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Abstract

For several decades, increasing attention has been given to the improvement of the quality

of DNA mixture evidence interpretation, because of its importance in resolving problems

in criminal investigations. Peaks at different positions along a molecular weight axis in

an electropherogram (epg) are known to correspond to the alleles in a DNA sample, and

these alleles can be used to describe differences between individuals. The process of

DNA mixture interpretation largely involves probability and statistical models. Contin-

uous probabilistic models ensure relatively greater objectivity and consistency between

analysts than do other types of models. Implementing such models requires statistical

models for PCR phenomena such as stutter. A peak at an allelic position, generally one

repeat unit lower than a ‘parental’ peak, and usually with a height lower than the parent

peak height, is called a ‘stutter’. The presence of stutters in an epg presents a problem

in DNA mixture evidence interpretation. Therefore, practitioners search for sophisticated

methodologies to model the contributions of stutters and real alleles to the peak height

in order to make the interpretation more accurate. In modelling PCR stutter, the stutter

ratio (SR) which represents the proportion between the observed stutter peak height and

the parent allelic peak height is generally used.

This research reviews the existing models for SR and develops new, advanced, Bayesian

models for increased accuracy in predicting stutter. The developed models include non-

hierarchical, hierarchical, and infinite mixture models. In these models, the longest un-

interrupted sequence (LUS) of an allele was used as the key covariate in explaining the

behaviour of SR. For hierarchical and non-hierarchical models, standard model evalua-

tion techniques, including information criteria such as AIC, BIC, DIC, and WAIC, cross-

validation measures, and Bayesian p-values, were used considering their limitations and

appropriateness under different modelling conditions. Initially, eleven non-hierarchical

models, including six new models and five models developed in previous studies for pre-

dicting SR, were evaluated. Next, hierarchical models corresponding to seven of these

models were investigated. Finally, the study used an algorithm based on the collapsed

Gibbs sampling that uses the Chinese restaurant process as a non-parametric Dirichlet

process prior, for fitting an infinite mixture of simple linear regression models for SR

using LUS as the predictor. The overall contribution includes improvements in the pre-

diction of PCR stutter through various Bayesian modelling techniques, an extension of

infinite mixtures to the linear regression case, and advances to the collapsed Gibbs sam-

pling algorithm that uses CRP as a non-parametric Dirichlet prior.
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Chapter 1

Literature Review

1.1 Introduction

Forensic DNA analysis has received much public attention over the last thirty years be-

cause of its incredible usefulness in criminal investigations. It has become an extraor-

dinarily powerful technique in forensic science. It has also had considerable scientific

scrutiny, mainly in response to changes in science and legal challenges. The field of

statistics is paramount in DNA evidence interpretation because of the intrinsic probabilis-

tic nature of the problem. Statistical DNA interpretation is one of the most mature fields

in forensic science, which uses knowledge from the fields of: statistics, population ge-

netics, and molecular biology [146]. This has been in existence longer than any of the

current technologies used for typing the evidence, because the same basic ideas generally

apply, regardless of how the evidence is typed. Consequently, there exists a large body of

literature devoted to this subject, which reflects its importance in the legal and scientific

community.

In a typical criminal case, biological materials such as blood, semen, saliva, or other

body tissues, may be recovered. These materials may have been exposed to a range of

surface or environmental conditions, and this can affect their usefulness to the investi-

gator. The materials are taken to a forensic laboratory where a scientist will attempt to

extract DNA using reagents specially designed for this task. The amount of template

DNA extracted is often very small, in the range of 50 to 100 picograms (10−12 g). There-
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1.1. Introduction

fore, forensic biologists amplify the template DNA using the polymerase chain reaction

(PCR) process. This amplification allows length variants in the DNA, called short tandem

repeats (STRs), to be detected by measuring relative fluorescence when the sample is ex-

posed to laser light. The resulting signal is collected by a photomultiplier and displayed

graphically as an electropherogram (epg).

The epg consists of a trace signal displayed on a molecular weight axis, which is

mostly flat with peaks in various locations. The presence of a peak corresponds to the

alleles present in the DNA sample. Crudely, alleles are variants or polymorphisms of a

gene, which can be used to describe differences between individuals. The heights of the

peaks are approximately proportional to the amount of template DNA present. This quan-

titative information (as opposed to the discrete allele information) can greatly enhance the

interpretation process.

A genotype at a locus consists of two alleles, each inherited from the donor’s bio-

logical mother and father. The alleles for each locus are usually denoted by integer, or

occasionally decimal values in the epg. If the pair of alleles is identical at a given locus,

then the individual is said to be homozygous at that locus. In contrast, if they are different,

the person is said to be heterozygous at that locus. Modern forensic labs are well-equipped

with various commercial multiplexes and each multiplex tests a distinctive collection of

STR loci.

1.1.1 Characteristics of an Electropherogram (epg)

A hypothetical example of an epg (Figure 1.1) is used to illustrate some key character-

istics of an ideal DNA profile. The epg illustrates peak height information of three loci

corresponding to a biological sample originated from a single-source. Each allele pos-

sesses an 800 rfu (relative florescence units) signal. The individual is homozygous at the

Locus B and heterozygous at the other two loci. As a consequence of allele masking at the

Locus B, the peak height is almost double compared to other peaks of the heterozygous

loci. Either peak height ratio (PHR) or heterozygote balance (or imbalance) is used to

describe the degree of balance (or imbalance) between two peaks at a locus of an epg.

The heterozygote balance is regarded as a PCR artefact. The possible reasons for this

2



1.1. Introduction

Figure 1.1: A hypothetical example of an epg

are unequal sampling of starting templates, and unequal amplification of two alleles of

a heterozygote due to natural variation in the PCR process [31]. The peak height of one

particular allele is compared with the corresponding height(s) of sister allele(s) in defining

both measures. The PHR of a locus is also called intra-locus balance and, for this exam-

ple, it is 100% at each locus. The presence of an epg with the above characteristics makes

the interpretation much easier and provides a greater confidence that a profile originated

from a single source. However, there are some critical issues that arise from epgs which

originate from real-world biological samples, and they often create severe challenges, dif-

ficulties and uncertainties in the interpretation of DNA profiles. Figure 1.2 is a part of an

epg, which consists of peak height information for two loci (D10S1248 and vWA), and it

illustrates some practical problems associated with real world data. There are two major

peaks in each locus and the vWA locus exhibits a relatively high PHR compared to the

D10S1248 locus. In the D10S1248 locus there are two minor peaks located at allele po-

sitions 11 and 14. Another minor peak is located at allele position 15 in the vWA locus.

If it is assumed that the questioned biological sample corresponding to this epg contains

DNA from a single donor, then these three minor peaks are categorised as ‘stutters’. A

detailed description on stutter and stutter mechanism is provided in section 1.1.3.

Biological samples containing very low quantities of template DNA are designated as

3
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Figure 1.2: An example of an epg (peak heights in rfu)

Source: Torben Tvedebrink [167]

LCN (low copy number) or LtDNA (low template DNA) samples [30]. Modern forensic

laboratories can retrieve DNA from items where the DNA has been transferred only by

casual handling of evidential items. Many of these ‘touch DNA’ samples can also be

classified as LCN samples. The analysis of these is very challenging due to low quantity

of DNA available. The LtDNA profiles tend to be severally affected by profiling artefacts.

A higher incidence of heterozygote imbalance is an example for profiling artefacts, which

often creates problems in standard profiling of donors with heterozygote loci. Both allelic

drop-out and allelic drop-in are also regarded as profiling artefacts.

The condition where an allele cannot be visualised is known as allelic drop-out.

Mostly, when one allele of a heterozygote cannot be visualized, the drop-outs are ob-

served. The stochastic variation in the PCR process has been identified as the reason for

this non-visualisation [81]. The appearance of extra alleles in a profile in addition to the

alleles of donors is called drop-in. Very small quantities of contaminant DNA is the po-

tential cause of this. However, the presence of allelic drop-in is an occasional incidence

even with LtDNA.
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1.1.2 Analytical and Stochastic Thresholds

The background noise (observation of tiny peaks) in the epg is another issue which makes

some difficulties in the interpretation of complex biological samples. The uncertainty in

the classification between real alleles and background noise is expected to be minimised

with the use of minimum signal thresholds. In many applied scientific fields, thresholds

are often used for the practical convenience in discriminating between two states [28]. The

transition between two states is gradual. Therefore, theoretical or empirical thresholds are

often applied to delineate the two states. However, strictly defined thresholds can cause

problems in decision making especially when an observation is close to the threshold. In

the field of forensic genetics, laboratory defined thresholds are used to designate alleles

and stutters based on peak height information derived from the epg. These thresholds can

be very useful as they may simplify interpretation, but the simplification comes at some

cost. Binary decisions, such as these, may be wrong and consequently can have drastic

effects on interpretation.

An analytical threshold is defined as the minimum height requirement of an epg to

differentiate real allelic peaks from background noise (artifactual peaks). They are condi-

tionally defined based on the sensitivity of the genotyping instruments; hence, each labo-

ratory establishes their own thresholds based on an analysis of internally derived signal-

to-noise data. Most of those empirically derived thresholds vary in a range from 30 rfu to

50 rfu.

Stochastic thresholds are used with the presence of a relatively low single peak at a

specific STR locus. The observed peak height is compared with a threshold and desig-

nated as either a homozygous or a heterozygous genotype. Generally, empirically derived

stochastic thresholds vary between 150 rfu to 300 rfu. A single peak appearing between

the analytical and stochastic thresholds is regarded as a potential heterozygous genotype

whose sister allele is believed to have dropped out. In contrast, a single peak locating

above the stochastic threshold would be designated as a homozygous genotype because

drop-out is considered as fairly unlikely in this situation.

There are a number of proposed methods for the derivation of thresholds in the litera-

ture. Gill et al. [85] proposed a method based on a logistic regression, which provides a
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way to evaluate the risk of a false designation of a heterozygote as a homozygous geno-

type. The risk levels were determined based on an experimental dataset of low-template-

DNA, which includes extreme drop-outs. A graph of extreme drop-out probabilities (cal-

culated upon the fitted logistic regression model) against the height of an existing sister

allele visualises how likely a sister allele of an observed single allele having dropped out.

Tvedebrink et al. [168] also employed a model based on logistic regression, to estimate

the allelic drop-out probabilities of STR alleles and have shown the locus-specific depen-

dency of these probabilities. In addition, the variations in the drop-out probabilities due to

different typing kits for profiling and the use of diverse machinery even within the same

laboratory have been highlighted and recommended to use machine-specific estimates of

the parameters for the logistic regression model.

1.1.3 Stuttering and the Stutter Mechanism

A peak at an allelic position, generally one repeat unit lower than a parental peak, and

usually with a height lower than the parent peak height, is called a stutter. Slippage

(shadow band) [94] or miscopying [27] during the PCR process is presumed to be the

reason for it. The magnitude of stutter product is often measured in terms of a ratio or a

proportion. The ratio of observed peak height relative to the corresponding parent allele

height is defined as the stutter ratio (SR). The stutter proportion, in contrast, is defined

as the proportion of observed height compared to the sum of the stutter and allele peak

heights. However, stutter proportions are not as frequently used as the SR. There are

several modes of stuttering, the most common of these being back stutter. The modes

of stuttering are described with names corresponding to their positions relative to the

parent allele location. A stutter peak in a position that is one repeat unit lower than the

parent peak is called a back stutter, negative stutter, or reverse stutter [31]. This is the

most commonly observed type of stuttering. On rare occasions, stutters may occur at

positions that are two repeat units lower or one repeat unit higher than the corresponding

parent allele. These two uncommon situations are labelled as double stutter (double back

stutter) and over stutter (forward stutter or positive stutter) respectively [31, 157]. The

stutter ratios (or heights) of double back stutter and forward stutter are always smaller
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than the back stutter for a given allele. However, interpretation of mixtures with any of

these two types of stutters is as complicated as with back stutter.

Traditionally forensic laboratories have used rule-based approaches to designate stut-

ters. Stutter thresholds are not directly defined for observed peak heights, unlike analytical

and stochastic thresholds. Rather, stutter thresholds are defined in relation to stutter ratios.

The stutter threshold applied for a 28-cycle PCR is generally 10% [27] while universal

stutter thresholds used in laboratories can vary from 10% to 20%, with the consideration

of outliers [31]. However, stutter thresholds within this range are quite generous and most

of the stutter peaks are less than 5% of the parent allele height. The mean stutter ratio

usually remains below 15% even for LCN profiles. However, stochastic effects mean

that even larger values are possible. Locus-specific stutter thresholds (upper-limit) are

empirically defined as either three standard deviations (SD) above the mean SR or the

largest observed SR. Rarely, the value that is three standard deviations beyond the empir-

ical maximum of stutter ratios is also used as the threshold. The estimated locus-specific

thresholds vary across different Applied Biosystems STR Kits. Table 1.1 summarises the

estimated stutter thresholds recommended in user manuals for the D18S51 STR locus.

According to the information available in the table, the inherent properties of STR kit and

the statistical method (mean stutter + 3 SD, the empirical maximum, or the largest ob-

served stutter + 3 SD) can be identified as the key factors affecting locus-specific stutter

thresholds. If a suspected peak has a lower percentage peak height (relative to the height

of the parent peak) than the given threshold, then the peak is classified as a stutter.

1.1.4 DNA Mixtures

A biological specimen being tested containing DNA contributions from two or more indi-

viduals is called a mixture profile. Vaginal swab collected from a rape victim, body fluid

(e.g. saliva and blood) of a perpetrator recovered from the surface of victim’s skin, and

contaminated single source crime samples are examples of possible mixture profiles. The

unintentional introduction of exogenous DNA into a biological sample or PCR is known

as contamination (SWGDAM 2012) [160]. Such detection of exogenous DNA originated

from reagents, consumables, operator and/or laboratory environment can be evaluated

7
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Table 1.1: Stutter thresholds recommended for the D18S51 locus across different Applied
Biosystems STR Kits

STR Kit Stutter threshold (%) Method of calculation

Identifiler Direct 12.9 mean stutter + 3 SD (N = 669)
Profiler Plus < 13 highest observed stutter
Identifiler Plus 13.7 mean stutter + 3 SD (N = 500)
NGM SElect Express 13.8 mean stutter + 3 SD (N = 668)
NGM SElect 13.8 mean stutter + 3 SD (N = 1080)
NGM 13.9 mean stutter + 3 SD (N = 996)
NGM Plus 16.0 highest observed stutter + 3 SD
SEfiler Plus 16.4 highest observed stutter
Identifiler 17.0 highest observed stutter
MiniFiler 18.0 mean stutter + 3 SD (N = 668)

Source: Advanced topics in forensic DNA typing: Interpretation [31]

using both known and control samples. Contamination assessment is an important re-

quirement of internal validation processes. The police or other individuals who access the

scene of a crime may be other potential sources of contamination.

The key characteristics of a mixture profile are: the appearance of more than two al-

leles at multiple loci and the presence of several loci with only one pair of alleles that

exhibit fairly extreme peak imbalance [31]. Amelogenin, the sex-typing marker, pro-

vides some decisive information to distinguish between male and female contributors in

a mixture profile. A severe imbalance in the amelogenin X and Y alleles recommends a

male-female mixture profile with the female as the major contributor.

The analysis of complex mixtures like this has always been problematic in evidence

interpretation. Models that rely solely on expert judgement are susceptible to analyst’s

specific biases or misinterpretation. In contrast, the use of continuous probabilistic models

which assign a non-zero weight (probability) for each possible genotype significantly

enhances the use of continuous peak height information and makes it possible to produce

very efficient reliable interpretations.

A study conducted by Dror and Hampikian [54] described the subjectivity and the

bias in forensic DNA mixture interpretation. The study selected a DNA mixture profile

from an actual adjudicated criminal incident related to a gang rape case. According to the

study, the same evidence had been presented to an independent group of 17 expert DNA

8
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Figure 1.3: A hypothetical epg with unknown contributors

analysts (including 2 PhD, 12 M.Sc. and 2 B.Sc. qualified experts) who were working

in forensic casework in a reputed forensic laboratory in North America. These examin-

ers independently analysed the same source of information used by the original forensic

experts, and this included the DNA mixture profile of the questioned biological sample

recovered from the rape. Only one of them came up with a conclusion that was similar

to the original experts’ conclusion. The inconsistencies between the original decision and

the decisions of the expert panel clearly emphasise the risk of using experts’ judgement

methods in evidence interpretation.

1.1.4.1 How do stutters complicate mixture interpretation?

Analysis of mixed stains can be seriously affected by stutter peaks in the epg and in

particular when the contributions of DNA are very unequal [176]. A complex mixture

containing many contributors enhances the possibility of allele sharing, and increases the

uncertainty of the associating genotypes of contributors. Thresholds become very difficult

to apply in complex mixture cases.

As previously mentioned, stuttering can seriously complicate the interpretation of

DNA mixtures. In order to illustrate this issue, a small hypothetical example is presented.

Figure 1.3 is an idealisation of an epg without any knowledge of the contributors. Some

of the possible explanations for the epg are listed below.

1. A mixture of two heterozygous contributors – a (13, 16) major and a (12, 15) minor

contributors

9
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2. A single heterozygous contributor – a (13, 16) contributor with two stutter peaks at

12 and 15

3. A mixture of two heterozygous contributors (subject to a severe heterozygous im-

balance) – (12, 13) and (15, 16) contributors or (12, 16) and (13, 15) contributors

4. A three-person mixture with two homozygous major contributors – (13, 13), (16,

16) major and a (12, 15) minor contributors

5. A two-person mixture of two homozygous contributors – (13, 13) and (16, 16)

contributors with two stutter peaks at 12 and 15

In some recent publications [11, 47, 78, 84, 86, 152], stutters have been discussed in the

context of DNA mixtures. Analysis of evidence is always problematic with the presence

of mixtures. The analysis of a crime scene stain which is assumed to be contributed by

only two individuals is the simplest situation of mixtures. However, matching of infor-

mation related to the stain is very important in evidence interpretation. In a two-person

mixture, where major and minor contributors can often be distinguished and the minor

component matches with the suspect (e.g. analysis of vaginal swab recovered in a rape

case), the ambiguity of minor peaks may severely affect the interpretation of evidence. In

contrast, in some situations, a match between the minor peaks and the victim (e.g. analy-

sis of the evidence recovered from finger nail tip of a suspect in a rape case) may also be

very complicated. Therefore, the ambiguity of a match between the minor peaks and the

suspect or the victim is conditionally dependent on the circumstances of the crime.

If we assume that this is a two person mixture, and both contributors are heterozy-

gous at this locus and there is no allele sharing, then all the four peaks represent real

alleles. However, if a single contributor situation is assumed, then both minor peaks are

interpreted as stutters corresponding to their parent alleles.

Assume that there are two typed individuals who are alleged to have contributed to the

crime stain. Furthermore, one is a victim and his/her contribution is not disputed by either

the prosecution or the defence and is of type 13, 16. The defence may argue that their

client (of type 12, 15) was not a contributor and that 12, 15 are stutters or 12, 15 belongs to

another random individual. In this particular situation, a match between the minor peaks
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and the suspect makes an ambiguity of minor peaks and it may severely impact on the

interpretation of evidence.

Forensic practitioners believe that heterozygous balance varying between 0.6 and 1.66

is fairly acceptable. Therefore, it is obvious that the ratio of peak heights between a pair

of heterozygote alleles (heterozygote balance) cannot be far away from unity. Therefore,

in this situation, where the minor component matches the suspect, the most credible com-

bination of major and minor contributors is (13, 16) and (12, 15) respectively. Under these

circumstances, the major and minor contributors are the victim (V) and the suspect (S)

respectively. When this case is taken to a court, the prosecution would propose that both

suspect and victim share the evidence. However, the defence would claim that (12, 15)

are not real alleles but stutters.

The following pair of propositions summarises the issue in the court.

Prosecution Proposition (HP) - The evidence contains the victim’s and suspect’s DNA

(both peaks at 12 and 15 are real alleles)

Defence Proposition (HD) - The evidence contains the victim’s and some other person’s

DNA or both minor peaks at 12 and 15 are stutters and the evidence contains only

the victim’s DNA

In reality, the truth lies between the two extremes that both 12 and 15 peaks are either

allelic peaks or stutters. Therefore, a sound methodology to distinguish between stutters

and real alleles is essential for the accuracy of the interpretation. Sensibly, any such

method has to be able to focus on modelling stutter peaks.

1.2 The Statistical Evaluation of DNA Evidence

Generally, in forensic genetics, each individual’s DNA is believed to be unique with the

exception of identical twins. The standard DNA profile largely depends on the resulting

post-amplification product of PCR process, which uses a tiny sample of donor’s entire

DNA in amplification. Hence, irrespective of the uniqueness of an individual’s DNA,

there could be a random match between a particular crime scene profile and a random
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person who does not have any relationship with the crime. Therefore, the forensic DNA

evidence interpretation is explicitly probabilistic and the role of statistics is vital.

The classical profile probability and the likelihood ratio (LR) are the two approaches

used to report DNA profiles [83]. The probability of evidential DNA profile under a spe-

cific given hypothesis is conveyed in the profile probability approach. The likelihood

ratio approach, the one which is focused on in this study, is (now) the favoured method

for presenting forensic evidence in the court in many jurisdictions. It links the evidence

related to two hypotheses (propositions): prosecution (Hp) and defence (Hd). The prose-

cution hypothesis claims that the accused is the donor of recovered DNA from the crime

scene. The defence hypotheses, in contrast, claims that an unknown person who is not

blood-related to the accused is the donor of DNA. Then the ratio of the probabilities of

the prosecution hypothesis to the defence hypothesis is defined as LR.

There have been many different approaches suggested for the evaluation of forensic

evidence. However, this thesis believes that correct approach is a Bayesian approach.

Bayes’ theorem is a statistical representation of the logical process of updating one’s

beliefs on the basis of evidence. It is not hard to see the connection of this theory to the

legal process. Forensic statistics uses the odds form of Bayes’ theorem. That is,

Pr(Hp|Evidence)
Pr(Hd|Evidence)︸ ︷︷ ︸
Posterior Odds

=
Pr(Evidence|Hp)

Pr(Evidence|Hd)︸ ︷︷ ︸
Likelihood Ratio

×
Pr(Hp)

Pr(Hd)︸ ︷︷ ︸
Prior Odds

Conditional probabilities along with the Bayes’ theorem are used to calculate the LR, in

presence of more information and/or conditions. The third principle of evidence interpre-

tation (“Scientific interpretation is conditioned not only by the competing propositions,

but also by the framework of circumstances within which they are to be evaluated”) pro-

posed by Evett and Weir [59] is used in calculating LR whenever the non DNA background

information related to the crime scene is available. The DNA evidence is used to infer the

questioned genotype, and to compare it with a suspect genotype relatively to a reference

genotype population to assess the strength of match [135]. This assessment is performed

using LR, and it is also used to discriminate two hypotheses with regard to DNA evidence.

It determines which hypothesis is more likely to be true under the given evidence.
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Likelihood ratio often appears in different forms of mathematical formulation and

scientific interpretation. Perlin et al. [134] examined the following forms of LR and

proved mathematical equivalence among them.

1. Hypothesis form calculates the information gain in hypothesis as the ratio between

the posterior odds and the prior odds of the hypothesis.

2. Likelihood form considers both identification and alternative hypotheses, and cal-

culates the information gain in likelihood as the ratio between the likelihood of data

given the identification hypothesis and the same likelihood given the alternative

hypothesis.

3. Genotype form calculates the information gain at the suspect’s genotype as the ratio

between the probability of evidence genotype and the probability of coincidental

genotype.

4. Match form calculates the information gain in match as the ratio between the prob-

ability of evidence match and the probability of coincidental match.

The presence of mixtures, close relatives or an involvement of partial profiles create

more complicated evidence, and the use of LR to communicate the strength of evidence

becomes more important [146]. In the presence of a mixture with different numbers of

contributors, the genotype probabilities can only be compared with LR.

