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The electroencephalogram (EEG) patterns recorded during general anesthetic-induced
coma are closely similar to those seen during slow-wave sleep, the deepest stage of
natural sleep; both states show patterns dominated by large amplitude slow waves. Slow
oscillations are believed to be important for memory consolidation during natural sleep.
Tracking the emergence of slow-wave oscillations during transition to unconsciousness
may help us to identify drug-induced alterations of the underlying brain state, and provide
insight into the mechanisms of general anesthesia. Although cellular-based mechanisms
have been proposed, the origin of the slow oscillation has not yet been unambiguously
established. A recent theoretical study by Steyn-Ross et al. (2013) proposes that the
slow oscillation is a network, rather than cellular phenomenon. Modeling anesthesia as
a moderate reduction in gap-junction interneuronal coupling, they predict an unconscious
state signposted by emergent low-frequency oscillations with chaotic dynamics in
space and time. They suggest that anesthetic slow-waves arise from a competitive
interaction between symmetry-breaking instabilities in space (Turing) and time (Hopf),
modulated by gap-junction coupling strength. A significant prediction of their model is
that EEG phase coherence will decrease as the cortex transits from Turing–Hopf balance
(wake) to Hopf-dominated chaotic slow-waves (unconsciousness). Here, we investigate
changes in phase coherence during induction of general anesthesia. After examining
128-channel EEG traces recorded from five volunteers undergoing propofol anesthesia,
we report a significant drop in sub-delta band (0.05–1.5 Hz) slow-wave coherence
between frontal, occipital, and frontal–occipital electrode pairs, with the most pronounced
wake-vs.-unconscious coherence changes occurring at the frontal cortex.

Keywords: slow-wave sleep, phase-coherence measure, mean-field cortical model, gap-junction, Turing–Hopf

instabilities

1. INTRODUCTION
General anesthetic drugs act to suppress the conscious state
of the cortex, leading it to a natural sleep-like mode (Lancel,
1999; Franks, 2008). There is clinical evidence showing that such
sedated unconsciousness can be induced by the injection of anes-
thetic substances into some discrete brain areas which are critical
in the coordination of sleep-wake transitions (Sukhotinsky et al.,
2007). Further evidence to support the notion of strong simi-
larity between natural deep sleep and anesthesia can be seen in
the electrical activity of the cortex: both states are signposted by
the abrupt onset of large, slow oscillations (0.1–1.5 Hz) in the
electroencephalogram (EEG) and local field potential (Steriade
et al., 1993). These rhythmic signals, which sweep through the
brain during deep sleep at the rate of about 1 cycle per second
(Massimini et al., 2004), have been shown to play a role in mem-
ory encoding and consolidation (Steriade and Timofeev, 2002;
Walker, 2009).

Although EEG slow waves are manifest in an unconscious
state, they are also superimposed on the alpha and theta waves
when our brain is in a low conscious level, the so-called “idling”

state where the brain is not engaged in the active processing of
information (Uusberg et al., 2013). Clinical studies show a sta-
ble increase in power of the lowest frequency components of the
EEG signal as anesthesia deepens, while higher frequency compo-
nents (theta, alpha, gamma) are highly variable during and after
loss of consciousness (Sleigh et al., 2000; Lewis et al., 2012). Thus,
tracking the emergence of slow-wave oscillations during transi-
tion to unconsciousness may help us to identify drug-induced
alterations of the underlying brain state, and provide insight into
the mechanisms of general anesthesia.

In the last decades, there has been a growing understanding
of how slow waves are generated during sleep. Steriade et al.
(1989) reported slow-wave activity (SWA) from in vitro thalamic
slices. In thalamocortical (TC) neurons, SWA depends on voltage-
sensitive properties of low-threshold calcium channels [known as
“T” type (David et al., 2013)] that may provide a pacemaking role,
mediating the transition between tonic firing and low-threshold
spiking (Suzuki and Rogawski, 1989; Astori et al., 2011). However,
the “clock-like” SWA generated by TC neurons is more regular
than that of slow-wave sleep (Nir et al., 2010). Further, it is known
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that in vitro cortical slices can produce slow oscillations of local
field potential in the absence of thalamic inputs (McCormick and
Sanchez-Vives, 2000). So slow rhythmic thalamic activity may not
be relevant to the onset of slow cortical waves.

Human EEG recordings show that the slow oscillations seem
to originate from nearly any region of the scalp and behave as
a traveling wave propagating in any direction (Massimini et al.,
2004). Yet, recent clinical studies demonstrate that the slow waves
can be locally regulated (Huber et al., 2004, 2006; Murphy et al.,
2009). Therefore, questions remain about where slow waves orig-
inate and whether all cortical areas engage equally in slow-wave
activity.

To help address this deficit, Steyn-Ross et al. (2013) pre-
sented a physiologically-motivated mathematical model of the
cortex that demonstrates how coupling via inhibitory electri-
cal synapses (gap-junctions) mediates the generation of propofol
anesthetic slow waves. The model envisions the cortex as a mean-
field continuum in which pools of neurons are linked via chemical
and electrical synapses. GABAergic anesthetic agents, such as
propofol, act at chemical synapses to hyperpolarize postsynaptic
neurons by prolonging the duration of the inhibitory postsynap-
tic potential (IPSP) via increased influx of chloride ions (Franks
and Lieb, 1994; Kitamura et al., 2003). In addition to chem-
ical neuromodulation, there is evidence that propofol reduces
the resistive gap-junction coupling between adjoining inhibitory
neurons (Wentlandt et al., 2006; Huang et al., 2014) that is pro-
posed to form a broad diffusive syncytium linking inhibitory
neural populations (Fukuda et al., 2006). Accordingly, we model
anesthetic effect as a moderate reduction in inhibitory diffu-
sion, paired with an increase in inhibitory postsynaptic poten-
tial. In the vicinity of a general-anesthetic induced transition
from wake to coma, the Steyn-Ross model describes a subtle
rebalancing of cortical Turing (spatial) and Hopf (temporal)
instabilities to an unconscious state that is characterized by Hopf-
dominated slow waves whose dynamics is chaotic in time and
space.

