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Abstract

Our aim is to experimentally study the possibility of digfiishing between quantum sources of
randomness—recently proved to be theoretically inconipetaand some well-known computable sources
of pseudo-randomness. Incomputability is a necessarydigufficient “symptom” of “true randomness.”
We base our experimental approach on algorithmic infoimnatieory which provides characterizations of
algorithmic random sequences in terms of the degrees ofripoessibility of their finite prefixes. Algorith-
mic random sequences are incomputable, but the conversieatign is false. We have performed tests of
randomness on pseudo-random strings (finite sequences)gihl 22 generated with software (Mathemat-
ica, Maple), which are cyclic (so, strongly computable} Hits ofrt, which is computable, but not cyclic,
and strings produced by quantum measurements (with the eocrahdevice Quantis and by the Vienna
IQOQI group). Our empirical tests indicate quantitativfedtences, some statistically significant, between

computable and incomputable sources of “randomness.”
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I. INTRODUCTION

From the 16th century onwards, following Galilei, Kepleeihniz, Newton and others, the
rise of determinism culminated around the time of the Fremott American Revolutions with
Laplace’s research on the stability of the solar systemawitidivine intervention/[1]. In the
late 19th century, first indications of potential limits teetpure deterministic research program
emerged, in particular with Poincaré’s contribution [[2,t8 the solution of the three: [4] and
generah-body problem!([3, 5, 6], which is often considered as a prsmuof chaos theory [7, 8.

Soon, and despite the reluctance and opposition of many ofgators, most notably Planck [9],
Einstein [10], Schrodinger and De Brogli, quantum mecbsuttiegan to be accepted as an irre-
ducibly probabilistic theory, postulating an indisperisatobjective” (in distinction to “epis-
temic;” cf. below) random behavior of individual particleghile their probabilities follow deter-
ministic laws. With the rise of quantum mechanics (and latealso chaos theory), thinciple
of sufficient reasor— stating that every phenomenon has its explanation ancecaubad to be
partially abandoned. Indeed, indeterminism and randosineguantum mechanics, as postulated
by Born, Heisenberg, Bohr and Pauli[11, p. 115] is commoljelved, accepted and canonized
to the extent that [12] “the discovery that individual exeate irreducibly random is probably one
of the most significant findings of the twentieth century. .| for the individual event in quantum
physics, not only do we not know the cause, there is no cause.”

However, insufficient causation needs not be perceivedlyneegatively as a lack of prediction
or control. Today it is widely acknowledged that certifiedadamness can be a valuable resource
(e.g., for testing primality [13, 14]), and that under vaisacircumstances a lack of randomness
may have negative consequences (e.g., erroneous numalcalations|[15]). The pitfalls of
software-generated pseudo-randomness [16] are well+kifitivi 17+-19]. In John von Neumann’s
words [20]: “Anyone who considers arithmetical methodsrofiducing random digits is, of course,
in a state of sin.”

Classical physical processes are subject to difficultiéis \8ubjective” or “epistemic” random-
ness (a criticism often attributed to Heisenberg [12]) —peaconsider events to be random when
they cannot detect any regularities characterizing thuegtre of those events, yet the everasild
still be causally described if they would know enough abbatdvolution of the system — or even
bias; the typical example being coin tosses [21]. Severdhaous to generate random sequences

from physical processes have been proposed [22], amongttieeaoding of electric pulses [23],



or semiconductor devices [24-+32]. The first baok [33] caritag a million of random digits using
a physical source of randomness was published by The RANpdZation in 1955/[34].

Currently there are two main sources capable of generagingfast large amounts of “random”
bits: software-generated randomness (pseudo-randojraresgjuantum randomness. Quantum
randomness has been used as an “objective” resource ofmareds through various processes,
in particular the decay of meta-stable states [[35—-37] (foritecism, see![38]) or radioactive de-
cays [39] 40], arrival times [29—32,141], or the passageuinasome beam splitter [42-50].

How different are these sources? Recently it has been ptbatduantum randomness is in-
computable (see more details in Secfionlll D). Incompuiighis a necessary, but not sufficient
“symptom” of “true randomness.” Can we experimentallyidigtiish between quantum and com-
putable sources of “randomness?” In what follows, we andhisrquestion in the affirmative
using an experimental approach based on algorithmic irdéom theory which provides charac-
terizations of algorithmic random sequences in terms ofitggees of incompressibility of their
finite prefixes. Algorithmic random sequences are incontgatdut the converse implication is
false.

We have performed tests of randomness on pseudo-randemgssffinite sequences) of length
232 generated with software (Mathematica, Maple), which adicyso, strongly computable),
the bits ofrt, which is computable, but not cyclic, and strings producgdimntum measurements
(with the commercial device Quantis and by the Vienna IQO®QLQ).

The paper is organized as follows. In the following sectiapresent quantum randomness;

in SectiorLIll we present the main tests and results; Sefffoncludes our conclusions.

II. QUANTUM RANDOMNESS

In three distinct but intricately interlinked ways, the &wgn of quantum mechanics ordained
the abandonment of absolute determinism, and has estatbigsblearly defined mixture of deter-

minism and indeterminism, at least in the mainstream pé&mepf the formalism|[51-55]:

(i) random occurrence of individial events [56, 57] or outes for quantized systems which
are in a superposition of eigenstates of the hermitean tperarresponding to the observ-

able; i.e., randomness from projection measurements aTgogition states;

(i) complementarity, as proposed by Pauli/[58], HeisegbBirac and Bohr;



(i) value indefiniteness [59] as implied by the theorem8efi, Kochen & Specker and Green-

berger, Horne & Zeilinger [60].

A. Random individual measurement outcomes

With respect to the perception of certain individual outesnof measurements, the year
1926 marked the emergence of Born’s acausal, indetermairaatd probabilistic interpretation
of Schrodinger’'s wave function as a complete and maximsddgtion of a quantum mechanical
state. Born states that (cf. [56, p. 866], English transtatn Ref. [61, p. 54]).[62],

“From the standpoint of our quantum mechanics, there is rantfy which in any
individual case causally fixes the consequence of the mitidut also experimen-
tally we have so far no reason to believe that there are sone properties of the
atom which condition a definite outcome for the collision.gBuwe to hope later to
discover such properties [[]] and determine them in individual cases? Or ought we
to believe that the agreement of theory and experiment — #setanpossibility of
prescribing conditions? | myself am inclined to give up deti@ism in the world of

atoms.”

While postulating a probabilistic behavior of individualrticles, Born offers a deterministic evo-
lution of the wave function (cfL[57, p. 804], English traatsbn in Ref. [51, p. 302]) [63],

“The motion of particles conforms to the laws of probabijlliyt the probability itself
is propagated in accordance with the law of causality. [Tiesins that knowledge of
a state in all points in a given time determines the distiisubdf the state at all later

times.]”

