$\mathrm{CE}=$ Cointegrating equation (5*) from Section 4.
CWCR $=$ Calibrated equation with cointegration style restrictions
Data $=$ real exchange rate data

Figure 18.

CE = Cointegrating equation (5*) taken from Section 4.
CWOR = calibrated equation without cointegrating restrictions, from Case 2a
Data $=$ the real exchange rate data

Figure 19.

Figure 20.

Israeli Labour Participation Factors

Source: Hercowitz and Yashiv (2002)

Figure 21.

The participation rate $=$ the percentage of employed immigrants that arrived q quarters ago out of all immigrants of working age that arrived q quarters ago.

Figure 22.

Policy Experiment: Forecasting Migration

The forecasted migration is calculated using the following arbitrary procedure. It is assumed that immigration starts to decline slowly and that emigration increases slowly. An autoregressive procedure is applied and is presented below.

$$
\begin{aligned}
& \Delta P_{t+1}^{E}=(1.01) * \Delta P_{t}^{E} \\
& \Delta P_{t+1}^{I}=(0.98) * \Delta P_{t}^{I}
\end{aligned}
$$

The coefficient on emigration is slightly larger than unity, implying that emigration will gradually increase. The coefficient on immigration is slightly less than unity implying that immigration will gradually decrease. This is a reasonably fair way of calculating future arrivals and departures since it is known that Total Arrivals and Total Departures follow a random walk from the Diagnostic Statistics section. Therefore imposing coefficients of slightly less or slightly more than unity will give near random walk processes. The forecasted migration is displayed in figure 22.

The forecasted level of domestic capital and the native born population are determined by using the preceding period's growth rate and extending the data.

A Technical Note Total Factor Productivity

In this section $Z_{1 t}, Z_{2 t}, Z_{3 t}$ and $Z_{4 t}$ will be solved for as functions of technology A_{t}, the aggregate demand shocks ξ_{t}, the parameters $\alpha, \beta, \varepsilon$ and λ. The exact functional forms of $Z_{1 t}$, $Z_{3 t}$ and $Z_{4 t}$ must be known in order to estimate technology and aggregate demand shocks in the labour, the goods and the foreign exchange markets and to estimate the employed, GDP and the real exchange rates as functions of technology and aggregate demand shocks. $Z_{1 t}, Z_{2 t}, Z_{3 t}$ and $Z_{4 t}$ have all been allowed to vary with A_{t} and ξ_{t} over time.

From equation (1) in section 5.

$$
\begin{equation*}
Y_{t}=A_{t} L_{t}^{\alpha} K m_{t}^{\beta} K_{t}^{1-\alpha-\beta} \tag{A.1}
\end{equation*}
$$

where A_{t} is an index of technology that varies with time

Differentiating the profit function with respect to labour and imported capital gives the following first order conditions.

$$
\begin{align*}
& \alpha A_{t} L_{t}^{\alpha-1} K m_{t}^{\beta} K_{1}^{1-\alpha-\beta}=w_{t} \tag{A.2}\\
& \beta A_{t} L_{t}^{\alpha} K m_{t}^{\beta-1} K_{t}^{1-\alpha-\beta}=S_{R t} \tag{A.3}
\end{align*}
$$

From equations (5) and (6) in section 5, the labour supply is obtained

$$
L_{t}=w_{t}^{\lambda}\left(P_{t}^{N}-\theta_{l}^{E} \Delta P_{t}^{E}+\sum_{q=0}^{t} \theta_{l_{q}}^{I} \Delta P_{t-q}^{I}\right)
$$

Setting labour demand equal to labour supply and solving for L_{t}

$$
\alpha A_{t} L_{t}^{\alpha-1} K m_{t}^{\beta} K_{t}^{1-\alpha-\beta}=\left(\frac{L_{t}}{P_{t}^{N}-\theta_{l}^{E} \Delta P_{t}^{E}+\sum_{q=0}^{t} \theta_{l_{q}}^{I} \Delta P_{t-q}^{I}}\right)^{\frac{1}{\lambda}}
$$

$$
\begin{align*}
& \alpha^{\lambda} A_{t}^{\lambda} L_{t}^{\alpha \lambda-\lambda} K m_{t}^{\beta \lambda} K_{t}^{\lambda(1-\alpha-\beta)}=\frac{L_{t}}{P_{t}^{N}-\theta_{l}^{E} \Delta P_{t}^{E}+\sum_{q=0}^{t} \theta_{l_{q}}^{I} \Delta P_{t-q}^{I}} \\
& \alpha^{\lambda} A_{t}^{\lambda} L_{t}^{\alpha \lambda-\lambda} K m_{t}^{\beta \lambda} K_{t}^{\lambda(1-\alpha-\beta)}\left(P_{t}^{N}-\theta_{l}^{E} \Delta P_{t}^{E}+\sum_{q=0}^{t} \theta_{l_{q}}^{I} \Delta P_{t-q}^{I}\right)=L_{t} \\
& \alpha^{\lambda} A_{t}^{\lambda} K m_{t}^{\beta \lambda} K_{t}^{\lambda(1-\alpha-\beta)}\left(P_{t}^{N}-\theta_{l}^{E} \Delta P_{t}^{E}+\sum_{q=0}^{t} \theta_{l_{q}}^{I} \Delta P_{t-q}^{I}\right)=L_{t}^{1-\alpha \lambda+\lambda} \tag{A.4}
\end{align*}
$$