In a criminal investigation, a forensic scientist or an expert witness is invited to give

the court an assessment of the weight, or value, of the evidence. This is reduced to the

following form to simplify the evaluation of DNA evidence

∑
j

w j Pr(S j|Hi) (1.1)

where

Hi – the of hypothesis of interest (e.g. only the victim and suspect have contributed

to the stain),

S j – a set of possible genotypes, and
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w j – the weight representing the possibility that S j can explain the evidence.

There are four competing models for the interpretation of DNA evidence. These are usu-

ally referred to as: classical, binary, semi-continuous, and continuous. They essentially

differ in their definitions of the weights w j. The classical model takes no account of

peak height information. It therefore regards every feasible genotype set S j as having a

weight of w j = 1. Feasibility is defined in terms of the genotype combinations that com-

pletely describe the alleles observed in the crime scene stain. The classical model cannot

deal with PCR artefacts such as drop-in, drop-out, stutter, or uncertainty in input param-

eters. The relative advancements in binary, semi-continuous, and continuous models are

reviewed with more details in the following section.

1.3 Models for DNA Interpretation

There are two Bayesian models used for the interpretation of DNA evidence, namely,

binary and continuous. However, in the recent past, models that are able to overcome

some of the problems in binary model have been identified as semi-continuous models

[104]. The following sections review background literature on these three models and

discuss their relative advancement in terms of the ability to use the epg information for

LR calculation.

1.3.1 Binary Models

A binary model combines the experience of experts and sets of empirically derived rules

during the probability assignment as weights in Equation 1.1, and considers a much wider

set of genotype combinations than the classical models. Based on empirical guidelines

that take peak height information into account, an expert decides whether any of all pos-

sible genotype combinations at a locus can be excluded. The model assigns the values

0 or 1 to the unknown probability Pr(O|S j) (the probability of observed crime stain O

given genotype combination S j), based on whether the analyst’s judgement on possibility

and selecting them as either included (weight = 1) or excluded (weight = 0). The binary

model primarily assumes: [27]:
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- approximately equal locus-specific mixture proportions,

- proportionality between the quantity of DNA peak area, and

- that the total contribution of two individuals equals to the area of shared peaks.

Since the binary model combines the experience of experts and a set of empirical guide-

lines when assigning the weights, it has been classified as a manual method which can be

used for the resolution of two-person mixtures. That means application of a binary model

is very difficult with higher order mixtures due to the extensive involvement of mathe-

matics. The assignment of discrete weights (0 and 1) will lead to increasing the risk of

less accurate decisions because it does not assign weights for every genotype combina-

tion. This problem is critical in complex mixtures and LtDNA (low-template DNA) where

there exist stochastic factors that make interpretation more complex. Failure to consider

the value of peak height and inability to deal with PCR artefacts are the major shortfalls

in the binary model.

1.3.2 Semi-continuous Models

Semi-continuous models explicitly model stochastic phenomena such as drop-out and

drop-in (contamination), and assign probabilistic weights [11, 168, 169]. This leads to

partially resolving the problems in binary models discussed above. However, the differ-

ences in capabilities of both PCR amplifications and light intensity measuring systems

for the epg, result in variations in the drop-out probabilities. The variations can be seen

across laboratories, machineries, and typing kits used for profiling. Treating probability

of drop-out as a random variable and integrating it out can be a solution for these prob-

lems. Although it is difficult because the probability distribution of drop-out is not fixed

across cases [104], implementations of discrete models incorporating these probabilities

are recently found [141]. In summary, even semi-continuous models are not capable of

assigning different weights for all genotype combinations in complex mixtures and have

significant problems in using information available with peak heights.
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1.3.3 Continuous Models

Binary and semi-continuous models, assign zero probability (weights) for many genotype

sets S j. Hence, compared to these two models, continuous models may consider more

genotype sets as they allow the associated weights in Equation 1.1 to vary from zero to

one (0 < w j < 1). Since the weights can be any continuous value between 0 and 1, the

model is known as the continuous model. Using a suitable model for peak heights for

all the peaks in the profile, a fully continuous model assigns a value to the probability of

the observed peak, given any particular genotype combination [104]. A “good” explana-

tion gets a weight close to one and a “poor” explanation receives a weight close to zero.

Since the weights can assume any value from 0 to 1, continuous models ensure high reli-

ability in evaluation of DNA evidence. However, statistical models for PCR phenomena

(and computer software) are required to implement the continuous models. Diagnosis of

true alleles from epg peaks, decision of possible allelic combinations, and stutter alloca-

tions are some problematic scientific decisions involved in developing these models. The

essence of continuous models is the use of epg peak heights as a source of quantitative

information to determine the probability of peak heights given all possible genotypes.

Two types of continuous models: normal approximation based methods and MCMC

(Markov Chain Monte Carlo) methods have been discussed by Buckleton et al [27]. A

program called “BETAMIX” was developed based on the normal approximation-based

method. However, the effect of stuttering was not assessed and heterozygous balance

was not modelled appropriately in BETAMIX. Buckleton et al. [27] considered MCMC

approaches as superior against normal approximation based approaches as they do not ad-

dress PCR artefacts. MCMC simulation methods can probabilistically deal with complex

interaction of preferential amplification, stuttering, and other PCR artefacts or sampling

effects such as drop-out and drop-in [27]. Following are the key assumptions of MCMC

models:

- approximately equal locus-specific pre-amplification mixture proportions

- proportionality between peak area and the quantity of DNA

- the total contribution of two individuals equals to the area of shared peaks
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- the contributions from other sources and stuttering can be combined together

However, some practical problems of using MCMC methods for DNA evidence inter-

pretation could be highlighted. These methods drastically increase the complexity of the

method of DNA evidence interpretation. In the courts point of view MCMC methods can

be termed as “black box” type methods. The ability of lawyers, forensic scientists, juries,

and judges to understand them is relatively low. MCMC methods introduce an additional

problem, which is not a problem for the statisticians but the court. It could be difficult to

understand why the answers are not the same from run to run. MCMC procedures do not

give exactly the same result every time unless the use of a random number seed.

It is hard to know whether the MCMC methods do or do not explore the full genotype

space. However, genetic calculators consider all possible genotype combinations that

are indicated by the electropherogram. The number of genotype combinations that need

to be considered within each locus is massively large when drop-in and drop-out are

taken into account. Genetic calculators like STRmixTM and Cybergenetics TrueAllele R©

consider every possible genotype combination for different contributors at each locus.

Even though it considers a large number of combinations as a Bayesian system, only a

few of them will be plausible and informative. All the unrealistic genotype combinations

are rated only with extremely low probabilities. The combinations that exhibit a good

explanation between them are obviously justified with higher genotype probabilities. The

locus-specific posterior probabilities of every possible genotype are calculated for each

contributor and used them to calculate the likelihood ratio of any interested genotype.

Inefficiencies of MCMC methods in evaluating higher order mixtures and dealing with

PCR artefacts have been highlighted in literature [46, 47]. Buckleton and Gill [26] have

obtained a patent for their MCMC method that uses a distribution to allow more variation

in heterozygous balance when the peak areas are low. Evett has used this methodology

to develop a prototype named “Mixtures Full Monte” (MFM). A heterozygous balance

model, an assumed stutter model, and a known mixture proportion (MX ) with no stochas-

ticity were used when creating MFM. All these models or methods provide sufficient ev-

idences for the ability of MCMC methods to use all types of continuous epg information.

Therefore, these methods can be identified as the most prominent recent trend in quanti-
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tative DNA mixture interpretation models that use either peak height or area information

[47].

1.4 Statistical Modelling of Stutter

The presence of stutters in an epg has been known for a long time as a problem in DNA

evidence interpretation. As it always makes the mixture interpretations complicated, prac-

titioners have started to use some ad-hoc approaches though these do not work all the

times. As mentioned previously, a peak in a stutter position with a height not exceeding a

laboratory defined threshold value, and not masking as an allele of a potential contributor

is suspected as a stutter peak. The ad-hoc rules are defined based on the ratio between the

height of the suspected peak and the height of related parent peak. Many of these ratios

are lower than 0.05, while a very generous value like 0.15 is used in the ad-hoc rules, as

the threshold.

There have been various efforts in recent publications to deal with the issue of stutter

peaks with quantitative information. Buckleton et al. [27] emphasised the importance of

using peak height or peak areas in analysing DNA mixtures. Evett et al. [58], Gill et al.

[82], and Buckleton et al. [25] used quantitative information from peak heights or peak

areas to improve interpretation. Neither binary nor semi-continuous models can handle

PCR stutter. However, most recent research has focused on continuous models because

they avoid “black and white” binary decisions. Buckleton et al. [27] emphasised the

importance of understanding the behaviour of non-mixtures before interpreting a potential

mixture. According to their recommendation, a dataset consisting of single source profiles

is the best to study the behaviour of stutters. In addition, they highlighted the usefulness

of analysing stutter in terms of stutter ratio. Although back stutter is the most common

phenomenon, forward and double back stutter also have some complicating influence on

forensic DNA mixture interpretation.

Cowell et al. [45] presented a methodology based on a gamma distribution, for iden-

tification and separation of DNA mixtures. Even though the methodology used the peak

area values of epg, it was not capable in taking into account the PCR artefacts including
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stutters. Extending the methodology adopted in this study, these researchers have pre-

sented another coherent probabilistic framework [46]. Based on the continuous peak area

values obtained from the epg, the new probabilistic expert system (PES) addresses the

issue of stutters, silent alleles, and allelic drop-outs. According to this PES, the observed

peak height of an allele at allele position a is assumed to be affected by two possible

effects of stuttering. If there is a back stutter at allele position a− 1, the peak height of

the allele at a can be reduced. However, in case of a back stutter in relation to a parent

allele at allele position a+1, the peak height of the allele at position a can be increased.

Considering these two facts, the observed allele heights at each allele position are revised

prior to the likelihood calculations.

Recently Bleka et al. [17] adopted a Bayesian network method that incorporates both

allele drop-out and stutters developed by Cowel et al. [44] to model peak height infor-

mation. In the presence of DNA mixtures of several unknown contributors, this method

estimates a number of unknown parameters using maximum likelihood method. In this

method, an observed peak height at allele position a is classified as: a stutter, if none

of the contributors has allele a, and as a drop-out if at least one contributor has it. This

information is included in the network as a binary variable. A revised mixture analysis is

then performed conditionally on the pre-classification of alleles as stutters or drop-outs.

Even though this is an improved method which is capable in incorporating PCR arte-

facts including stutters, it still relies on pre-classification of stutters based on threshold

values. Therefore, a more robust probabilistic approach for predicting stutters would be

advantageous.

Bright et al. [21] investigated the performance of five different statistical models for

predicting stutter. Each model was evaluated by applying to three sets of known single

source DNA profiles. This study has been reviewed with more details in Chapter 2. In

addition, Bright et al. discussed the variance of stutter ratio [20], allelic and stutter peak

height models in the context of continuous DNA interpretation methods [23], and the

relationship between stutter product and the longest uninterrupted sequence [24]. From

theoretical considerations, Weusten and Herbergs [177] recommended that the variance

in stutter ratio is inversely proportional to the amount of template DNA. This is often ob-
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served and predicted by intuition. Findings of the above four studies are further reviewed

and used in Chapter 2.

Forensic computer systems that use MCMC-based statistical models for continuous

peak height data to effectively interpret complex DNA evidence have recently been de-

veloped (e.g. STRmixTM and Cybergenetics TrueAllele R©). Perlin et al. [135] empha-

sised the possibility of incorporating additional model variables into the TrueAllele R©

genetic calculator to facilitate the problems associated with PCR process such as stutter.

STRmixTM already incorporates statistical models for both forward and backward stutter

peaks [22]. Therefore, developing more improved Bayesian probabilistic models for pre-

dicting stutter, which can be implemented in these software products will add a significant

value to the evidence interpretation.

The main concern of study is stutters and their statistical behaviour. Bright et al.

[21] have investigated the performance of five statistical models for predicting the ob-

served behaviour of stutter. Recognising the strengths and weaknesses of them, this study

proposes an additional set of Bayesian models including hierarchical and two-component

mixture models. There are numerous approaches available for evaluating the performance

of Bayesian models. This study reviews different criteria for model evaluation and uses

them appropriately for evaluating the existing and proposed Bayesian models for pre-

dicting stutters. Finite and infinite mixture models are continuously receiving increasing

attention in various fields of science as they provide a greater flexibility in modelling

complex data. In this study, infinite mixture modelling approach is used to model stutter

ratio with improved accuracy.

1.5 Summary

This chapter discusses the background of the problems associated with interpretation of

DNA evidence and reviews important literature related to stutter prediction. The approxi-

mate proportional relationship between the amount of template DNA and the peak height

information in the epg, the effects of PCR artefacts, the applicability of analytical and

stochastic thresholds, and the use of Bayesian approach in the field of evidence interpre-
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tation are mainly highlighted. The importance of a sound methodology to incorporate the

behaviour of stutters for accuracy of the interpretation is emphasized.

1.6 Organisation of Chapters

The thesis consists of eight chapters. The initial part of the thesis, chapters 2 to 5, includes

a discussion of eleven non-hierarchical and seven hierarchical models for predicting stut-

ter, a review of Bayesian model assessment measures, and an evaluation of the perfor-

mance of the discussed models. The middle part, chapters 6 and 7, explores theoretical

aspects of the Bayesian multiple linear regression model assuming a fully conjugate prior,

and evaluates the performance of infinite mixtures of linear regression models for stutter

prediction. Finally, Chapter 8 combines the results and finding of the study and provides

useful suggestions for future research in the context of stutter modelling and infinite mix-

ture models. The specific content of each chapter can be summarized as follows.

Chapter 2 (Beyond the Log-normal) discusses five existing models developed by

Bright et al. [21] for predicting stutter and extends this knowledge by introducing six

new models. The existing five models were: two log-normal, two gamma, and a two-

component log-normal mixture. The new models include two normal, two non-standardized

Student’s t, and two two-component mixtures of normal and non-standardised Student’s

t distributions. Before developing the new models the chapter reviews previous research

attempts at modelling stutter ratio. Subsequently, it provides relevant technical details

about the two sets of data used (NGM SElectTM and IdentifilerTM) and explains the ba-

sis for introducing improved models. Finally, the chapter examines the variations and

relationships among the estimated slopes and intercepts of mean models, and standard

deviation parameters of similar models.

Chapter 3 (Measures of Model Assessment) reviews measures available for assess-

ing Bayesian statistical models. Several information criteria, cross-validations and their

approximations, and Bayesian p-values are discussed as measures of predictive model ac-

curacy. The usefulness and shortfalls of these measures and the conditions to be satisfied

for their use are reviewed, expecting the selection of appropriate measures for evaluating
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the models developed in Chapter 2 for predicting stutter.

Chapter 4 (Assessment of Models) tests the performance of the five models devel-

oped by Bright et al. [21] and the six new models developed by the present study in

Chapter 2. First, the distributional assumptions of the normal and log-normal models

are graphically assessed. Second, the models fitted to the two datasets are compared

using BIC (Bayesian Information Criterion) while showing the unacceptability of other

information criteria. The chapter presents the estimated values of the WAIC (Watanabe

Akaike Information Criterion) which is the most widely applicable for any type of model

(hierarchical, mixture etc.), and compares the variations of them along with the posterior

variances of log-predictive densities. Showing that none of the models fitted in the study

satisfy the conditions for using the WAIC, the leave one out cross-validation (LOO-CV)

which is the most suitable measure for model evaluation, is approximated as the com-

putational cost of the exact LOO-CV is unaffordable. IS (importance sampling), TIS

(truncated importance sampling), and PSIS (Pareto smoothed importance sampling) are

the LOO-CV approximations considered.

Chapter 5 (Investigation and Assessment of Hierarchical Models) introduces hi-

erarchical models for four locus-specific variance models (gamma, normal, log-normal,

and non-standardised Student’s t) and three two-component mixture models (normal, log-

normal, and non-standardised Student’s t). These seven are non-hierarchical models that

the results in Chapter 4 indicated better performance relative to the profile-wide variance

models. Providing a detailed introduction to hierarchical models, the chapter discusses

the shrinkage of mean model parameters and inverse variance parameters of these models

when modelling stutter ratio. Subsequently, the shrinkage of the parameters is exam-

ined using credible intervals, and the goodness-of-fits of the parameters to the posterior

inferred distributions of the respective parameters are tested. Finally, the empirical cumu-

lative distributions of the parameters, the log-likelihoods, and the log predictive densities

are compared across the hierarchical and non-hierarchical models to determine the effects

of hierarchical modelling.

Chapter 6 (Bayesian Multiple Linear Regression with a Conjugate Prior Distri-

bution) explains the analytical process of the Bayesian version of multiple linear regres-
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sion involving a fully conjugate prior distribution. First, the chapter presents the deriva-

tion of the likelihood function and discusses the selection of conjugate prior distribution

and combination of them to derive the posterior distribution of model parameters. Second,

it derives analytical relationships between the prior information, the observed data, and

the parameters of posterior predictive distribution of the data. These theoretical outcomes

are useful in the next stage of the study to develop infinite mixtures of linear regression

models for stutter prediction.

Chapter 7 (Infinite Mixtures of Linear Regression Models) develops infinite mixtures

of linear regression models for predicting stutter ratio using LUS as the explanatory vari-

able. Initially, the theoretical background of finite mixtures with normal densities is re-

viewed due to their relevance in infinite mixture modelling. Next, the chapter discusses

some representations of Dirichlet process, which can be used as non-parametric prior

distributions in building infinite mixture models, and introduces some improvements to

collapsed Gibbs sampling that uses one of these representations (the Chinese restaurant

process) expecting increased accuracy. Finally, it presents the infinite mixture models fit-

ted to the D2S1338 locus in the NGM SElectTM dataset, and evaluates their performance

in order to select the best model.

Chapter 8 (Conclusions and Future Work) summarises conclusions and contribu-

tion of the overall study that focused on developing Bayesian models for predicting stutter

ratio. Providing a brief background to the interpretation of DNA mixture evidence, first

this chapter recapitulates the need for investigaing improved models for stutter predic-

tion. Second, it presents the models developed in each research phase following different

modelling approaches and the key findings on their performance evaluations. Finally, the

chapter suggests possible extensions to the study in relation to stutter prediction as well

as the methodologies adopted.
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Chapter 2

Beyond the Log-normal

2.1 Introduction

t Statistical modelling of stutters is an indispensable process in continuous DNA interpre-

tation. In this process, a continuous weight is assigned to any suspicious peak that can

be treated as a stutter in an epg. Stutters have been discussed in more detail in Chapter 1.

Bright et al. [21] investigated the performance of five different statistical models for pre-

dicting stutter ratios. The present study extends their work with alternative models and

evaluates the performance of both the existing and the proposed models. First, this chapter

discusses the methodology used by Bright et al. After providing a brief description of the

data used for testing the original five models, six new models are introduced. Finally, the

variations of the estimated parameters and their relationships, especially for the similar

models, are also discussed.

2.2 Existing Models for Stutter Ratio (SR)

Bright et al. [21] were interested in modelling the observed behaviour of stutter in terms

of stutter ratio (SR), which is defined as,

SR =
Observed height of the stutter peak
The height of the parent allelic peak

.
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The linear relationship between SR and the longest uninterrupted sequence (LUS) in an

allele has been described in earlier works [10, 136]. LUS has been used as the key deter-

minant in explaining the behaviour of SR, considering the strong evidence available in the

literature [23, 24]. When models are derived for a profile-wide relationship of mean SR,

the relevant LUS information can be amalgamated as an informative covariate. However,

the empirical evidence strongly indicates significant differences in the result with locus-

specific mean models. Hence, the mean of the ith stutter ratio at locus l, µli = E(SRli), of

the relevant model has been modelled in the following form:

µli = β0l +β1lLUSli,

where the intercept and slope parameters of the model for locus l are denoted by β0l and

β1l respectively. The LUS value corresponding to the ith observed SR for locus l (i.e.

SRli) is denoted by LUSli. Following the method used by Brooks et al [24], the LUS of

an allele, which is the longest stretch of basic repeat motifs in it, was determined. The

short tandem repeat DNA internet database (STRBase) was used as the source to decide

the LUS corresponding to each allele [32, 147]. In a case where multiple LUS values

for the reported variants are available, the average of them is used. The alleles whose

LUS values are not available have been removed from the datasets. The two datasets

that have been used in this study do not have many examples in relation to multiple LUS

values. The collection of additional data with multiple LUS values is also impossible

as the biological experimentation related to the data generation process is beyond the

control of the researcher of this study. However, if there are enough data with multiple

LUS values, in a perfect context, a latent class model that assumes LUS as a missing

covariate can be used.

Weusten and Herbergs [177] developed a stochastically simple but mathematically

complex model to describe the technical events in the background of the PCR amplifica-

tion process. They assumed three possible outcomes during each PCR cycle: successful

amplification, no amplification, and an amplification with a slipped strand. The slipped

strand mechanism is a kind of folding of the original strand which causes the introduction

of a stutter sequence. The model used a recursive mathematical approach employing a
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multinomial distribution to accommodate the three outcomes. It assumes fixed probabil-

ities for the three events over the PCR cycles. The model derived recursive relationships

for the expectations and covariances on the number of amplicons with the presence of up

to two stutters. The inversely proportional relationship between the coefficient of varia-

tion (relative error) and the square root of the expected number of DNA strands entering

the amplification is one of the results revealed in this study. In another study, Bright et al.

[20], also empirically confirmed the inversely proportional relationship of the variance of

stutter height to the template DNA. Employing these theoretical considerations for each

model, the variance of SR is modelled inversely proportional to the amount of template

DNA. Bright et al. [21] proposed two types of models: one with profile-wide variance

σ2 and the other with locus-specific (l) variance σ2
l . The profile-wide and locus-specific

variances of ith observation are denoted by σ2
i and σ2

li respectively. Employing the in-

versely proportional relationship between the variance of stutter height and the template

DNA, these two types of variances are defined as

σ
2
i =

σ2

Oi
and σ

2
li =

σ2
l

Oli
,

where Oi denotes the observed peak height of the ith stutter ratio (SRi) and Oli denotes

the locus-specific (l) observed peak height of the ith stutter ratio (SRli). In the standard

practice of model fitting, it is essential to assume a suitable family of distributions to

describe the behaviour of data. Subsequently, the parameters of the model, usually the

mean and variance, are estimated following a standard estimation method. Maximum

likelihood and Bayesian methods are frequently used for parameter estimation.

In another study by Bright et al. [23], the observed SR has been treated as a posi-

tively skewed random variable with long tails. In this study they have used a log-normal

distribution to model the behaviour of observed SR. Based on this study, two of the five

models have been proposed for their later study [21] along with log-normal distributions:

one with profile-wide variance (LN0) and the other with locus-specific variance (LN1). In

describing the mean, both models have assumed locus-specific mean models. The specific

parametrisation of these two models are given in the Table: 2.1. Log-normal distribution

can only be used with positive quantities. Therefore, the use of log-normal distribution in
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2.2. Existing Models for Stutter Ratio (SR)

SR model fitting fully guarantees the strictly positive characteristic in predictions.

The family of gamma distributions also provides much flexibility in modelling heavy

tailed positively skewed distributions. Hence, two gamma models have been introduced

as competing alternatives to the log-normal models. As it does with the log-normal, the

profile-wide variance model in gamma distribution, G0 is distinguished from its locus-

specific variance model G1 by different parametrisations in variance terms. The natural

logarithm is a useful link function for gamma generalised linear models. Hence, the

logarithm of the mean is modelled as a linear function of LUS. Consequently, it confirms

a strictly positive mean for the model. The parametrisation of G0 and G1 models are also

given in Table: 2.1.