At the time of writing this statement Born did not specify fbemal notion of “indeterminism”
he was relating to. So far, no mathematical characterizadfoquantum randomness has been
proven. In the absence of any indication to the contrarg,mostly implicitly assumed that quan-
tum randomness is of the strongest possible type; which atedo postulating that the associated
sequences are algorithmically incompressible. This de¢exclude the possibility of weaker

forms of randomness being generated by quantum measurement



Random individual outcomes may occur at least in two difiergays: (i) either due to a
context mismatch between preparation and measuremgrdr (iue to an ignorance of the state
preparation resulting in a mixed state. In what follows, Wallkdiscuss these issues in some detail.

We shall consider normalized states. The supersciipirfdicates transposition. If not stated
otherwise, we shall adopt the notation of Mermin’s bookQuantum Computer Scien{@4]. A
guantum mechanical context [65] is a “maximal collectiotofmeasurable observables” consti-
tuting a “classical mini-universe” within the nondistriiue structure of quantum propositions. It
can be formalized by a single “maximal” self-adjoint operaEvery collection of mutually com-
patible co-measurable operators (such as projectionssmwnding to yes—no propositions) are
functions of such a maximal operator (e.g., Ref| [66, SetO]lp. 90, English translation p. 173],
Ref. [67,§ 2], Ref. [68, pp. 227,228], and Ref. [6984]).

1. Mismatch between state preparation and measurement

There might be @ontextmismatch between state preparation and measurementheesys-
tem has been prepared in a pure state corresponding to sncawtdext (maximal observable),
and is measured in another, complementary (see below)xtdntaximal observable). In such a
case, the state of the system — in terms of the spectral dexsitigm of the measurement context
— is in acoherentsuperposition of at least some eigenstates of the prepareadntext. An “irre-
versible” measurement [70,/71] “reduces” the state to orth@kigenstates of the measurement
context. According to the Born rule (e.g., [64, Chapter fljg probability of the occurrence of
any such measurement outcome labelled lsygiven by the absolute square of the scalar prod-
ucts|(yi|d)|? between the statg) in which the system has been prepared and the corresponding
eigenstatdy;) of the context. Other than this probabilistic law, quantuecthranics renders no
further prediction for the occurrence of single measurdmetcomes. Note that the amount of
indeterminacy (as measured by the lack of bias of measutemuéromes formalizable in terms
of average algorithmic information increase per outcomejdases with the “apartness” of the
preparation and measurement properties; i.e., with theninate of the context mismatch. On the
average, conjugate bases|[72, p. 86] assure the greatéskicorismatch, and hence the greatest
degree of randomness gain per experiment.

Quantum realizations of the method have been propased E12,p4tented [73] and real-
ized [44, Fig. 1(b)] (see also [45]) for a delayed choice Bgle experiment [74]. Note that



in the latter experimental realization, in the secomodus operandof [74], light of very low in-
tensity — the photon production rate should be much smdiken the corresponding coherence
time — is prepared by sending it through a linear polarizey., é the vertical directiorj, which
guarantees that (ideally) only photons in a definite, puagestorresponding to the polarization
direction] leave the polarizer. The photons impinge on a beam-sgjifiiarizer, which should
(ideally) be maximally (anti)aligned at exactly 48t/4 radians) in order to yield a 50:50 ratio of
photons polarized in either one of the two orthogonal dioest,” and™, conveyed in the two
output ports and detected thereafter, respectively.

The process can be formalized as follows. For a two-stateegs) a two-dimension Hilbert
space suffices. The role of the beam splitter can be desdoypedvery general unitary transfor-
mation which can be represented by the productldf &) phasee'P and of a unimodular unitary
matrix SU(2) [75]

(1)

€9 cosw —e 1 sinw
T(w0,¢) = :

e?sinw e % cosw

where—m<B,w<m —7 <a,p < 7. For our purpose, it suffices to consider a 50:50 beam

1 1
splitter [76-+79] of the Hadamard forkh= % ( ) , which can be obtained from the general
1-1
form by settingw= ¥ anda =B =y=—Jine'P and in Eq.[{L). Note thatl - H = I is just the
identity matrix in two dimensions.
If | /)= (1,07 and|\,) = (0,1)T — alternatively, we could have used the notatjohfor

| /), and|1) for | \,) — represent certain orthogonal (linear polarization)estaheasured, and
the particle has been prepared for in a (linear polarizastate

1 1
— T =-—(1,17, 2
f2(|/> \) fz( ) (2)

which is a 50:50 superposition of both of these states, themptobability to find the particle in

1) =Hl./) =

either one of the detectors corresponding t6) and| ) is

11\ (10
Pr(0) = Tr[| INT I [/ N=Tr |3 : =1, and
11) \oo
] ] 3)
11\ (o0
Pr(L) = Tr DN =Tr | 3 ' =3
“\11) \o1)]

that is, one obtains a 50:50 chance for the occurrence odbmé® or 1, respectively.
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In general it will be very difficult to establish and maintan exact (anti)alignment of the po-
larizers, resulting in a bias towards either staté) or | \). If and only if this bias is stationary
and the events are independent; i.e., uncorrelated, tledndk can be eliminated after the coding
stage by von Neumann’s normalization procedure [80]: Tlasdid raw sequence of zeroes and
ones is partitioned into fixed subsequences of length tvem the even parity sequences “00” and
“11” are discarded, and only the odd parity ones “01” and “408 kept. In a second step, the
remaining sequences could be mapped into the single syrihels 0 and 10— 1, thereby ex-
tracting a new unbiased sequence at the cost of a loss afaklgis [20, p. 768] (see Refs. |81, 82]
for an improvement of this method, and Refs. |41, 83, 84] fdisaussion of other methods). This
method fails if the events are (temporally) correlated d&us hot independent. Take, for instance,
the sequences 010101 or 101010- -, which in the von Neumann scheme get transformed into
000--- or 111- - -. Less spectacular failures of the von Neumann normalizai#m be constructed
by considering convex combinations of these cases.

For beam splitters, the independence of outcomes requyrdtebvon Neumann normalization
translates into the assumption that there are no temporadlabons. In view of the Hanbury
Brown Twiss effect (cf., Ref. [85, p.313] and Ref. [86, p.1fY, this assumption is highly non-
trivial, as effects of photon bunching might disturb theussption of independence of subsequent
“quantum coin tosses.” In particular, it seems that thedig might affect the long term statistical
independence. Note also that the von Neumann normalizé&tforabove) would fail because of
the lack of independence [20, p. 768] . Indeed, for “very higtith respect to the regime of the

Hanbury Brown Twiss effect) data rates, independence cdonger be assumed.

2. Ignorance resulting in a mixed state

A second, maybe faster and technically less demandingplitysto produce quantum ran-
dom bits does not require any preparation step, butgastimeshe input state to be principally
unknowable and indeterminate. In this case, the systemasnion-pure, mixed state, reflecting
our ignorance about the state prepared [87, 2nd panA, p. 827].

If the particle is in a totally mixed state, its density matig just proportional to the identity
matrix pr, = 3 (|0)(0| +|1)(1]) = 3 diag[(1,0) + diag(0,1)] = 31, and thus the probability to



find the particle in either one of the detectors correspanthnO) and|1) is

PpHZ(O) = Tripg, - |0)(0]] =Tr [%Hz- diag(1,0)] = %, and
(4)
Po, (1) = Trlpr,-|1)(1]] = Tr[3I2- diag(0,1)] = 3;
that is, one again obtains a 50:50 chance for the occurrdrmg@me O or 1, respectively.