Making $K m_{t}$ the subject of (A.3) gives

$$
\begin{align*}
& K m_{t}^{\beta-1}=S_{R t} \beta^{-1} A_{t}^{-1} L_{t}^{-\alpha} K_{t}^{-(1-\alpha-\beta)} \\
& K m_{t}=S_{R t}^{\frac{1}{\beta-1}} \beta^{\frac{1}{1-\beta}} A_{t}^{\frac{1}{1-\beta}} L_{t}^{\frac{\alpha}{1-\beta}} K_{t}^{\frac{(1-\alpha-\beta)}{1-\beta}} \tag{A.5}
\end{align*}
$$

Substituting (A.4) into (A.5) gives

$$
\begin{align*}
& \alpha^{\lambda} A_{t}^{\frac{\lambda}{1-\beta}} S_{R t}^{\frac{\beta \lambda}{\beta-1}} \beta^{\frac{\beta \lambda}{1-\beta}} L_{t}^{\frac{\alpha}{1-\beta}} K_{t}^{\frac{\beta \lambda(1-\alpha-\beta)}{1-\beta}} K_{t}^{\lambda(1-\alpha-\beta)}\left(P_{t}^{N}-\theta_{l}^{E} \Delta P_{t}^{E}+\sum_{q=0}^{t} \theta_{l_{q}^{I}}^{I} \Delta P_{t-q}^{I}\right)=L_{t}^{1-\alpha \lambda+\lambda} \\
& \alpha^{\lambda} A_{t}^{\frac{\lambda}{1-\beta}} S_{R t}^{\frac{-\beta \lambda}{1-\beta}} \beta^{\frac{\beta \lambda}{1-\beta}} K_{t}^{\frac{\lambda(1-\alpha-\beta)}{1-\beta}}\left(P_{t}^{N}-\theta_{l}^{E} \Delta P_{t}^{E}+\sum_{q=0}^{t} \theta_{l_{q}^{I}}^{I} \Delta P_{t-q}^{I}\right)=L_{t}^{\frac{\lambda(1-\alpha-\beta)+1-\beta}{1-\beta}} \\
& \left(A_{t}^{\frac{\lambda}{\lambda(1-\alpha-\beta)+1-\beta}}\right)\left(\alpha^{\frac{\lambda(1-\beta)}{\lambda(1-\alpha-\beta)+1-\beta}}\right)\left(\beta^{\frac{\beta \lambda}{\lambda(1-\alpha-\beta)+1-\beta}}\right)\left(S_{R t}^{\frac{-\beta \lambda}{\lambda(1-\alpha-\beta)+1-\beta}}\right)\left(K_{t}^{\frac{\lambda(1-\alpha-\beta)}{\lambda(1-\alpha-\beta)+1-\beta}}\right) \\
& \times\left(P_{t}^{N}-\theta_{l}^{E} \Delta P_{t}^{E}+\sum_{q=0}^{t} \theta_{l_{q}^{I}}^{I} \Delta P_{t-q}^{I}\right)^{\frac{1-\beta}{\lambda(1-\alpha-\beta)+1-\beta}}=L_{t} \tag{A.6}
\end{align*}
$$

Comparing (7) and (A.6) denotes
$Z_{1 t} \equiv A_{t}^{\frac{\lambda}{\lambda(1-\alpha-\beta)+1-\beta}}\left(\alpha^{\frac{\lambda(1-\beta)}{\lambda(1-\alpha-\beta)+1-\beta}}\right)\left(\beta^{\frac{\beta \lambda}{\lambda(1-\alpha-\beta)+1-\beta}}\right)$
$Z_{1 t}$ varies with time because A_{t} varies with time.

From (A.5)
$K m_{t}=S_{R t}^{\frac{1}{\beta-1}} A_{t}^{\frac{1}{1-\beta}} \beta^{\frac{1}{1-\beta}} L_{t}^{\frac{\alpha}{1-\beta}} K_{t}^{\frac{1-\alpha-\beta}{1-\beta}}$

