
 

Libraries and Learning Services 
 

University of Auckland Research 
Repository, ResearchSpace 
 

Version 

This is the Author’s Original version (preprint) of the following article. This 
version is defined in the NISO recommended practice RP-8-2008 
http://www.niso.org/publications/rp/ 

 

Suggested Reference 

Dinneen, M. J. (1995). VLSI layouts and DNA physical mappings: Arxiv 
(9503221v1). http://arxiv.org/abs/math/9503221v1 

 

Copyright 

Items in ResearchSpace are protected by copyright, with all rights reserved, 
unless otherwise indicated. Previously published items are made available in 
accordance with the copyright policy of the publisher. 

For more information, see General copyright, Publisher copyright. 

 

http://www.niso.org/publications/rp/
http://arxiv.org/abs/math/9503221v1
http://webauthor.lbr.auckland.ac.nz/services/research-support/depositing-theses/copyright
https://arxiv.org/help/license


VLSI Layouts and DNA Physical MappingsMichael J. DinneenComputer Research and ApplicationsLos Alamos National LaboratoryLos Alamos, N.M. 875451 IntroductionIn this short note, we show that an important problem in computational biology isequivalent to a colored version of a well-known graph layout problem. In order tomap the human genome, biologists use graph theory, particularly interval graphs,to model the overlaps of DNA clones (cut up segments of a genome) [Mir94]. Forengineers, Very-Large-Scale-Integrated (VLSI) circuits must be laid out in order tominimize physical and cost constraints. The vertex separation (see below) of a graphlayout is one such measurement of how good a layout is.The NP-complete combinatorial problem of Intervalizing Colored Graphs (ICG)�rst de�ned in [FHW93] (and independently given in [GKS93] as the Graph IntervalSandwich problem) is intended to be a limited, �rst-step model for �nding DNAphysical mappings. For this model, it is assumed that the biologist knows some ofthe overlaps | for instance, overlaps speci�ed by some probability threshold basedon the physical data. The question asked by the ICG problem is whether other edgescan be properly added to di�erently colored vertices to form a colored interval graph.Finding the Vertex Separation (VS) of a graph is related to many diverse prob-lems in computer science besides its importance to VLSI layouts. Lengauer showedthat progressive black/white pebble game (important to compiler theory) and vertexseparation are polynomially reducible to each other [Len81]. Node search number,a variant of search number [Par76], was shown equivalent to the vertex separationplus one by Kirousis and Papadimitriou [KP86]. From [EST94], the search numberis informally de�ned in terms of pebbeling to be the minimum number of searchersneeded to capture a fugitive who is allowed to move with arbitrary speed about theedges of the graph. For node search number, a searcher blocks all neighboring nodeswithout the need to move along an incident edge.1



Kinnersley in [Kin92] has shown that the pathwidth of a graph is identical to thevertex separation of a graph. The concept of pathwidth has been popularized by thetheories of Robertson and Seymour (see for example, [RS85]). Thus, since the gatematrix layout cost, another well-studied VLSI layout problem [KL94, M�oh90], equalsthe pathwidth plus one [FL89], it also equals the vertex separation plus one.This paper shows that vertex separation is also related to another area besidescomputer science, namely computational biology.2 Main ResultIn this section, we formally de�ne our �xed-parameter problems k-ICG and k-CVSand then show that they are indeed equivalent.De�nition 1: A layout L of a graph G = (V;E) is a one to one mapping L : V !f1; 2; : : : ; jV jg.If the order of a graph G = (V;E) is n, we conveniently write a layout L as apermutation of the vertices (v1; v2; : : : ; vn). For any layout L = (v1; v2; : : : ; vn) of Glet Vi = fvj j j � i and (vj; vk) 2 E for some k > ig for each 1 � i � n.De�nition 2: The vertex separation of a graph G with respect to a layout L isvs(L;G) = max1�i�jGjfjVijg. The vertex separation of a graph G, denoted by vs(G),is the minimum vs(L;G) over all layouts L of G.The k-coloring of a graph G = (V;E) is a mapping color : V ! f1; 2; : : : ; kg. Forany subset V 0 � V , let Colors(V 0) = fcolor(v) j v 2 V 0g.De�nition 3: A colored layout L of a k-colored graph G = (V;E) is layout L suchthat for all 1 � i < n, color(vi+1) 62 Colors(Vi).Problem 4: Colored Vertex Separation (CVS)Input: A k-colored graph G.Parameter: kQuestion: Is there a colored layout L of G where vs(L;G) < k?2