Bright et al. [21] have proposed a two-component log-normal mixture model (MLN1)

for SR as the fifth alternative. It can also be regarded as a two-component normal model

for the logarithm of SR. It has been introduced in order to provide more robust modelling

when there exist outlier type stutter ratios as well. The mean of each component has

assumed a common locus-specific mean model. As showing in Table: 2.1, these mixture

models assume two different locus-specific variances for the two components. A majority

of the stutter ratio values are expected to be modelled by the component with smaller

variance. The rest of the stutter ratio values which are a long way from the mean are

modelled with the component having larger variance. Mixtures of normal distributions

with unique means but different variances are generally known as normal scale mixtures

[123]. The family of two-component normal mixtures is the simplest class of normal

scale mixtures. In 1960, Tukey has also discussed the two-component heteroscedastic

mixtures of normal densities with equal means under the family of contaminated normal

distributions [166]. In this family, the component with higher variance is connected to the

model with a lower weight than the other.

The parameter estimation of gamma models is slightly more complex compared to the

log-normal models because they require a translation from a shape and scale parametri-

sation to a mean-variance parametrisation. The family of gamma distributions can be

expressed with two parameters: shape parameter α and scale parameter θ (or rate param-

eter β = 1
θ
). Then the mean and variance of the gamma distribution are αθ and αθ 2
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respectively. Both of these parameters can be empirically calculated in terms of estimated

mean µ̂ and variance σ̂2 as,

α̂ =
µ̂2

σ̂2 and θ̂ =
σ̂2

µ̂
.

This therefore suggests a natural mean-variance relationship.

Table 2.1: Descriptions of existing models

Model Distribution Mean Variance

LN0 ln(SRli)∼ N(µli,σ
2
i ) µli = β0li +β1liLUSli σ2

i = σ2

Oai

LN1 ln(SRli)∼ N(µli,σ
2
li) µli = β0li +β1liLUSli σ2

li =
σ2

l
Oali

G0 SRli ∼ Gamma(αli,θli) µli = exp(β0li +β1liLUSli) σ2
i = σ2

Oai

G1 SRli ∼ Gamma(αli,θli) µli = exp(β0li +β1liLUSli) σ2
li =

σ2
l

Oali

MLN1 ln(SRli)∼ πN(µli,σ
2
0li)+ µli = β0li +β1liLUSli σ2

0li =
σ2

0l
Oali

(1−π)N(µli,σ
2
1li) σ2

1li =
σ2

0l+σ2
1l

Oali

2.3 The Data used for Testing the Models

The performance and consistency of the five models proposed by Bright et al. [21] were

tested with three datasets. The present study uses two of these three datasets to compare

the performance of the same five models and six new models proposed in the next sec-

tion based on some additional performance criteria. The technical description of the two

datasets: NGM SElectTM and IdentifilerTM provided by Bright et al. [21] is given in the

following paragraph.

Single source saliva stains on FTA R© Elute cards (Whatman, Maidstone, UK) were

extracted using an automated elute method [131]. A target amount of 1 ng DNA was

amplified using the Applied Biosystems NGM SElectTM (N = 291) and IdentifilerTM (N

= 341) multiplexes (Life Technologies, Carlsbad, CA) and run on a 9700 silver block

following the manufacturer’s recommended protocols. All QuantifilerTM and STR ampli-

fications were set up on a Hamilton Nimbus (Hamilton, Reno, NV, USA) liquid handling
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2.4. The Basis for New Models

robot. All samples were run on an ABI PRISM 3130xl capillary electrophoresis instru-

ment and analysed using GeneMapper ID v 3.2.1, with a 30 rfu analysis threshold. The

analytical threshold of 30 rfu used for data analysis is lower than that used normally

for casework to avoid bias. In addition, only samples with allele heights greater than or

equal to 500 rfu were selected for the creation of the models. This was to remove any bias

towards alleles more likely to stutter.

The two sets of multiplexes NGM SElectTM and IdentifilerTM return DNA profiles for

16 and 15 loci respectively. Ten of these loci: D16S539, D18S51, D19S433, D21S11,

D2S1338, D81179, FGA, TH01, vWA and D3S1358 are common for both sets. The

DNA profiles of NGM SElectTM set contain additional six loci: D10S1248, D22S1045,

D2S441, D1S1656, D12S391, and SE33. The additional loci of DNA profiles in the

IdentifilerTM set are: CSF1PO, D13S317, D5S818, D7S820, and TPOX. The peak heights

of homozygous alleles are approximately twice the heights of the corresponding heterozy-

gous alleles. Hence, the stutter ratios related to homozygous alleles are typically smaller

than that of heterozygous alleles. Therefore, it will be more beneficial to build statisti-

cal models for stutter ratios related to homozygous and heterozygous alleles separately.

The scope of this study is limited only to the stutter ratios related to heterozygous alleles.

Hence, the datasets are stutter ratios of alleles from only the loci where the individuals

are heterozygous. Setting of 30 rfu as the analytical threshold and removal of allele peaks

whose heights are less than 500 rfu were the two filtering criteria that ensure the observed

peaks as stutters.

2.4 The Basis for New Models

Usually, the magnitude of stutter ratio is expected to below 0.15 [31] and in fact is usually

below 0.05. However, higher stutter ratios can also be occasionally expected. Therefore,

a heavy-tailed right skewed distribution such as gamma and log-normal would be theoret-

ically more appropriate in modelling SR. The family of Gaussian distributions is the most

popular statistical distribution family in modelling continuous data. This distribution is

capable of accommodating the bulk of the data around its mean. However, relatively large
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2.4. The Basis for New Models

or extreme observations can also be captured. Normal distribution assigns relatively low

tail probabilities on extreme values than alternative heavy-tailed right-skewed counter-

parts. Therefore, in case of infrequent large observations of SR, a better goodness-of-fit

can be expected even from the Gaussian distributions.

When the occurrence of large SR values is more frequent than expected, a non-standardised

Student’s t distribution can be used as a potential option than a Gaussian family distri-

bution. The non-standardised Student’s t distribution is defined with three parameters:

location (µ), scale (σ > 0), and degrees of freedom (ν > 0). The additional parameter,

degrees of freedom, enables an extensive flexibility in robust modelling of data. The well-

known Student’s t distribution is symmetrically distributed around its mean µ = 0, while

having a scale parameter, σ = 1. The non-standardised Student’s t distribution is some-

times discussed as the general form of it [1]. Let us assume that T is a random variable

that has a non-standardised Student’s t distribution with location, scale, and degrees of

freedom parameters µ , σ , and ν respectively. Then the density function of T , fT (t), is in

the form,

fT (t) =
1

σ
√

νB
(

ν

2 ,
1
2

)[1+ 1
ν

(t−µ

σ

)2]− (1+ν)
2

,

−∞ < t < ∞, ν > 0, σ > 0,

and B(·, ·) denotes the complete beta function. The mean of the distribution is equal to its

location parameter (i.e. E(T ) = µ) for ν > 1. When ν = 1, the distribution reduces to the

Cauchy distribution. The variance of distribution ( νσ2

ν−2 ) exists only when ν > 2.

Simple linear regression models were fitted to the means of the three log-normal mod-

els, taking LUS as the predictor. Meanwhile, a log link function was used in the two

gamma models. Hence, both types of models assume a simple linear regression model

on logarithm of SR against LUS. In contrast, literature [23, 24] suggests a linear rela-

tionship between LUS and SR. Therefore, the strength of the relationship between LUS

and LR with and without logarithmic transformation would be interesting. For the NGM

SElectTM dataset, 69.5% of the total variation in SR can be explained using LUS as a pre-

dictor. However, only 58.9% of the total variation in ln(SR) can be explained with LUS.
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2.5. Model Fitting

For the IdentifilerTM dataset, 64.5% of the total variation in SR and 61.7% in ln(SR) can

be explained with LUS. Therefore, a better performance can be expected with normal and

non-standardised Student’s t distributions over log-normal and gamma distributions.

Considering all these facts and expecting an improvement in stutter prediction, two

models with normal distributions and two models with non-standardised Student’s t dis-

tributions are proposed for modelling SR. Bright et al. [21] have observed a better

performance of two-component mixture models in modelling SR. Therefore, two two-

component mixtures: normal and non-standardised Student’s t are also proposed. The

parametrisation of the proposed six models are summarised in Table 2.2.

Table 2.2: Descriptions of proposed models

Model Distribution Mean Variance

N0 SRli ∼ N(µli,σ
2
i ) µli = β0li +β1liLUSli σ2

i = σ2

Oai

N1 SRli ∼ N(µli,σ
2
li) µli = β0li +β1liLUSli σ2

li =
σ2

l
Oali

T0 SRli ∼ t(µli,σ
2
i ,ν) µli = β0li +β1liLUSli σ2

i = σ2

Oai

T1 SRli ∼ t(µli,σ
2
li,νl) µli = β0li +β1liLUSli σ2

li =
σ2

l
Oali

MN1 SRli ∼ πN(µli,σ
2
0li)+ µli = β0li +β1liLUSli σ2

0li =
σ2

0l
Oali

(1−π)N(µli,σ
2
1li) σ2

1li =
σ2

0l+σ2
1l

Oali

MT1 SRli ∼ πt(µli,σ
2
0li,ν1l)+ µli = β0li +β1liLUSli σ2

0li =
σ2

0l
Oali

(1−π)t(µli,σ
2
1li,ν2l) σ2

1li =
σ2

0l+σ2
1l

Oali

Note: ν is profile-wide and νl , ν1l , and ν2l are the locus-specific (l) degrees of freedom
of the t distributions.

2.5 Model Fitting

The models were fitted using a Bayesian approach along with Markov Chain Monte Carlo

(MCMC) techniques. The package “rjags” (version 4.2.0) was used since it provides

an interface from statistical package R (version 3.2.2) for Bayesian data analysis. In

Bayesian model fitting, it is required to assume suitable prior distributions for the model

parameters. Since the prior information related to the model parameters were not avail-

able, this study attempted to use vague prior distributions. However, the effect of vague
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2.6. Variations and Relationships among the Parameters of Similar Models

prior distributions is minimised against the size of datasets used in this study. Normal

vague prior distributions were assumed for the slope and intercept parameters of the sim-

ple linear regression models related to the mean of each model. Vague inverse gamma

prior distributions were assumed for the variance parameters in each model. The de-

grees of freedom parameters in the respective Student’s t models were modelled with

log-uniform prior distributions. Mixing proportion of each mixture model is modelled

with a uniform prior. After 50000 burn-in steps, each model ran for another 50000 itera-

tions with a thinning interval of 25. Finally, the parameters of the models were estimated

over 2000 posterior draws.

2.6 Variations and Relationships among the Parameters

of Similar Models

For both log-normal and gamma models, the locus-specific mean of the stutter ratio mea-

sured in a logarithmic scale is modelled as a simple linear regression of LUS. Therefore,

slopes and intercepts of these models are theoretically comparable. As shown in Fig-

ures: 2.1 to 2.4, only a moderate concordance can be seen in the estimates of slope and

intercept parameters between log-normal and gamma models for each dataset. The slope

parameters of these models are varying within an approximate range of [-7, -3]. Simi-

larly, the intercepts are varying within an approximate range of [0.05, 0.40]. Significant

differences among both slopes and intercepts across different loci for both types of mod-

els for both datasets can be observed. However, any locus-specific significant difference

within each dataset cannot be detected in either slope or intercept of log-normal models

except for TPOX locus for the IdentifilerTM dataset. For this particular locus, both slope

and intercept of the mean model show significant differences in mixture model MLN1

compared to the other two log-normal models. Similarly, for the gamma models, only the

TH01 locus for the NGM SElectTM dataset shows a significant difference between two

models for both parameters.

In both normal and Student’s t models, unlike log-normal and gamma models, the

mean stutter ratio is directly modelled as a simple linear regression of LUS. Figures 2.5

32



2.6. Variations and Relationships among the Parameters of Similar Models

In
te

rc
e

p
t

−
7

−
6

−
5

−
4

D
1

6
S

5
3

9

D
1

8
S

5
1

D
1

9
S

4
3

3

D
2

1
S

1
1

D
2

S
1

3
3

8

D
8

S
1

1
7

9

F
G

A

T
H

0
1

vW
A

D
3

S
1

3
5

8

D
1

0
S

1
2

4
8

D
2

2
S

1
0

4
5

D
2

S
4

4
1

D
1

S
1

6
5

6

D
1

2
S

3
9

1

S
E

3
3

LN0

LN1

MLN1

S
lo

p
e

0
.0

5
0

.1
5

0
.2

5
0

.3
5

LN0

LN1

MLN1

Figure 2.1: Locus-specific variation (95% credible interval with posterior median) in
mean model parameters (slope and intercept) of the log-normal models for the NGM
SElectTM dataset.
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Figure 2.2: Locus-specific variation (95% credible interval with posterior median)
in mean model parameters (slope and intercept) of the log-normal models for the
IdentifilerTM dataset.
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Figure 2.3: Locus-specific variation (95% credible interval with posterior median) in
mean model parameters (slope and intercept) of the gamma models for the NGM
SElectTM dataset.

In
te

rc
e

p
t

−
6

.0
−

5
.0

−
4

.0

D
1

6
S

5
3

9

D
1

8
S

5
1

D
1

9
S

4
3

3

D
2

1
S

1
1

D
2

S
1

3
3

8

D
8

S
1

1
7

9

F
G

A

T
H

0
1

vW
A

D
3

S
1

3
5

8

C
S

F
1

P
O

D
1

3
S

3
1

7

D
5

S
8

1
8

D
7

S
8

2
0

T
P

O
X

G0

G1

S
lo

p
e

0
.0

5
0

.1
5

0
.2

5

G0

G1

Figure 2.4: Locus-specific variation (95% credible interval with posterior median) in
mean model parameters (slope and intercept) of the gamma models for the IdentifilerTM

dataset.
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Figure 2.5: Locus-specific variation (95% credible interval with posterior median) in
mean model parameters (slope and intercept) of the normal models for the NGM SElectTM

dataset.
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Figure 2.6: The locus-specific variation (95% credible interval with posterior median) in
mean model parameters (slope and intercept) under normal models for the IdentifilerTM

dataset.
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Figure 2.7: Locus-specific variation (95% credible interval with posterior median) in
mean model parameters (slope and intercept) of the Student’s t models for the NGM
SElectTM dataset.
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Figure 2.8: The locus-specific variation (95% credible interval with posterior me-
dian) in mean model parameters (slope and intercept) under Student’s t models for the
IdentifilerTM dataset.
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to 2.8 clearly show a greater concordance in the estimates of slope and intercept param-

eters between normal and non-standardised Student’s t models for each dataset. This is

expected in theoretical point of view as both normal and Student’s t distributions are sym-

metric around their location parameters. The intercept and slope parameters calculated for

both datasets under each model vary approximately in regions of [-0.10, 0.02] and [0.002,

0.014] respectively. For both models, as it does with log-normal and gamma models, there

are significant differences among locus-specific slopes and intercepts over both datasets.

Any significance difference cannot be expected in either slopes or intercepts in normal

models or Student’s t models for both datasets except TPOX locus for the IdentifilerTM

dataset. The normal mixture model, like log-normal mixture for the IdentifilerTM dataset

also exhibits a significantly different slope and intercept parameters for TPOX locus com-

pared to the other two normal models.
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Figure 2.9: Locus-specific variation (95% credible interval with posterior median) in stan-
dard deviation parameters of the log-normal models for the NGM SElectTM dataset.

Figures: 2.9 to 2.16 clearly demonstrate outstanding deviations of the locus-specific

standard deviations from the profile-wide standard deviation for all the four models for

both datasets. The second component of each mixture model has been introduced to

capture the statistical behaviour of the data points that are largely deviated from their
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Figure 2.10: Locus-specific variation (95% credible interval with posterior median) in
standard deviation parameters of the log-normal models for the IdentifilerTM dataset.
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Figure 2.11: Locus-specific variation (95% credible interval with posterior median) in
standard deviation parameters of the gamma models for the NGM SElectTM dataset.
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Figure 2.12: Locus-specific variation (95% credible interval with posterior median) in
standard deviation parameters of the gamma models for the IdentifilerTM dataset.
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Figure 2.13: Locus-specific variation (95% credible interval with posterior median) in
standard deviation parameters of the log-normal models for the NGM SElectTM dataset.
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Figure 2.14: The locus-specific variation (95% credible interval with posterior median) in
standard deviation parameters under log-normal models for the IdentifilerTM dataset.
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Figure 2.15: Locus-specific variation (95% credible interval with posterior median) in
standard deviation parameters of the log-normal models for the NGM SElectTM dataset.
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Figure 2.16: Locus-specific variation (95% credible interval with posterior median) in
standard deviation parameters of the log-normal models for the IdentifilerTM dataset.
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Table 2.3: Mixing percentages of the mixture distributions.

Mixture Dataset
Model NGM SElectTM IdentifilerTM

Log-normal (MLN1) 2.7 [1.8, 3.8] 9.1 [7.8, 10.5]
Normal (MN1) 29.0 [24.1, 34.4] 10.2 [8.5, 12.0]
Student’s t (MT1) 48.2 [40.8, 57.1] 31.1 [24.8, 37.4]

Note: Percentage (with 95% credible interval) of points modelled by the component with
larger variance in each mixture model is given.

mean. The standard deviation of the component with low variability is denoted by σ1 and

the other by
√

σ2
1 +σ2

2 for all the three mixture models. Hence, the large estimates of

σ2 clearly indicate the presence of highly deviated values from the mean of the respective

model. The log-normal model exhibits larger credible intervals for standard deviations

for the second component under some loci for the NGM SElectTM dataset.

Table: 2.3 presents the percentage of stutter ratios explained with the component of

larger variance. It is relatively higher for the Student’s t mixture model for both datasets.

For each dataset, it approximately captures additional 20% of the stutter ratios over the

normal mixture models .

The variations of the degrees of freedom parameters in the Student’s t models are

presented in Figure 2.17, Figure 2.18, and Table 2.4. The profile-wide variance models

exhibit heavy-tailed behaviours as their degrees of freedom parameters are consistently

smaller for all the loci for both datasets. In general, locus-specific variance models fit-

ted to the IdentifilerTM dataset demonstrate more heavy-tailed behaviour than that of the

NGM SElectTM dataset. Even in mixture distributions, both Student’s t components gen-

erally exhibit more heavy-tailed behaviour than normal distributions with similar scale

and location parameters, as their degrees of freedom parameters are smaller than 30 in

many situations. However, larger upper bounds of the credible intervals calculated for

both degrees of freedom parameters illustrate the possibility of having approximately

normal like tail behaviours.
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Figure 2.17: Locus-specific variation (95% credible interval with posterior median) in de-
grees of freedom parameters of the Student’s t non-mixture models for the NGM SElectTM

dataset.
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Figure 2.18: Locus-specific variation (95% credible interval with posterior median) in
degrees of freedom parameters of the Student’s t non-mixture models for the IdentifilerTM

dataset.

2.7 Summary

This chapter evaluated five existing models (log-normal and gamma) developed by Bright

et al.[21] for predicting stutter ratio and introduced six new models (normal and non-

standardised Student’s t) expecting improved performance. Based on the characteristics

of variance modelling, these 11 models were classified into three categories: profile-

wide variance, locus-specific variance, and two-component mixture with heteroscedastic

variances. Log-normal, normal, and non-standardised Student’s t distributions were used

with all the three categories. However, gamma distribution was used only with locus-

specific and profile-wide variance categories. The two sets of data: NGM SElectTM and

IdentifilerTM that include stutter peak information related to 4646 and 6949 heterozygous

loci respectively, were utilized in the analysis.
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2.7. Summary

Table 2.4: Variation in degrees of freedom of non-standardised Student’s t mixture models

NGM SElectTM IdentifilerTM

Locus ν1 ν2 Locus ν1 ν2

D16S539 12 [3, 127] 17 [4, 128] D16S539 17 [3, 131] 4 [3, 112]
D18S51 10 [3, 123] 14 [4, 132] D18S51 14 [3, 127] 5 [3, 118]
D19S433 22 [3, 134] 3 [3, 5] D19S433 19 [3, 138] 6 [3, 95]
D21S11 12 [3, 124] 13 [4, 129] D21S11 7 [3, 126] 6 [3, 122]
D2S1338 17 [4, 128] 23 [5, 131] D2S1338 38 [3, 139] 3 [3, 96]
D8S1179 14 [3, 131] 16 [4, 126] D8S1179 65 [12, 144] 4 [3, 6]
FGA 8 [3, 121] 8 [3, 117] FGA 9 [3, 120] 40 [7, 138]
TH01 8 [3, 125] 5 [3, 129] TH01 34 [3, 135] 3 [3, 110]
vWA 12 [3, 132] 7 [4, 131] vWA 5 [3, 122] 5 [3, 112]
D3S1358 23 [4, 134] 26 [4, 135] D3S1358 16 [4, 124] 26 [4, 139]

D10S1248 12 [3, 135] 8 [3, 127] CSF1PO 12 [3, 128] 3 [3, 5]
D22S1045 38 [5, 137] 11 [3, 119] D13S317 27 [3, 138] 4 [3, 11]
D2S441 34 [4, 137] 63 [13, 142] D5S818 27 [3, 139] 3 [3, 60]
D1S1656 28 [5, 139] 39 [6, 140] D7S820 18 [3, 136] 4 [3, 114]
D12S391 9 [3, 129] 8 [3, 127] TPOX 44 [7, 141] 59 [12, 142]
SE33 11 [3, 131] 12 [4, 136]

Cell contents: Posterior median and 95% credible interval

All the normal and Student’s t models clearly show a higher concordance in slopes

and intercept parameters for each dataset. However, only a moderate concordance in

these parameters has been observed between log-normal and gamma models for each

dataset. There are significant differences among locus-specific slopes and intercepts esti-

mated within each of the 11 models for the two datasets. Locus-specific slopes and inter-

cepts of mean models fitted based on each distribution do not show significant differences

among them except TPOX locus of the IdentifilerTM dataset for normal and log-normal

models and TH01 locus of the NGM SElectTM dataset for gamma models. With regard

to variability parameters of non-mixture models, the locus-specific standard deviations

demonstrate outstanding deviations from the profile-wide standard deviation for all the

four models for both datasets. The standard deviations observed for the components with

larger variances are relatively higher than that was expected for all the mixture models

fitted to both datasets. Percentage of points modelled by the component with larger vari-

ance in each mixture model was examined and it was found that log-normal, normal,

and non-standardised Student’s t mixture models capture approximately 3%, 29%, and
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48% respectively from the NGM SElectTM dataset. The respective percentages for the

IdentifilerTM dataset were 9%, 10%, and 31%. The Student’s t mixture model approxi-

mately captures additional 20% of the stutter ratios over the normal mixture models. For

all the loci of both datasets, the profile-wide variance non-standardised Student’s t models

exhibit heavy-tailed behaviours as their degrees of freedom parameters are smaller. In the

locus-specific variance non-standardised Student’s t models, more heavy-tailed behaviour

was observed for the IdentifilerTM dataset. Although both components of the Student’s t

mixture model exhibit more heavy-tailed behaviour than normal distributions with simi-

lar scale and location parameters, larger upper bounds of the credible intervals for both

degrees of freedom parameters indicate the possibility of having approximately normal

like tail behaviours.
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Chapter 3

Measures of Model Assessment

3.1 Introduction

This chapter describes the methods that will be used in Chapter 4 and 5 to assess the

performance of the Bayesian models developed in Chapter 2 (non-hierarchical models

including two-component mixtures) and Chapter 5 (hierarchical models including two-

component mixtures) for predicting stutter ratio. The theoretical background, benefits,

and limitations of various performance measures are reviewed in order to identify appro-

priate measures for evaluating the Bayesian statistical models presented.

Statistical models, in general, are developed based on few fundamental assumptions.

The distributional assumption on the data, for instance, plays a key role in the plausibil-

ity of the inference that is based on the fitted model. Models incorporated in Bayesian

data analysis are also subjected to key assumptions. Hence, a model that exhibits poor

plausibility tends to produce misleading inferences. Therefore, an assessment of these

assumptions is always a good practice. Generally, it is essential to check the statistical

capability of a model in order to produce a realistic summary of the data at hand [75]. In

the classical (frequentists’) approach, comparisons between the observations and the pre-

dictions (expected results under the model) are used as the basis of goodness-of-fit tests

that quantify the inconsistency in terms of a probability value (p-value). In the context

of Bayesian data analysis, the posterior predictive distribution, which describes the char-

acteristics and statistical behaviour of unobserved future observations conditioned on the
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observed real data at hand, is used to answer the prediction problems [174].