Alas, is may be difficult to certify, control and assert “oloigically objective,” as compared to
“epistemically subjective,” ignorance. Indeed, the expenter preparing the system msiybjec-
tively assume to be ignorant, whereas the system may implicitip bepure state with respect to
a certain context, of which the experimenter does not pessgsknowledge, nor has any control.
Also temporal correlations may interfere with randomness.

Note also that any beam splitter is essentially a reversiole-to-one “translation device” “fun-
neling in” particles in a certain state, thereby transforgrthe state and “spitting out” the particles
in a bijective manner. This is reflected in the unitarity af guantum mechanical description by
the product oe~'P and Eq.[(lL). Ideally, the original signal can be reconsau@nd recovered by
the serial composition of the original beam splitter andiitgerse” beam splitter associated with
the inverse unitary transformation. In this sense any quamaindom number sequence based on
beam splitters is as good as the original source of partiokggmrdless of the successive (quasi-
irreversible) measurement by detectors.

For the sake of demonstration, consider a “black box” whioh,undisclosed reasons, con-
tains an (unknown) cyclic particle source or, if one prefersnischievous demon constantly re-
leasing particles (emanating from the black box) whoseestascillate betwee(®) = H|0) =
(1/v2)(10) +]1)) = (1/v2)(1, )T and|1') = H|1) = (1/v/2) (0) — 1)) = (1/v2)(1,~1)T, with

some frequency, such that the state as a function of time is either (pure)case
|du(t)) = sin(2rvt)|0') + cog(2mvt) (1), (5)

or (mixed case)
pv(t) = sin(2rvt)|0') (0| 4 cog(2mwt) |1') (1] (6)

If the sampling frequency (or any integer multiple thereaffthis “random” sequence does not
coincide with the oscillation frequenay, then it may be very difficult for an experimenter to
determine the source’s regular behavior, which — throughbidsam splitter — translates one-to-
one into the sequence generated, sidf#) = H-H|0) = |0) andH|1') =H-H|1) = |1).



Thus, it is not totally unjustified to state that claims of Jettive” randomness have to be
cautiously reviewed when particles emanating from an wpified source are targeted directly
towards some beam splitter, as seems to be the case in orestofdlsetups in Ref. [44, Fig. 1(a)]
and for other devices[38]. The quality of the quantum randeuences produced thus seems to
depend on the quality of the light source|[45] in combinatiath the beam splitter. Whilé&or
all practical purposesit may be justified to use a particular (or maybe even any tfpearticle
source in combination with a particular beam splitter, faits short of a certified procedure to

obtain truly random bits in accordance with Bohm’s prineipf indeterminacy.

B. Complementary contexts

Complementarity is a quantum resource for randomness whaghbe supporting the random
occurrence of individual events dealing with a mismatchvieen state preparation and measure-
ment, as has already been discussed in the Séction Il A 1.hibvgever, no sufficient criterion for
indeterminism, as can be seen from finite automata [89] oemgdized urn models [90], which
are nondistributive but still allow a classical represé@otal91, 92]. Whether or not complemen-
tarity is a necessary criterion for quantum indeterminig®nss to be debatable. For the lack of
necessity, it may suffice to refer to some recording of irdinal outcomes of “irreversible” mea-
surements associated with a “state reduction,” or to soroaydef a meta-stable state. Yet, in the
first “state reduction” case, the existence of principatpredictable outcomes seems to be linked
to complementarity; at least from an operational point efwiAnd also decays of excited states,
due to the quantum Zeno effect [93], depend on the mode af theasurement, which may be
linked to time and energy. We shall not discuss these issl@®d to necessity further.

Early discussions of complimentary-type features of quaniechanics [94, 95] concentrate
on a finite form of paradoxical self-reference among completary observables resembling re-

cursion theoretic diagonalization. In the words of Dira6,[$1],

“It is usually assumed that, by being careful, we may cut ddwendisturbance ac-
companying our observation to any desired extent. The @iscé big and small are
then purely relative and refer to the gentleness of our meaon$gservation as well
as to the object being described. In order to give an absatetning to size, such
as is required for any theory of the ultimate structure ofteraive have to assume

that there is a limit to the fineness of our powers of observadind the smallness of
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the accompanying disturbance—a limit which is inherentim mature cf things and
can never be surpassed by improved technique or increagkedrskhe part of the
observer. If the object under observation is such that tlevaidable limiting dis-
turbance is negligible, then the object is big in the absodense and we may apply
classical mechanics to it. If, on the other hand, the lingiiinsturbance is not negli-
gible, then the object is small in the absolute sense and swgreea new theory for

dealing with it.

A consequence of the preceding discussion is that we musereur ideas of causal-
ity. Causality applies only to a system which is left undibtd. If a system is small,
we cannot observe it without producing a serious disturbara hence we cannot
expect to find any causal connexion between the results adlmaervations. Causal-
ity will still be assumed to apply to undisturbed systems tir@dequations which will

be set up to describe an undisturbed system will be diffekeequations expressing a
causal connexion between conditions at one time and conditt a later time. These
equations will be in close correspondence with the equsatidrclassical mechanics,
but they will be connected only indirectly with the resulfsobservations. There is
an unavoidable indeterminacy in the calculation of obdeyaal results, the theory
enabling us to calculate in general only the probability of obtaining a particular

result when we make an observation.”

In 1933, Pauli gave the first explicit definition of complerteeity stating that (cf..[58, p. 7],
partial English translation in Ret. [51, p. 369]) [97],

“In the case of an indeterminacy of a property of a system &r&in configuration
(at a certain state of a system), any attempt to measuredpeatve property (at least
partially) annihilates the influence of the previous knalge of system on the (pos-
sibly statistical) propositions about possible later nieasient results. [[.]] The
impact on the system by the measurement apparatus for moméposition) is such
that within the limits of the uncertainty relations the \alof the knowledge of the
previous position (momentum) for the prediction of laterasi@ements of position
and momentum is lost. If, for this reason, the applicabihityone classical concept
stands in the relation of exclusion to thatasfother we call both of these concepts

(e.g., the position and momentum coordinates of a partwit) Bohr complemen-

11



tary. [[...]] One will see that this “complementarity” has no analogyhe classical
statistical theory of gases, which also operates withstiedil laws. This theory does
not contain the assertion — which is only valid through thédimess of the quan-
tum of action — that the measurement of a system may neclysseilt in a loss of
knowledge acquired through previous measurements;hesprevious measurements

can no longer be used.”

Complementarity may thus be interpreted as a subtle kindepadure from classical omni-
science: whereas it may in principle be possible to measwasiagle, individual context, or any
(classically operational) observable within (or enconspayg) a context, the direct measurement
(not involving counterfactuals in Einstein-Podolsky-Bosype configurations [93, 99]) of two or
more contexts, or of one context and some observable “@itefdt is impossible.