Problem 5: Intervalizing Colored Graphs (ICG)Input: A k-colored graph G = (V;E).Parameter: kQuestion: Is there a properly colored supergraph G0 = (V 0; E 0) of G, E � E 0, suchthat V = V 0 and G0 is an interval graph?Figure 2 below shows a 3-colored graph with an interval supergraph representedon the left and a colored vertex separation layout given on the right.12 3 4
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Figure 1: Illustrating the k-CVS and k-ICG problems.
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Theorem 6: For any �xed positive integer parameter k, both k-CVS and k-ICGare identical problems.Proof. Let L = (v1; v2; : : : ; vn) be a colored layout of a k-colored graph G = (V;E).We show how to construct a properly colored supergraph G0 that is also an intervalgraph. For each vertex vi 2 V , de�ne the interval:Ivi = [avi ; bvi ] = [i;maxfj j (vi; vj) 2 E _ j = ig+ 0:5]By de�nition, if edge (u; v) 2 E then Iu\ Iv 6= ;. Let G0 = (V;E 0) where (vi; vj) 2 E 0whenever Ivi \ Ivj 6= ;. It su�ces to show that color(vi) 6= color(vj) for each edge(vi; vj) in E 0 n E. Without loss of generality, assume i < j so that bvi > avj . Againby the de�nition of Ivi , there exists a vertex vk such that j < k and (vi; vk) 2 E.This implies that vi 2 Vj�1. (This also holds for i = j � 1.) Now L is a coloredlayout so color(vj) 62 Colors(Vj�1). Thus, color(vi) 6= color(vj). Therefore, G0 is aproperly-colored intervalizable supergraph of G.For any k-colored graph G = (V;E) that satis�es ICG, let fIv j v 2 V g be aninterval graph representation of a supergraph G0 = (V;E 0). Let av < bv be theendpoints of the interval Iv = [av; bv] for vertex v. Without loss of generality, assumethat au = av implies u = v. Let L = (v1; v2; : : : ; vn) be the unique layout such thati < j if and only if avi < avj . We claim that L is a colored layout of G0. To provethis claim, we show that color(vi+1) 62 Colors(Vi), 1 � i < n. If there exists a vertexu 2 Vi such that color(u) = color(vi+1) then by de�nition of Vi vertex u must beadjacent to a vertex vj for some j > i. Further, j > i + 1 since (u; vi+1) would notbe a properly colored edge. Since au < avj and (u; vj) 2 G0, we must have bu > avj inorder to form an overlap. However, bu < avi+1 < avj . This is a contradiction to j > i.So u 62 Vi if color(u) = color(vi+1). Thus L is a colored layout.Now suppose that for some r < s there exist two vertices vr and vs in Vi with thesame color. Since vr 2 Vi, there exists a vertex vj with j > i such that (vr; vj) 2E 0. This implies vr 2 Vs�1. But this implication contradicts the fact color(vs) 62Colors(Vs�1). So color(vr) 6= color(vs). Hence any set Vi [ fvi+1g has at most onevertex of each color. Since there are k colors, each Vi must have k�1 or fewer vertices.Thus, vs(L;G) � vs(L;G0) < k. 24



3 Final CommentsRecently, the corresponding general problem of intervalizing a colored graph to an unitinterval graph has been shown to be NP-hard (and �x-parameter hard for W[1]) byKaplan and Shamir [KS93] (also see [GGKS93, KST94]). The good news from Kaplanand Shamir's paper is that for each �xed-parameter k (i.e., k colors) this unit intervalproblem has a polynomial-time algorithm. It is still unknown if a polynomial-timealgorithm exists for k-ICG, or equivalently k-CVS. It is our hope that understandingthe original polynomial-time algorithm for the non-colored vertex separation problemmay be of some use [EST87].A related approach for �nding a practical k-ICG algorithm is based on the easilyseen fact that all colored graphs in the k-ICG family have pathwidth less than orequal to k � 1. The usual polynomial-time algorithms for these types of boundedpathwidth families are constructed as follows: First �nd a path-decomposition ofwidth k� 1 and then use some type of dynamic programming approach on the graphusing its decomposition. The tricky part for k-ICG is that k-ICG is not �nite-state(i.e., not representable by linear/tree automaton) for �xed k and hence conventionalalgorithmic techniques can not be used [FHW93].However, just because k-ICG is not �nite-state, we should not avoid altogether thepathwidth structure of the graphs in this family. For small k, Bodlaender and Kloksrecently developed an algorithm for recognizing and �nding path-decompositions ofwidth k in linear time (see [Bod93, BK91, BK93] and [CDF]).References[BK91] Hans L. Boadlaender and Ton Kloks. Better algorithms for pathwidth andtreewidth of graphs. In Proceedings of the 18th International Colloquiumon Automata, Languages and Programming, Lecture Notes in ComputerScience, pages 544{555. Springer Verlag, 1991.[BK93] Hans L. Boadlaender and Ton Kloks. E�cient and constructive algorithmsfor the pathwidth and treewidth of graphs, 1993. preprint.[Bod93] Hans L. Bodlaender. A linear time algorithm for �nding tree-de-compostions of small treewidth. In Proceedings of the 25th Annual ACMSymposium on Theory of Computing. ACM Press, 1993.5