In general, a statistical model is a probabilistic system that involves a probability dis-

tribution or a finite/infinite mixture of distributions. These models are widely used in

explanation, prediction, or making inferences on some real-world phenomena. It is pos-

sible to approximate a given phenomenon with more than one model. Accordingly, the

complexity of a model can vary from simple to very complex. Very complex models may

include very large number of parameters. A fully non-parametric model, for example,

may consist of enormous number of parameters. Models where the number of param-

eters can grow with the size of training data set are more appropriately referred to as

non-parametric. In 1976, George E. P. Box stated, ”all models are wrong, but some are

useful” [19]. This is a widely believed fact in modelling and hence, no single statistical

model is able to capture the real mechanism behind naturally generated data [174]. How-

ever, a model that is rich enough to approximate the behaviour of data including essential

uncertainties is generally accepted as a good model. Usually, it is more convenient to

build different models based on one particular distribution (e.g. regression models with

normal distribution). A set of such models can be easily compared using an appropriate

criterion. However, in situations where the models have originated from different distri-

butions, the comparisons are quite interesting. This becomes further complicated with

the use of different models adopting various modeling concepts. For example, a situation

that requires selecting one out of a set including hierarchical, mixture, and hierarchical

mixture models will be very complicated in practice.

Assessing Bayesian models can involve evaluation of the fit of a model to data and

comparisons of several candidate models for predictive accuracy and for improvements.

The methods available for assessing the model fit are of three types [74, 75]:

1. posterior predictive checks

2. prior predictive checks

3. mixed checks.

Prior predictive checks are used to evaluate replications with different parameter values

whereas mixed checks are used for evaluating hierarchical models. In posterior predic-
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tive checks, data simulated under the fitted model are compared with the actual data [73].

Therefore, it examines whether there are systematic differences between the actual and

replicated data [72]. Predictive model accuracy is estimated using information criteria

such as Akaike information criterion (AIC), Bayesian information criterion (BIC), De-

viance information criterion (DIC), and Watanabe-Akaike (or widely available) informa-

tion criterion (WAIC), and cross-validation (CV). In addition, Bayesian p-values calcu-

lated based on the discrepancy measures (test quantities) can also be used as tools for

posterior predictive checks, especially in the contexts of model improvement. The goal

of information criteria is to obtain an unbiased measure of out-of-sample prediction er-

ror [74, 173]. Since posterior checks use the data twice; once for model estimation and

once testing, a penalty constant or bias correction is applied to these criteria. Although,

these criteria are unable to reflect the goodness-of-fit in an absolute sense, the differences

(in the information theoretic criterion of choice between competing models) can measure

the relative performance of the models of interest. However, the use of some of these

measures is only valid under certain circumstances. The computation cost is also another

problem. Calculation of predictive accuracy measures should not take a long time relative

to the model fitting and obtaining initial posterior draws.

Any particular model may provide an adequate fit to the data. However, there may be

some plausible alternative models that are also capable in producing a fairly similar fit.

Therefore, in the contexts of posterior inferences, where the model at hand differs from

the others, posterior predictive checks are very informative. Any discrepancy that can be

observed as a result of this self-consistency assessment is considered as consequences of

either model misfit or chance or both.

3.1.1 Bayesian p-values

Tail area probabilities can be used as they are in classical statistics, to obtain p-values

[72]. The posterior distribution of the unknown model parameters is used to answer the

Bayesian inferential problems. Hence, a test quantity which represents the level of dis-

crepancy between the fitted Bayesian model and data, is a function of both data and the

unknown model parameters.
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Let us assume that the observed data and all the parameters of the fitted model are de-

noted y and θ respectively where all the hyper parameters in a hierarchical model are also

included in parameter vector θ . The simulated data drawn from the posterior distribution

and the future observable data are denoted by yrep and ỹ respectively. Then the poste-

rior predictive distribution of ỹ or the distribution of yrep is defined with the posterior of

unknown parameter θ as

p(yrep|y) =
∫

θ

p(yrep|θ)p(θ |y)dθ .

T (y,θ) denotes a discrepancy measure that summarises parameters and data into

scalars and T (y) is a test statistic that depends only on data. The tail-area probabil-

ity is calculated based on the posterior simulations of (θ ,yrep) and used to measure the

goodness-of-fit of the data with respect to the posterior predictive distribution. The ex-

tremeness of the simulated data in comparison with the observed data is calculated as a

probability pB, the Bayesian p-value:

pB = Pr
(
T (yrep,θ)≥ T (y,θ)|y

)
.

The posterior density of θ , p(θ |y), posterior predictive density of yrep, p(yrep|θ ,y) =

p(yrep|θ), and the indicator function IT (yrep,θ)≥T (y,θ) are used to calculate the posterior

predictive p-value, pB as follows.

pB =
∫

θ

∫
y

IT (yrep,θ)≥T (y,θ)p(yrep|θ)p(θ |y)dyrepdθ . (3.1)

Let us consider the observed data y consisting of n observations and assume that there

are S draws from the posterior distribution of θ . Then yrep
s also consists of n replicated

values for each parameter value θs (where s = 1,2, . . . ,S). Then the posterior predictive

probability pB, which is defined as in Equation: 3.1 can be approximated based on the

above replicated samples. In the context of Bayesian p-values, the realised and predictive

test quantities denoted by T (y,θs) and T (yrep
s ,θs) respectively are compared over S repli-

cated draws to perform the posterior predictive checks. The proportion of predictive test
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quantities T (yrep
s ,θs) which are not less than corresponding realised value T (y,θs) is an

estimate of the Bayesian p-value. Mathematically, it can be written in the following way.

pB =
1
S

S

∑
s=1

IT (yrep,θs)≥T (y,θs),

where,

IT (yrep,θs)≥T (y,θs) =


1, if T (yrep,θs)≥ T (y,θs)

0, otherwise.

Since various aspects of the model can be tested using the concept of posterior predictive

p-value, the selection of the test quantity is very important. The inferential aspect that is

expected to be assessed by the test quantity must be in line with the practical purpose of

the model.

The interpretation of posterior predictive p-values is more interesting compared to

classical p-values. In the classical approach, a p-value that is close to zero implies a

greater disagreement between the data and statistical concept being tested while a value

that is close to one evidences a greater agreement between them. An extreme posterior

predictive p-value (close to 0 or 1) in Bayesian approach, in contrast, implies a greater dis-

crepancy between the data and model. However these extreme p-values can be omitted in

the situations where the misfits of the model are practically very small in comparison with

the variation within the model. In general, extreme p-values can be used to identify the

possible departures of the test quantities from the model rather than rejecting the model.

These are very important in practice to identify unusual observations and provide appro-

priate suggestions to improve the model and data. A p-value close to 0.5 in a posterior

predictive check exhibits a better adequacy of the model to data, except in some mislead-

ing situations. Since the sample variance is always a sufficient statistic, a test quantity

that is a function of sample variance may not be capable in assessing the quality of a

posterior predictive distribution. Such discrepancy measures generally produce p-values

close to 0.5 and are misleading. A scatter plot of T (y,θs) vs T (yrep,θs) or a histogram

of T (y,θs)−T (yrep,θs) can also be used to display the discrepancy between the data and
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the model. The scatter plot should be symmetric around T (y,θs) = T (yrep,θs) line and

the value zero must be in the middle of the histogram for a better fit.

Gelman et al.[71] suggested the following discrepancy quantity, which corresponds

to the chi-squared goodness-of-fit measure, as an omnibus goodness-of-fit test where the

model parameter θ is known.

D(y,θ) =
n

∑
i=1

(
yi−E(yi|θ)

)2

Var(yi|θ)
,

This can be calculated for both observed data yT = (y1,y2, . . . ,yn) and unobserved future

data ỹT = (ỹ1, ỹ2, . . . , ỹn) as D(y,θ) and D(ỹ,θ) respectively [34]. In the Bayesian context

where the posterior distribution of θ represents its behaviour, a p-value can be defined in

the following way to evaluate the extremeness of future observations.

pD =p
[
D(ỹ,θ)≥ D(y,θ)

]
=
∫

θ

p
[
D(ỹ,θ)≥ D(y,θ)

]
p(θ |y)dθ .

As it does in the other posterior checks, pD can be estimated over the posterior predictive

simulations as below.

p̂D =
1
S

S

∑
s=1

ID(ỹ,θs)≥D(y,θs), (3.2)

where, θs (s = 1,2, . . . ,S) are the posterior draws of model parameters θ and

ID(ỹ,θs)≥D(y,θs) =


1, if D(ỹ,θs)≥ D(y,θs)

0, otherwise.

3.1.2 Marginal Predictive Checks

Marginal predictive distributions are calculated for each observation yi of yT =(y1,y2, . . . ,yn)

in the observed data and used for overall model calibration or to find possible outliers

[72]. Let us assume that yrep
i denotes the replicated values of the ith observation in the

data. Then the tail area probability pi corresponding to each observation yi is calculated
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as

pi = Pr
(
T (yrep

i )≤ T (yi)|y
)
.

A natural discrepancy measure T (yi) is defined as T (yi) = yi, when yi is continuous. In

this case the tail-area probability reduces to the computation of

pi = Pr(yrep
i ≤ yi|y).

Similar to the way that the Bayesian p-value was calculated in the previous section, pi can

be estimated as

p̂i =
1
S

S

∑
s=1

Iyrep
is ≤yi

where, yrep
is (s = 1,2, . . . ,S) are the replicated data of yi and

Iyrep
is ≤yi

=


1, yrep

is ≤ yi

0, otherwise.

It is important to perform a combined check by pooling these marginal predictive

p-values into a single figure. Therefore, this study derives the following p-value p̂M to

estimate the overall average of the marginal predictive p-values.

p̂M =
1
n

n

∑
i=1

p̂i =
1

nS

n

∑
i=1

S

∑
s=1

Iyrep
is ≤yi

, (3.3)

In addition, the overall variability in marginal predictive p-values can be represented by

their standard deviation.

The cross-validation predictive p-value is an alternative approach that can be used for

posterior model check. However, p-values calculated based on marginal and posterior

predictive checks generally reveal different behaviours. Here, the marginal distribution of

yi is calculated based on all the other observations except yi (i.e. y−i). Consequently, the
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cross-validation p-value for yi is defined as

pi = Pr(yrep
i ≤ yi|y−i).

Replicated data can be used to estimate this as it is calculated in marginal predictive p-

values. Since the cross-validation predictive p-values involve additional computations, its

computational cost has to be particularly considered in practice. However, in the situ-

ations where new observations under exactly similar conditions of the model predictors

are possible, the gap between cross-validation and full Bayesian predictive check can be

fulfilled. This is regarded as mixed predictive check in Bayesian data analysis.

3.2 Predictive Accuracy

Measuring the accuracy of predictions made by a model is a common way of evaluat-

ing models. In model assessment, various measures can be discussed. For instance, the

scoring function is a method for measuring the predictive accuracy of a point prediction

[72]. A value replicated using the model fitted for an observed value, which represents

the future observation under similar circumstances corresponding to the observed value is

regarded as a point prediction. Mean squared error, mean absolute error, and mean abso-

lute percentage error of predictions are examples of simple scoring functions that can be

used to evaluate the predictive accuracy of a model that is close to a normal distribution.

3.2.1 Log-likelihood

Predictive accuracy of probabilistic predictions is evaluated using scoring rules such as

quadratic, logarithmic, and zero-one scores [72]. The logarithmic score is a widely used

scoring rule in probabilistic predictions and in selecting models [74, 174]. Let us consider

a model with parameter θ , that is expected to fit on data yT = (y1,y2, . . . ,yn). Assuming

the independence of data, the likelihood function p(y|θ) of the model is defined as

p(y|θ) =
n

∏
i=1

p(yi|θ).
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Then the log-likelihood is defined as

log p(y|θ) = log
n

∏
i=1

p(yi|θ) =
n

∑
i=1

log p(yi|θ).

3.2.2 Kullback-Leibler Information

The log density of the unobserved future data given the model parameters and observed

data is generally referred to as log predictive density. It is a well-known summary mea-

sure of predictive fit [74]. For normal models with constant variance, the log predictive

density is proportional to the mean squared error. In statistical model comparison the log

predictive density involved in a decisive role as it connected to the Kullback-Leibler infor-

mation measure. Especially for large samples, expected log predictive density, Kullback-

Leibler information, and posterior probabilities are greatly inter-connected. The model

that produces the lowest Kullback-Leibler information leads to produce highest expected

log predictive density, which will have the highest posterior probability compared to the

other models. Hence, the expected log predictive density is used to measure the overall

model fit.

The relationship between log predictive density and Kullback-Leibler information

measure has been discussed in literature related to information theory (e.g. [7, 29, 74,

151, 156, 170]). The idea of measuring the conceptual distance between two models

(or densities) as a directed divergence was originally introduced in 1951 by Solomom

Kullback and Richard A. Liebler [110, 111]. The Kulback-Leibler (K-L) information

measures the quality of approximation or information loss I( f ;g) [9, 101]. In a situation

where one approximates the true density f (x) by g(x), where x is a q×1 random vector,

K-L information is defined as

I( f ;g) = E
{

log
[ f (x)

g(x)

]}
=
∫

Rq
log
[ f (x)

g(x)

]
f (x)dx.

I( f ;g) is always non-negative and is zero when f (x) = g(x). In model selection, the true

function f (x) is treated as fixed, however, unknown. The function g(x) with parameter
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vector θ (i.e. g(x|θ) ) is used to approximate f (x) . Then I( f ;g) becomes [29],

I( f ;g) =
∫

Rq
log
[ f (x)

g(x|θ)

]
f (x)dx.

The logarithmic term of the above equation can be further expanded into a difference of

two logarithmic terms,

I( f ;g) =
∫

Rq
log
[

f (x)
]

f (x)dx−
∫

Rq
log
[
g(x|θ)

]
f (x)dx.

Both integrals of the above equation are in the form of statistical expectations with respect

to the true function f , hence, I( f ;g) can be expressed equivalently as

I( f ;g) = E f

[
log
[

f (x)
]]
−E f

[
log
[
g(x|θ)

]]
.

As the true function f (x) is fixed and unknown, the expectation E f

[
log
[

f (x)
]]

, which

depends only on f (x) is also an unknown constant (say k). Finally,

I( f ;g) = k−E f

[
log
[
g(x|θ)

]]
.

As the constant k is unknown, the absolute information loss cannot be calculated, hence,

the appropriateness of g(x|θ) in approximating f (x) cannot be evaluated. Fortunately, the

selection of the best candidate model among two or more alternative models in the context

of information loss is obvious. It is known that the inferential aspects that are used in

the calculation of information criteria, is highly conditional on the data. Hence, model

comparisons cannot be accomplished across different datasets and completely restricted

for a fixed given dataset. However, two or more models fitted to a fixed dataset can

be compared. Let us assume that g1(x|θ1) and g2(x|θ2) are two models that used to

approximate f (x). As the Kullback-Leibler information I( f ;gi), where i = 1,2 measures

the information loss or the closeness between the true and fitted models, the one that

corresponds to the lowest information loss is the best relative to the other. Hence, the

model g1(x|θ1) is better than g2(x|θ2) in approximating f (x), if I( f ;g1)< I( f ;g2). This
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inequality can be further simplified as

I( f ;g1)< I( f ;g2)

k−E f

[
log
[
g1(x|θ1)

]]
< k−E f

[
log
[
g2(x|θ2)

]]
−E f

[
log
[
g1(x|θ1)

]]
<−E f

[
log
[
g2(x|θ2)

]]
.

Finally, this expression reveals the statistical basis of the use of the expected log predictive

density as the key quantity in model comparison. The model that produces the highest

expected log predictive density, especially for large samples, ensures uppermost posterior

probability compared to the alternative candidates.

3.2.3 Out-of-sample Predictive Accuracy Measures Using Posterior

Simulations

The predictive accuracy of a model can be evaluated by measuring the out-of-sample

predictive performance for a new data point generated from the true data-generating pro-

cess [72]. A dataset that could be seen in future under the true process f is denoted

by ỹT = (ỹ1, ỹ2, . . . , ỹi, . . . , ỹn). The posterior distribution of the unknown parameter θ is

denoted by ppost(θ). The probabilities and expectations calculated as averages over the

posterior distribution of θ are denoted by ppost and Epost respectively. Then, as stated by

Gelman et al. [74], the log predictive density of a new data point ỹi, (i.e. log ppost(ỹi)),

can be calculated using the posterior density of θ as

log ppost(ỹi) = log Epost[p(ỹi|θ)] = log
∫

θ

p(ỹi|θ)ppost(θ)dθ .

Since this is practically impossible to calculate as the future data are unknown, the ex-

pected (out-of-sample) log predictive density (elpd) for a new datum ỹi is used. Some-

times the elpd is denoted as the mean log predictive density and defined as,

elpd = E f [log ppost(ỹi)] =
∫

ỹ
[log ppost(ỹi)] f (ỹi)dỹ.
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Although the data distribution f is always unknown, a posterior distribution for the param-

eters of a model assumed for a given problem can be obtained. Using a plug-in estimator

of f is a convenient way of estimating the elpd. However, these estimates generally raise

some problems due the risk of overfitting.

Defining the expected log point-wise predictive density (elppd) as a point-wise mea-

sure of predictive accuracy is an alternative way of handling this problem in the Bayesian

context. The point-wise measure, elppd, for a new dataset can be defined as

elppd =
n

∑
i=1

E f [log ppost(ỹi)].

The advantage in point-wise measure of predictive density over the joint posterior pre-

dictive distribution ppost(ỹ) is its connection with cross-validation. Cross-validation is a

well-known method that uses data at hand for approximating out-of-sample fit. Some-

times, the calculation of predictive accuracy at a given point estimate of θ , (say θ̂ ) is

a useful method. For instance, for the models with the presence of independent data

conditional on model parameters, the expected log predictive density calculated on θ̂ ,

E f [log p(ỹ|θ̂)], can be expressed in terms of point-wise prediction as

E f [log p(ỹ|θ̂)] = E f [log
n

∏
i=1

p(ỹi|θ̂)] =
n

∑
i=1

E f [log p(ỹi|θ̂)].

As the parameter θ is unknown, it is impossible to derive the log predictive density

logp(y|θ). However, the predictive accuracy of the fitted model can be summarised based

on the posterior distribution of θ , ppost(θ) = p(θ |y). As previously discussed, the joint

prediction at a given point estimate θ̂ can be expressed in terms of point-wise predictions

subjected to the independence of the data given parameters. Consequently, the log point

wise predictive density (lppd) can be evaluated as

lppd = log
n

∏
i=1

ppost(yi) =
n

∑
i=1

log ppost(yi) =
n

∑
i=1

log
∫

θ

p(yi|θ)ppost(θ)dθ .

Let us consider S draws from the posterior distribution of θ , ppost(θ). The sth value of the

parameter θ among posterior simulations is denoted by θs, where, s = 1,2, . . . ,S. Based
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on the posterior replicated values, the predictive density of yi can be estimated as

∫
θ

p(yi|θ)ppost(θ)dθ =
1
S

S

∑
s=1

p(yi|θs).

Consequently, the computed or estimated value of log pointwise predictive density,

clppd can be obtained as

clppd =
n

∑
i=1

log

[
1
S

S

∑
s=1

p(yi|θs)

]
.

MCMC is a well-known numerical approximation technique that calculates unknown

quantities averaging over posterior draws. Practically, Monte Carlo sample size S must

be sufficiently large to capture the important features of a posterior distribution and such

samples arbitrarily improve the accuracy of estimates [41]. However, the inherent auto-

correlation between consecutive posterior draws must also be taken in to account. Thin-

ning in MCMC; which refers to the selection of the first draw from every consecutive sub

group that consists of a certain number (thinning interval) of draws, is routinely used by

many Bayesian practitioners expecting a reduction in the effects of autocorrelation.

A majority of the Bayesian practitioners have encouraged the use of thinning due to

one or both of the following reasons.

1. In the presence of high level of autocorrelations in posterior draws, it is required

longer runs for the convergence of parameters [73, 100, 127]. The tendency of over-

representation of some values while having under-representation of other values due

to the clumpy behaviour is another issue in autocorrelated MCMC chains [109].

2. The MCMC algorithms with slow mixing properties require extremely large num-

bers of posterior draws to derive precise estimates of the features of posterior den-

sity [100]. A group of consecutive posterior draws generated under a slow mixing

algorithm usually contributes with a little more information compared to the total

amount of information provided by a single observation in the group.

In MCMC simulations, posterior draws are assumed to be independent samples from the

target distribution, which is regarded as the gold standard of Monte Carlo simulations
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[95, 100]. Both slow-mixing chains and highly autocorrelated posterior draws are inter-

connected in many occasions and create a clear violation of the gold standard. The use of

thinning with a suitable interval is the most frequently used technique that helps to keep

the gold standard. Model re-parameterisation is an alternative and practical technique

that can be used to get rid of strong autocorrelations [72]. However, some literature that

discourages thinning even with moderate autocorrelations, and recommends long MCMC

runs instead are available [40].

Some Bayesian practitioners regarded thinning as a useful method for the following

reasons.

1. It gives a conservative measure of precision of the estimated quantities over un-

thinned posterior draws [114, 115].

2. It effectively manages the limited storage resources in the post-chain processing of

posterior draws [79, 114].

3. Gigantic models containing thousands of parameters, hierarchical or latent variable

models for example, usually require a huge number of draws for the convergence

and store massive arrays of MCMC outputs in Random Access Memory (RAM) of

computers [100].

Longer runs and extra time are the costs or the consequences associated with thinning.

However, even with these, thinning is useful especially with the limited resources avail-

able in many laptop and desktop computers.

3.3 Information Criteria

Measures of predictive accuracy are generally known as information criteria [72]. The

probability of data conditional on estimated model parameters is often expressed in a

logarithmic scale and labelled as the log-likelihood. In 1972, Nelder and Wedderburn

proposed the idea of deviance to assess the goodness-of-fit of models against their in-

creasing complexity [129]. It is defined by multiplying the log-likelihood by a factor of

58



3.3. Information Criteria

-2 [73]. Deviance plays an important role in model comparisons as it is connected with

Kullback-Leibler and other information criteria.

Performance evaluation of a given model and comparison of different models are

recognised as the key uses of prediction accuracy [72]. In fact, there are two ways to cal-

culate predictive accuracy measures: within-sample and out-of-sample; however, out-of-

sample predictions will always be less accurate compared to the other. The log predictive

density calculated over the observed data is a naïve estimate of the expected log predictive

density of future data that is believed to be drawn under the same data generating process.

The computed log point-wise predictive density (clppd) is relatively more straightforward

in terms of estimation and comparison. However, the clppd always overestimates the ex-

pected log point-wise density (elppd) as it uses data twice for model fitting and evaluation.

As clppd introduces a bias in estimating elppd, it can be statistically treated by introduc-

ing a suitable bias correction. This provides the basis for many information criteria and

some of them are discussed in this section with details.

Cross-validation (CV) is another method that can be used for out-of-sample predic-

tion. Even though many versions of cross-validations are available for evaluating predic-

tion error, they all essentially take the same form. Basically, in any version of the CV, the

data are divided into two parts, a training set and a test (or validation) set. The predictive

accuracy of the model fitted on the training set is evaluated over the analogous test set.

CV is a useful technique that can be used to avoid overfitting. However, it is computa-

tionally expensive as it may use many partitions and may fit a large number of models.