Until the theorems by Bell, Kochen & Specker and Greenbergerne & Zeilinger, quan-
tum indeterminism was thus either (i) “believed” and cooried by the “effective inability to
disprove the contrary” (i.e., determinism), or (ii) argusd“intrinsic self-reference” and the im-
possibility of the measurement process to act “softer thla@guantum of actioh on the object.

In the latter case, one could still believe that, contrarfy)tdhere exiselements of physical reality
which, in the sense of Einstein, Podolsky and Rosen [98]ccewén be measured and counterfac-

tually [99] inferred simultaneously [100].

C. Value indefiniteness

In deriving the quantum probabilities — which have origlpddeen postulated by Born’s rule
as an axiom of quantum mechanics — from a buildup of claspicdabilities within contexts in
Hilbert spaces of dimension greater than two, Gleasonsréme [101+-104] has motivated many
authors to derive nonlocal [59, 60,/ 74, 105=107] as well asall{67,/1038-117] constraints on
the existence oflobal truth functions (two-valued measures) on #mire domainof quantum
observables. Bell's theorem already statistically intidathe impossibility of co-existence of
certain observables “exceeding” a single context, e.g¢dnsidering the statistics of listing of
possible measurement outcomes and comparing them to tikuguaxpectations [59]; and the
Kochen-Specker theorem presented a finite proof (by coietrad) of the impossibility of their
co-existence.

When it comes to interpreting and understanding thesetsgsule difficulty is a fact already en-

12



countered in the study of complementarity: whereadadkedity of contexts is not co-measurable,
any individual context is measurable. In this sense, the Kochen-Speckeredated [[60, 107]
theorems can be viewed to strengthen complementarity: migtie it operationallyimpossible
to directly [100] measure more than a single context (desmtinterfactual measurements of two
contexts in Einstein-Podolsky-Rosen type configurati®& P9]) — it is provable impossible
to consistently assume any co-existence of all quantumradisies which could in principle be
measured [59]. We shall refer to thiswue indefiniteness.

Of course, there are ways to “cope” with these findings quksisically (quasi-realistically)
the most popular being the “contextuality” assumption, chhivas first put forward by Bell in
an attempt to save a kind of realism [106, [118--120]. It manstshe physical existence of all
conceivable potential observables but assumes that tt$3 f11 result of an observation may
reasonably depend not only on the state of the systebut also on the complete disposition of the
apparatus,” which could mean that the outcome of a measutensy depend on its context [121].

Note that, due to the Born rule — derivable by Gleason’s el 01, 102, 104] for three- and
higher-dimensional Hilbert space — the quantum mechasgiqagctation valuég), = Tr (pE) of
an observable corresponding to a hermitean opeEatord a physical state does not depend on
the context; in particular, the expectation valt®, of a proposition corresponding to a projector
E is independent of the particular choice of basis among thératy of orthogonal bases which
it may belong tol[122]. Thus, contextuality is restricteditogle, individual outcomesf potential
measurements. Stated differently, guantum mechanicsmdeetermine a specific measurement
outcome of an observable, but determines the expectatloa vhthat observable. In this respect,
the quantum contextuality assumption is somewhat sinol&arn’s concept of deterministic evo-
lution of the quantum state as compared to the indeternmardsturrence of single events; or the
outcome dependence versus parameter independencemote nonlocal [123] correlated quan-
tum eventsl[124].

The Kochen-Specker theorem is a rather strong indicatioralfe indefiniteness and thus of
guantum indeterminism_[125] and randomness beyond Boorgecture of the random occur-
rence of individual events, and even beyond complementattleast for multi-context configu-
rations where Kochen & Specker constructions are viable.

Since a nontrivial interconnectedness of different basgmssible only for Hilbert spaces of
dimension three onwards, the Gleason and the Kochen-Sp#w@ems apply only to Hilbert

spaces of dimensiofggher than twqsee the related argument in Ref. [126, p. 193]); hence value
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indefiniteness can be proven only for systemghoée or more mutually exclusive outcomésr
two-dimensional systems, one has still to rely purely onrBoimdeterminacy postulate, solely
backed by complementarity and the quantum uncertaintyioaka We have to conclude that, as
presently many quantum random number generators using eléters (also the ones utilizing
complementarity) operate with two exclusive outcomesy ere not backed by value indefinite-
ness in the sense of Bell, Kochen & Specker and Greenbergemngh& Zeilinger.

One may still argue that, although the Born rule for quantuobabilities and expectations
cannot be proven from the (more elementary) assumptiondeafsGn’s theorem [126, 7.2] for
two-dimensional Hilbert spaces by presently known mathealamethods, this does not exclude
the possibility that some other methods exist which woutvprsimilar results related to value in-
definiteness even for physical configurations with two milyuexclusive outcomes. For the sake
of excluding this latter possibility, one should, for inste, find a counterexample (on the structure
of quantum observables in two-dimensional Hilbert spadakkv (i) either is not in accordance
with the Born rule but still in accordance with the additytroperty upon which Gleasons’s the-
orem is based; (ii) or is in accordance with the Born rule liloings two-valued states which may
or may not be sufficient for a homeomorphic embedding into el&m algebra. A typical coun-
terexample of the first type would be one in which an electqmin sbservable, for noncollinear
directions, would always point “up” and “down” accordinggome algorithmic rule [127, pp. 70-
72]). Formally, this is due to the fact that, for two-dimesrsal configurations, there exists a full,
separating set of two-valued states. A counterexamplesodé¢laond type appears to allow merely
states which are singular only insgngle pair of observables (indeed, this is true for arbitrary

Hilbert space dimensions), and thus are insufficient fopmticular purpose.

D. Incomputability of quantum randomness and empirical teging

In [125] it is proved that quantum randomness is not Turinggotable. More precisely, sup-
pose that a quantum experiment produces an infinite sequérreantum random bits. Would
such a sequence be computable by a Turing machine? If wetacalepe indefiniteness as ex-
pressed by the theorems of Bell, Kochen & Specker and Gregeih&iorne & Zeilinger, then the
answer given in Ref| [125] is negative; even mare,Turing machine can enumerate an infinity
of correct bits of such a sequenc&or example, an infinite sequence of quantum random bits

may start with a billion of O’s, but cannot consist entirefyoaly 0’s. The infinite sequence of bits
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010001101100000Q1. (Champernowne’s constant) or the binary expansianaznnot be exactly
reproduced by any quantum experiment.

But is quantum randomness a “true” and “objective” form afidamness? First, and fore-
most, there is no such thing as “true” randomness as me#seweetical arguments show [128].
Secondlyjt is an open question whether quantum randomness satibBagquirements of algo-
rithmic randomnesgL28].