[CDF] Kevin Cattell, Michael J. Dinneen, and Michael R. Fellows. A simplelinear-time algorithm for �nding path-decompositions of small width. Sub-mitted to Information Processing Letters.[EST87] J. Ellis, I. H. Sudborough, and J. Turner. Graph separation and searchnumber. Report DCS-66-IR, Dept. of Computer Science, University ofVictoria, P.O. Box 3055, Victoria, B.C. Canada V8W 3P6, August 1987.[EST94] J. Ellis, I. H. Sudborough, and J. Turner. The vertex separation andsearch number of a graph. Information and Computation, 113(1):50{79,1994.[FHW93] Michael R. Fellows, Michael T. Hallett, and H. Todd Wareham. DNAphysical mapping: Three ways di�cult. In T. Lengauer, editor, Proceed-ings of European Symposium on Algorithms (ESA'93), volume 726 of Lec-ture Notes in Computer Science, pages 157{168. Springer-Verlag, Berlin,1993.[FL89] Michael R. Fellows and Michael A. Langston. On search, descision andthe e�ciency of polynomial-time algorithms. In Proceedings of the 21thAnnual ACM Symposium on Theory of Computing, pages 501{512, 1989.to appear Journal of Computer and System Sciences.[GGKS93] Paul W. Goldberg, Martin C. Golumbic, Haim Kaplan, and Ron Shamir.Four strikes against physical mapping of DNA. Technical report 287/93,The Moise and Frida Eskenasy Insitute of Computer Sciences, Tel AvivUniversity, December 1993.[GKS93] Martin C. Golumbic, Haim Kaplan, and Ron Shamir. On the complexityof DNA physical mapping. Technical report 271/93, The Moise and FridaEskenasy Insitute of Computer Sciences, Tel Aviv University, January1993. to appear Advances in Applied Mathematics.[Kin92] Nancy G. Kinnersley. The vertex separation number of a graph equals itspath-width. Information Processing Letters, 42:345{350, 1992.[KL94] Nancy G. Kinnersley and Michael A. Langston. Obstruction set isolationfor the Gate Matrix Layout problem. Discrete Applied Mathematices,54:169{213, 1994.[KP86] L. M. Kirousis and C. H. Papadimitriou. Searching and pebbling. Theo-retical Computer Science, 47:205{216, 1986.[KS93] Haim Kaplan and Ron Shamir. Pathwidth, bandwidth and completionproblems to proper interval graphs. Technical report 285/93, The Moise6



and Frida Eskenasy Insitute of Computer Sciences, Tel Aviv University,November 1993.[KST94] Haim Kaplan, Ron Shamir, and Robert E. Targan. Tractability of param-eterized completion problems on chordal and interval graphs: minimum�ll-in and physical mapping. In Proceedings of the 35th Annual IEEEConference on the Foundations of Computer Science, 1994.[Len81] T. Lengauer. Black-white pebbles and graph separation. Acta Informatica,16:465{475, 1981.[Mir94] B.G. Mirkin. Graphs and Genes. Springer-Verlag, 1994. (translated fromRussian by H.L. Beus.[M�oh90] Rolf H. M�ohring. Graph problems releted to gate matrix layout and PLAfolding. In G. Tinhofer, E. Mayr, H. Noltemeier, and M. Syslo, editors,Computational Graph Theory, pages 17{51. Springer-Verlag, 1990.[Par76] T. D. Parsons. Pursuit-evasion in a graph. In Y. Alavi and D. R. Lick, ed-itors, Theory and applications of graphs, pages 426{441. Springer-Verlag,1976.[RS85] Neil Robertson and Paul D. Seymour. Graph Minors { A Survey. In Sur-veys in Combinatorics, volume 103, pages 153{171. Cambridge UniversityPress, 1985.
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