For example, in k-fold cross-validation, the data are partitioned randomly into k roughly

equal-sized subgroups [87]. Consequently, k separate models are fitted treating each of

k− 1 subgroups as a training set. For each model, the remaining set is used as the test

set. Leave-one-out cross-validation (LOO-CV) is the most extreme case of k-fold CV,

which considers each observation as a subgroup. LOO-CV is the most computationally

expensive variant among other CV methods, as it fits as many models as the number of

observations. However, some modified versions of importance sampling techniques have

been combined with LOO to get rid of expensive computational issues [173].
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3.3.1 Akaike Information Criterion (AIC)

Model comparison procedures generally consist of two measures [156]:

1. Goodness-of-fit – frequently measured in terms of deviance statistic, and

2. Model complexity – commonly measured in terms the number of free (or effective)

parameters.

A model with high complexity often leads to a better fit but will be of little predictive

utility because of over-fitting. Hence, a balance between these two is essential in model

building and evaluation processes.

Kulback-Leibler (K-L) and maximum likelihood are two paradigms that dominate the

fields of information theory and statistics respectively [29]. In 1973, Akaike information

criterion (AIC) was introduced [2] as an estimator for expected K-L information, in terms

of a bias corrected maximised log-likelihood value. In fact, the estimated expected relative

K-L information was derived as the difference between the log-likelihood and the number

of parameters (k) in the model as the bias correction. That is

estimated expected relative K-L information = log-likelihood− k.

Subsequently, the difference between the log-likelihood and k is multiplied by a factor of

-2, expecting comparability with the definition of deviance which measures the lack of fit

of a fitted model. When the data and maximum likelihood estimators of model parameters

are denoted by y and θ̂mle respectively, the AIC is formulated as

AIC =−2 log p(y|θ̂mle)+2k.

The model with the lowest AIC value is treated as the best relative to the alternative candi-

date models. AIC is recognised as a useful tool in model comparison, especially for vari-

able selection, as it does not depend on the order in which the models are computed [122].

Overfitting can be avoided by employing the models that involve hierarchical structures

or informative priors [72]. AIC cannot be used to compare them as the numbers of free

parameters of these models are unknown. The actual (or effective) number of parameters
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in both types of models is strongly influenced by the variance of group-level parameters.

Some extensions of AIC with adjustments related to k are: the TIC (Takeuchi information

criterion), the RIC (regularized information criterion, and the NIC (network information

criterion). These criterion are not widely used because the estimate’s variance increases

due to stability problems and computational difficulties [174].

AIC exhibits a poor performance when the size of sample is not large enough in con-

nection with the number of parameters in the model. As AIC was derived to correct the

asymptotic bias of maximum likelihood, corrected AIC (AICc) was introduced by Sugiura

in 1978, considering the exact bias of four practical problems including a regression prob-

lem [159]. In 1989, Hurvich and Tsai confirmed the superior performance of AICc over

AIC with the presence of small samples and recommended its use in the context of re-

gression and autoregressive models [96]. Let us consider a model fitted with k parameters

over a sample of size n. Then AICc is calculated as follows:

AICc =−2 log p(y|θ̂mle)+2k
n

n− k−1
=−2 log p(y|θ̂mle)+2k+

2k(k+1)
n− k−1

;n > k+2.

According to Burnham and Anderson, the use of AICc is strictly recommended instead of

AIC if n < 40k as it gives better results even for larger samples [29].

3.3.2 Bayesian Information Criterion (BIC)

In 1978, Schwarz proposed Bayesian information criterion (BIC) as a competitive mea-

sure for AIC in model comparison 148. The derivation of BIC is linked to Bayesian

procedures involving asymptotic behaviour of Bayes factor of a comparison between two

models. Replacing the factor 2 of the penalty parameter 2k in AIC by the natural log of

the sample size (log n), BIC is defined as

BIC =−2 log p(y|θ̂mle)+ k log n.

The BIC, unlike AIC, adjusts for the number of fitted parameters with a penalty that in-

creases with respect to the sample size. The factor 2 in the penalty parameter of AIC,

replaces by the (natural) log value of the sample size n in BIC. As the natural log of eight
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greater than two (i.e. log 8 > 2), the penalty per parameter in BIC is steeper for bigger

datasets that has more than seven observations. As BIC heavily penalises complex mod-

els, it favours smaller models (in terms of number of parameters) than AIC. As discussed

under AIC, the calculation of number of free parameters under the models that involves

hierarchical structures or informative priors are always misleading. As a consequence of

this, BIC cannot be used to compare these models.

3.3.3 Deviance Information Criterion (DIC)

Complex hierarchical models are not easily compared as the number of parameters in

these models is not well-defined. Rapid expansion of MCMC methods and the devel-

opment of super computers enhance the possibilities of exploring real world phenomena

with highly complex models. Hence, a method that can cope with comparisons of such

massive models along with MCMC approaches was essential, and the Deviance informa-

tion criterion (DIC) introduced by Spiegelhalter et al. [156] fulfils this requirement.

The DIC is considered to be the Bayesian analogue of AIC [72] as it blends the fre-

quentist approach of AIC and Bayesian thinking in its derivation process [29]. The DIC

replaces the maximum likelihood estimate of θ in the AIC with its posterior mean θ̂Bayes

and the penalty parameter k with a data-based bias correction pDIC which represents the

effective number of parameters in the model [72, 74]. Consequently, the expected log

predictive density is estimated as

êlpdDIC = log p(y|θ̂Bayes)− pDIC,

where pDIC is defined as twice as the difference between log predictive density of the

Bayes estimator of θ and posterior expectation of the log predictive density. That is,

pDIC = 2
{

log p(y|θ̂Bayes)−Epost
[
log p(y|θ)

]}
.

The posterior expectation of the log predictive density calculated over the posterior reali-
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sations of θ , estimates the value of pDIC as follows.

p̂DIC = 2
[
log p(y|θ̂Bayes)−

1
S

S

∑
s=1

log p(y|θs)
]
.

The log predictive density is maximised when the posterior mean and mode of the param-

eter θ are identical, and thus their difference is crucial in estimating pDIC. Since larger

differences tend to produce a negative value for the effective number of parameters, an

alternative measure pDIC alt was introduced.

pDIC alt = 2Varpost
[
log p(y|θ)

]
.

Although pDIC alt defined as twice as posterior variance of the log predictive densities, is

certainly positive, pDIC is numerically more stable than pDIC alt. The two forms of the

effective number of parameters formulate DIC as follows:

DIC =−2 log p(y|θ̂Bayes)+2 pDIC

DICalt =−2 log p(y|θ̂Bayes)+2 pDIC alt

The use of DIC in model comparison has some practical limitations in relation to miss-

ing data models such as mixture and random effect models [36]. The DIC exhibits some

inconsistency in the results of mixture models as posterior estimates of means are quite

delicate under these models. Overall, the poor performance of posterior means in estimat-

ing model parameters is a key problem of DIC with respect to mixture models.

3.3.4 Widely Available Information Criterion (WAIC)

A learning machine or a statistical model is described as regular if its Fisher information

matrix is positive definite and if the map taking parameters to probability distributions is

one-to-one [175]. Many machine learning methods including normal mixtures, artificial

neural networks, Bayes networks, and hidden Markov models do not have this property,
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hence they are known as singular. Non-representativeness of the plug-in estimates of pos-

terior parameters and lack of convergence in the distribution of deviance to a chi-square

distribution are the key problems associated with singular models [74]. Singular learning

theory is required for models with a hierarchical structure or hidden variables. Maxi-

mum likelihood estimators under singular models are not asymptotically normal, diverge

or increase the generalisation error. Hence, maximum likelihood estimation is not ap-

plicable for singular models. In contrast, Bayesian estimation reduces the generalization

error of models with singularities. However, in both regular and singular models, average

cross-validation is equal to the average generalization error.

The Widely available or the Watanabe-Akaike information criterion (WAIC) was in-

troduced in 2010 [175] as a fully Bayesian method for estimating the out-of-sample expec-

tation. In addition, Watanabe showed the asymptotic equivalence of Bayesian leave-one-

out cross-validation (LOO-CV) to WAIC. Since Bayesian cross-validations are always

applicable for both singular and non-singular models, the asymptotic equivalence implies

the validity of WAIC even with singular models. WAIC is defined based on the com-

puted log pointwise predictive density (clppd), which is used as an estimate of expected

log pointwise predictive density (elppd) [72, 74, 171]. The bias correction term pWAIC is

used to estimate the effective number of parameters against over-fitting. Considering the

deviance form of an information criterion, the WAIC is defined as

WAIC =−2 êlpdWAIC =−2
(

clppd− pWAIC

)
.

Similar to DIC, WAIC also has two types of penalty terms pWAIC and pWAIC alt. The first

version pWAIC reflects the sum of the differences between posterior expectation of point-

wise predictive densities, calculated in logarithmic scale and the posterior expectation of

point-wise log predictive densities. That is

pWAIC = 2
n

∑
i=1

{
log Epost p(yi|θ)−Epost

[
log
(

p(yi|θ)
]}

.

The expectation terms in the above expression are replaced with the corresponding aver-
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ages calculated over posterior draws. Consequently, pWAIC is estimated as

p̂WAIC = 2
n

∑
i=1

{
log
[1

S

S

∑
s=1

p(yi|θs)
]
− 1

S

S

∑
s=1

log p(yi|θ)
}
.

The second version, pWAIC alt is defined as the sum of posterior variances of the point-wise

log predictive densities. That is

pWAIC alt =
n

∑
i=1

Varpost
[
log p(yi|θ)

]
.

Let us assume that dis = log p(yi|θs) is the log density of yi given θs. Then the mean log

density of yi (say d̄i) is computed over S posterior draws as d̄i =
1
S ∑

S
s=1 dis. The notation

V S
s=1 is used to define the mathematical operation in relation to the calculation of sam-

ple variance of the quantity dis, such that, V S
s=1dis =

1
S−1 ∑

S
s=1(dis− d̄i)

2. Subsequently,

pWAIC alt is estimated as

p̂WAIC alt =
n

∑
i=1

Varpost
[
log p(yi|θ)

]
=

n

∑
i=1

V S
s=1dis =

n

∑
i=1

V S
s=1log p(yi|θ).

The second penalty term, pWAIC alt was recommended for practical use based on two

reasons.

1. The closer relationship between leave-one-out cross-validation (LOO-CV) and pWAIC alt,

in series expansions and

2. Both LOO-CV and pWAIC alt tend to produce approximately similar results.

The WAIC takes the average over the posterior distribution, unlike AIC and DIC that

condition on a point estimate. Therefore, WAIC is more popular than AIC and DIC in

Bayesian contexts. Although the two approaches in WAIC have similarities with pDIC

and pDIC alt, pWAIC alt is more stable compared to pDIC alt since it takes the sum of sep-

arately calculated variances for each data point. In addition, both AIC and BIC fail in

evaluating hierarchical models, while DIC fails in mixture model evaluations. WAIC

however performs successfully for hierarchical and mixture models where the number of

parameters increases with the sample size and point estimates are often delicate and mis-

leading. Once a set of candidate models consists of both types of models, WAIC can be
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effectively used to rank them. However, performance of WAIC also has some practical

problems associated with the posterior variances of point-wise log predictive densities

calculated over posterior draws. Simulation studies highlight some reliability issues in

WAIC with the presence of any observation whose posterior variance exceeds 0.4 (i.e.

Varpost
[
log p(yi|θ)

]
> 0.4 for any i) [173]. Therefore, 0.4 is used as the standard for the

maximum posterior variance of log predictive density of any observation. When WAIC is

calculated with R package loo, it displays a warning message together with the percentage

of observations that violate this standard.

3.4 Leave-one-out Cross-validation (LOO-CV)

Bayesian cross-validation like regular cross validation, involves repeated partitioning of

data into training and holdout sets denoted by ytrain and yholdout respectively [72, 74].

Posterior distributions of model parameters (θ ) are obtained by fitting models to the train-

ing sets. The posterior distribution of θ calculated on the training set is specified as

ptrain(θ) = p(θ |ytrain).

An estimate of the log predictive density of the holdout dataset, log ptrain(yholdout) defined

below, is used to evaluate the model fit.

log ptrain(yholdout) = log
∫

θ

ppred(yholdout|θ)ptrain(θ)dθ .

It is assumed that the posterior distribution is summarized by a sufficiently large number

of simulation draws. Assuming S posterior draws (θs; s = 1,2, . . . ,S), the log predictive

density is calculated as

log
[1

S

S

∑
s=1

p(holdout|θs)
]
.

When each holdout set includes a single data point yi where i = 1,2, . . . ,n, then it gener-

ates n different posterior densities. Let us assume that ppost(−i) where (−i) indicates that
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the ith observation is being omitted, is the posterior density calculated for yi over S poste-

rior draws θis. Then the estimated out-of-sample predictive fit in the context of Bayesian

LOO-CV is defined as

lppdloo-cv =
n

∑
i=1

log ppost(−i)(yi).

The value of lppdloo-cv is calculated over posterior draws as defined below.

computed lppdloo-cv =
n

∑
i=1

log
[1

S

S

∑
s=1

p(yi|θis)
]
.

The risk of underestimation needs to be considered as it uses only n− 1 data points in

each predictive fit. However, since the bigger the dataset gets the smaller the difference,

considerable differences cannot be anticipated in the fits to large samples. The com-

putation cost associated with large datasets is another problem, and alternatively, k-fold

cross-validations are used to reduce massive computations associated with LOO-CV. In

practice, a first order bias correction b is used to evaluate the quality of predictions. It is

defined as

b = lppd− lppd−i,

where

lppd−i =
1
n

n

∑
i=1

n

∑
j=1
j 6=i

log ppost(−i)(yi).

Assuming S posterior draws, lppd−i is calculated as

computed lppd−i =
1
n

n

∑
i=1

n

∑
j=1
j 6=i

log
[1

S

S

∑
s=1

p(y j|θis)
]
.

Consequently, the bias corrected Bayesian LOO-CV, lppdcloo-cv is calculated as

lppdcloo-cv = lppdloo-cv +b.
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The impact of b is negligible due to its low magnitude, and therefore, the bias corrected

LOO-CV is rarely used. Subsequent to the calculation of log point-wise predictive density

(lppd) of the fitted model over its posterior simulations, the effective number of parame-

ters in LOO-CV, ploo-cv is estimated by

ploo-cv = lppd - lppdloo-cv.

Similarly, the effective number of parameters in the bias-corrected LOO-CV, pcloo-cv is

estimated by

pcloo-cv = lppd - lppdcloo-cv = lppd−i− lppdloo-cv.

Approximating the posterior distribution by re-fitting the model a number of times asso-

ciates with a high computational cost. However, it performs well with singular models.

In addition, the following approximations of other information criteria to LOO-CV are

advantageous.

1. AIC is asymptotically equal to LOO-CV

2. Regularised information criteria (RIC), a variant of DIC, is asymptotically equal to

LOO-CV

3. WAIC is asymptotically equal to Bayesian LOO-CV.

3.5 Importance Sampling (IS) for Calculating Leave-one-

out Cross-validation (LOO-CV)

As it mentioned in section 3.3.4, the performance of WAIC begins to decrease when any

of the posterior variances of the log predictive densities increases beyond 0.4. The use

of exact cross-validation is also expensive since it requires as many re-fits as the number

of observations in the dataset. However, the problem of involving massive computations

can be avoided by using important sampling (IS) techniques. Applicability and the com-

putational convenience of IS in approximating LOO-CV has been widely discussed in
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literature [15, 67, 173]. In the Bayesian context, the LOO-CV out-of-sample predictive

fit is estimated by Vehtari et al. [173]

lpdloo =
n

∑
i=1

log p(yi|y−i),

where p(yi|y−i) denotes the leave-one-out predictive density of the ith observation yi given

the remaining observations and is defined as

p(yi|y−i) =
∫

θ

p(yi|θ)p(θ |y−i)dθ .

Assuming the conditional independence among data, the importance ratio of the ith obser-

vation over the sth posterior draw (θis), ris is calculated as follows based on the findings

of Gelfand et al. [68]

ris =
1

p(yi|θis)
∝

p(θis|y−i)

p(θis|y)
.

Then the importance sampling leave-one-out (IS-LOO) predictive distribution is calcu-

lated as a weighted average over S posterior draws treating importance ratios (weights) ris

as weights. Therefore, IS-LOO predictive distribution of yi is

p(yi|y−i)≈
∑

S
s=1 ris p(yi|θis)

∑
S
s=1 ris

=
∑

S
s=1

1
p(yi|θis)

p(yi|θis)

∑
S
s=1

1
p(yi|θis)

=
S

∑
S
s=1

1
p(yi|θis)

.

It can also be written as,

p(yi|y−i)≈
1

1
S ∑

S
s=1

1
p(yi|θis)

.

As this result implies, IS-LOO predictive density of yi is the harmonic mean of S posterior

densities of yi, calculated conditionally on the simulated parameter values θis. Hence, in

IS-LOO, the estimated log predictive density of the point yi can be written in the form

log p(yi|y−i)≈ log

(
1

1
S ∑

S
s=1

1
p(yi|θis)

)
=−log

(
1
S

S

∑
s=1

1
p(yi|θis)

)
.
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Therefore, the expected log point-wise predictive density with IS-LOO can be estimated

by

êlpdis−loo =−
n

∑
i=1

log

(
1
S

S

∑
s=1

1
p(yi|θis)

)
.

However, the resulting estimate can be noisy due to large or infinitely large variances of

the important weights [56].

3.5.1 Truncated Importance Sampling (TIS) for Calculating Leave-

one-out Cross-validation (LOO)

The distribution of importance weights is highly positively skewed. In addition, large or

infinite variance in the tails tends to produce instability in the results [171]. Ionides [99]

has discussed some important aspects of importance sampling along with useful sugges-

tions with special reference to MCMC methods [173]. Following these recommendations

and expecting more stabilised weights, raw importance weights ris are replaced by trun-

cated weights wis. The new weights are in the form:

wis = min
(

ris,
√

Sr̄i

)
,

where r̄i is the simple arithmetic mean of the raw importance weights calculated over S

posterior draws. That is

r̄i =
1
S

S

∑
s=1

ris.

Considering the truncated importance sampling weights, the TIS-LOO estimate of the

expected point-wise predictive density is calculated as

êlpdtis−loo =
n

∑
i=1

log

(
∑

S
s=1 wis p(yi|θis)

∑
S
s=1 wis

)
.

According to Ionides [99], the finite variance of truncated importance sampling weights

is ensured under this method (TIS-LOO). However, possible biases introduced as a con-
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sequence of truncation in weights is a remarkable drawback of this method.

3.5.2 Pareto-smoothed Importance Sampling (PSIS) for Calculating

Leave-one-out Cross-validation (LOO-CV)

Considering the weakness associated with IS-LOO and TIS-LOO, in 2016, Vehtari et al.

introduced a new method [173] that employs a special smoothing technique to the im-

portance weights based on the Pareto distribution. Pareto-smoothed importance sampling

(PSIS) [172] is a new approach for regularising importance weights and is an efficient

way of calculating leave-one-out cross-validation (PSIS-LOO).

It is known that the distribution of importance weights is positively skewed with long

tails. The Generalised Pareto distribution (GPD) introduced by Pickands in 1975 [137]

is a well-known distribution to model the exceedances over a threshold [35]. The density

function of three-parameter GPD is in the following form [49, 172].

f (x|µ,σ ,k) =


1
σ

[
1+ k

(x−µ

σ

)]− 1
k−1

, k 6= 0

1
σ

exp
(
− x−µ

σ

)
, k = 0,

where σ (> 0) and k (−∞ < k < ∞) denote the scale and shape parameters respectively.

The continuous location parameter can assume any real value (i.e. −∞ < µ < ∞). For

non-negative values of k, the range is µ ≤ x < ∞. However, it has a finite upper bound

µ− σ

k for negative values of k (i.e µ ≤ x≤ µ− σ

k for k < 0). The existence of mean and

variance of the distribution strongly depends on the value of shape parameter k as shown

below.

E(X) =
σ

1− k
, k < 1

Var(X) =
σ2

(1− k)2 +(1+2k)
, k <

1
2

The shape parameter k plays an important role in describing valuable properties of the

GPD and especially, the thickness of tail of the fitted GPD is characterised by the magni-

tude of k. As it mentioned above, finite variance of the distribution is guaranteed if k is
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less than 0.5 whereas the variance is infinite and the mean is still finite, if k lies between

0.5 and 1. Both mean and variance of the GPD do not exist whenever the shape parameter

exceeds or equals one.

Considering many of these vital properties associated with GPD, it has been used

to model the upper tail of the weights distribution. In addition, the method proposed

by Zhang and Stephens [180] is used to calculate the empirical Bayes estimates of the

parameters of the GPD. This method has an increased efficiency and a lesser bias relative

to the maximum likelihood estimate. The methodology can be summarised as below

[172]. Initially, the parameters of the GPD are redefined as (b, k) so that b= k
σ

. The profile

likelihood of k, which maximises the conditional likelihood given b, is selected instead

of its maximum likelihood to eliminate high correlation between b and k. Subsequently,

the posterior mean of b (b̂) is numerically computed combining the estimated profile

likelihood, assuming a weakly informative prior on it. In the last step, estimating σ (σ̂ )

as k̂
b̂
, the estimated value of k (k̂) is calculated by maximising the likelihood conditional

on b̂. Even though the estimate associates with a small bias, it is highly efficient and

computationally fast compared to fully Bayesian approaches that provide better estimates.

The smoothing technique adopted in PSIS basically depends on larger values of the

calculated importance weights [172, 173]. Subsequent to the calculation of importance

weights ris for each data point yi and for each posterior simulation s (where, s= 1,2, . . . ,S),

it is necessary to select the largest M weights for each held-out data point yi. Generally,

M = 0.2S representing the largest 20% of weights. However, this number can be further

reduced for larger posterior simulations. Depending on the number of posterior samples

S, the ratio between M and S can vary between 10% and 20%. In general, a larger value

of S requires a smaller percentage. The uncertainty in estimates decreases with larger M,

however, the bias increases with larger percentages of M
S . After selecting a suitable M,

the remaining steps associated with PSIS can be summarised as below.

1. Consider
(S−M

S 100
)th percentile of the calculated importance weights ris as µ . For

example, when M = 0.2S, then µ = 80th percentile of ris is considered.

2. Following the method proposed by Zhang and Stephens described above, estimate

the remaining two parameters k and σ , fitting the GPD to the selected largest M
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importance weights.

3. Calculate the expected order statistics of the fitted GPD as below.

The inverse distribution function for any given probability p (0 < p < 1) is

F−1(p|µ,σ ,k) =


µ + σ

k

[
(1− p)−k−1

]
, k 6= 0

µ−σ ln(1− p), k = 0,

where p = m−0.5
M for m = 1,2, . . . ,M.

Replace the selected M largest importance ratios with these M estimated order

statistics and label the new weights as mis, s = 1,2, . . . ,S. Now mi is a distinct

vector of length S for observation yi. For more clarity, the first S−M elements of

mi are replaced with the smallest S−M values of the vector ris while the remaining

M are replaced with the estimated order statistics of fitted GPD.

4. Truncate each vector of these estimated importance weights mi at S
3
4 mi, where mi

is the average of all the S elements mis in mi. That is, the new importance weights

w̃is are defined using truncated weights mis. This ensures a finite variance for the

estimate. Then the new weights are in the form

w̃is = min
(

mis,S
3
4 mi

)
.

5. Repeat the above four steps for all the data points yi, i = 1,2, . . . ,n.

Finally, combining all the results, the PSIS-LOO estimate of the expected point-wise

predictive density is calculated as

êlpdpsis−loo =
n

∑
i=1

log

(
∑

S
s=1 w̃is p(yi|θis)

∑
S
s=1 w̃is

)
.

It is already known that the importance of shape parameter k is determining the existence

of moments in GPD. Consequently, the reliability of estimates can be assessed based on

the estimated shape parameter k̂ as below.
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1. When k̂ is less than 0.5, then the estimate is not sensitive to influential (larger)

importance weights, hence, the finite variance of the raw importance weights is

guaranteed. In addition, a rapid convergence in the estimate can be observed.