Our aim is to experimentally study the possibility of digfirishing between quantum sources of
randomness (proved to be theoretically incomputable) antesvell-known computable sources
of pseudo-randomness. The legitimacy of the experimematcach comes from algorithmic
information theory which provides characterizations gioaithmic random sequences in terms of
the degrees of incompressibility of their finite prefixes. ri®lprecisely, a sequence is algorithmic
random iff all its finite prefixes cannot be compressed by &ermal prefix-free Turing machine
by more than a fixed constant (which depends on the fixed maamd sequence and not on
prefixes)[128]. The degree of incompressibility of a stimmeasured with the prefix-complexity
Hu (which depends on the universal prefix-free Turing machine The best empirical test of
randomness would be to calculate the prefix-complexity bpifixes of a given (long) string.
This is impossible because the prefix-complexity is incotaple. However, there are computable,
but weaker properties than incompressibility which candstetd on prefixes, for example, Borel
normality (explained below). Of course, any such propestgacessary, but not sufficient; hence
the (degree ofabsence of the property is significant.

We have performed tests of randomness on pseudo-randemgsstfinite sequences) of length
232 generated with software (Mathematica, Maple), which at@nty computable, but also cyclic,
the bits ofrt, which is computable, but not cyclic, and strings producgdimntum measurements
with the commercial device Quantis, as well as by the Viei@@Q!I group.

The signals of the Vienna Institute for Quantum Optics andu@um Information (IQOQI)
group were generated with photons from a weak blue LED lightrae which impinged on a
beam splitter without any polarization sensitivity withdwutput ports associated with the codes
“0” and “1,” respectively [44]. There was no pre- or postgessing of the raw data stream,
however the output was constantly monitored (the exact oggghsubject to a patent pending). In
very general terms, the setup needs to be running for atdeastlay to reach a stable operation.
There is a regulation mechanism which keeps track of theld@dgeen “0” and “1,” and tunes the

random generator for perfect symmetry. Each data file wastexen one continuous run of the
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device lasting over hours.

Our empirical tests indicate quantitative differencesseetn computable and incomputable
sources by examining (long, but) finite prefixes of infinitgwences. Such differences are guaran-
teed to exist by the result in Ref [125], but, because contgilitiais an asymptotic property, there
is no guarantee that finite tests can “pick” them in the prefixe have analyzed. We performed
more tests than those described below, but discarded tbosehich the results were inconclu-
sive (cf. Ref.[129]). In what follows we will describe a baty of “non-standard” randomness
tests based on coding theory and algorithmic informati@ot results [128] which distinguish

between the computable and incomputable sources that waesdm

. RANDOMNESS TESTS

In order to avoid some ideological or metaphysical biassedjuences have been treated on an
equal footing by looking with “evenly-suspended attentiahtheir phenomenological encoded
phenotypes. No hidden “meaning” or “message” should bakzstto them. This is conceptually
related to the following scenario.

Consider a couple of labeled “black boxes,” each being thecgoof binary sequences, em-
anated at a constant rate. In our case, we have two “Born boyxesating under Born’s as-
sumption of quantum randomness (actually, Quantis is hat),ta “Pi box” humming out binary
digits of r, as well as some “Sinners” (in von Neumann’s judgment [20])taining algorithms
pretending to output random digits.

Suppose that these boxes cannot be “screwed open,” andewatdout the origin of the sym-
bolic sources are otherwise obtainable from the outsideynperceivable way. Suppose further
that somebody (either a devil, or a malign colleague, or arctey agent) has erased the labels
completely. Would we be able to tell which box is which by gzalg their bit renditions alone?
In what follows, we shall present some tentative answerkisoquestion based on data produced

with these boxes.

A. Data

Our data consist of 50 binary sample “random” strings of ter&j%: 10 pseudo-random strings

produced by Mathematica 6 [130], 10 pseudo-random stringduzed by Maple 11 [131], 10
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guantum random strings generated with Quantis/[132], 1Gtguarandom strings generated by
the Vienna IQOQI group [133], and 10 strings 6£dits from the binary expansion afobtained
from [134].

The process used to generate ten strings froim the following. The input was given to us
in hexadecimal format, with two decimal digits per byte; orealecimal digit per nibble. Two
random decimal digits were selected to be omitted througtieustring [135] The remaining dec-
imal digits are assigned a 3-bit binary number 0 to 7, whiehaartput as 3 bits each. Processing
continues until 2 bits are output. The input source that we downloaded hadd4)20,000 dec-
imal digits so potentially up to.D08x 100 bits can be extracted (which is abouB27 x 239);
thus almost all of these digits are needed to generate outrib@s The justification that these
“projected” binary strings share the same randomness grep®f 1t is given by the following
result [128]: if in a random sequence over an alphdbet...,ak}, k > 2, we remove all occur-
rences of a fixed symbai, then the new sequence is also random (over an alphabekwith

symbols).

B. Descriptive statistics

Our experiments have been uniformly performed on all thégedample strings. The tests

presented below can be grouped into the following classes:
(i) Borel normality test;
(ii) test based on Shannon’s information theory;
(i) two tests based on algorithmic information theorygan
(iv) test based on random walks.

We present our test results using box-and-whisker plotshvaiie compact graphical represen-
tations of groups of numerical data through five charadtersimmaries: test minimum value,
first quantile (representing one fourth of the test data)liareor second quantile (representing
half of the test data), third quantile (representing thoeeths of the test data), and test maximum
value. Mean and standard deviation of the data represeth@nigesults of the tests are calculated.
For the reader who prefers “numbers” instead of “picturtsjles containing all these seven ele-

ments of descriptive statistics are included for all fiverses.
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Tables containing the experimental data and the prograed tessgenerate the data can be

downloaded from our extended paper [136].

1. Borel normality test

Borel normality was the first mathematical definition of ranthess|[137]. A sequence is
(Borel) normal if every binary string appears in the seqeewih the right probability (which
is 2-" for a string of lengtn). A sequence is normal if and only it is incompressible by any
information lossless finite-state compressor [138], sanabisequences are those sequences that
appear random to any finite-state machine.

Every algorithmic random infinite sequence is Borel normd&9]. The converse implication
is not true: there exist computable normal sequences (b@n@ernowne’s constant).

Normality is invariant under finite variations: adding, r@eving, or changing a finite number
of bits in any normal sequence leaves it normal. Further,seéquence satisfies the normality
condition for strings of length+ 1, then it also satisfies normality for strings of lengttbut the
converse is not true.

Normality was transposed to strings in Ref. [139]. In thisqass one has to replace limits with
inequalities. As a consequence, the above two propertieshvare valid for sequences, are no
longer true for strings.

For any fixed integem > 1, consider the alphabBt, = {0,1}™ consisting of all binary strings
of lengthm, and for every K i < 2™ denote byN™ the number of occurrences of the lexicograph-
ical ith binary string of lengthm in the stringx (considered over the alphat®8t). By x|, we

denote the length of. A stringx is Borel normal if for every natural £ m < log,log, |x|,

NP()

X|m

log, [X|
X

—m

for every 1< j < 2™, In Ref. [139] it is shown that almost all algorithmic randsirings are Borel
normal.

In the first test we count the maximum, minimum and differeat@on-overlapping occur-
rences oim-bit (m=1,...,5) strings in each sample string. Then we tested the Borehalaty
property for each sample string and found that almost aligdrpass the test, with some notable
exceptions. We found that several of the Vienna sequendes the expected count range for

m = 2 and a few of the Vienna sequences were outside the experigd form= 3 andm=4
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TABLE I. Statistics for the results for tests of the Borel matity property.