Identifying the specific dynamics of slow waves associated
with loss of consciousness requires an examination of the tran-
sition into unconsciousness. In this paper, we examine the
clinical EEG recordings in terms of slow-wave phase-coherence
between different electrode-pairs, comparing coherence val-
ues before and after the induction of propofol anesthetic.
Propofol, a widely used anesthetic drug, enhances GABAergic
inhibitory input to neurons (Bai et al., 1999; Rudolph and
Antkowiak, 2004), with effects in cortex, brainstem, thala-
mus and spinal cord (Fiset et al., 1999; Kungys et al., 2009).
EEG coherence is considered to be a qualitative measure of
the degree of association or coupling between two EEG chan-
nels. Coherence estimation for high-density EEG recording is
able to demonstrate functional cooperation between two brain
regions (Nunez and Srinivasan, 2006), revealing subtle changes
in brain dynamics. We compare our findings with a testable
prediction by Steyn-Ross et al. (2013) and illustrated here in
Figures 9E, 10E, 11 (compare “non-cognitive wake” with “anes-
thetic slow-wave”): namely, introduction of anesthetic to the
awake brain should lead to a significant decline in low-frequency
EEG phase-synchrony.

2. MATERIALS
The EEG dataset used in this study are archived files from Waikato
Clinical School, Hamilton, New Zealand, previously used to
investigate anesthetic response of EEG across different frequency
bands (Johnson et al., 2003). The dataset contains pairs of 60-
s EEG (sampling frequency 250 Hz) recordings for two distinct
well-developed brain states: wake and propofol anesthetic coma,
recorded from 5 healthy adult subjects via 129 electrodes1 using
an EGI™ dense array with Cz (vertex) being the reference elec-
trode. The archival EEG dataset are manually selected epochs that
are relatively artifact-free.

An example of EEG recorded from electrode Fp1 is represented
in Figure 1. This demonstrates the clear contrast between wakeful-
ness (upper EEG trace) and sedated unconsciousness (lower trace)
with the appearance of spindles (12–15 Hz) and slow rhythms
including delta activity (1–4 Hz) and slow oscillations (0.2–1 Hz).
By focusing on the EEG in sub-delta band (≤1.5 Hz), Figure 2
shows that the power of the slow-waves in sedated unconscious-
ness is nearly twice as large as that in the wake state.

3. METHODS
3.1. MEASURING EEG COHERENCE
EEG coherence between two electrode sites is usually computed
by one of two methods: the Fourier transform (FT) cross spec-
trum (Achermann and Borbely, 1998), or the Hilbert transform
(HT) instantaneous phase difference (Mormann et al., 2000)
between two EEG time-series.

Since EEG represents the activities of the non-linearly interact-
ing neuronal populations, it is neither truly linear nor stationary.
Thus, it may be unreliable to use FT-based methods for EEG anal-
ysis since these assume that the time-series is stationary (Lo et al.,
2009; Zhang et al., 2010).

The Hilbert transform (Huang et al., 1998; Sweeney-Reed
and Nasuto, 2007) circumvents the requirement for stationar-
ity by generating an analytic signal to extract the instantaneous
frequency and phase angle from the original non-stationary sig-
nal. The mean of the phase divergence between two time-series
yields an index characterizing the phase synchronization between
them. The advantages of the HT over the traditional FT-based
approaches have been appreciated in many studies of cortical
neuronal synchronization under different circumstances such as
Parkinson’s disease (Tass et al., 1998), abrupt seizure (Oweis and
Abdulhay, 2011), sleep (Yi et al., 2009), and anesthetic coma
(Koskinen et al., 2001).

3.2. HILBERT TRANSFORM
A real time-series X(t) can be transformed to a complex function
known as the analytic signal:

X̂(t) = Xr(t) + iXi(t) (1)

where Xr(t) is the original series X(t) and Xi(t) is the Hilbert
transform of X(t) (Mormann et al., 2000; Koskinen et al., 2001).
The instantaneous phase of X(t) is computed by:

1The electrodes map is available at http://psychophysiology.cpmc.columbia.
edu/software/CSDtoolbox/tutorial.html
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FIGURE 1 | Sample (A) wake (blue) and (B) sedated unconsciousness (red) EEG from archival Fp1 recording. Raw EEG data are filtered via AAR2 to remove
eye-blink artifacts.AAR-corrected EEG are marked in black. The power spectra show that slow-wave oscillations are dominant in the sedated unconsciousness state.

φ(t) = tan−1
(

Xi(t)

Xr(t)

)
(2)

To quantify the phase synchronization between two time-series
Xm(t) and Xn(t), a coherence index based on work by Kuramoto
(Kuramoto, 1984; Kuramoto and Nishikawa, 1987) is used:

R(m,n) = |〈ei[φm(t)−φn(t)]〉| (3)

The mean phase coherence R measures the time-averaged phasor
for the angular distribution of the phase difference between the
two time-series; R lies between 0 and 1, with 1 representing per-
fect phase coupling. This style of Kuramoto order-parameter has
been widely used in the study of synchronization dynamics (e.g.,
Acebrón et al., 2005; Steyn-Ross et al., 2013).

A MATLAB implementation for computing the mean phase
coherence between two signals reads as follows Steyn-Ross et al.
(2012):

% Compute analytic (complex) signals for Xm and Xn
Xmc = hilbert(Xm); Xnc = hilbert(Xn);

% Extract instantaneous phase angles
phi_Xm = angle(Xmc); phi_Xn = angle(Xnc);

% Measure the average phase-coherence
R = abs(mean(exp( 1i*(phi_Xm - phi_Xn))));

2Automatic Artifact Removal toolbox, an EEGLAB plug-in available at
http://www.germangh.com/eeglab_plugin_aar/index.html
AAR is based on blind source separation (BSS), and, in contrast to methods
already available in the literatures (Jung et al., 2000; Faul et al., 2005), is com-
pletely automatic since the user is not required to select any critical analysis
parameter. AAR uses a second-order-blind-identification (SOBI) algorithm
(Belouchrani et al., 1997) to estimate the mixing matrix that separates the
EEG sources and artifacts. The advantages of SOBI over other BSS algorithms
are detailed in Gomez-Herrero et al. (2006).