Substituting (A.6) into (A.5) gives

$$
\begin{aligned}
K m_{t}=\left(A_{t}^{\frac{\lambda+1}{\lambda(1-\alpha-\beta)+1-\beta}}\right. & \left(\alpha^{\frac{\alpha \lambda}{\lambda(1-\alpha-\beta)+1-\beta}}\right)\left(\beta^{\frac{\lambda(1-\alpha-\beta)+1-\beta+\beta \lambda \alpha}{(1-\beta) \lambda(1-\alpha-\beta)+1-\beta]}}\right)\left(S_{R t}^{\frac{-\lambda(1-\alpha-\beta)+1-\beta+\lambda \alpha \beta}{(1-\beta) \lambda(1-\alpha-\beta)+1-\beta)}}\right) \\
& \times\left(K_{t}^{\frac{(1-\alpha-\beta)(1+\lambda)}{\lambda(1-\alpha-\beta)+1-\beta}}\right)\left(P_{t}^{N}-\theta_{l}^{E} \Delta P_{t}^{E}+\sum_{q=0}^{t} \theta_{l_{q}}^{I} \Delta P_{t-q}^{I}\right)^{\frac{\alpha}{\lambda(1-\alpha-\beta)+1-\beta}}
\end{aligned}
$$

Comparing the above equation with (8) denotes
$Z_{2 t} \equiv\left(A_{t}^{\frac{\lambda+1}{\lambda(1-\alpha-\beta)+1-\beta}}\right)\left(\alpha^{\frac{\alpha \lambda}{\lambda(1-\alpha-\beta)+1-\beta}}\right)\left(\beta^{\frac{\lambda(1-\alpha-\beta)+1-\beta+\beta \lambda \alpha}{(1-\beta) \lambda(1-\alpha-\beta)+1-\beta]}}\right)$
$Z_{2 t}$ varies with time because A_{t} varies with time.

Substituting (A.6) and (A.8) into (A.1) denotes
$Z_{3 t} \equiv Z_{1 t}^{\alpha} Z_{2 t}^{\beta} A_{t}$
$Z_{3 t}$ varies with time because $Z_{1 t}, Z_{2 t}$ and A_{t} vary with time.

Substituting in $Z_{1 t}$ and $Z_{2 t}, Z_{3 t}$ can be written in terms of A_{t} and parameters giving
$Z_{3 t}=\left(A_{t}^{\frac{\lambda+1}{\lambda(1-\alpha-\beta)+1-\beta}}\right)\left(\alpha^{\frac{\alpha \lambda}{\lambda(1-\alpha-\beta)+1-\beta}}\right)\left(\beta^{\frac{\beta(1+\lambda)}{\lambda(1-\alpha-\beta)+1-\beta}}\right)$

Aggregate supply is taken from equation (9)
$Y_{t}^{S}=Z_{3 t}\left(K_{t}^{\frac{(1-\alpha-\beta)(1+\lambda)}{\lambda(1-\alpha-\beta)+1-\beta}}\right)\left(P_{t}^{N}-\Delta P_{t}^{E} \theta_{l_{t}}^{E}+\sum_{q=0}^{t} \theta_{l_{q}}^{I} \Delta P_{t-q}^{I}\right)^{\frac{\alpha}{\lambda(1-\alpha-\beta)+1-\beta}} S_{R t}^{\left(\frac{-\beta(1+\lambda)}{\lambda(1-\alpha-\beta)+1-\beta}\right)}$

Aggregate demand is taken from equation (10)
$Y_{t}^{D}=\xi_{t} S_{R t}^{\varepsilon}\left(P_{t}^{N}-\theta_{y}^{E} \Delta P_{t}^{E}+\sum_{q=0}^{t} \theta_{y_{q}}^{I} \Delta P_{t-q}^{I}\right) \quad, \varepsilon>0$
ξ_{t} has been allowed to vary with time and can be thought of as measuring aggregate demand shocks, the models deviations from true GDP. Setting equation (A.8) equal to equation (A.9) and solving for $S_{R t}$ gives
$Z_{3 t} K_{t}^{\frac{(1-\alpha-\beta)(1+\lambda)}{\lambda(1-\alpha-\beta)+1-\beta}}\left(P_{t}^{N}-\Delta P_{t}^{E} \theta_{l_{t}}^{E}+\sum_{q=0}^{t} \theta_{l_{q}}^{I} \Delta P_{t-q}^{I}\right)^{\frac{\alpha}{\lambda(1-\alpha-\beta)+1-\beta}} S_{R t}^{\left(\frac{-\beta(1+\lambda)}{\lambda(1-\alpha-\beta)+1-\beta}\right)}=$
$\xi_{t} S_{R t}^{\varepsilon}\left(P_{t}^{N}-\theta_{y}^{E} \Delta P_{t}^{E}+\sum_{q=0}^{t} \theta_{y_{q}}^{I} \Delta P_{t-q}^{I}\right)$

$$
\begin{align*}
\left.S_{R t}=\left(\frac{Z_{3 t}}{\xi_{t}}\right)^{\frac{\lambda(1-\alpha-\beta)+1-\beta}{\mu}\left(K_{t}\right.}\right) & \\
& \times\left(P_{t}^{N}-\theta_{y}^{E} \Delta P_{t}^{E}+\sum_{q=0}^{t} \theta_{y_{q}}^{I} \Delta P_{t-q}^{I}\right)^{\frac{(1-\alpha-\beta)(1+\lambda)}{\mu}} \\
& \times\left(P_{t}^{N}-\theta_{l}^{E} \Delta P_{t}^{E}+\sum_{q=0}^{t} \theta_{l_{q}}^{I} \Delta P_{t-q}^{I}\right)^{\frac{\alpha}{\mu}} \tag{A12}
\end{align*}
$$