2. When k̂ lies between 0.5 and 1, a slow convergence in the PSIS estimate can be

seen. The raw importance weights are ended up with an infinite variance, but a finite

mean. A large variance in the PSIS estimate is obvious under these circumstances.

3. When k̂ exceeds 1, the mean and variance of the fitted distribution of importance

weights do not exist and consequently, a larger variance in the PSIS estimate cannot

be avoided.

When there are influential observations or weak prior information involved in finite mod-

els, PSIS-LOO is more robust than WAIC. It is possible to rely on LOO-CV approxima-

tion even for alarming values of k̂ (i.e. 0.5 < k̂ < 1). However, IS-LOO fails when k̂ goes

beyond 1 while PSIS-LOO and TIS-LOO measures remain with finite variances.

The approximate standard error calculated for predictive errors under LOO can be

highlighted as a small extension of respective calculations [173]. Let us assume that

lpdloo,i denotes the LOO log predictive density calculated for the observation yi. As n

observations in the data are independent, it can assume that the estimate êlpdloo consists

of n independent components êlpdloo,i. Then the approximated variance of êlpdloo,i can

be calculated as the sample variance of n values of êlpdloo,i. That is

Var
(
êlpdloo,i

)
=V n

i=1êlpdloo,i,

where the operator V n
i=1ai denotes the sample variance of any variable a with n values

a1,a2, . . . ,an. Since êlpdloo is estimated as the sum of independent components êlpdloo,i,

the variance of êlpdloo is calculated as

Var
(
êlpdloo

)
= n V n

i=1êlpdloo,i.

The same method can be adopted to calculate the variances of êlpd under IS-LOO, TIS-

LOO and PSIS-LOO methods.
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In model comparisons, the estimated expected log predictive densities calculated un-

der the two models for the same dataset are compared. Therefore, variance of the differ-

ence between two measures can be used to calibrate the precision of comparison. Let us

assume that êlpd
A
loo and êlpd

B
loo denote the estimated LOO expected log predictive den-

sities calculated for model A and B respectively. Point-wise log predictive densities of

the two models for the ith observation yi are denoted by êlpd
A
loo,i and êlpd

B
loo,i respectively.

These two point estimates are paired as they are calculated for the same datum. Hence, the

variance of any paired difference can be approximated by the variance of the differences

as given below.

Var
(

êlpd
A
loo,i− êlpd

B
loo,i

)
=V n

i=1

(
êlpd

A
loo,i− êlpd

B
loo,i

)
.

Consequently, the overall variance of the difference between two measures used for com-

parison can be calculated as

Var
(

êlpd
A
loo− êlpd

B
loo

)
= n V n

i=1

(
êlpd

A
loo,i− êlpd

B
loo,i

)
.

This calculation can be extended to assess the precision of model comparisons using IS-

LOO, TIS-LOO and PSIS-LOO methods. The R package loo provides necessary facilities

for calculating WAIC, LOO and PSIS-LOO. In addition, it provides various standard

errors in relation to WAIC and LOO approaches.

3.6 L-Measure

The L-measure is another Bayesian model assessment criterion, which is defined on the

posterior predictive distribution of the data. The L-measures calculated for large class of

plausible models can be compared to select the best model. It was first introduced by

Ibrahim & Laud [98] and Laud & Ibrahim [112], only for the linear models. Then a more

general version of L-measure was introduced in 2001 by Ibrahim, Chen & Sinha [97].

Let us assume that yT = (y1,y2, . . . ,yn) denotes a vector of observed data and zT =

(z1,z2, . . . ,zn) is a vector of unobserved future values generated from the same model m
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from which the observed data y are coming. Then the more general version of L-measure

(Lm) is defined as

L2
m = L2

m(y,ν) =
n

∑
i=1

[
Var(zi)+ν

(
E(zi)− yi

)2
]
,

where, 0≤ ν ≤ 1. In the original version of L-measure, ν = 1, and it gives equal priority to

both the variance component and the squared bias term. As ν is allowed to vary between

zero and one, it provides a great flexibility in assigning weighting for the bias and the

variance. The L-measure is calculated as Lm =
√

L2
m, expecting a comparability with the

observed data in terms of measurement unit.

3.7 Summary

Assessing the validity of the underlying assumptions and measuring the accuracy of pre-

dictions are essential in any Bayesian statistical model. This chapter reviews measures

available for Bayesian model assessment and discusses the usefulness and shortfalls of

them and the conditions to be satisfied for their use. This review provides important sug-

gestions for selecting appropriate measures for evaluating the models presented in Chap-

ter 2, and hence supports the identification of better non-hierarchical models in Chapter

4 and hierarchical models in Chapter 5, for predicting stutter ratio. Bayesian p-values,

information criteria such as AIC, BIC, DIC, and WAIC, and cross-validations are the dis-

cussed measures of predictive model accuracy. However, these methods take different

aspects of predictive accuracy into consideration and provide varied benefits in model

evaluations. Bayesian p-values measure the discrepancy between the data and the fitted

model by evaluating the extremeness of future observations. However, they are not suit-

able for evaluating test quantities that are functions of sample variance since they always

produce p-values close to the desired value 0.5 regardless of the model fit. Both AIC and

BIC perform better for Bayesian models with flat priors, fitted to large samples. How-

ever, BIC is better than AIC as it penalises the model complexity more than AIC. Both

AIC and BIC are not suitable for evaluating hierarchical models whereas DIC is suitable

for these. However, DIC is not suitable for mixture model comparisons. WAIC is the
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best option with both singular (e.g. mixture models) and non-singular models as it has

been developed based on singular learning theory. However, the posterior variances of log

pointwise predictive densities for all the observations in a dataset must be below 0.4 for

WAIC to be valid. Exact (leave-one-out) cross-validation is one of the best approaches

available for evaluating out-of-sample predictive fit. However, it is computationally ex-

pensive and time consuming with large datasets. Therefore, importance sampling, trun-

cated importance sampling, and Pareto-smoothed importance sampling techniques are

used as approximations to the exact cross-validation. Furthermore, L-measure is identi-

fied as another Bayesian model assessment criterion which evaluates a weighted average

of the variance and squared bias of predictions.
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Chapter 4

Assessment of Models

4.1 Introduction

In this chapter, the methodology discussed in Chapter 3 is applied to compare the models

described in Chapter 2. These models include five proposed by Bright et al. [21] and

another six models proposed in this study to explain the behaviour of PCR stutter ratio

(SR). The five models proposed by Bright et al. modelled SR with a right-skewed heavy-

tailed distribution and log-normal and gamma distributions were used. The six models

proposed in this study, in contrast, modelled SR as a symmetrically distributed random

variable and the distributions proposed were the non-standardised Student’s t and the nor-

mal. The mean of each model was modelled as a locus-specific simple linear regression

that used longest uninterrupted sequence (LUS) as the predictor. The gamma models as-

sumed two versions of variance models: profile-wide and locus-specific variances. The

normal, log-normal, and non-standardised Student’s t models assumed an additional vari-

ance structure that provides the basis for two-component mixtures. Chapter 2 provided

all the details of the 11 models that are examined in this chapter. In relation to variance

modelling, the models can be classified into three categories:

1. Models assuming profile-wide variance – There are four models that assume log-

normal (LN0), gamma (G0), normal (N0), and non-standardised Student’s t (T0)

distributions in stutter modelling.

2. Models assuming locus-specific variance – The models LN1, G1, N1, and T1 are
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fitted based on the log-normal, gamma, normal, and non-standardised Student’s t

distributions respectively to model the behaviour of SR.

3. Two-component mixture models – Log-normal, normal, and non-standardised Stu-

dent’s t distributions are assumed for the two components in each model and these

are denoted by MLN1, MN1, and MT1respectively.

4.2 Graphical Assessment of Distributional Assumptions

Assessment of the distributional assumptions or evaluating the validity of the proposed

distributions is always very important in the model building process. The use of proba-

bility plots for testing the goodness-of-fit is very common in classical statistics. Quantile-

quantile (Q-Q) and percent-percent (P-P) plots are the most commonly used probability

plots [165]. Q-Q plots always provide a greater emphasis to the tails [66]. P-P plots,

in contrast, highlight the differences in the middle of the distribution as the cumulative

probabilities are rapidly changing in the regions of higher probabilities. Therefore, both

P-P and Q-Q plots jointly describe the goodness-of-fit of the fitted distribution.

According to their parametrisation, the means and variances of all the models used

in this study vary from observation to observation . The variance of SR (or log(SR)), for

example, is a function of the observed allele height which varies from observation to ob-

servation. The log-normal model for SR can also be interpreted as a normal model for

log(SR). Hence, the observed value of each log(SR) and SR can be standardised based on

the estimated means and standard deviations of respective normal and log-normal models.

However, even within one family either normal or log-normal, the mean and variance of

the distribution for each observation are fixed only for the particular observation. There-

fore, the standardisation of the observations are not subjected to the mean and variance of

a single distribution as it is in usual practice. However, subjected to the validity of zero

mean and unit variance of the standardised values, they can be assumed to be realisations

of a normally distributed random variable. Even though the standardisation of the ob-

servations is possible under the normal mixture model, one cannot expect any normality

from the standardised values, as mixtures of normal densities are no longer normal. Simi-
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4.2. Graphical Assessment of Distributional Assumptions

Figure 4.1: Log-normal Q-Q and P-P plots for the NGM SElectTM dataset.

Figure 4.2: Normal Q-Q and P-P plots for the NGM SElectTM dataset.
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4.2. Graphical Assessment of Distributional Assumptions

Figure 4.3: Log-normal Q-Q and P-P plots for the IdentifilerTM dataset.

Figure 4.4: Normal Q-Q and P-P plots for the IdentifilerTM dataset.

81



4.2. Graphical Assessment of Distributional Assumptions

Figure 4.5: Plots of predicted versus observed SR for THO1 locus in the NGM SElectTM

dataset.
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4.2. Graphical Assessment of Distributional Assumptions

Figure 4.6: Plots of predicted versus observed SR for D2S1338 locus in the NGM
SElectTM dataset.
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larly, a mixture of log-normal densities is no longer a log-normal density. Construction of

both P-P and Q-Q plots for gamma and Student’s t models are always impossible as they

are not simplified into a unique distribution like the standard normal distribution.

Bright et al. [21] also used log-normal Q-Q plots to evaluate the goodness-of-fit of the

log-normal models. Figure: 4.1 and Figure: 4.2 graphically illustrate to the goodness-of-

fit of both normal and log-normal models fitted for the NGM SElectTM dataset. The Q-Q

plots clearly indicate severe lack-of-fit problems in the lower tails of both log-normal

and normal models. Normal models exhibit goodness-of-fit problems in the upper tail

too. The Q-Q plots illustrate comparatively weak fitting in the middle of the distribu-

tion for log-normal models over the normal models. According to Figure: 4.3 and Fig-

ure: 4.4, both normal and log-normal models fitted for the IdentifilerTM dataset show se-

rious goodness-of-fit problems in both tails of their respective distributions. In addition,

both models exhibit considerable departures from the theoretically expected behaviour

even in the middle of their distributions. As indicated by the P-P plots, irrespective of the

dataset, both types of models reveal thin-tail behaviours in the respective distributions.

Lack-of goodness-of-fit problems associated with both normal and log-normal models are

possibly reduced with the use of two-component normal and log-normal mixture models.

However, the goodness-of-fit of the mixture models cannot be graphically examined.

Figures: 4.5 and 4.6 present the scatter plots of predicted versus observed SR for THO1

and D2S1338 loci respectively in the NGM SElectTM dataset. There are no major differ-

ences among the relationships between predicted and observed SR for both loci. However,

Figure: 4.5 shows two extremely large predicted SR for THO1 locus for the log-normal

mixture model (MLN1).

4.3 Comparison of Existing and Proposed Models

Various information criteria are available for model comparisons. However, the limita-

tions associated with these criteria usually restrict their applicability. Even though, AIC

(the Akaike information criterion) and BIC (the Bayesian information criterion) are well-

known in model comparisons, they require the calculation of the log-likehood under the
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maximum likelihood estimators (MLEs) of the model parameters. However, it is well-

known that the Bayesian estimates calculated with the presence of large samples or flat

(especially uniform) priors tend to produce similar estimates to MLEs. In this study, the

Bayesian estimates of model parameters were calculated using flat priors, with large sam-

ples. Therefore, the 11 models can be compared with either AIC or BIC, replacing MLEs

with corresponding Bayesian estimates.

Mixture models are generally treated as singular models. Asymptotic behavioural

problems and non-representativeness of the plug-in estimates of posterior parameters of

singular models have been highlighted in literature [74]. The comparison of mixture

models is recommended with information criteria developed based on singular learning

theory. However, this study does not reveal any unusual result in using either AIC or BIC

for comparing three two-component simple mixture models. Bright et al. [21] also used

AIC to compare the performance of their five models including a log-normal mixture.

However, since BIC penalises the model complexity more than AIC for large samples,

the 11 models were compared with BIC.

Table 4.1: The differences of BIC values for the NGM SElectTM dataset

Model LN0 G0 LN1 G1 N0 MLN1 N1 T1 T0 MN1

G0 1723
LN1 2100 377
G1 2727 1004 627
N0 3053 1330 953 326
MLN1 3584 1861 1484 857 531
N1 3640 1917 1540 912 586 55
T1 3744 2021 1644 1017 691 160 105
T0 3823 2100 1723 1095 769 238 183 79
MN1 3979 2256 1879 1251 925 394 339 156 235
MT1 4635 2912 2535 1907 1581 1050 995 812 890 656

The differences of BIC values for all possible combinations of the models for the

NGM SElectTM and the IdentifilerTM datasets are presented in Table 4.1 and Table 4.2

respectively. The models are arranged in increasing order of their performances. The

magnitude of the differences reflects the extent that the models in the rows are better than

the corresponding models in the columns, with respect to BIC. For example, the first value
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Table 4.2: The differences of BIC values for the IdentifilerTM dataset

Model LN0 N0 G0 LN1 G1 N1 MLN1 T0 T1 MN1

N0 1687
G0 1739 52
LN1 3019 1332 1280
G1 3901 2214 2162 882
N1 4201 2514 2462 1182 300
MLN1 5566 3878 3827 2547 1664 1365
T0 5626 3938 3887 2607 1724 1425 60
T1 6100 4412 4361 3081 2198 1899 534 474
MN1 6267 4580 4528 3248 2366 2066 702 642 168
MT1 8043 6355 6304 5024 4141 3842 2477 2417 1943 1775

1723 in Table 4.1 represents, BIC(LN0) - BIC(G0) = 1723.

Regardless of the dataset, the two component non-standardised Student’s t mixture

(MT1) and the two component normal mixture (MN1) have been selected as the best and

the second best model respectively. For both datasets, non-standardised Student’s t mod-

els, one with locus-specific variance (T1) and the other with profile-wide variance (T0)

outperform over all the non-mixture models. For both datasets, normal models perform

better than log-normal models and non-standardised Student’s t models perform consis-

tently better than both normal and log-normal models among all the three modelling cat-

egories: profile-wide variance, locus-specific variance, and mixture models. Performance

of the gamma models are consistently greater than that of the log-normal models and

mostly lower than the normal models, in both locus-specific and profile-wide variance

modelling categories. The normal model with locus-specific variance (N1) is the best and

the most convenient option for the forensic practitioners who are not comfortable with

advanced modelling techniques such as mixture models or rarely used statistical distribu-

tions such as non-standardised Student’s t.

4.4 Model Comparison Beyond AIC and BIC

The use of Bayesian estimates in place of MLEs of model parameters is a key assumption

in the use of AIC and BIC in Bayesian model comparisons. On the contrary, the infor-
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mation criteria established with singular learning theory are recommended for the com-

parison of mixture models. DIC (the deviance information criterion) is regarded as the

Bayesian version of AIC and it provides a convenient way of performance evaluation even

with very large complex models. The problem of estimating MLEs for Bayesian models

can be avoided with the use of DIC that calculates log-likelihoods based on the Bayesian

estimates of model parameters. However, DIC cannot be used for model comparison as

the posterior estimates of means are quite delicate under the mixture models. WAIC (the

widely available or Watanabe-Akaike information criterion) has been developed based on

singular learning theory and is recommended for comparison of both singular and non-

singular models. However, the use of WAIC also has a practical limitation in relation to

the posterior variance of log predictive distribution. When the posterior variance of any

observation, calculated over MCMC simulations exceeds 0.4, WAIC starts to exhibit its

inability in model comparison and performance evaluation. Thus, it is vital to explore the

behaviour of log densities of the observations under each model when WAIC is used.

Figure 4.7 and Figure 4.8 clearly indicates that a substantial majority of the variances

of log predictive densities exceed the standard 0.4 limit in both datasets. In particular,

for each model, at least 99.7% of data points in the IdentifilerTM dataset and 95.5% of

data points in the NGM SElectTM dataset exceed the 0.4 margin. More interestingly, the

models associated with normal distribution in each of the three model categories for both

datasets, provide on average the lowest posterior variance of log predictive density along

with the lowest variability compared to the other models. In contrast, the models related to

the non-standardised Student’s t distribution indicate the largest posterior variance among

all the modelling categories consistently for both datasets.

All the models fitted to the two datasets do not fulfil the posterior variance requirement

of log predictive densities and hence, the validity of WAIC is controversial. Leave-one-out

cross-validation (LOO-CV) is the next alternative approach available for comparing the

performance of the models. However, LOO-CV is computationally very expensive and

time consuming. Importance sampling LOO-CV (IS-LOO), truncated importance sam-

pling LOO-CV (TIS-LOO), and Pareto-smoothed importance sampling LOO-CV (PSIS-

LOO) are three variants of importance sampling discussed in Chapter 3 as the potential
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Figure 4.7: Posterior variances of log predictive densities of the models for the NGM
SElectTM dataset.

Figure 4.8: Posterior variances of log predictive densities of the models for the
IdentifilerTM dataset.
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approximations to LOO-CV. This study used and compared the three LOO-CV approxi-

mations together with the computed log pointwise predictive density (clppd) and expected

log pointwise predictive density calculated under the two versions of WAIC (i.e.; WAIC

and WAICalt).

All the posterior predictive measures presented in Figure: 4.9 and Figure: 4.10 are

estimated based on the individual posterior densities calculated at each observed value

in the respective datasets. These individual density estimates represent a summary mea-

sure of a sample of 2000 posterior draws of densities. The simple arithmetic mean is

used as the summary measure in estimating the log point-wise density (clppd) of each

model. IS-LOO is calculated based the harmonic mean of sample values. The simple

arithmetic mean gives equal priority to all the observations whereas harmonic mean gives

high priority to smaller values and low priority to larger values. Therefore, harmonic

mean calculated for any distinct dataset is always less than its simple arithmetic mean. As

a consequence of this relationship between simple arithmetic mean and harmonic mean,

it is intuitive to expect a smaller value for IS-LOO compared to the corresponding clppd.

In TIS-LOO, a weighted average of sample values is used as the summary measure. The

raw importance weights (the reciprocals of respective posterior densities) are used as the

weights. However, the raw importance weights that are larger than the truncation point

(the mean of importance weights multiplied by the square root of the number of MCMC

draws) are replaced by the truncation value itself prior to the calculations. The larger im-

portance weights are corresponding to the smaller predictive densities by its definition and

as a result, smaller predictive densities receive relatively low weights. Hence, the relative

significance (percentage weight) of the larger densities corresponding to non-truncated

weights certainly increases. Consequently, TIS-LOO yields a larger lppd than IS-LOO.

However, with the presence of a huge sample of posterior draws, practically a small or no

impact from the truncation can be expected as the value of truncation point is proportional

to the square root of the size of posterior draws.

The lower values of TIS-LOO and IS-LOO in comparison with clppd can be explained

in relation to the behaviour of the variances of log predictive densities. When the vari-

ance of log predictive densities of an observation calculated based on the MCMC sample
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4.4. Model Comparison Beyond AIC and BIC

Table 4.3: Calculated log predictive densities of the models for the NGM SElectTM

dataset.

Model IS TIS PSIS clppd WAIC WAICalt pWAIC pWAICalt

LN0 9002 10447 9722 14188 12575 11492 1613 2696
LN1 10207 11576 10855 15295 13680 12600 1616 2695
MLN1 9834 11871 11617 16475 14411 13636 2065 2839
G0 10509 11649 11048 14961 13470 12529 1491 2432
G1 11153 12259 11677 15533 14052 13132 1482 2401
N0 11383 12427 11870 15573 14149 13253 1424 2920
N1 11873 12784 12208 15926 14492 13596 1434 2330
MN1 12053 13133 12609 16501 14903 13961 1598 2540
T0 6334 9650 8370 16408 14038 12050 2370 4358
T1 8469 11105 10065 16488 14458 12889 2029 3598
MT1 9751 11979 11147 16821 14734 13395 2088 3427

Note: Calculated penalty constants of WAIC are given in the last two columns. WAIC
and WAIC alt excluding the factor -2 are reported.
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Figure 4.9: Calculated log predictive density profiles of the models for the NGM SElectTM

dataset.

is larger, then the variance of predictive densities must be very large. Therefore an ob-
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Table 4.4: Calculated log predictive densities of the models for the IdentifilerTM dataset.

Model IS TIS PSIS clppd WAIC WAICalt pWAIC pWAICalt

LN0 14902 16962 15929 22452 20079 18498 2373 3953
LN1 16601 18627 17600 24000 21652 20101 2348 3900
MLN1 17974 20283 19363 26400 23668 21920 2733 4480
G0 16640 18335 17448 23226 21038 19639 2187 3587
G1 17807 19536 18687 24386 22211 20832 2175 3554
N0 16971 18527 17682 23244 21111 19767 2133 3477
N1 18283 19846 19022 24563 22425 21085 2138 3478
MN1 19761 21378 20753 26725 24127 22623 2599 4102
T0 8749 14706 12547 26416 22512 19065 3904 7351
T1 10187 15718 13675 26607 22880 19679 3727 6928
MT1 14935 18876 17518 26984 23638 21369 3346 5615

Note: Calculated penalty constants of WAIC are given in the last two columns. WAIC
and WAIC alt excluding the factor -2 are reported.
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Figure 4.10: Calculated log predictive density profiles of the models for the IdentifilerTM

dataset.

servation with a relatively larger posterior variance of log predictive densities must have

a larger spread than another similar observation with a relatively low variance. The har-
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monic mean of any distinct set of observations is always smaller than its simple arithmetic

mean. Therefore, in general, it is intuitive to expect a comparatively bigger difference be-

tween the harmonic mean and its simple arithmetic mean for an observation with a larger

posterior variance in log predictive densities. Consequently, the models with relatively

large posterior variances of log predictive densities produce larger reductions in IS-LOO

and TIS-LOO in comparison with clppd. Figure: 4.9 and Figure: 4.10 clearly exhibit

parallel log-likelihood profiles for both datasets except for the models associated with the

Student’s t distribution. The model MLN1 fitted to the NGM SElectTM dataset also shows

a slightly larger reduction in IS-LOO and TIS-LOO.

Figure 4.7 shows very large posterior variances of log predictive densities for all the

models fitted to the NGM SElectTM dataset based on the non-standardised Student’s t dis-

tribution. Model T0 corresponds to the largest variance, while T1 and MT1 correspond

to the second and the third largest variances. The variance corresponding to model T0

is substantially larger than that of both T1 and MT1 models. The variance correspond-

ing to model T1 is slightly larger than that of MT1. According to Figure 4.9, the largest

reduction in the estimates of IS-LOO and TIS-LOO can be observed in model T0. The

second and the third largest reductions correspond to the models T1 and MT1 respec-

tively. In addition, model T1 has little larger reductions in both IS-LOO and TIS-LOO

compared to those of model MT1. The model MLN1 fitted to the NGM SElectTM dataset

produces a longer upper tail in the distribution of the posterior variances of log predictive

densities than all the other models fitted to the same dataset. However, the median of the

posterior variances is approximately similar in all the models except the non-standardised

Student’s t models. The unusual reduction in both IS-LOO and TIS-LOO estimates of

MLN1 model is probably a consequence of the extended upper tail of the distribution of

posterior variances.