FIGURE 2 | Filtered Figure 1 EEG in sub-delta band (≤1.5 Hz) and

corresponding power spectra (computed by MATLAB fft) revealing a

strong slow-wave (∼0.3 Hz) in the sedated unconsciousness state.

Let Xm(t) and Xn(t) be a pair of EEG recordings, respec-
tively, from the electrodes m and n. A 129-channel EEG recording
has, in principle, a total of 128 × 128 pairs of R-values (exclud-
ing the reference channel), but half of these are redundant since
R(m,n) = R(n,m). The coherence matrix is represented as an m ×
n = 128 × 128 square grid with the unit diagonal [R(m,n) = 1
when m = n], which separates the matrix into two symmetrical
triangles [R(m,n) = R(n,m)]. Practically, we need only examine the
upper triangle [i.e., R(m,n)] of the R matrix. See Figures 3, 9E for
an illustration of the structure of the coherence matrix.

For coherence calculations, we use a 5-s moving window with
1-s overlap, and follow Mormann et al. (2000) and Steyn-Ross
et al. (2012, 2013) in applying a Hann window, retaining only
the middle 80% of each segment to minimize edge distortions
from the Hilbert transform. The final determined coherence is
the average of those obtained from the windowed signal seg-
ments. We repeated the coherence calculations using longer win-
dows, including the full 60-s extent, and found no significant
changes, so we concluded that, provided the brain dynamical
state does not vary dramatically during the windowed interval,
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FIGURE 3 | Flowchart for processing EEG of two brain states to determine

electrode-pairs with significantly altered phase-coherence. EEG data
undergo preprocessing in EEGLAB before passing to EEG_coherence, a

customized MATLAB algorithm that automatically identifies electrode-pairs
with significantly altered phase-coherence between two brain states across
multiple subjects, then stores these electrode-pair results in a summary table.
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the sub-delta coherence measure is not particularly sensitive to
window size.

3.3. EEG_COHERENCE: AN AUTOMATIC EEG PROCESSING
ALGORITHM FOR EEG COHERENCE ANALYSIS

The raw EEG data were visually inspected and the artifacts were
manually marked using EEGLAB3 (Delorme and Makeig, 2004).
The one or two bad channels were replaced by substituting with
the average of the four neighboring channels. Eye-blink artifacts
were removed using AAR (see Figure 1 for definition and details),
then the repaired traces were inspected for smoothness and conti-
nuity. Since the archival EEG data are relatively artifact-free, only
minor corrections were needed. We filtered EEG to the sub-delta
band (≤1.5 Hz) using EEGLAB built-in basic FIR (linear finite
impulse response) order-2 filter with the pass-band between 0.05
and 1.5 Hz. During filtering, EEGLAB uses the MATLAB routine
filtfilt() to apply the filter forward and then backward,
ensuring that phase delays introduced by the filter are nullified.
The resulting sub-delta band EEG traces show characteristic slow
oscillations; this is the prominent feature of EEG activity dur-
ing non-rapid eye movement (non-REM) sleep in humans (see
Figure 2 for an example) (Marshall et al., 2003).

The EEGLAB pre-processed EEG data were then passed to
EEG_coherence, a custom MATLAB algorithm that identi-
fies electrode-pairs with significantly altered phase-coherence
between the two brain states. The user specifies the folder
location where the EEG data are stored and configures some
basic parameters (e.g., window and overlap length for the
coherence measure). EEG_coherence automatically gener-
ates a summary table including identified electrode-pairs and
their corresponding phase-coherence indices at two distinct
brain states for all subjects. p-values that are used to identify
those electrode-pairs whose phase-coherence has significantly
altered are included in the table to permit further statistical
analysis.

As shown in Figure 3, EEG_coherence processes EEG data
in three steps:

1. Construction of coherence matrices: The phase-coherence
measure is based on the Hilbert transform, as described in
Section 3.2. Each subject will have two coherence matrices,
awake and sleep, for the wake and unconscious states,
respectively.

2. Extraction of coherence summaries: For each brain state (wake
or unconsciousness), EEG_coherence will construct a con-
solidated tableau of matrices by concatenating the coherence
matrices for all five subjects. This consolidated table has
three dimensions: the first dimension (row-index k = 1 . . . 5)
points to the subject, while the second (channel-index m =
1 . . . 128), and third dimensions (base-channel index n =
1 . . . 127) identify the specific pair of electrodes whose phase
similarity is being assessed. Thus, coordinate (k, m, n) cap-
tures the coherence R(k,m,n) between EEG channels m and n
for subject k. Since we only consider the upper triangle of

3An open source EEG processing MATLAB toolbox available at http://sccn.

ucsd.edu/eeglab/

the coherence matrix, the redundant coherence entries4 in the
summary matrix will be filled with NaN (not a number). The
output from this step is a pair of coherence summary matrices
for wake and unconscious states.