where $\mu \equiv \beta(1+\lambda)+\varepsilon \lambda(1-\alpha-\beta)+\varepsilon(1-\beta)>0$
comparing (A12) with (11) denotes
$Z_{4 t} \equiv\left(\frac{Z_{3 t}}{\xi_{t}}\right)^{\frac{\lambda(1-\alpha-\beta)+1-\beta}{\beta(1+\lambda)+\varepsilon \lambda(1-\alpha-\beta)+\varepsilon(1-\beta)}}$
$Z_{4 t}$ varies with time because $Z_{3 t}$ varies with time. Writing $Z_{4 t}$ in terms of A_{t}, ξ_{t} and parameters gives

Solving for Technology and Aggregate Demand Shocks

Technology and aggregate demand shocks are solved for simultaneously by setting the models prediction of the real exchange rate, the employed and GDP equal to their data equivalents, in a spread sheet model. The formulas used are derived below.

Aggregate demand shocks:

From (A11) aggregate demand is given by,

$$
Y_{t}^{D}=\xi_{t} S_{R t}^{\varepsilon}\left(P_{t}^{N}-\theta_{y}^{E} \Delta P_{t}^{E}+\sum_{q=0}^{t} \theta_{y_{q}}^{I} \Delta P_{t-q}^{I}\right) \quad, \varepsilon>0
$$

Setting aggregate demand equal to GDP

$$
\begin{aligned}
& Y_{t}^{\text {Data }}=Y_{t}^{D} \\
& Y_{t}^{\text {Data }}=\xi_{t}\left(S_{R t}^{\text {Data }}\right)^{\varepsilon}\left(P_{t}^{N}-\theta_{y}^{E} \Delta P_{t}^{E}+\sum_{q=0}^{t} \theta_{y_{q}}^{I} \Delta P_{t-q}^{I}\right)
\end{aligned}
$$

Where $S_{R t}^{\text {Data }}$ is the real exchange rate data, used because it assumed to contain the true aggregate demand shocks, and will not change with the estimate of ξ_{t}.

Solving for the aggregate demand shocks
$\xi_{t}=\frac{Y_{t}^{\text {Data }}}{\left(S_{R t}^{\text {Data }}\right)^{\varepsilon}\left(P_{t}^{N}-\theta_{y}^{E} \Delta P_{t}^{E}+\sum_{q=0}^{t} \theta_{y_{q}}^{I} \Delta P_{t-q}^{I}\right)}$

Technology from the goods market:

From (A10) and (A9) aggregate supply is given by,

$$
\begin{aligned}
Y_{t}^{S}=\left(A_{t}^{\frac{\lambda+1}{\lambda(1-\alpha-\beta)+1-\beta}}\right)\left(\alpha^{\frac{\alpha \lambda}{\lambda(1-\alpha-\beta)+1-\beta}}\right) & \left(\beta^{\frac{\beta(1+\lambda)}{\lambda(1-\alpha-\beta)+1-\beta}}\right)\left(K_{t}^{\frac{(1-\alpha-\beta)(1+\lambda)}{\lambda(1-\alpha-\beta)+1-\beta}}\right) \\
& \times\left(P_{t}^{N}-\Delta P_{t}^{E} \theta_{l_{t}}^{E}+\sum_{q=0}^{t} \theta_{l_{q}^{I}}^{I} \Delta P_{t-q}^{I}\right)^{\frac{\alpha}{\lambda(1-\alpha-\beta)+1-\beta}} S_{R t}^{\left(\frac{-\beta(1+\lambda)}{\lambda(1-\alpha-\beta)+1-\beta}\right)}
\end{aligned}
$$

Setting aggregate supply equal to GDP gives,

$$
\begin{aligned}
& Y_{t}^{\text {Data }=} Y_{t}^{S} \\
& Y_{t}^{\text {Data }}=\left(A_{t}^{\frac{\lambda+1}{\lambda(1-\alpha-\beta)+1-\beta}}\right)\left(\alpha^{\frac{\alpha \lambda}{\lambda(1-\alpha-\beta)+1-\beta}}\right)\left(\beta^{\frac{\beta(1+\lambda)}{\lambda(1-\alpha-\beta)+1-\beta}}\right)\left(K_{t}^{\frac{(1-\alpha-\beta)(1+\lambda)}{\lambda(1-\alpha-\beta)+1-\beta}}\right) \\
& \times\left(P_{t}^{N}-\Delta P_{t}^{E} \theta_{l_{t}}^{E}+\sum_{q=0}^{t} \theta_{l_{q}}^{I} \Delta P_{t-q}^{I}\right)^{\frac{\alpha}{\lambda(1-\alpha-\beta)+1-\beta}}\left(S_{R t}^{\text {Data }}\right)^{\left(\frac{-\beta(1+\lambda)}{\lambda(1-\alpha-\beta)+1-\beta}\right)}
\end{aligned}
$$

Where $S_{R t}^{\text {Data }}$ is the real exchange rate data and has been used because it is assumed that it contains the true value of technology shocks and will not change with the estimate of A_{t}.