Descriptive statistics min Q1 median Q3 max mean sd

Maple 22430 47170 61990 76130 94510 60210 21933.52
Mathematica 8572 25500 40590 55650 86430 41870 23229.77

Quantis 146800 185100 210500 226600 260000 207200 33515.65
Vienna 77410 340200 350500 392500 260000 337100 103354.3
T 14260 28860 40880 47860 79030 40220 17906.21

(some less then the expected minimum count and some moréghaxpected maximum count).
The only other bit sequence that was outside the expectege @unt was one of the Mathematica
sequences that had a too big of a countifer 1. Figure 1 depicts a box-and-whisker plot of the

results. This is followed by statistical (numerical) detam Tablel.
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FIG. 1. (Color online) Box-and-whisker plot for the resutis tests of the Borel normality property.
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TABLE Il. Statistics for average results in “sliding windbestimations of the Shannon entropy.

Descriptive statistics min Q1 median Q3 max mean sd

Maple 0.9772 0.9781 0.9784 0.9787 0.9788 0.9783 0.00032316
Mathematica 0.9776 0.9781 0.9783 0.9785 0.9800 0.978364HAN936

Quantis 0.9779 0.9783 0.9783 0.9786 0.9795 0.9784 0.0Q®4952
Vienna 0.9772 0.9777 0.9784 0.9790 0.9792 0.9783 0.00@BH5
T 0.9779 0.9784 0.9788 0.9790 0.9799 0.9788 0.0006062724

2. Test based on Shannon’s information theory

The second test computes “sliding window” estimations & 8hannon entropiz, ..., L,
according to the method describedlin [140]: a smaller egti®@a symptom of less randomness.

The results are presented in Figlte 2 and Table II.

0.98F -1

0.979¢ T

0.97¢-

0.978%-
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0.977¢%F

Maple Mathematici Quantis Vienng pi

FIG. 2. (Color online) Box-and-whisker plot for averageules in “sliding window” estimations of the

Shannon entropy.
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3. Tests based on algorithmic information theory

The third test uses the “book stack” (also known as “movedatf) randomness test as pro-
posed in Ref.|[141], 142]. More compression is a symptom o lesdomness. The results,
presented in Figurle 3 and Tablg Ill, are derived from theioaigcount, the count after the appli-
cation of the transformation, and the difference. The keyriméor this test is the count of ones
after the transformation. The book stack encoder does moprss data but instead rewrites each
byte with its index (from the top/front) with respect to itgout characters being stacked/moved-
to-front. Thus, if a lot of repetitions occur (i.e., a symmtof non-randomness), then the output

contains more zeros than ones due to the sequence of inédicesad)y being smaller numerically.

1.4x10°+

1.2x10°+

1.x10° -

8.x 10" .

6.x 10" T e

4.x10% r

. L —1 1

Maple Mathematici Quantis Vienng pi

2.x 10

FIG. 3. (Color online) Box-and-whisker plot for the resudfsthe “book stack” randomness test.

The fourth test is based solely on the behavior of algorithrahdom strings (as selectors for
Solovay-Strassen probabilistic primality test) and nospacific properties of randomness.

To test whether a positive integeiis prime, we takeé natural numbers uniformly distributed
between 1 and — 1, inclusive, and, for each ongcheck whether the predicaté(i,n) holds. If
this is the case we say thati$ a witness of's compositeness”. NV(i,n) holds for at least one
i thenn is composite; otherwise, the test is inconclusive, but ia tase if one declarasto be

prime then the probability to be wrong is smaller tharf.2
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TABLE lll. Statistics for the results of the “book stack” @wmness test.

Descriptive statistics min Q1 median Q3 max mean sd

Maple 7964 34490 49220 69630 108700 53410 33068.58
Mathematica 4508 13020 24110 43450 62570 27940 19406.03

Quantis 28600 60480 87780 106700 156100 89990 41545.76
Vienna 9110 38420 57720 73220 97660 53860 27938.92
T 8551 35480 42100 52870 78410 41280 20758.46

This is due to the fact that at least higdffrom 1 ton— 1 satisfyW (i, n) if nis indeed composite,
andnoneof them satisfyW (i, n) if nis prime [143]. Selecting natural numbers between 1 and
n—1 is the same as choosing a binary stringf lengthn — 1 with k 1's such that theéth bit is
1 iff i is selected. Refl [13] contains a proof thatsif a long enough algorithmically random
binary string, them is prime iff Z(s,n) is true, whereZ is a predicate constructed directly from
conjunctions of negations oY [144].

A Carmichael number is a composite positive integesatisfying the congruence1 =
1(modk) for all integersb relative prime tok. Carmichael numbers are composite, but are dif-
ficult to factorize and thus are “very similar” to primes; yrege sometimes called pseudo-primes.
Carmichael numbers can fool Fermat’'s primality test, bas lthe Solovay-Strassen test. With
increasing values, Carmichael numbers become “rare’ [145]

The fourth test uses Solovay-Strassen probabilistic pityntest for Carmichael numbers
(composite) with prefixes of the sample strings as the biséing s. We used the Solovay-
Strassen test for all Carmichael numbers less thdS-26omputed in Ref.|[146, 147]—with
numbers selected according to increasing prefixes of eawplsastring till the algorithm returns
a non-primality verdict. The metric is given by the lengthtloé sample used to reach the correct
verdict of non-primality for all of the 246683 Carmichaelmhbers less than 18, [We started
with k = 1 tests (per each Carmichael number) and incr&as#il the metric goal is met; as
increases we always use new bits (never recycle) from thelsasource strings.] The results are
presented in Figurid 4 and Table IV.

22



140 1
130 - -
120- -
110- L
1000 [ 1
N N
90+
Maple Mathematic: Quantis Vienna pi

FIG. 4. (Color online) Box-and-whisker plot for the resuitased on the Solovay-Strassen probabilistic

primality test.

TABLE IV. Statistics for the results based on the Solovasa&ten probabilistic primality test.

Descriptive statistics min Q1 median Q3 max mean sd

Maple 93.0 96.0 101.0 113.5120.0 104.9 10.57723
Mathematica 93.0 97.0 109.0 132.3 142.0 113.5 19.60867

Quantis 99.0 103.3 113.0 121.3 130.0 112.6 10.66875
Vienna 82.0 100.3 104.5 109.0 119.0 103.5 11.03781
s 84.0 91.75 106.0 110.8 128.0 104.7 10.66875

4. Test based on random walks

A symptom of non-randomness of a string is detected when Ititegpnerated by viewing a
sample sequence as a 1D random walk meanders less away &atatting point (both ways);
hence the max-min range is the metric.

The fifth test is based on viewing a random sequence as a 1mamalk. Here the bits
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TABLE V. Statistics for the results of the random walk tests.