3. Statistical comparison: A one-tail Mann-Whitney U-test is
performed to test the null hypothesis H0 that the five pairs
of wake/sleep coherence values—at a given (m, n) matrix
coordinate—are drawn from populations with equal medi-
ans against the alternative that they are not. With reference
to Figure 3, this means that we are comparing the median
of the 5×1 column-vector for wake [RW

(1,m,n), RW
(2,m,n), · · · ,

RW
(5,m,n)]T against the median for the corresponding vector

for sleep [RS
(1,m,n), RS

(2,m,n), · · · , RS
(5,m,n)]T. This comparison

is repeated across all non-redundant channel pairs.
In fact, the Mann-Whitney calculation is run twice to allow for
testing against two distinct alternative hypotheses; namely, H1:
that the median coherence is higher in wake than in sleep (i.e.,
right-tailed test), and, H2: that the median coherence is lower
in wake than in sleep (left-tailed).
The statistical comparison for a base-channel n returns a
three-dimensional matrix named p-strip; this matrix con-
tains p-values for channel-pairs 1-n, 2-n,. . .,128-n. The p-
strip matrices are generated via the following MATLAB

implementation:

awake_size = size(awake);
prop_size = size(sleep);

% Check if two coherence matrices have the same
size

if ~isempty(find((awake == sleep)==0))
error('unequal size');

end

% Create p-strip matrix
for base_ch = 1: size(awake, 3)

for ch_ind = 1: size(awake, 2)
if isnan(awake(:,ch_ind, base_ch))

p(:,ch_ind, base_ch) = NaN;
else

[p(:,ch_ind, base_ch), h(:,ch_ind,
base_ch)]...

= ranksum(awake(:,ch_ind,
base_ch),

sleep(:,ch_ind, base_ch),...
'alpha', p_limit, 'tail',
direction);

% direction: left: wake < sleep;
right: wake > sleep

end
end

end

p-matrix
p_matrix = squeeze(p);

% e.g. E1-E2 is at row 2 (channel), col 1
(base-channel)

If, across all subjects, a given electrode-pair shows a statis-
tically significant difference in coherence between wake and
unconscious state (i.e., p < p_limit), EEG_coherence
will store this electrode-pair in the summary table.

4The lower triangle of the coherence matrix R(k,n,m) and the diagonal unit
coherence.
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4. RESULTS
4.1. SUB-DELTA EEG COHERENCE CHANGES ACROSS FIVE SUBJECTS
We first examine the across-subject wake-vs.-sleep changes in
sub-delta phase coherence using the methodology described in
the previous section; then in Section 4.2 we analyze the coherence
matrices for each individual subject.

Figure 4 visualizes those electrode-pairs identified by
EEG_coherence as having significantly altered (i.e., decreased
or increased) coherence between wake and unconscious states.
The comparison between the upper and lower panels of Figure 4
reveals two major features of the coherence changes with respect
to propofol anesthesia:

• Decreased coherence for frontal, occipital, and frontal–
occipital electrode-pairs: The electrode-pairs showing signifi-
cantly reduced coherence form dense clusters for pairs lying
within the frontal area of the cortex, within the occipi-
tal area, and also for pairs spanning the frontal–occipital
scalp sites. These observations suggest that neuronal activ-
ities within frontal cortex and within occipital cortex, and
cooperative behavior between them, are less strongly cou-
pled when the brain is switched to the unconscious state.
Scanning the top panels of Figure 4 from left to right, we see
that the front electrodes manifest the most robust decreases

in phase coherence, indicating that propofol anesthesia leads
to increased disorder in neuronal activity in the frontal
cortex.

• Increased coherence for left- and right-temporal electrode-
pairs: Electrodes at the left- and right-temporal areas detect
enhanced coherence. These maps of enhanced connectivities
seem to be complementary to the preceding maps show-
ing decreased frontal–occipital connectivity: coherence trends
have been reversed with the significant front–back uncou-
pling (top panel) occurring simultaneously with a left–right
coupling. Examining the lower panels of Figure 4, we see evi-
dence of strengthened left–right electrode connectivity, show-
ing increased EEG coherence with the induction of propofol
anesthesia.

If we overlap the upper and lower panels of Figure 4, we find
some frontal electrodes have decreased coherence with the occipi-
tal electrodes, while having increased coherence with the left- and
right-temporal electrodes. Similarly, some occipital electrodes
have decreased coherence with the electrodes in the frontal
area, while having increased coherence with those in the tem-
poral areas. These observations suggest an underlying com-
pensatory mechanism between a subsystem of fronto–occipital
and other cortical regions at sub-delta frequencies. Cantero

FIGURE 4 | Graphical representations of the electrode pairs with

significantly reduced (upper panel) or increased (lower panel)

phase-coherence of the sub-delta band (0.05–1.5 Hz) EEG induced by

propofol anesthesia. EEG data (128-channel recording) were recorded from
5 subjects and processed by the EEG_coherence algorithm diagrammed in
Figure 3. The electrode pairs with significant (p < 0.05) changes in phase
coherence are connected with lines. The electrode-pair map is represented in

a bird’s-eye view of the 3D head model (created via the modified EEGLAB

function plotchans3d). The black dots are EEG_coherence selected
electrodes. Electrode pairs for altered phase coherence are determined with
different levels of significance (significance-level p was set at 0.05, 0.025, and
0.01 in the Mann-Whitney U-test). Smaller p thresholds result in a lower
density of electrode-pair cluster due to the stricter selection criterion,
however, the electrode-pair distributions are generally preserved in trend.
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et al. (2002) reported a similar compensatory phenomenon in
coherence between the temporal and other cortical regions for
the alpha (8–12 Hz) and sleep spindle (12–15 Hz) frequency
ranges.

Furthermore, we examined the decreased EEG coherence pat-
terns across nine electrodes (see the description of Figure 5) that
Koskinen et al. utilized in their work (Koskinen et al., 2001), in
which systematic phase synchronization changes were evaluated
between EEG channel-pairs in various frequency bands dur-
ing induction and recovery from propofol anesthesia. Koskinen
et al. detected passband-specific behaviors in these changes,
and identified a sub-delta EEG coherence decrease due to
propofol-induced anesthesia. We set the significance level (p <

0.05) in EEG_coherence to be the same as that used by
Koskinen et al. The comparison shown in Figure 5 illustrates that
EEG_coherence produced a similar electrode-pair distribu-
tion pattern to the Koskinen findings, reinforcing our observation
of sub-delta EEG coherence reduction in the frontal cortex.
However, we need to add the caveat that the choice of reference
electrode (Cz for the Koskinen recordings; FCz for the Waikato
data) is reversed between the two experiments; fortunately these
sites are adjacent on the scalp centerline, so can be expected to
result in closely similar EEG traces.