Solving for technology,

$$
\begin{align*}
& A_{t}^{\frac{\lambda+1}{\lambda(1-\alpha-\beta)+1-\beta}}=\frac{Y_{t}^{\text {Data }}}{\left(\left(\alpha^{\frac{\alpha \lambda}{\lambda(1-\alpha-\beta)+1-\beta}}\right)\left(\beta^{\frac{\beta(1+\lambda)}{\lambda(1-\alpha-\beta)+1-\beta}}\right)\left(K_{t}^{\frac{(1-\alpha-\beta)(1+\lambda)}{\lambda(1-\alpha-\beta)+1-\beta}}\right)\right.} \\
& \left.\quad \times\left(P_{t}^{N}-\Delta P_{t}^{E} \theta_{l_{t}^{E}}+\sum_{q=0}^{t} \theta_{l_{q} I} \Delta P_{t-q}^{I}\right)^{\frac{\alpha}{\lambda(1-\alpha-\beta)+1-\beta}}\left(S_{R t}^{\text {Data }}\right)^{\frac{-\beta(1+\lambda)}{\lambda(1-\alpha-\beta)+1-\beta}}\right) \tag{A.15}
\end{align*}
$$

Technology from the labour market:

From (A6) and (A7), employment is given by,

$$
\begin{aligned}
\left(A_{t}^{\frac{\lambda}{\lambda(1-\alpha-\beta)+1-\beta}}\right)\left(\alpha^{\frac{\lambda(1-\beta)}{\lambda(1-\alpha-\beta)+1-\beta}}\right)\left(\beta^{\frac{\beta \lambda}{\lambda(1-\alpha-\beta)+1-\beta}}\right)\left(S_{R t}^{\frac{-\beta \lambda}{\lambda(1-\alpha-\beta)+1-\beta}}\right)\left(K_{t}^{\frac{\lambda(1-\alpha-\beta)}{\lambda(1-\alpha-\beta)+1-\beta}}\right) \\
\times\left(P_{t}^{N}-\theta_{l}^{E} \Delta P_{t}^{E}+\sum_{q=0}^{t} \theta_{l_{q}}^{I} \Delta P_{t-q}^{I}\right)^{\frac{11-\beta}{\lambda(1-\alpha-\beta)+1-\beta}}=L_{t}^{\text {Model }}
\end{aligned}
$$

Setting the models prediction of employment equal to the employment data gives,

$$
\begin{aligned}
& L_{t}^{\text {Data }}=L_{t}^{\text {Model }} \\
& \left(\begin{array} { l }
{ \frac { \lambda } { \lambda (1 - \alpha - \beta) + 1 - \beta } }
\end{array} (\alpha ^ { \frac { \lambda (1 - \beta) } { \lambda (1 - \alpha - \beta) + 1 - \beta } }) (\beta ^ { \frac { \beta \lambda } { \lambda (1 - \alpha - \beta) + 1 - \beta } }) \left(\left(S_{R t}^{\text {Data }} \frac{-\beta \lambda}{\lambda(1-\alpha-\beta)+1-\beta}\right)\left(K_{t}^{\frac{\lambda(1-\alpha-\beta)}{\lambda(1-\alpha-\beta)+1-\beta}}\right)\right.\right. \\
& \\
& \quad \times\left(P_{t}^{N}-\theta_{l}^{E} \Delta P_{t}^{E}+\sum_{q=0}^{t} \theta_{l_{q}}^{I} \Delta P_{t-q}^{I}\right)^{\frac{1-\beta}{\lambda(1-\alpha-\beta)+1-\beta}}=L_{t}^{\text {Data }}
\end{aligned}
$$

Solving for technology,

$$
\left.\begin{array}{l}
A_{t}^{\frac{\lambda}{\lambda(1-\alpha-\beta)+1-\beta}}=\frac{L_{t}^{\text {Data }}}{\left(\left(\alpha^{\frac{\lambda(1-\beta)}{\lambda(1-\alpha-\beta)+1-\beta}}\right)\left(\beta^{\frac{\beta \lambda}{\lambda(1-\alpha-\beta)+1-\beta}}\right)\left(\left(S_{R t}^{\text {Data }}\right)^{\frac{-\beta \lambda}{\lambda(1-\alpha-\beta)+1-\beta}}\right)\left(K_{t}^{\frac{\lambda(1-\alpha-\beta)+1-\beta}{\lambda(1-\alpha-\beta)}}\right)\right.} \\
\left.\times\left(P_{t}^{N}-\theta_{l}^{E} \Delta P_{t}^{E}+\sum_{q=0}^{t} \theta_{l_{q}}^{I} \Delta P_{t-q}^{I}\right)^{\frac{1-\beta}{\lambda(1-\alpha-\beta)+1-\beta}}\right) \tag{A.16}
\end{array}\right]
$$