Descriptive statistics min Q1 median Q3 max mean sd

Maple 67640 88730 126400 162500 180500 125300 42995.59
Mathematica 73500 84760 98110 103400 120300 96450 14685.34

Quantis 138200 161600 209000 250200 294200 211300 55960.23
Vienna 92070 130200 155600 167600 226900 152900 36717.55
T 58570 70420 82800 91920 107500 82120 14833.75

(indices along the-axis) are interpreted as follows: 1=move up, O=move dowax{s). This test
measures how far away from the starting point (in eithertp@sor negative) from the starting
y-value of 0 that one can reach using successive bits of thplea®quence. Figuré 5 and Table V

summarize the results.
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FIG. 5. (Color online) Box-and-whisker plot for the resudfsthe random walk tests.
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C. Statistical analysis of randomness tests results

In what follows statistical tests are used to compare theadiity distributions of results of
randomness tests applied to the strings generated by thedfivees. The Kolmogorov-Smirnov
test for two samples [148] tries to determine if two datasiter significantly. This test has the
advantage of making no assumption about the distributicthetd; i.e., it is non-parametric and
distribution free. The Kolmogorov-Smirnov test returng-@alue, and the decision “the difference
between the two datasets is statistically significant” epted if thep-valueis less thar0.05; or,
stated pointedly, if the probability of taking a wrong déarsis less than @5. Exactp-values are
only available for the two-sided two-sample tests with eg ti

In some cases we have tried to double-check the decisionigndisant differences between
the datasets” at the price of a supplementary, plausibtelion assumption. Therefore, we
have performed the Shapiro-Wilk test for normality [149§laifi normality is not rejected, we have
assumed that the datasets have normal (Gaussian) digtniduln order to be able to compare the
expected values (means) of the two samples, the Welest [150], which is a version of Student’s
test, has been applied.

The Shapiro-Wilk test axamines the null hypothesis thatnaptaz, , . .., z, comes from a nor-
mally distributed population. This test is appropriate $orall samples, since it is not an asymp-
totic test. As for each source ten independent strings haea tudied, we have applied the
Shapiro-Wilk test for a sample sire= 10.

The Welch’st-test [150] is an adaptation of Student’$est used with two samples having
possibly unequal variances. It is used to test the null Hygms that the two population means are
equal (using a two-tailed test).

The calculations have been performed with the softW&'e [151]. In order to emphasize
the relevance of p-values less than 0.05 associated witmégbrov-Smirnov, Shapiro-Wilk and

Welch'st-tests, they are printed in boldface and discussed in the tex

1. Borel test of normality

The results of the Kolmogorov-Smirnov test are presentdébie V.
Statistically significant differences are identified for QuantisversusMaple, Maple, Mathe-

matica andt, (ii) ViennaversusMaple, Mathematica and; and (iii) Quantisversusvienna.
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TABLE VI. Kolmogorov-Smirnov test for the Borel normalitgsts.

Kolmogorov-Smirnov tesp-values Mathematica Quantis Vienna 1t

Maple 0.4175 < 10* 0.00020.1678
Mathematica < 1074 0.0002 0.9945
Quantis 0.0002 < 104
Vienna 0.0002

Note that

(i) Pseudorandom strings pass the Borel normality testdorgarable numbers of counts, rel-
atively small: if the angle bracketx) stand for the statistical mean of tests xynthen
(Maple) = 60210,(Mathematica= 41870,(m) = 40220).

(i) Quantum strings pass the Borel normality test only foruch larger numbers” of counts
((Quantis = 207200,(Vienng = 337100),

As a result, the Borel normality test detects and identifiagstically significantly differences

between all pairs of computable and incomputable sourcgalomness.”

2. Test based on Shannon’s information theory

The results of the Kolmogorov-Smirnov test are presentetalle[VIl. No significant dif-
ferences are detected. The descriptive statistics datdoresults of this test indicates almost

identical distributions corresponding to the five sources.

3. Tests based on algorithmic information theory

The results of the Shapiro-Wilk test are presented in Since there is no clear pattern
of normality for the data, the application of Welch¢est is not appropriate.

The results of the Kolmogorov-Smirnov test associated thighi'book-stack” tests are enumer-
ated in Tabl€ IX. Statistically significant differences atentified for QuantiversusViathematica

andTt
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TABLE VII. Kolmogorov-Smirnov test for Shannon’s informai theory tests.

Kolmogorov-Smirnov tesp-values Mathematica Quantis Viennatt

Maple 0.7870  0.7870 0.7870 0.1678
Mathematica 0.7870 0.4175 0.0525

Quantis 0.4175 0.1678

Vienna 0.4175

TABLE VIII. Shapiro-Wilk test for Shannon’s information d¢lory tests.

Shapiro-Wilk test Maple Mathematica Quantis Viennart

p-value 0.1962 0.0189  0.03450.3790 0.8774

As more compression is a symptom of less randomness, thespomding ranking of sam-
ples is as follows:(Quantis = 899889 > (Vienna = 538638 > (Maple) = 534116 > (m) =

412775 > (Mathematica= 279383.
The Shapiro-Wilk tests results are presented in Table X.

Since normality is not rejected for any string, we apply theldN'st-test for the comparison
of means. The results are enumerated in Table XI. Signifididfierences between the means are

identified for the following sources: (i) Quanti®rsusall other sources (Maple, Mathematica,

Vienna,m); and (ii) ViennaversusMathematica and Maple (as already mentioned).

The Kolmogorov-Smirnov test results are presented in TXHlewhere no significant differ-

TABLE IX. Kolmogorov-Smirnov test for the “book-stack” tss

Kolmogorov-Smirnov tesp-values Mathematica Quantis Viennatt

Maple 0.4175  0.1678 0.9945 0.4175
Mathematica 0.0021 0.1678 0.4175

Quantis 0.1678).0123

Vienna 0.4175
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TABLE X. Shapiro-Wilk test for the “book-stack” tests.

Shapiro-Wilk test Maple Mathematica Quantis Viennart

p-value 0.7880 0.4819  0.7239 0.8146 0.5172

TABLE XI. Welch's t-test for the “book-stack” tests.

p-value  Mathematica Quantis Vienna 1t

Maple 0.0535 0.0436 0.974 0.3412
Mathematica 0.0009 0.0283.1551
Quantis 0.0368 0.0054
Vienna 0.2690

ences are detected. The Shapiro-Wilk test results arergessen Tabld_XIIl. Since there is no

clear pattern of normality for the data, the application al¥ld’st-test is not appropriate.

4. Test based on random walks

The Kolmogorov-Smirnov test results are presented in THB@
Statistically significant differences are identified for) Quantis versusall other sources
(Maple, Mathematica, Vienna arg; (ii) Vienna versusMathematica, Vienna (as already men-

tioned) andt, and (iii) Mapleversusrt

TABLE XII. Kolmogorov-Smirnov test for the algorithmic infmation theory tests.

Kolmogorov-Smirnov tesp-values Mathematica Quantis Viennatt

Maple 0.7591  0.4005 0.7591 0.7591
Mathematica 0.7591 0.7591 0.7591
Quantis 0.4005 0.7591
Vienna 0.9883
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TABLE XIlll. Shapiro-Wilk test for the algorithmic informain theory tests.