We must acknowledge the possibility that the coherence
changes we have detected may simply be the result of random-
ness: of the ∼8000 network connections, by chance we can expect
about 400 to show significant change at the uncorrected p = 0.05
level (1 in 20). To reduce the possibility of spurious significance
(false positives), one could apply some form of p-value correction
(such as Bonferroni) to compensate for multiple testing, but it is
not clear how to do this straightforwardly with only five subjects.
This motivates us to apply a clustering analysis to the individual
coherence-change patterns as an alternative way of demonstrating
robustness of our results.

FIGURE 5 | A subset of electrode-pairs (left) showing significant

(p < 0.05) reduction in phase coherence extracted from the upper left

corner plot of Figure 4 (referenced to Cz, in dark blue lines) and

Koskinen et al. reported pattern (Koskinen et al., 2001) (right,

referenced to FCz, in light blue lines) for the coherence measured from

9 electrodes: Nz (nasion), Fp1′(about 1 cm down from Fp1, just above

the eyebrow), Fp2′, Fz, F7, F8, Cz, Pz, and Oz.

4.2. EEG COHERENCE CHANGES FOR INDIVIDUAL SUBJECTS
The coherence changes described in the previous section rep-
resent a population response across multiple subjects. Here, we
present a much simpler analysis of the coherence changes for
each of the five individuals, and show that the resulting clustering
patterns are highly unlikely to have arisen by chance.

The top two rows of Figure 6 are generated by a simple ranking
of the (wake minus sleep) coherence differences for each individ-
ual. The first row shows the 5% of electrode-pairs exhibiting the
largest positive difference (i.e., coherence decreased in sleep); the
second row shows the 5% of electrode-pairs with the largest neg-
ative difference (i.e., coherence increased in sleep). We see that the
spatial distribution of electrode-pairs with significantly altered
coherence is generally preserved across the five subjects. The first
row reveals clusters of electrode-pairs in the frontal and occipi-
tal areas with significantly decreased coherence; the second row
shows the dense pairing of left–right electrodes with increased
coherence along the temporal axis.

To quantify the coherence changes in specific areas of the
cortex, we counted the number of electrode-pairs in the frontal
region showing significantly decreased coherence (N−) and sub-
tracted this from the number of frontal pairs with significantly
increased coherence (N+). The difference (N− − N+) is strongly
positive (third row of figure), confirming that N− (coherence
decrease) is dominant in the frontal area. An opposite conclu-
sion is reached for the left–right temporal electrode-pairs: (N− −
N+) is strongly negative with N+ being dominant (coherence
increase), implying strengthened regional connections between
hemispheres under anesthesia. We repeated these number differ-
ence calculation for ten cortical regions (see row 3). Blue (pink)
shading indicates N− (N+) dominance in a given cortical region.

To demonstrate that the clustering patterns shown in
Figure 6 represent meaningful and consistent changes in net-
work connectivity—and are not simply the outcome of random
happenstance—we apply a permutation test to each coherence-
change matrix. In this test, we shuffled the elements of the
coherence matrix. The null hypothesis is that the permuted coher-
ence matrix could result in an electrode-pair distribution similar
to that seen in Figure 6; the alternative hypothesis is that the
electrode-pair distribution generated from the permuted coher-
ence matrix is significantly different with the originally observed
pattern. A chi-squared statistic is applied in estimating the p-
value. We first divided the brain into five areas: frontal, occipi-
tal, left-temporal, right-temporal, and parietal. The chi-squared
distribution index is given by

χ2 =
5∑

i = 1

(
Ei

original − Ei
perm

)2

Ei
original

(4)

where Ei
original is the original number of electrodes (i.e., the dot

coordinates in the first row of Figure 7) in section i; Ei
perm is the

number of permuted electrodes (e.g., the dot coordinates in the
second row of Figure 7) in the same section. The p-value is cal-
culated by the MATLAB command p = 1 - chi2cdf(χ2,
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FIGURE 6 | Graphical representations of the electrode-pairs with

significantly altered coherence from wake to coma for five subjects. The
first and second rows represent electrode-pairs with significantly reduced
(blue lines) or increased (pink lines) coherence, respectively: selected
electrode-pairs correspond to the top 5% most changed (i.e., most increased
or most decreased) coherence during the wake to coma transition. The third
row describes the number difference of electrode-pairs between the first and
second rows for four regions: frontal, occipital, left- and right-temporal; and
for six pair-wise connections between regions: frontal–left temporal,

frontal–right temporal, frontal–occipital, left temporal–occipital, right
temporal–occipital, left–right temporal. The number of electrode-pairs with
significantly reduced (or increased) coherence in a region is counted as N−
(N+). The sign of (N− − N+) determines the dominance of a coherence
trend: if (N− − N+) > 0, the region will be colored blue (decreased
coherence); otherwise if (N− − N+) < 0, the region will be colored red
(increased coherence). The (N− − N+) difference is calibrated by the
color-gradient bar. (Note that the color-bar for the third row is not related to
the first and second rows.)
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FIGURE 7 | Coherence matrices showing spatial distribution of

electrode-pairs with significant wake vs. coma coherence difference.

The coherence matrix is diagonally symmetric, we need only display its
upper half. The first row of the left panel corresponds to the first row of
Figure 6; the first row of the right panel corresponds to the second row
of Figure 6. The marked (either in blue or pink) dots in the matrix are the
top 5% most changed (decreased: blue; increased: pink) phase-coherence
during transit from wake to coma. The row and column indices of a
marked dot identify a pair of electrodes shown in Figure 6. To test the

significance of the dot distribution in the first row, a permutation
resampling is applied to each original matrix, and repeated 10,000 times.
In each shuffling, the upper-triangle elements are randomly allocated, and a
significance test is applied to achieve a p-value quantifying the structural
difference between the permuted and original matrices. The first three
permuted coherence matrices are shown. The averaged p-value over the
10,000 permutation tests for the original observations (first row) are all
smaller than 10−5, revealing a significant difference between the original
distribution and its permutations.

dof), in which dof (degree of freedom) is set to 4 (dof= num-
ber of data category −1).