Technology from the foreign exchange market:

From (A12) and (A13)

$$
\begin{aligned}
S_{R t}^{\text {Model }}= & \left(\frac{\left(A_{t}^{\frac{\lambda+1}{\mu}}\right)\left(\alpha^{\frac{\alpha \lambda^{2}(1-\alpha-\beta)+\alpha \lambda-\alpha \lambda \beta}{[\lambda(1-\alpha-\beta)+1-\beta] \mu}}\right)\left(\beta^{\frac{\beta(1+\lambda) \lambda(1-\alpha-\beta)+\beta(1+\lambda)-\beta^{2}(1+\lambda)}{[\lambda(1-\alpha-\beta)+1-\beta] \mu}}\right)}{\xi_{t}^{\frac{\lambda(1-\alpha-\beta)+1-\beta}{\mu}}}\right)\left(K_{t}^{\frac{(1-\alpha-\beta)(1+\lambda)}{\mu}}\right) \\
& \times\left(P_{t}^{N}-\theta_{y}^{E} \Delta P_{t}^{E}+\sum_{q=0}^{t} \theta_{y_{q}}^{I} \Delta P_{t-q}^{I}\right)^{\frac{-\lambda(1-\alpha-\beta)+(1-\beta)]}{\mu}} \\
& \times\left(P_{t}^{N}-\theta_{l}^{E} \Delta P_{t}^{E}+\sum_{q=0}^{t} \theta_{l_{q}}^{I} \Delta P_{t-q}^{I}\right)^{\frac{\alpha}{\mu}}
\end{aligned}
$$

where ξ_{t}, the aggregate demand shock, is determined in the goods market using (A.14).

Setting the models prediction of the real exchange rate equal to the real exchange rate data gives,

$$
\begin{aligned}
S_{R t}^{\text {Data }}= & S_{R t}^{\text {Model }} \\
S_{R t}^{\text {Dota }}= & \left(\frac{\left(A_{t}^{\frac{\lambda+1}{\mu}}\right)\left(\alpha^{\frac{\alpha \alpha^{2}(1-\alpha-\beta)+\alpha \lambda-\alpha \lambda \beta}{[\lambda(1-\alpha-\beta)+1-\beta] \mu}}\right)\left(\beta^{\frac{\beta(1+\lambda) \lambda(1-\alpha-\beta)+\beta(1+\lambda)-\beta^{2}(1+\lambda)}{[\lambda(1-\alpha-\beta)+1-\beta] \mu}}\right)}{\xi_{t}^{\frac{\lambda(1-\alpha-\beta)+1-\beta}{\mu}}}\right)\left(K_{t}^{\frac{(1-\alpha-\beta)(1+\lambda)}{\mu}}\right) \\
& \times\left(P_{t}^{N}-\theta_{y}^{E} \Delta P_{t}^{E}+\sum_{q=0}^{t} \theta_{y_{q}}^{I} \Delta P_{t-q}^{I}\right)^{\frac{-[\lambda(1-\alpha-\beta)+(1-\beta)]}{\mu}} \\
& \times\left(P_{t}^{N}-\theta_{l}^{E} \Delta P_{t}^{E}+\sum_{q=0}^{t} \theta_{l_{q}^{I}}^{I} \Delta P_{t-q}^{I}\right)^{\frac{\alpha}{\mu}}
\end{aligned}
$$

Solving for technology,

$$
A_{t}^{\frac{\lambda+1}{\mu}}=\frac{S_{R t}^{\text {Data }}}{\left(\left(\frac{\left(\alpha^{\frac{\alpha \lambda^{2}(1-\alpha-\beta)+\alpha \lambda-\alpha \lambda \beta}{[\lambda(1-\alpha-\beta)+1-\beta] \mu}}\right)\left(\beta^{\frac{\beta(1+\lambda) \lambda(1-\alpha-\beta)+\beta(1+\lambda)-\beta^{2}(1+\lambda)}{[\lambda(1-\alpha-\beta)+1-\beta] \mu}}\right)}{\xi_{t}^{\frac{\lambda(1-\alpha-\beta)+1-\beta}{\mu}}}\right)\left(K_{t}^{\frac{(1-\alpha-\beta)(1+\lambda)}{\mu}}\right)\right.} \begin{array}{r}
\\
\times\left(P_{t}^{N}-\theta_{y}^{E} \Delta P_{t}^{E}+\sum_{q=0}^{t} \theta_{y_{q}}^{I} \Delta P_{t-q}^{I}\right)^{\frac{-\lambda \lambda(1-\alpha-\beta)+(1-\beta)]}{\mu}} \\
\\
\times\left(P_{t}^{N}-\theta_{l}^{E} \Delta P_{t}^{E}+\sum_{q=0}^{t} \theta_{l_{q}}^{I} \Delta P_{t-q}^{I}\right)^{\frac{\alpha}{\mu}}
\end{array}
$$

The estimated technology from the labour, the goods and the foreign exchange markets is reported in figure 13.