The IdentifilerTM dataset also produces larger posterior variances of log predictive

densities for all the models that are based on the non-standardised Student’s t distribution.

The variances corresponding to the models T0 and T1 (Figure 4.8) are substantially larger

than that of model MT1. Even though the model T0 corresponds to the largest posterior

variance, the difference of the posterior variances between T0 and T1 is much smaller
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than the difference between T1 and MT1. Figure 4.10 clearly indicates the biggest and

the second biggest reductions in IS-LOO and TIS-LOO compared to clppd of the models

T0 and T1 respectively. The reduction associated with the model T1 is slightly lower in

magnitude compared to that of the model T0. The upper tail of the distribution of pos-

terior variances of log predictive densities corresponding to the model MLN1 is slightly

longer than that of all the other models. However, the length of the tail is longer for the

NGM SElectTM dataset in comparison with that of the IdentifilerTM dataset. It results

in considerably unusual reductions in IS-LOO and TIS-LOO of the model MLN1 com-

pared to those of the other models except the non-standardised Student’s t models. The

relationship between the posterior variances of log predictive densities and the reductions

in IS-LOO and TIS-LOO compared to the corresponding value of lppd was consistently

established by the models fitted to the NGM SElectTM and the IdentifilerTM datasets. In

particular, the reductions are larger for the larger variances and smaller for the smaller

variances.

The calculations associated with PSIS-LOO of an observation are rather complex than

the similar calculations in TIS-LOO. Initially, the largest 20% of the raw weights are con-

sidered and replaced by the estimated order statistics fitting a Pareto distribution to them.

Subsequently, the method adopted in TIS-LOO is used to obtain the truncated weights.

The truncation point under the PSIS-LOO is defined as the multiplication between the

average of importance weights (including revised weights) and the three fourth power

of the posterior sample size. Although there are some similarities between PSIS-LOO

and TIS-LOO, it is very difficult to compare the values that will be inferred by these two

methods as their weight calculations are not directly comparable. However, Figure 4.9 and

Figure 4.10 consistently demonstrate that the estimated PSIS-LOO is approximately the

average of IS-LOO and TIS-LOO for all the models with fairly similar posterior variances

of log predictive densities. In case of larger posterior variances, in contrast, the estimated

PSIS-LOO is closer to TIS-LOO than IS-LOO. Vehtari et al. [172] strongly recommended

to report the cases whose estimated shape parameter of the generalised Pareto distribution

(k̂) exceeds 0.5. PSIS-LOO offers an improved accuracy when k̂ > 1
2 . However, the es-

timated predictive density under this method tends to be more biased with high variance
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Table 4.5: The distribution of estimated shape parameters (k̂) under each model for the
NGM SElectTM (NGM) and the IdentifilerTM (Idn) datasets.

Model LN0 LN1 MLN1 G0 G1 N0 N1 MN1 T0 T1 MT1

NGM
1
2 < k̂ < 1 69.4 70.6 68.9 82.3 84.5 86.0 86.6 87.6 13.6 27.6 43.1

k̂ ≥ 1 30.6 29.4 31.1 17.7 15.5 14.0 13.4 12.4 86.4 72.4 56.7

Idn
1
2 < k̂ < 1 71.2 73.5 72.9 83.0 84.7 86.0 86.6 91.4 3.6 5.1 29.4

k̂ ≥ 1 28.8 26.5 27.1 17.0 15.3 14.0 13.4 8.6 96.4 94.9 70.6

Note: The percentage (%) of observations are tabulated according to their estimated k̂
value.

when k̂ is not less than one (i.e. k̂ ≥ 1). The shape parameters of the generalised Pareto

distribution fitted to the largest 20% of the raw weights for each of observation under each

model for both datasets are very informative in relation to the accuracy in PSIS-LOO. Ta-

ble 4.5 summarises the percentage of observations which produced larger k̂ values under

each model for both datasets. An extensive majority of the k̂ values associated with all

the non-standardised Student’s t models fitted to both datasets exceed unity. Therefore

the bias and the variance of log predictive density (lppd) estimated under PSIS-LOO are

very high for these models. PSIS-LOO estimated under the three log-normal models also

demonstrates similar problems as their percentages of k̂ values that exceed unity are mod-

erately large. The three models based on normal distribution indicate the minimum risk

of bias and variance as they produced relatively lower percentages of k̂ values greater than

unity.

Assuming the validity of Watanabe-Akaike (or widely available) information criterion

(WAIC), one can discuss the effect of posterior variances of log predictive densities in es-

timating the penalty constant. WAIC is defined with two versions as it uses two different

types of bias correction (or penalty) terms against over-fitting. The first penalty term

pWAIC is defined as twice as the sum of differences between the log of the posterior mean

of predictive densities and the posterior mean of log predictive densities estimated over

posterior draws for each observed value in the dataset. Any logical relationship between

pWAIC and the posterior variances of log predictive densities is not identified. However,
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the models that show very large posterior variances (T0, T1, and MT1) result in larger

penalty terms than others consistently for both datasets (see Table 4.3 and Table 4.4).

The alternative version of WAIC is highly recommended for practical use. The penalty

term of this version (pWAIC alt) is defined as the sum of posterior variances of log predic-

tive densities. Therefore, posterior variances of log predictive densities and pWAIC alt are

highly related. Hence, it is not surprising to see larger penalty terms for non-standardised

Student’s t models as they provided larger posterior variances. In addition to these mod-

els, the other two mixture models: MN1 and MLN1 also result in slightly larger values

for both penalty terms. The alternative version WAIC heavily penalises all the models

compared to the usual method.

The penalty parameter of the Bayesian information criterion (BIC) is defined as the

product between the logarithmic value of the sample size and the number of parameters in

the model. The number of parameters in the models varies between 33 to 97 for the NGM

SElectTM dataset and 31 to 91 for the IdentifilerTM dataset. The two datasets consist of

4646 and 6949 observations respectively. Therefore, the penalty constant defined under

the BIC ranges from 279 to 819 for the NGM SElectTM dataset and from 274 to 805 for the

IdentifilerTM dataset. In BIC, the sum of negative log-likelihoods is multiplied by a factor

of -2 and added to the penalty constant. Therefore, the actual penalty constant without the

factor -2 is only a half of the constant (hence the maximum is 410). Table 4.3 and Table 4.4

present the expected log predictive densities (elppd) estimated under WAIC excluding the

factor -2. Therefore, pWAIC was at least 5 to 11 times larger than the penalty constant

estimated under BIC for the NGM SElectTM dataset. For the IdentifilerTM dataset, it was

at least 8 to 19 times. Similarly, pWAIC alt was at least 8 to 21 times lager for the NGM

SElectTM dataset and 13 to 36 times larger for the IdentifilerTM dataset.

As observed in Figure: 4.9 and Figure: 4.10, the estimated log predictive density of

each model has been heavily penalised by IS-LOO, TIS-LOO, and PSIS-lOO for both

datasets. Therefore, none of them can be treated as a good approximation to the exact

LOO-CV. The limitation associated with the posterior variances of log predictive densities

restricts the use of WAIC. If it is possible to calculate the exact LOO-CV for these models,

then it would be possible to explore the real picture and test the reliability of the methods
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in evaluating model performance. However, it will be really computationally expensive as

the NGM SElectTM and the IdentifilerTM datasets consist of 4646 and 6949 observations

respectively. The k-fold (e.g. 10-fold) cross-validation is an alternative method that could

be used to reduce the computational cost associated with LOO-CV. However, that method

was not used in this study.

Regardless of the degrees of freedom parameter in the non-standardised Student’s t

distribution, the number of parameters of the models within each modelling category:

profile-wide variance, locus-specific variance, and two-component mixtures is equal for

a given dataset. Hence it is possible to assume equal complexities for the models within

each category. This assumption provides a basis on which to compare the performance

of these models within each modelling category. Although, the overall lppds estimated

under each method for each model are unable to reflect the goodness-of-fit in absolute

sense, the differences of them evaluated under each method can be utilized to measure the

relative performance of the models.

A comparison of these models within each modelling category considering all the

methods specified in Table 4.3 and Table 4.4 is very informative. In addition, the con-

sistency of them over both datasets is also vital. According to IS-LOO, TIS-LOO, PSIS-

LOO, and WAIC alt, when profile-wide and locus-specific variance models are consid-

ered separately, the models based on normal distribution (N0 and N1) outperform over the

other three models in the respective modelling categories, consistently for both datasets.

In contrast, WAIC does not exhibit any consistency across the datasets. When the models

are ranked based on WAIC, N0 and N1 for the NGM SElectTM dataset and T0 and T1 for

the IdentifilerTM dataset are selected as the best models. However, the difference in the

WAICs for normal and non-Standardised Student’s t models is very small. Considering

the complexity of Student’s t models against normal models, the models related to normal

distribution can be identified as the best.

Obviously, a much better performance is expected with two-component mixture mod-

els relative to their univariate counterparts. Again, the model developed on normal dis-

tribution (MN1) has been identified as the best two-component mixture and MT1 as the

second best model based on each performance measure, consistently for both datasets.
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Table 4.6: Bayesian p-values based on marginal predictive distributions (pM) and chi-
squared discrepancy measure (pD) for the NGM SElectTM (NGM) and the IdentifilerTM

(Idn) datasets.

Model LN0 LN1 MLN1 G0 G1 N0 N1 MN1 T0 T1 MT1

NGM
pM 0.48 0.48 0.49 0.49 0.49 0.50 0.50 0.50 0.49 0.49 0.49

pD 0.52 0.51 0.50 1.00 1.00 0.49 0.49 0.51 0.52 0.16 0.87

Idn
pM 0.51 0.51 0.51 0.52 0.51 0.52 0.52 0.50 0.49 0.49 0.49

pD 0.51 0.49 0.51 0.36 0.49 0.49 0.49 0.51 0.01 0.02 0.60

Note: The standard deviations of marginal predictive probabilities calculated under these
models ranges from 0.0071 to 0.0079 for the NGM SElectTM dataset and from 0.0058 to
0.0065 and the IdentifilerTM (Idn) dataset.

Therefore, the models related to normal distribution can be recommended as the best

within each modelling category. The simplicity and familiarity of normal models are

additional advantages, especially for the forensic practitioners who may not be greatly fa-

miliar with statistics. Finally, considering both the performance and simplicity, the model

based on normal distribution with locus-specific variance (N1) is recommended as the best

univariate model. Similarly, the two-component normal mixture (MN1) is recommended

as the best among mixture models.

4.5 Bayesian p-values and L-measure for Model Com-

parison

Performance of the models can also be compared with the Bayesian version of p-values.

Table 4.6 summarises the p-values calculated upon marginal predictive distributions of the

data (pM) and chi-squared discrepancy measure (pD). The two p-values: pM and pD are

calculated based on Equation 3.3 and Equation 3.2 respectively. As shown in the table, the

p-values that represent marginal predictive distribution do not show any problem with any

of the models as they are extremely close to the typical value of 0.5 for both datasets. Fur-

thermore, the considerably low standard deviations of the marginal predictive p-values for
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both datasets (see the note under Table 4.6) imply the low-variability or closeness of the

individual p-values around their overall means (pM). Hence, future observations gener-

ated by each of these fitted models will greatly exhibit unbiased characteristic around the

observed values for all the models. However, the p-values that are based on chi-squared

discrepancy measure indicate serious problems in both gamma models (G0 and G1) for

the NGM SElectTM dataset and the non-standardised Student’s t models with profile-wide

and locus-specific variances (T0 and T1) for the IdentifilerTM dataset (i.e the extreme p-

values that are close to 0 or 1). The larger p-values of both gamma models under the

NGM SElectTM dataset indicate larger deviations of the predictions than actual observa-

tions, from the estimated mean of the respective distributions. The smaller p-values of T0

and T1 models fitted for the IdentifilerTM dataset, in contrast, indicate relatively smaller

deviations of the predictions than actual observations, from the estimated mean of the

respective distributions. However, both smaller and larger deviations of the predictions

compared to the actual observations highlight potential discrepancies between actual ob-

servations and predictions under the models.

The L-measure is calculated as a weighted sum of the variance and squared bias of

the future observations generated based on the fitted model, and it can be informatively

used in model comparisons and performance evaluations. Table 4.7 and Table 4.8 sum-

marise mean L-measures and their standard deviations calculated over 100 repetitions of

each model fitting. The two tables clearly exhibit comparatively large L-measures for

all the log-normal models fitted to both datasets. Two component log-normal mixture

model exhibits the largest mean value for the IdentifilerTM dataset along with a large stan-

dard deviation. Surprisingly, L-measures calculated under the same model for the NGM

SElectTM dataset produced infinitely large summary values. Hence, MLN1 model was not

included in Table 4.7. Since all the observed stutter ratios in both datasets are less than

0.17, larger predictions are not expected under any reliable model. A careful in-depth

analysis of the model revealed the existence of unbelievably large predictions for some

points in the NGM SElectTM dataset, which is the root cause of the large summaries ob-

served under MLN1 model. For example, on average, there were more than 10 observed

values that create a bias of more than 100. Similarly, at least, on average, 18, 38, and 72
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Table 4.7: Means and standard deviations of L-measures of the models for the NGM
SElectTM dataset.

ν value 0.0 0.2 0.4 0.5 0.6 0.8 1.0

LN0 1.4756 1.5176 1.5583 1.5783 1.5981 1.6369 1.6747
0.0602 0.0594 0.0586 0.0582 0.0579 0.0572 0.0566

LN1 2.0901 2.1265 2.1623 2.1799 2.1974 2.2318 2.2657
0.8226 0.8183 0.8143 0.8124 0.8105 0.8068 0.8034

G0 0.8756 0.9328 0.9867 1.0126 1.0378 1.0865 1.1331
0.0019 0.0018 0.0017 0.0017 0.0016 0.0016 0.0016

G1 0.8805 0.9355 0.9873 1.0123 1.0366 1.0837 1.1287
0.0038 0.0036 0.0034 0.0033 0.0033 0.0032 0.0031

N0 0.7402 0.7987 0.8532 0.8792 0.9044 0.9529 0.9990
0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004

N1 0.7373 0.7960 0.8507 0.8767 0.9020 0.9506 0.9968
0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0005

MN1 0.7343 0.7939 0.8494 0.8758 0.9015 0.9507 0.9975
0.0069 0.0072 0.0075 0.0077 0.0078 0.0081 0.0084

T0 0.7530 0.8113 0.8657 0.8916 0.9169 0.9653 1.0115
0.0026 0.0024 0.0023 0.0022 0.0021 0.0021 0.0020

T1 0.7266 0.7864 0.8420 0.8684 0.8941 0.9434 0.9902
0.0018 0.0017 0.0016 0.0015 0.0015 0.0015 0.0014

MT1 0.7466 0.8070 0.8632 0.8900 0.9160 0.9659 1.0133
0.0393 0.0371 0.0353 0.0345 0.0337 0.0323 0.0310

Cell contents: Means and standard deviations of L-measures

observed stutter ratios are corresponding to a minimum bias of 10, 1, and 0.1 respectively.

Normal and non-standardised Student’s t distributions based models perform equally

better than gamma-based models consistently for both datasets. The variance of the pre-

dictions is much bigger than the squared bias for all the models for both datasets. Conse-

quently, the changes in weightage (ν) have not been effective in adding useful information

to the results.

4.6 Summary

Bright et al. [21] developed five models to explain the behaviour of PCR stutter ratio

(SR). They modelled SR as a right-skewed heavy-tailed distribution using log-normal

and gamma models. This chapter compares the performance of these five models and
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Table 4.8: Means and standard deviations of L-measures of the models for the
IdentifilerTM dataset.

ν value 0.0 0.2 0.4 0.5 0.6 0.8 1.0

LN0 1.4615 1.5055 1.5482 1.5691 1.5898 1.6303 1.6698
0.0095 0.0095 0.0094 0.0094 0.0094 0.0094 0.0094

LN1 1.1866 1.2380 1.2874 1.3113 1.3349 1.3808 1.4252
0.0102 0.0100 0.0098 0.0097 0.0096 0.0095 0.0094

MLN1 3.1550 3.1888 3.2220 3.2384 3.2546 3.2865 3.3179
2.2954 2.2858 2.2765 2.2721 2.2677 2.2592 2.2510

G0 0.9531 1.0103 1.0645 1.0905 1.1160 1.1652 1.2124
0.0014 0.0014 0.0013 0.0013 0.0013 0.0013 0.0013

G1 0.9147 0.9731 1.0282 1.0547 1.0805 1.1304 1.1781
0.0020 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019

N0 0.9238 0.9780 1.0293 1.0541 1.0782 1.1250 1.1699
0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004

N1 0.8765 0.9334 0.9871 1.0129 1.0380 1.0865 1.1330
0.0006 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005

MN1 0.8358 0.8961 0.9526 0.9796 1.0059 1.0565 1.1048
0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011

T0 0.7639 0.8297 0.8906 0.9196 0.9477 1.0015 1.0525
0.0027 0.0025 0.0023 0.0022 0.0022 0.0020 0.0020

T1 0.8070 0.8692 0.9272 0.9549 0.9819 1.0336 1.0829
0.0032 0.0030 0.0029 0.0028 0.0027 0.0026 0.0025

MT1 0.8262 0.8882 0.9461 0.9738 1.0007 1.0525 1.1018
0.0027 0.0026 0.0025 0.0024 0.0024 0.0023 0.0023

Cell contents: Means and standard deviations of L-measures

the six new models proposed in this study for predicting SR. Providing relevant theoret-

ical justifications in Chapter 2, in these six models, SR was modelled as a symmetrically

distributed random variable, and the distributions proposed were non-standardised Stu-

dent’s t and normal. In each model, the mean SR was modelled as a locus-specific simple

linear regression of longest uninterrupted sequence (LUS). In variance modelling, the

models were classified into three categories, namely, profile-wide variance, locus-specific

variance, and two-component mixture models.

The selected model evaluation criteria include graphical evaluation methods (Q-Q

and P-P plots), BIC, WAIC, and LOO-CV approximations. The usability of these cri-

teria under different modelling conditions were discussed in detail and the best criteria
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for the models were selected accordingly. The validity of distributional assumptions of

log-normal and normal models was examined using Q-Q and P-P plots which indicated

several lack-of-fit problems in these models. The mixture models were initially evaluated

using BIC and WAIC whereas WAIC which uses posterior predictive distribution instead

of point estimates of parameters in calculating likelihood is relatively better. However,

WAIC is valid only when the posterior variance of log-predictive densities calculated

for each observation is not more than 0.4. In this study, for all the models within each

dataset, more than 95% of the observations exceed 0.4 limit. Therefore, leave-one-out

cross-validation (LOO-CV), the best measure of predictive model accuracy was approx-

imated using IS (importance sampling), TIS (truncated importance sampling), and PSIS

(Pareto smoothed importance sampling) as the computational cost associated with exact

LOO-CV is very high for large datasets. However, these measures also had some issues

in evaluating models considered in the study. The three measures are smaller than the cor-

responding calculated log pointwise predictive densities (clppd) of all the models within

each dataset, and the degree of the reduction is higher for the models with larger posterior

variances of lppd. However, all of them are estimates of unobserved log-likelihood of

the model for new data. Furthermore, for each model, there is a substantial proportion of

observations whose shape parameters of the generalised Pareto distributions exceeds one,

indicating a greater bias in PSIS-LOO measures, and this confirms lower values of PSIS-

LOO. When the posterior variances of lppd are not largely varied, all the criteria (WAIC,

WAICalt , IS-LOO, TIS-LOO, and PSIS-LOO) provided parallel lppd profiles indicating

approximately similar results in performance evaluation of the models. When the model

complexity in terms of the number of parameters is concerned, all the models within each

modelling category: profile-wide variance, locus-specific variance, and two-component

mixture are similar except the degrees of freedom parameter in the Student’s t models.

Despite the limitations in WAIC and LOO-CV measures, they all confirm that the models

based on normal distribution outperform in all the modelling categories, for both datasets.

Bayesian p-values that represent the marginal predictive distributions are close to the

desired value 0.5 and hence, do not reveal any problem in any model fitted to the datasets.

However, the p-values that are based on the chi-squared discrepancy measure indicate
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problems in predictions of the gamma models fitted to the NGM SElectTM dataset and

both profile-wide and locus-specific non-standardised Student’s t models fitted to the

IdentifilerTM dataset. The deviations of predictions in comparison with actual observa-

tions, from the estimated mean of the respective distribution were larger in the gamma

models and smaller in the non-standardised Student’s t models. A few unbelievably large

predicted values produced by the log-normal mixture model result in large L-measures,

and hence indicate larger variations in the predictions.

In summary, when BIC is considered as the model selection criteria, two-component

non-standardised Student’s t mixture (MT1) and the two-component normal mixture (MN1)

models are selected as the best and the second best models. The first and second best non-

mixture models respectively are non-standardised Student’s t (T1) and normal (N1) mod-

els with locus-specific variance. According to the LOO-CV approximations (IS-LOO,

TIS-LOO, and PSIS-LOO), two-component normal mixture model (MN1) performed bet-

ter than all the other models consistently for both datasets. Among the non-mixture mod-

els, the normal model with locus-specific variance (N1) is selected as the best. The models

related to normal distributions are easy to understand, easy to implement, and most likely

are not computationally expensive. Therefore, considering the computational complexity

associated with non-standardised Student’s t distribution, this study recommends to use

the two-component normal mixture model (MN1) for the caseworks related to PCR stut-

ter (stutter ratio) problems. However, when the complexity of mixture models cannot be

ignored, the normal model with locus-specific variance (N1) is recommended.
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Chapter 5

Investigation and Assessment of

Hierarchical models

5.1 Introduction

The performance of locus-specific variance models (LN1, G1, N1, and T1) and three

two-component mixture models (MLN1, MN1, and MT1) have been discussed as non-

hierarchical models in chapters 2 and 4. Since these models have been identified as better

performing than the profile-wide variance models, this chapter introduces the hierarchical

models of these seven models and evaluate their performance. The relevant performance

measures have already been discussed in Chapter 3 with their limitations.

Hierarchical modeling can be basically regarded as a generalised version of regression

methods [70]. It uses for the purposes of prediction, data reduction, and casual inference

in both observational and experimental studies. Hierarchical modelling is essential in

prediction, very useful in data reduction, and helpful in causal inference. Even though the

level of prominence varies based on the purpose, hierarchical models provide an overall

improvement over the use of regression models. Usually, multilevel models are used in

modelling observed data conditionally on a particular set of parameters that also come

from certain probability distributions with a further set of parameters known as hyper-

parameters [71]. A multilevel model can be regarded as a hierarchical model for two

reasons: the structure of data and its own hierarchy, where the group level parameters are
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controlled by the parameters of the upper-level model or models [73]. In many studies,

potential factors are considered as a part of the designing of data collection. A reflection

of these factors in a model makes it highly informative with regard to the inferential

aspects of the study. The cluster indicators at each level of the data design can be easily

incorporated in multilevel modelling.

Multilevel models can also be discussed in the context of data pooling. Analysis

of the data ignoring its inherent hierarchical structure is called complete pooling, and it

suppresses variations in the data, which may affect the overall objective of the study [73].

No pooling, in contrast, performs a separate analysis for each source of the data and tends

to give misleading inferences. Both group-level and individual models are simultaneously

incorporated in multilevel models, and they enable partial (or semi) pooling of the data

[72, 100]. It generates results that are more informative than their extreme alternatives.

However, both complete and no-pooling models are useful in a preliminary analysis.

Assume the observed data yi j that represent jth ( j = 1,2, . . . ,ni) observation within

ith(i = 1,2, . . . ,k) group can be used to estimate population parameters θis which are not

actually observed. A scenario that assumes independence among the groups often per-

forms individual independent analysis for each group. All the groups can be combined

into a single collection assuming identical model parameters for them, and a single anal-

ysis can be performed. The models involved in these two types of analyses are called

non-hierarchical. In the Bayesian context, per-group parameters, or the parameters of the

combined group in a non-hierarchical model, assume appropriate prior distributions with

fixed hyper-parameters.