After 10,000 permutation tests, all permuted electrode-pair
distributions are found to be significantly (p < 10−5) differ-
ent from the original one. This statistical result supports our
alternative hypothesis that the derived electrode-pair distribu-
tion pattern is meaningful and cannot be randomly generated.
Actually, visual examination of the first row in Figure 7 clearly
reveals genuine dot clusters, the structure of which disappears in
the permuted matrices, so it is not surprising that the original
data complexity cannot be reproduced from the randomized data
distribution. We applied the same statistical test to the coherence
matrices corresponding to the patterns shown in Figure 4 and
obtained the same result, namely, that the original distribution
is significantly different from its permutation resampling.

4.3. COMPARISON WITH THEORY: INTERACTING TURING–HOPF
INDUCED CHAOTIC SLOW-WAVES

A recent theoretical prediction by Steyn-Ross et al. (2013) intro-
duces an interacting Turing–Hopf mechanism as a source for
sub-delta slow-waves that emerge during propofol anesthesia.
We now give a brief overview of the cortical model; for full
mathematical details refer to Steyn-Ross et al. (2013).

The cortex is represented as a set of eight coupled
partial-differential equations that describe the mean-field
(spatially-averaged) firing activity of populations of excitatory

and inhibitory neurons that are uniformly distributed across
a two-dimensional sheet of gray-matter cortical tissue. The
neural populations communicate locally and at longer ranges
via chemical synapses, and also through electrical synapses (gap
junctions) that allow direct diffusive currents to flow between
adjoining neurons. Inhibitory-to-inhibitory (i-i) gap-junction
connections are abundant and ubiquitous throughout the central
nervous system (Bennett and Zukin, 2004). Fukuda et al. (2006)
characterized the dendritic gap-junction connections in cat visual
cortex as forming “dense and far-ranging networks.” Using the
Fukuda measurements, we estimated an upper bound for the per-
neuron region of gap-junction influence as an area D2 � 0.6 cm2

(Steyn-Ross et al., 2007), with symbol D chosen to indicate a
diffusive coupling strength. Using a dendritic relaxation time of
τ ≈ 40 ms as our time-scale, the ratio D2/τ defines a diffusion
coefficient (with dimensions area/time) for voltage change in
the inhibitory population. In contrast to the relative abundance
of i-i gap junctions, evidence for excitatory-to-excitatory (e-e)
diffusive coupling is very sparse (Bennett and Zukin, 2004), so
we have set the excitatory coupling strength at an arbitrarily
small fraction of the inhibitory value: D1 = D2/100. We note
that inhibitory diffusive dominance is a prerequisite for the
spontaneous formation of Turing structures (Turing, 1952) of
spatially-patterned cortical activity.

For the model results reported here, we used the same param-
eter settings as listed in Table I of Steyn-Ross et al. (2013), apart
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from the white-matter long-range connections which have been
ignored for simplicity.

Figure 8 shows that the steady-state excitatory neuronal fir-
ing rates Qo

e of the model forms a reversed S-shape distribution
with the upper branch corresponding to an activated cortical
state identified as awake (or REM sleep), and the lower branch
corresponding to a suppressed cortical state identified as propo-
fol anesthetic induced coma (or SWS) (Steyn-Ross et al., 2005,
2012). By increasing the concentration of propofol anesthesia
λi, the model describes the anesthesia-induced transition from
consciousness to unconsciousness.

Inhibitory gap-junction strength D2 is treated as a bifurcation
parameter controlling the stability and the emergent behavior of
the cortical model. The effect of interneuronal gap junctions is
to produce diffusion terms similar in form to those found in
standard reaction-diffusion models that support Turing struc-
tures (Turing, 1952). The cortical dynamics at selected “awake”
and “coma” coordinates in Figure 8 with respect to the varia-
tion of D2 were examined by the stability analysis, and numerical
simulations are shown in Figures 9, 10.

In the awake cortical simulations of Figure 9, when the gap-
junction strength is sufficiently large (D2 = 0.7 cm2), linear sta-
bility analysis of the up-branch steady-state at λi = 1 in Figure 8
predicts whole-of-cortex Hopf oscillations; while the down-
branch steady-state shows a damped-Hopf at wavenumber q = 0
plus a damped-Turing at q �= 0. The time-series and strip-chart
depict a stable Turing–Hopf mode evolution where the cortical
Turing patterns oscillate in small amplitudes. Such Turing-
interacted Hopf slow-oscillation have been interpreted as repre-
senting the resting state of the cortex (Steyn-Ross et al., 2012)
or non-cognitive idling state (Steyn-Ross et al., 2011). These
slow patterned oscillations may relate to very slow (≤0.1 Hz)
fluctuations in BOLD (blood-oxygen-level dependent) signals
detected using fMRI (functional magnetic resonance imaging)
of relaxed, non-tasked human brains (Fox et al., 2005; Fransson,
2005).