The models prediction of the real exchange rate and the employed can be estimated by using the aggregate demand and technology shocks generated in the goods market. (A.14) and
(A.15) can be substituted into (A.13) which can in turn be substituted in equation (11), to get the real exchange rate as a function of technology and aggregate demand shocks generated in the goods market. Likewise, (A.15) can be substituted into (A.7) which can in turn be substituted in equation (7), to get the models prediction of the employed as a function of technology generated in the goods market. The results for these are reported in figures 14 and 15 respectively.

Findings from Econometric Tests:

(E.1) Table 6: Unit root test results

Variable	Phillips-Perron Probability values	Unit Root test Specification
s_{t}	0.2279	Intercept
$s_{R t}$	0.0977	Intercept
$\ln ($ Tot Arr $)-\ln ($ Tot Dep $)=$ Totnet	0.1599	None
$\ln ($ US Arr $)-\ln ($ US Dep $)=$ USnet	0.0629	None
$\ln ($ Tot Arr $)$	0.5052	Trend \& Intercept
$\ln ($ Tot Dep $)$	0.7306	Trend \& Intercept
$\ln ($ USArr $)$	0.5514	Trend \& Intercept
$\ln ($ USDep $)$	0.6748	Trend \& Intercept

Note: none refers to any intercept or trend used in the Unit root test.
$s_{t}=\ln S_{t}$, the log of the nominal exchange rate, where the nominal exchange rate is the how much domestic currency it takes to buy one unit of foreign currency.
$s_{R t}=\ln S_{R t}$, the log of the real exchange rate, where the real exchange rate is relative price of a basket of domestic goods compared to a basket of foreign goods.
(E.2) Table 7: Cointegrating Results

Variables in the Cointegrating Equation	Phillips-Perron significance level
(1) s_{R}, Totnet	5\%
(2) s,Totnet	12.5\%
(3) s_{R}, USnet	
(4) s,USnet	
(5) $s_{R}, \ln ($ TotArr $), \ln ($ TotDep $)$	15\%
(6) $s, \ln ($ TotArr $), \ln ($ TotDep $)$	
(7) $s_{R}, \ln ($ USArr $), \ln ($ USDep $)$	
(8) s, $\ln ($ USArr $), \ln ($ USDep $)$	
(9) $s_{R}, \ln ($ USArr $)$	10\%
(10) s, \ln (USArr)	
(11) $s_{R}, \ln ($ TotArr $)$	10\%
(12) $s, \ln ($ TotArr $)$	
(13) $s_{R}, \ln ($ USDep $)$	12.5\%
(14) $s, \ln ($ USDep $)$	
(15) $s_{R}, \ln ($ TotDep $)$	5\%
(16) $s, \ln ($ TotDep $)$	12.5\%

Note: The number in brackets in the first column refers to the cointegrating equation tested and all unit root tests performed on the residuals do not include trend or intercept.
(E.3) Error Correction Models and Granger Causality Tests (standard errors in brackets)
$\left(1^{* *}\right) \Delta\left(s_{R}\right)_{t}=\underset{(0.0044)}{0.0028-0.1077\left(\varepsilon_{1^{*}}\right)_{t-1}-0.1458 \Delta \text { Totnet }_{t-1}-0.2166 \Delta\left(s_{R}\right)_{t-1}}$

$$
\Delta \text { Totnet }_{t}=0.0032-0.0335\left(\varepsilon_{1^{*}}\right)_{t-1}+0.8009 \Delta \text { Totnet }_{t-1}+0.0856 \Delta\left(s_{R}\right)_{t-1}
$$

$$
\begin{gathered}
\left(2^{* *}\right) \Delta s_{t}=0.0041-0.1061\left(\varepsilon_{2^{*}}\right)_{t-1}-0.1301 \Delta \text { Totnet }_{t-1}+0.2269 \Delta s_{t-1} \\
(0.0043)
\end{gathered}
$$

$$
\Delta \text { Totnet }_{t}=0.0030-0.0439\left(\varepsilon_{2^{*}}\right)_{t-1}+0.7886 \Delta \text { Totnet }_{t-1}+0.1185 \Delta s_{t-1}
$$

$$
(0.0043) \quad(0.0475) \quad(0.0820)
$$

```
(5**)\Delta(s\mp@subsup{s}{R}{}\mp@subsup{)}{t}{}=0.0073-0.1497(\mp@subsup{\varepsilon}{\mp@subsup{5}{}{*}}{}\mp@subsup{)}{t-1}{}-0.3108\Delta\operatorname{ln}(\mathrm{ Tot Arr )}\mp@subsup{)}{t-1}{}-0.0969\Delta\operatorname{ln}(\mathrm{ Tot Dep )}\mp@subsup{)}{t-1}{}
    (0.0046) (0.0452) (0.1556) (0.1237)
        +0.1012\Delta(s}\mp@subsup{S}{R}{}\mp@subsup{)}{t-1}{
        (0.1012)
```