Shapiro-Wilk test Maple Mathematica Quantis Viennart

p-value 0.0696 0.0363 0.4378 0.6963 0.4315

TABLE XIV. Kolmogorov-Smirnov test for the random walk test

Kolmogorov-Smirnov tesp-values Mathematica Quantis Vienna 1t

Mathematica 0.1678 0.0123 0.4175 0.0525
Quantis <10* 0.0021 0.1678
Vienna 0.0525< 10~*

T 0.0002

Note that quantum strings move farther away from the sgpimint than the pseudorandom

strings; i.e.(Vienna > (Quantig > (Maple) > (Mathematica> ().

It was quite natural to double-check the conclusion “Quaafid Vienna don't exhibit sig-

nificant difference.” Hence we run the Shapiro-Wilk test gfhconcludes that normality is not

rejected; cf. Table XV.

Next, we apply the Welch's-test for the comparison of means. The results are given4n Ta
ble[XVIl Significant differences between the means are itledtfor the following sources: (i)

Quantisversusall other sources (Maple, Quantis, Vienmg; (ii) Vienna versusMathematica),

Quantis (as already mentioned) amdiii) Maple versusrt

TABLE XV. Shapiro-Wilk test for the random walk tests.

Shapiro-Wilk test Maple Mathematica Quantis Viennart

p-value 0.2006  0.9268  0.5464 0.8888 0.9577
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TABLE XVI. Welch’s t-tests for the random walk tests.

p-value  Mathematica Quantis Vienna Tt

Maple 0.06961 0.0013 0.1409 0.0119

Mathematica <104 0.0007 0.0435
Quantis 0.0143< 1074
Vienna 0.0001

IV. CONCLUSIONS

Our aim was to experimentally study the possibility of digtiishing between quantum sources
of randomness—recently proved to be theoretically incamipe—and some well-known com-
putable sources of pseudo-randomness. The experimeptalaah is based on algorithmic infor-
mation theory which provides characterizations of al¢ponic random sequences in terms of the
degrees of randomness of their finite prefixes. In this théweydegree of incompressibility of a
string is measured with the prefix-complexity, which, utdoately, is incomputable. Fortunately,
there are computable, but weaker properties than incomsipikty which can be tested on pre-
fixes. Of course, such a property is necessary but not suffjge the (degree of) absence of the
property is significant.

We have performed tests of randomness on pseudo-randemgssffinite sequences) of length
232 generated with software (Mathematica, Maple), which adicyso, strongly computable),
the bits ofrt, which is computable, but not cyclic, and strings producgdimntum measurements
(with the commercial device Quantis and by the Vienna IQO®QLQ).

Itis important to emphasize that our aim was to find testsldapat distinguishing computable
from incomputable sources of “randomness” by examiningd]dout) finite prefixes of infinite
sequences. Such differences are guaranteed to exist bgsihie in Ref[[125], but, because com-
putability is an asymptotic property, there was no guamtftat finite tests can “pick” them in the
prefixes we have analyzed [152].

With theseprivisos our empirical randomness tests indicate quantitatiierdihces between

computable and incomputable sources of “randomness;” speeifically:

(i) pseudo-random strings perform very well on Borel noiitgatin fact, too well (some over-
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estimate by more than 2% of length), while the Vienna strrgdich have not been post-
processed—indicate deviations from Borel normality fat t&rings of small length (up to
length 4);

(i) in computing Shannon’s entropy for our sequences weeplasthat the average seems to
be the same for all sources. However, the Vienna sourcedyctww a much flatter “Bell
curve” around its median; the Quantis results are somewdmtliar in that the median is
clearly not centered within the 50% percentile of the en#@sindicating a skewed Bell

curve) and the Mathematica sequences have a few outlididaxife entropy;

(i) in the random walk test quantum random sources (bo#mka and Quantis) seem to move

farther away from the starting point than the pseudo-geoesa

(iv) the test based on the correctness of probabilistis wfgtrimality is more “utilitarian,” as the
metric reflects the length of the sample “random” string seaey for the Solovay-Strassen
algorithm to reach the correct answer; overall, guantunda@an generators appear to be
different from pseudo-random generators; with the Vienmags emerging as the clear

outlier (in all tests with various degrees of confidence);

(v) the behavior ofrt (computable, but not cyclic) is interesting: in tests 1, 4 &rthe results
are closer to Mathematica and Maple, in tests 2 and 3 thetsdsuit stands out (above) of

all others in the direction of possibly being “more” randaaegording to these test metrics).

The statistical analysis of the randomness tests showsh@dorel normality test is the best
test (from our collection) for detecting and differentrgtibetween the computable and incom-
putable random sources; the random walk test and the “btaak’sfollow in efficiency. The
Shannon test and the test based on probabilistic primagityabior [128] do not produce statisti-
cally significant results. In the first case the reason mayectsom the fact that averages are the
same for all samples. In the second case the reason may be thesfact that the test is based
solely on the behavior of algorithmic random strings andamoa specific property of randomness.

The pair of tests based on Borel normality and random walkmde address complimentary
properties helping to distinguish well between computalbl& incomputable sources of “random-
ness.” Pseudo-random strings perform better than quantimgs for the Borel normality test.
One could speculate that pseudo-randomness incorpdnatdsuman” perception of randomness,

which is strongly associated with uniform distribution;dantrast, quantum randomness has no
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such bias. Quantum random bits tend to take a longer timatthreiniform distribution”—which
is an asymptotical property—than pseudo-random strings.

Our analysis indicate normality of the (finite) quantum sauees for longer test strings, but
violations of normality for a few small length test stringg(to length 4). Notice that for finite
sequences of quantum or other origin, normality needs nsatisfied for all test strings; hence the
derivations cannot be taken as a clear signal of a violati@oecel normality stemming, say, from
a lack of independence. With these caveats, a conceivgideykative and by no means necessary)
physical explanation of this violation of normality for testrings of small length would be that,
due to photon (Bose-Einstein) statistics and the HanbuiopyvB-Twiss effect (“photon bunching;”
i.e., the tendency of photons to arrive in identical stateslependence and thus Borel normality
might be violated for “small” groups of data. In this line diought, for larger sequences a sort of
“late randomness” becomes visible, as the short-term lediwas disappear in time. In contrast,
for the random walk test, which addresses a global type o&webr rather than a local one,
guantum strings perform better: they tend to move farthexryanom the starting point.

A few more caveats are in order. As expected, our resultcatelisome tendencies only.
As this is a first attempt to experimentally distinguish catgle from incomputable sources of
“randomness,” much more work is necessary to understarsk ttifferences. New tests should
be designed to reflect the asymptotic differences. We maxk with longer strings of bits to
trespass the cyclicality of the pseudo-random generaf@8]] We suggest that there may be
different types of “quantum randomness” correspondingii@reént forms of quantum indeter-
minism (e.g., entanglement, Bell's theorem, Kochen-Seettieorem). Finally, our experimental
results clearly cannot, and do not aim, to “prove” in any falnwvay the superiority of quantum
random generators over the best pseudo-random ones faicptapplications; the only superi-
ority is asymptotic, and resides in the differences betwmsnputable and incomputable sources

proven in Ref|[125].
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