On the other hand, for the anesthetized cortex, anesthetic
effect λi = 1.018 is just beyond the multiple steady-states region
where the awake cortex stays at the up-branch of λi = 1.0.
This subtle change in coordinates means that the cortical stabil-
ity is guided only by the steady-state at the low-firing bottom
branch. In Figure 10, at the closure of the gap-junction D2 =
0.1 cm2, linear stability analysis [column (a)] predicts a heavily
damped Hopf, which is consistent with computer simulations of
the cortical equations. Most general anesthetics will enhance the
strength of the inhibitory postsynaptic potential (IPSP) (Franks
and Lieb, 1994; Kitamura et al., 2002), as well inhibit gap-
junction communication (Wentlandt et al., 2006). Consequently
further increases in D2 (for D2 < 0.7 cm2 of Figure 10) lead
the cortex into a chaotic phase, arising from the competitive
interference between Hopf and Turing instabilities. Such mixed
instabilities may provide a mechanism for the emergence of
turbulent slow-waves of inductive anesthesia, characterized by
low phase-coherence. D2 = 0.7 cm2 is the border of the anes-
thetic slow oscillations; larger values of D2 (e.g., D2 = 0.8 cm2)
rebalances the Turing and Hopf instabilities in favor of spatially
structured Turing pattern oscillating at a low Hopf frequency
(∼3 Hz). Such mixed-mode interference is very similar to the non
cognitive-wake cortex at D2 = 0.7 cm2 in Figure 9. Nevertheless,
because the cortex is still under anesthetic coma, Steyn-Ross
et al. label this coherent oscillation as “anesthetic delirium,” a
clinical state common during emergence from general anesthe-
sia and associated with excitability and confusion (Olympio,
1991).

Figures 9, 10 indicate that Turing–Hopf interaction dynamics
arise from variations in D2 inhibitory strength. To further track
these Turing–Hopf dynamics, Steyn-Ross et al. computed the
global coherence of a given D2 by taking the mean of the upper-
triangle of the coherence matrix R(x′, x) defined in Figures 9E,
10E. A comprehensive inspection of the global coherence relating
to the inhibitory strength is presented in Figure 11. We see a high
global coherence in the non-cognitive state, where the inhibitory

FIGURE 8 | The steady-state firing rates Qo
e as a function of varying

anesthetic inhibition λi at a particular cortical excitation. The upper,
high-firing and lower, low-firing branches (solid curve) are considered to
be “awake” and “coma” states, respectively, with the “coma” state
being associated with anesthetic-induced unconsciousness. Dashed

curve indicates an unstable branch from which the cortex has the
potential to jump to either the upper or lower stable branches. Upper
and lower marked circles indicate references at λi = 1.0 and 1.018 on
awake and coma branches, respectively. (Figure reproduced from
Steyn-Ross et al., 2013).
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FIGURE 9 | At the λi = 1.0 wake state, cortical stability analysis and

spatiotemporal dynamics for varying gap-junction strength D2 from

0.1 (top row) to 0.8 cm2 (bottom). Model cortex is initialized from the
top high-firing branch of steady-state manifold marked as “Awake” in
Figure 8. (A) Cortical stability analysis showing dominant eigenvalue
dispersion curve of the real (black) and imaginary (red) parts as a function
of scaled wavenumber for top- and bottom-branch equilibria at fixed
anesthetic effect λi = 1.0 in Figure 8. Thus, each panel has two parts in
it—the upper part corresponds to the top-branch, the lower part to the
bottom-branch. The dotted line marks zero. (B) Last 4-s time-series of

excitatory firing-rate Qe(t) extracted from 5 equally-spaced grid-points in
(C) Qe(t, x) space-time chart representing the full 20-s time-evolution of
cortical activity along the y = 60 midline strip; y -axis ranges from 0 to
30 s−1. (D) Bird’s-eye snapshot Qe(y, x) of the cortex when t = 20 s. (E)

Phase coherence map R(x ′, x) showing synchronization level of firing-rate
between Qe(t, x) and Qe(t, x ′) for the final 5-s time evolution. The
coherence level is computed via Hilbert transform Equation (3) with a
transition from red to blue meaning high to low coherence. In (C–E), color
scale from blue to red indicates the numerical range from low to high.
(Figure modified from Steyn-Ross et al., 2013).

diffusion is moderately strong D2 	 0.7 cm2. For the anesthetized
cortex, the anesthetic drug shifts the activated “Noncognitive-
wake” coherence peak to the right, implying a possible hysteresis
effect such that an anesthetized cortex requires a stronger Turing

instability to reinforce an activated state. To the left of the peak
for the delirium state, there is a broad intermediate zone of D2

experiencing reduced coherence, which results from large, low
frequency chaotic oscillations.
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FIGURE 10 | At the λi = 1.018 coma state, cortical stability analysis

and spatiotemporal dynamics of varying gap-junction strength D2

from 0.1 (top row) to 0.9 cm2 (bottom). Model cortex is initialized
from the bottom low-firing branch of steady-state manifold marked as
“Coma” in Figure 8. (A) Cortical stability analysis showing dominant
eigenvalue dispersion curve of the real (black) and imaginary (red )
parts as a function of scaled wavenumber at anesthetic effect
λi = 1.018 in Figure 8. (B) Last 4-s time-series of excitatory firing-rate

Qe(t) extracted from 5 equal-spaced grid-points in (C) Qe(t, x)
space-time chart representing the full 20-s time-evolution of cortical
activity along the y = 60 midline strip. (D) Bird’s-eye snapshot Qe(y, x)
of the cortex when t = 20 s. (E) Phase coherence map R(x′, x)
showing synchronization level of firing-rate between Qe(t, x) and
Qe(t, x ′) for the final 5-s time evolution. In (C–E), color scale from
blue to red indicates the numerical range from low to high. (Figure
modified from Steyn-Ross et al., 2013).

These model results drawn from Steyn-Ross et al. (2013)
allow a prediction that the passage from wake to anesthetic
unconsciousness should manifest as a decrease in phase coherence
between separated cortical electrodes.

5. DISCUSSION
Phase-coherence is a measure that quantifies the degree to which
the same frequency components of two EEG channels preserve
their relative phase over a certain time period. The phase stability
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FIGURE 11 | Global phase-coherence trends with respect to inhibitory

strength for the cortex at (A) awake (λi = 1) and (B) comatose

(λi = 1.018) states. Inhibitory strength D2 is evenly spaced (0.01 cm2

interval) in the range 0.0–1.0 cm2. At a given D2, simulations were repeated
10 times. For each simulation, we first computed the phase-coherence matrix

R(x ′, x) for the final 5-s time evolution (see Figures 9E, 10E), then extracted
its upper-triangular matrix mean as an estimate of global phase-coherence,
which is represented as a gray cycle in the figure. The trend curves were
produced by spline function in MATLAB curve-fitting toolbox. (Figure modified
from Steyn-Ross et al., 2013).

between two EEG channels indicates their phase synchronization,
reflecting the functional correlations of spatially divergent cortical
regions.