 \(\Delta \ln (\text { TotArr })_{t}=0.0016-0.0031\left(\varepsilon_{5^{*}}\right)_{t-1}-0.8978 \Delta \ln (\text { TotArr })_{t-1}+0.0738 \Delta \ln (\text { TotDep })_{t-1}\)
 \((0.0028)(0.0270) \quad(0.0739)\)
 \(+0.0657 \Delta\left(s_{R}\right)_{t-1}\)
 (0.0605)
 \(\Delta \ln (\text { Tot Dep })_{t}=0.0012+0.0096\left(\varepsilon_{5^{*}}\right)_{t-1}-0.1364 \Delta \ln (\text { TotArr })_{t-1}+0.7452 \Delta \ln (\text { TotDep })_{t-1}\)
 \((0.0030)(0.1020)(0.0810)\)
 \(-0.0527 \Delta \ln \left(s_{R}\right)_{t-1}\)
 (0.0663)
 $$
\begin{aligned}
\left(9^{* *}\right) \Delta\left(s_{R}\right)_{t}= & 0.0013-0.1432\left(\varepsilon_{9^{*}}\right)_{t-1}-0.0101 \Delta \ln (U S A r r)_{t-1}-0.2476 \Delta \ln (U S A r r)_{t-2} \\
& +0.1306 \Delta \ln (U S A r r)_{t-3}+0.0800 \Delta\left(s_{R}\right)_{t-1}+0.1870 \Delta\left(s_{R}\right)_{t-2}+0.0283 \Delta\left(s_{R}\right)_{t-3}
\end{aligned}
$$

$$
(0.1390) \quad(0.1172)
$$

$$
\Delta \ln (U S A r r)_{t}=0.0039+0.0212\left(\varepsilon_{9^{*}}\right)_{t-1}+0.3883 \Delta \ln (U S A r r)_{t-1}+0.0137 \Delta\left(s_{R}\right)_{t-1}
$$

$$
(0.0041) \quad(0.0359) \quad(0.1302)
$$

$$
\left(11^{* *}\right) \Delta\left(s_{R}\right)_{t}=0.0072-0.1346\left(\varepsilon_{11^{*}}\right)_{t-1}-0.2784 \Delta \ln (U S A r r)_{t-1}+0.1334 \Delta\left(s_{R}\right)_{t-1}
$$

$$
(0.0045) \quad(0.0448) \quad(0.1486)
$$

$$
\Delta \ln (U S A r r)_{t}=0.0023-0.0046\left(\varepsilon_{11^{*}}\right)_{t-1}+0.8625 \Delta \ln (U S \text { Arr })_{t-1}+0.0524 \Delta\left(s_{R}\right)_{t-1}
$$

```
\(\left(13^{* *}\right) \Delta\left(s_{R}\right)_{t}=-0.0014-0.1844\left(\varepsilon_{13^{*}}\right)_{t-1}+0.0214 \Delta(\text { USDep })_{t-1}+0.0214 \Delta\left(s_{R}\right)_{t-1}\)
    (0.0041) (0.0414) (0.0985)
    \(\Delta(\) US Dep \()=0.0006+0.0100\left(\varepsilon_{13^{*}}\right)_{t-1}+0.6344 \Delta(\text { USDep })_{t-1}+0.1093 \Delta\left(s_{R}\right)_{t-1}\)
    (0.0037) (0.0379) (0.1215)
```

$\left(15^{* *}\right) \Delta\left(s_{R}\right)_{t}=-0.0003-0.0796\left(\varepsilon_{15^{*}}\right)_{t-1}+0.1381 \Delta \ln (\text { Tot Dep })_{t-1}+0.2984 \Delta\left(s_{R}\right)_{t-1}$
$(0.0046)(0.1232)$
$\Delta \ln (\text { US Dep })_{t}=-0.0005-0.0121\left(\varepsilon_{15^{*}}\right)_{t-1}+0.7839 \Delta \ln (U S \text { Dep })_{t-1}-0.0280 \Delta\left(s_{R}\right)_{t-1}$
(0.00027) (0.0190) (0.0591)
$\left(16^{* *}\right) \Delta s_{t}=0.0007-0.0777\left(\varepsilon_{16^{*}}\right)_{t-1}+0.1383 \Delta \ln (\text { TotDep })_{t-1}+0.2871 \Delta s_{t-1}$
(0.0045) (0.0396) (0.1248)
$\Delta \ln (\text { US Dep })_{t}=-0.0005-0.0201\left(\varepsilon_{16^{*}}\right)+0.7700 \Delta \ln (\text { TotDep })_{t-1}-0.0499 \Delta s_{t-1}$
(0.0027) (0.0237) (0.0618)

[^0]: ${ }^{1}$ This paper originates from the B.Com (Hons) dissertation which Andrew Binning wrote under the supervision of Debasis Bandyopadhyay at the University of Auckland.