In this study, we investigated systematic phase-
synchronization changes between pairs of EEG channels in
the sub-delta band, during propofol anesthetic induction. An
EEG phase-coherence processing algorithm, EEG_coherence,
was developed in MATLAB and applied to archival EEG data from
a group of subjects. EEG_coherence uses the Hilbert trans-
form to extract instantaneous phase-angles from non-stationary
EEG signals, and yields a phase-coupling index appraising the
phase-shift consistency between pairs of EEG channels. The
trends of such EEG coherence change between two brain states
are statistically tested via a Mann-Whitney U-test, which is a
simple non-parametric test without the requirement of a specific
data distribution.

Our sub-delta band (�1.5 Hz) EEG study discloses a regional
decrease in phase coherence under propofol anesthesia in both
the frontal and the occipital cortical areas, and also for electrode
pairs that link these two areas. Simultaneously, more strongly
phase-coupled neuronal activity is found in the temporal–frontal,
temporal–occipital and left–right temporal regions. Such con-
trasts in coherence change suggest an underlying compensatory
mechanism of sub-delta band activity between a subsystem of
fronto–occipital and temporal cortical regions. Our findings of

reduced-coherence between particular electrode-pairs is simi-
lar to clinical reports (Morikawa et al., 1997; Koskinen et al.,
2001) where the frontal cortical region exhibits a negative inter-
correlation during anesthetic coma.

Such changes in large-scale neuronal coupling may be an
anesthetic indicator of unconsciousness when the subject is dis-
connected from the environment with reduced cognition level. A
leading hypothesis suggests that anesthetics cause unconscious-
ness by disrupting functional connectivity between cortical areas
(Mashour, 2004; Alkire et al., 2008). A recent work by Lewis et al.
(2012) found that the slow oscillation is a fundamental compo-
nent of propofol-induced unconsciousness and it occurs asyn-
chronously across cortex, interrupting the cortical integration
of information processing. Thus, spatiotemporal slow oscillation
dynamics may mediate the fragmentation of cortical networks
at both the local and global scale, leading to reduced coherence
in neuronal communications. Meanwhile, the presented reduced
phase-coherence along the fronto-occipital axis is consistent with
an animal study by Imas et al. (2006) that the anterio–posterior
coherence in both 5–25 and 26–50 Hz bands was significantly
reduced by isoflurane in the rat.

In contrast, Dumermuth and Lehmann (1981) reported a
high interhemispheric coherence between the left and right pari-
etal areas with deepening slow wave sleep. They postulated that
the high coherence may reflect the interhemispheric transfer of
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information. Later, research by Mölle et al. (2004) reinforced
Dumermuth and Lehmann’s findings and verified their hypoth-
esis by comparing coherence changes for subjects during the
slow-wave sleep with or without pre-learning tasks. Mölle et al.
observed significantly increased coherence during the occurrence
of slow oscillations (<1 Hz) for subjects after learning tasks;
Figures 1, 2 in Mölle et al. (2004) show increased sub-delta band
EEG coherence between the left- and right-temporal regions. This
left–right strengthening is concordant with our propofol results
shown in Figure 4 (lower panel).

The apparently compensatory weakening of frontal and occip-
ital coherence (upper panel of Figure 4) supports the hypothesis
of Steyn-Ross et al. (2013) that propofol anesthesia should induce
a decrease in EEG coherence. When there is little or no anesthetic
effect, a sufficiently strong inhibitory diffusion (i.e., gap-junction
strength) allows a rough balance between Turing pattern and
Hopf oscillation instabilities, leading to a slow Hopf oscilla-
tions of high global coherence with sustained spatial structure
(see D2 = 0.7 cm2 simulation in Figure 9). Such interacting low-
frequency Hopf and Turing instabilities may form the substrate
for the cognitive state, namely, the “default” background state for
the non-cognitive brain during wake. Its slow beating dynamics
(≤0.1 Hz) is similar to what is observed in BOLD functional MRI
recording of relaxed, non-tasked human brains (Fox et al., 2005;
Fransson, 2005).

An increase in anesthetic effect λi suppresses cortical activity,
leading to an anesthetized coma state. Here, intermediate values
of D2 are expected since propofol anesthetic will tend to block
gap-junctions (Wentlandt et al., 2006) and thus weaken inhibitory
diffusion. This will damp the Turing instability, allowing the
Hopf instability to become dominant, leading to spontaneous
emergence of large-amplitude slow chaotic oscillations (see the
highlighted simulations in Figure 10). We note that this dynam-
ical mechanism for the slow oscillation is quite distinct from
the conventional view of cyclic alternations in extracellular ionic
(Ca2+) concentration (Massimini and Amzica, 2001) that may
be initiated by tiny clusters of pacemaker neurons in layer-5 of
cerebral cortex (Stroh et al., 2013).

The emergent slow oscillation is predicted to be chaotic in
space and time, and this is the reason for the expected decrease in
phase coherence with descent into anesthetic hypnosis. Therefore,
the increase in coherence seen in the left–right electrode pairs
cannot be explained by the model. A possible resolution for this
discrepancy may lie in the model’s neglect of a major component
of cortical white-matter architecture, namely the corpus callo-
sum that connects left and right hemispheres of the cortex. It is
possible that as local independent activity is suppressed during
deep anesthesia, the anatomical left–right connectivity becomes
functionally stronger, thus invalidating the model assumption of a
homogeneous cortex. In future modeling work it would be useful
to investigate if an imposed left–right cortical connection sym-
metry might tend to enhance inter-hemispheric coherence while
leaving frontal–occipital dynamics unchanged.
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