Joint probability models for statistical applications involving multiple parameters need

to reflect the interdependence of parameters [72]. In the context of observed variables,

presumably there may be some real-world dependencies among these groups due to ge-

ographical, environmental, socio-economical,or any other potential predictors. The sce-

narios that indicate such dependencies typically correspond to hierarchically structured

data. In hierarchical modelling, the groups are treated as different but related sub popula-

tions [14]. At the first stage of any hierarchical model, the uncertainty in the observables

within each group is separately modelled with parametric distributions. Then the model
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parameters θ1,θ2, . . . ,θk are themselves modelled within each group with suitable prior

distributions. Generally, these take the same functional form across the groups but with

different unknown (hyper) parameters. The interrelatedness among the groups are then

considered and incorporated in the model, introducing the third stage hierarchy which

binds hyper-parameters with a second-level distribution called hyper-prior. Parameters of

the hyper-prior distribution can be decided based on the historical data and/or experience.

Otherwise, considering the theoretical aspects of hyper-parameters, suitable vague (flat)

hyper-prior distributions are used. However, complex Bayesian models typically consist

of more than three levels, and hence the parameters of hyper-prior distributions are again

statistically treated with higher-level prior distributions. Priors of these multilevel models

are hierarchical as they are specified in layers. Mathematically, there is no restriction to

the number of layers in hierarchical prior distributions [80].

The use of simple non-hierarchical models with the presence of hierarchically struc-

tured data always throws-out useful information in the data. Models with a smaller num-

ber of parameters fail to accurately fit large sets of data, while those using a large number

of parameters are likely to overfit [72]. Generally, over-parametrised simple models tend

to result in overfitting including the random noise of the data, though they fail in gener-

ating good predictions. Hierarchical models, in contrast, can be more effectively utilised

in many complex real-world problems expecting good predictions. Fully Bayesian ap-

proaches are largely adopted along with modern computational methods such as MCMC,

in estimating general and specific parameters that reflect population characteristics and

group-level profiles respectively [140].

In non-hierarchical models, the group level parameters of each group are indepen-

dently estimated based on the observed data. Hierarchical models, in contrast, accommo-

date the possible interdependencies among groups through first-level prior distributions,

whose parameters are interconnected through the hyper-prior distribution. Therefore, it

is obvious to expect shrinkage in the group level parameters towards their average across

groups. Hierarchical methods can also be treated as smoothing techniques as they are

forced to shrink group level parameters [43]. Generally, hierarchical models provide

more precise estimates as they share information across groups. However, this results
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in a risk of unwanted bias among the estimates. The dilemma of increasing the precision

along with additional bias in the estimates is termed as bias-variance trade-off. Hierarchi-

cal models play an important role as a smoothing technique, especially in rare events or

studies that are based on small geographical areas. The risk of having unstable estimates

due to small sample sizes and/or rare events can be minimised with hierarchical models

which pool the strength of data over different groups [120, 144].

5.2 Investigation of Hierarchical models for Stutter Ratio

Hierarchical models are more appropriate for modelling stutter ratios as they demonstrate

hierarchical structure in the data. Different brands of PCR instruments usually have their

own techniques to optimise the sensitivity, efficiency, and precision of PCR methodology.

Therefore, technical settings of each brand could have varied effects on the performance

of statistical modelling of peak heights. Stutter peaks in an EPG are classified as arte-

facts. Possible relationships between manufacturer specifications, and thus, the variabil-

ity in artefacts cannot be neglected. Irrespective of whether these relationships are known

or unknown, they can create some interdependencies in the behaviour of the observed

stutter peaks across different loci for a given PCR instrument. Hierarchical models could

be employed to take these interdependencies into account. Therefore, the seven locus-

specific models are extended to appropriate hierarchical models with suitable hyper-prior

distributions. The specifications of these hierarchical models are given in Table 5.1. Fur-

thermore, the nature of hierarchy of the models is graphically illustrated in Figure 5.1 for

the locus-specific hierarchical normal model (N2).

Normal vague hyper-prior distributions were assumed for hyper-parameters of the

normal prior distributions of slope and intercept parameters of each model. Gamma vague

hyper-prior distributions were assumed for hyper-parameters of the inverse gamma prior

distributions of variance parameters in each model. The degrees of freedom parameters of

the respective non-standardised Student’s t models were modelled with log-uniform prior

distributions without any hyper-prior distribution. Profile-wide mixing proportion of each

of the mixture model is modelled with a uniform prior.
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Figure 5.1: Hierarchical dependencies of locus-specific normal model (N2) for SR. k = 16
for the NGM SElectTM dataset and 15 for the IdentifilerTM dataset.

5.3 Evaluation of Hierarchical Models

As was done with the non-hierarchical models, the proposed hierarchical models were

also fitted using MCMC techniques. Each model was run for 50000 iterations after 50000

burn-in steps. A thinning interval of 25 was applied in order to reduce possible inter-

correlations among posterior draws.

The hierarchical models presented in this chapter are compared with the correspond-

ing non-hierarchical models presented in Chapter 4, using credible intervals of the esti-

mated mean model parameters (slope and intercept) and the standard deviation parameters

of these models. In hierarchical models these three parameters were calculated for each

locus (16 for the NGM SElectTM and 15 for the IdentifilerTM datasets) assuming rele-

vant hyper prior distributions. According to the results presented in sections 5.3.1 and

section 5.3.2, the locus-specific estimates of the three parameters are not significantly

different across hierarchical and non-hierarchical models. Therefore, based on the esti-

mated parameters of hyper-prior distributions, the goodness-of-fit of the parameters was
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Table 5.1: Descriptions of the proposed hierarchical models

Model Distribution Mean Variance

LN2 ln(SRli)∼ N(µli,σ
2
li) µli = β0li +β1liLUSli σ2

li =
σ2

l
Oali

G2 SRli ∼ Gamma(αli,θli) µli = exp(β0li +β1liLUSli) σ2
li =

σ2
l

Oali

N2 SRli ∼ N(µli,σ
2
li) µli = β0li +β1liLUSli σ2

li =
σ2

l
Oali

T2 SRli ∼ t(µli,σ
2
li,νl) µli = β0li +β1liLUSli σ2

li =
σ2

l
Oali

MLN2 ln(SRli)∼ πN(µli,σ
2
0li)+ µli = β0li +β1liLUSli σ2

0li =
σ2

0l
Oali

(1−π)N(µli,σ
2
1li) σ2

1li =
σ2

0l+σ2
1l

Oali

MN2 SRli ∼ πN(µli,σ
2
0li)+ µli = β0li +β1liLUSli σ2

0li =
σ2

0l
Oali

(1−π)N(µli,σ
2
1li) σ2

1li =
σ2

0l+σ2
1l

Oali

MT2 SRli ∼ πt(µli,σ
2
0li,ν1l)+ µli = β0li +β1liLUSli σ2

0li =
σ2

0l
Oali

(1−π)t(µli,σ
2
1li,ν2l) σ2

1li =
σ2

0l+σ2
1l

Oali

Note: νl , ν1l, and ν2l are the locus-specific (l) degrees of freedom of the t distributions.

tested by performing the Kolmogorov-Smirnov test on relevant estimates of the parame-

ters of both hierarchical and non-hierarchical models. In Kolmogorov-Smirnov test, the

goodness-of-fit of the observed data in relation to the proposed (theoretical) distribution

is assessed by evaluating the maximum absolute difference between theoretical and em-

pirical cumulative distributions [165].

5.3.1 Mean Model Parameters of Hierarchical Models

Locus-specific variation represented by 95% credible intervals and medians of the mean

model parameters (slope β0 and intercept β1) of the hierarchical and non-hierarchical

models of all the types (log-normal, gamma, normal, non-standardised Student’s t, and

their mixtures) fitted to both datasets, do not show any significant difference (i.e. the in-

tervals presented in Figures A.1 to A.14 in Appendix A are almost completely overlapping

except only a few with extremely small differences).

The empirical cumulative distributions of the posterior means of slope and intercept

parameters are presented in Figures 5.2 and 5.4 for the NGM SElectTM dataset and Fig-
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Figure 5.2: Inferred distributions of mean model parameters (slope β0 and intercept β1)
of the locus-specific variance non-mixture models for the NGM SElectTM dataset
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Figure 5.3: Inferred distributions of mean model parameters (slope β0 and intercept β1)
of the locus-specific variance non-mixture models for the IdentifilerTM dataset
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Figure 5.4: Inferred distributions of mean model parameters (slope β0 and intercept β1)
of the mixture models for the NGM SElectTM dataset

ures 5.3 and 5.5 for the IdentifilerTM dataset. These figures do not show any signifi-

cant discrepancy between two cumulative distributions. All the non-mixture models that

assumed locus-specific variances reveal very high goodness-of-fit with the inferred dis-

tributions of both slope and intercept parameters irrespective of the dataset. Both log-

normal and normal mixture models consistently indicate a high goodness-of-fit for these

two parameters in relation to their inferred distributions. The non-standardised Student’s t

model, in contrast, shows significant deviations in empirical distributions of locus-specific

slope parameters from the normal inferred distribution. In fact the theoretical and empiri-

111



5.3. Evaluation of Hierarchical Models

−6.5 −5.5 −4.5 −3.5

0.
0

0.
4

0.
8

Locus specific  β̂0 values

E
m

pi
ric

al
 C

D
F

Theoritical CDF − Normal
Mean   = −4.871
St.dev  =   0.875

MLN1 (0.596)
MLN2 (0.575)

0.10 0.15 0.20 0.25 0.30

0.
0

0.
4

0.
8

Locus specific  β̂1 values

E
m

pi
ric

al
 C

D
F

Theoritical CDF − Normal  
Mean   = 0.154
St.dev  = 0.077

MLN1 (0.613)
MLN2 (0.595)

−0.06 −0.04 −0.02 0.00

0.
0

0.
4

0.
8

Locus specific  β̂0 values

E
m

pi
ric

al
 C

D
F

Theoritical CDF − Normal
Mean   = −0.034
St.dev  =   0.016

MN1 (0.590)
MN2 (0.584)

0.004 0.006 0.008 0.010

0.
0

0.
4

0.
8

Locus specific  β̂1 values

E
m

pi
ric

al
 C

D
F

Theoritical CDF − Normal  
Mean   = 0.0073
St.dev  = 0.0015

MN1 (0.947)
MN2 (0.952)

−0.06 −0.04 −0.02 0.00

0.
0

0.
4

0.
8

Locus specific  β̂0 values

E
m

pi
ric

al
 C

D
F

Theoritical CDF − Normal
Mean   = −0.035
St.dev  =   0.02

MT1 (0.732)
MT2 (0.714)

0.004 0.006 0.008 0.010

0.
0

0.
4

0.
8

Locus specific  β̂1 values

E
m

pi
ric

al
 C

D
F

Theoritical CDF − Normal  
Mean   = 0.0076
St.dev  = 0.0121

MT1 (0.004)
MT2 (0.005)

Figure 5.5: Inferred distributions of mean model parameters (slope β0 and intercept β1)
of the mixture models for the IdentifilerTM dataset

cal means are approximately similar. However, for both datasets, the variance of theoret-

ical inferred distribution was much larger than the corresponding variances of empirical

distributions.

The similarities in the credible interval plots and empirical cumulative distributions

drawn for each parameter of both hierarchical and non-hierarchical models fitted to each

dataset graphically reveal the absence of pooling in locus-specific slope and intercept

parameters. Similar goodness-of-fit results obtained under these models further evidence

the absence of pooling in the mean model parameters.
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The consistency of the inferred distributions corresponding to mean model parameters

across the two datasets is vital. There are ten loci common to the IdentifilerTM and the

NGM SElectTM datasets, and except for these, the two datasets consisted of five and

six more loci respectively. The posterior estimates of the parameters of normal inferred

distributions of mean model parameters related to each hierarchical model are presented

in Table 5.2 and Table 5.3 with the relevant p-vales of Kolmogorov-Smirnov goodness-

of-fit test.

Table 5.2: Inferred distributions of intercept parameters

NGM SElectTM IdentifilerTM

Model Mean Stdev p-value Mean Stdev p-value

LN2 -4.67 0.78 0.54 -4.94 0.87 0.66
MLN2 -4.67 0.81 0.73 -4.87 0.88 0.58
G2 -4.41 0.58 0.58 -4.67 0.72 0.86
N2 -0.034 0.026 0.98 -0.034 0.021 0.78
MN2 -0.034 0.026 0.99 -0.034 0.016 0.58
T2 -0.034 0.027 0.94 -0.035 0.017 0.68
MT2 -0.034 0.029 0.97 -0.035 0.020 0.71

Locus-specific intercept parameters of the mixture and non-mixture models based on

normal and non-standardised Student’s t distributions (N2, T2, MN2, and, MT2) fitted to

both datasets have been derived from normal inferred distributions with almost similar lo-

cation parameters. The dispersion of these intercept parameters is almost identical within

the NGM SElectTM dataset compared to the IdentifilerTM dataset. However, the inter-

cept parameters of these four models fitted to the NGM SElectTM dataset indicate more

variability than that of the IdentifilerTM dataset. In addition, the inferred distributions

of intercept parameters of these four models fitted for the NGM SElectTM dataset reveal

very high goodness-of-fit. The intercept parameters of the log-normal models (LN2 and

MLN2) fitted to the NGM SElectTM dataset have been modelled with almost identical nor-

mal hyper-prior distributions. The two inferred distributions related to the IdentifilerTM

dataset reveal only a small change between the two location parameters.

The locus-specific slope parameters of normal models (N2 and MN2) and T2 model

fitted to both datasets followed normal distributions with similar location parameters. The
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Table 5.3: Inferred distributions of slope parameters

NGM SElectTM IdentifilerTM

Model Mean Stdev p-value Mean Stdev p-value

LN2 0.15 0.069 0.40 0.17 0.069 0.69
MLN2 0.15 0.070 0.48 0.15 0.077 0.60
G2 0.13 0.049 0.78 0.15 0.053 0.82
N2 0.0075 0.0027 0.90 0.0074 0.0019 0.90
MN2 0.0075 0.0026 0.86 0.0073 0.0015 0.95
T2 0.0075 0.0027 0.88 0.0074 0.0016 1.00
MT2 0.0075 0.012 0.03 0.0076 0.012 0.01

distributions of these three models fitted to the NGM SElectTM dataset are almost identi-

cal. However, the variances of locus-specific slope parameters of the models fitted to the

NGM SElectTM dataset are noticeably larger than that of the IdentifilerTM dataset. The

larger p-values of the three normal inferred distributions reveal very high goodness-of-fit

for both datasets. Even though the location and scale parameters of MT2 are consistent

across both datasets, each inferred distribution reveals very poor goodness-of-fit due to

the variances which are larger than the variances of estimated locus-specific slope pa-

rameters. Both log-normal models also reveal approximately identical normal inferred

distributions across both datasets.

5.3.2 Variance Parameters of Hierarchical Models

The intervals for the standard deviation parameters do not indicate any visible difference

between hierarchical and non-hierarchical non-mixture models of log-normal, gamma,

normal, and non-standardized Student’s t models (Figures A.15 to A.18 in Appendix A).

However, the credible interval plots of standard deviation parameters of mixture models,

σ0 and σ1 (where σ2
0 and σ2

0 +σ2
1 are the variances of the two mixture components) reveal

some discrepancies between hierarchical and non-hierarchical methods, for some models

(Figures A.19 to A.24 in Appendix A). The pair of credible intervals that has been drawn

for σ0 parameter of non-hierarchical and hierarchical normal models for the locus D2S441

in the NGM SElectTM dataset do not overlap, whereas all the other pairs of credible

intervals drawn for both σ0 and σ1 under all the mixture models overlap. The intervals

of normal mixture models fitted to the NGM SElectTM dataset (Figure A.21) indicate
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Figure 5.6: Inferred distributions of precision parameters (inverse variance τ) of the locus-
specific variance non-mixture models for the NGM SElectTM dataset
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Figure 5.7: Inferred distributions of precision parameters (inverse variance τ) of the locus-
specific variance non-mixture models for the IdentifilerTM dataset
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Figure 5.8: Inferred distributions of precision parameters (inverse variance τ) of the mix-
ture models for the NGM SElectTM dataset

larger gaps whereas the gaps for the IdentifilerTM dataset (Figure A.22) are negligible.

The log-normal mixture models show (Figures A.19 and A.20) small but considerable

differences only in the credible intervals of σ1, for both datasets across the two methods.

The differences between the intervals of standard deviation parameters of the hierarchical

and non-hierarchical non-standardized Student’s t mixture models are very small except

for a few which show only slight deviations at some loci (Figures A.23 and A.24).

The empirical cumulative distributions of precision parameters are presented in Fig-

ures 5.6 and 5.8 for the NGM SElectTM dataset and Figures 5.7 and 5.9 for the IdentifilerTM
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Figure 5.9: Inferred distributions of precision parameters (inverse variance τ) of the mix-
ture models for the IdentifilerTM dataset

dataset. Locus-specific variance of the non-mixture models do not reveal any considerable

difference between non-hierarchical and hierarchical methods in relation to the precision

parameters of the respective models fitted to both datasets (Figures 5.6 and 5.7). Under

each distribution, almost identical empirical cumulative distributions are observed for hi-

erarchical and non-hierarchical models. Even though the larger p-values indicate high

goodness-of-fit for each inferred distribution of precision parameter, they are not consis-

tent across the two datasets under any model. The precision parameters of the three mix-

ture models fitted to the IdentifilerTM dataset do not reveal considerable differences be-
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tween two empirical cumulative distributions. In addition, Kolmogorov-Smirnov p-values

are also equally large for each pair of empirical cumulative distributions. The precision

parameters associated with the component with lower variance (τ0) of the log-normal and

non-standardised Student’s t mixture models fitted to the NGM SElectTM dataset also re-

veal approximately similar empirical cumulative distributions with larger goodness-of-fit

p-values. The empirical cumulative distributions of the other precision parameter of these

two models and both precision parameters of the normal mixture model reveal substantial

differences. More interestingly, all the precision parameters of the mixture models reveal

sufficient or extremely high goodness-of-fits for both datasets.

5.3.3 Changes in Log-likelihoods and Log Predictive Densities

Table 5.4: Log-likelihoods of the models

NGM SElectTM IdentifilerTM

Model Hierarchical Non-hierarchical Hierarchical Non-hierarchical

LN 14463 14464 22924 22924
G 14777 14778 23365 23365
N 15233 15234 23513 23515
T 15351 15354 24530 24531
MLN 15276 15278 24267 24268
MN 15472 15475 24617 24619
MT 15923 15938 25610 25639

It is intuitive to expect at least a small reduction in the log-likelihoods due to the effect

of bias-variance trade-off in hierarchical models. The magnitude of the reduction in the

log-likelihoods directly reflects the degree of bias or the level of pooling in the model

parameters of the hierarchical model. However, many of the parameters associated with

mean model and the variance model were nearly identical. Hence, considerable reduc-

tions in the log-likelihoods of hierarchical models in comparison with the respective non-

hierarchical models cannot be expected. Almost identical log-likelihoods between each

pair of hierarchical and non-hierarchical models presented in Table 5.4 clearly evidence

the absence of pooling in the parameters of the hierarchical models.

Even though any substantial change cannot be expected in the log-likelihoods for any

model, there are some small but considerable changes (increasing and decreasing) in the
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estimated log point-wise predictive densities (clppd) of all the mixture models fitted to

the NGM SElectTM dataset (Figure 5.5) and non-standardised Student’s t mixture model

fitted to the IdentifilerTM dataset (Figure 5.6). In addition, the measures that are based on

point-wise predictive densities: LOO-CV approximations (IS-LOO, TIS-LOO and PSIS-

LOO), both versions of WAICs (WAIC and WAICalt), and their penalty terms ( pWAIC

and pWAIC alt) also revealed considerable changes in these models.

Table 5.5: Log predictive densities of the models fitted to the NGM SElectTM dataset

Model IS TIS PSIS clppd WAIC WAICalt pWAIC pWAIC alt

LN1 10207 11576 10855 15295 13680 12600 1616 2695
LN2 10132 11563 10855 15292 13677 12596 1615 2696
G1 11153 12259 11677 15533 14052 13132 1482 2401
G2 11125 12251 11659 15527 14047 13122 1480 2405
N1 11873 12784 12208 15926 14492 13596 1434 2330
N2 11657 12759 12210 15927 14495 13596 1433 2331
T1 8469 11105 10065 16488 14458 12889 2029 3598
T2 8384 11065 10048 16487 14453 12878 2034 3609
MLN1 9834 11871 11617 16475 14411 13636 2065 2839
MLN2 10288 12125 11659 16354 13536 13536 1800 2817
MN1 12053 13133 12609 16501 14903 13961 1598 2540
MN2 12191 13254 12683 16838 15021 14061 1817 2777
MT1 9751 11979 11147 16821 14734 13395 2088 3427
MT2 9843 11930 11089 16544 14647 13320 1897 3224

Note: Penalty constants calculated in WAIC are given in the last two columns. WAIC and
WAICalt are reported excluding the factor -2.

5.4 Discussion

The low degree of pooling in the group level parameters observed in this study can be

explained as follows. Small samples require more information from the rest of the popu-

lation than large samples, and hence the shrinkage is typically greater for the groups with

relatively smaller number of observations [43]. According to Kruschke [108], a multi-

level model produces very strong pooling or shrinkage for a dataset with many small

groups. However, data-level errors are accurately approximated with their estimates for

reasonably large groups [76]. The influence of the number of observations in group-

levels of a multilevel model was examined in a simulation study, and it revealed that only
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Table 5.6: Log predictive densities of the models fitted to the IdentifilerTM dataset

Mode l IS TIS PSIS clppd WAIC WAICalt pWAIC pWAIC alt

LN1 16601 18627 17600 24000 21652 20101 2348 3900
LN2 16650 18629 17606 24004 21659 20111 2345 3893
G1 17807 19536 18687 24386 22211 20832 2175 3554
G2 17828 19540 18700 24385 22211 20836 2173 3549
N1 18283 19846 19022 24563 22425 21085 2138 3478
N2 18483 19869 19011 24561 22422 21083 2138 3477
T1 10187 15718 13675 26607 22880 19679 3727 6928
T2 10019 15637 13632 26617 22885 19669 3732 6948
MLN1 17974 20283 19363 26400 23668 21920 2733 4480
MLN2 17983 20296 19378 26401 23666 21921 2735 4480
MN1 19761 21378 20753 26725 24127 22623 2599 4102
MN2 19698 21382 20749 26751 24137 22632 2614 4119
MT1 14935 18876 17518 26984 23638 21369 3346 5615
MT2 15244 18895 17610 26872 23584 21309 3288 5563

Note: Penalty constants calculated in WAIC are given in the last two columns. WAIC and
WAICalt are reported excluding the factor -2.

the groups that are smaller than 50 observations lead to producing bias estimates [118].

Bias-variance trade-off is a consequence of pooling in the group-level parameters. The

number of peak height information included in each locus (group) is very large (170 - 406

for the NGM SElectTM dataset and 366 - 534 for the IdentifilerTM dataset) in this study.

Therefore, the hierarchical models may result in virtually no pooling.

5.5 Summary

For both datasets, there is no visible pooling in the slope and intercept parameters of

mean model under the hierarchical models. This can be due to the large samples of data

utilised in the study. The locus-specific slopes and intercepts of non-hierarchical models

(except the slope parameters of non-standardised Student’s t mixture) are coming from

normal distributions. The hierarchical models provided a way of estimating the parame-

ters of these normal distributions. These inferred normal distributions are approximately

consistent for both datasets for normal and non-standardised Student’s t models, though

slightly different for the rest of the models. Non-mixture models fitted to both datasets do

not reveal any considerable pooling in standard deviation parameters. However, for mix-
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ture models, there are some occasional minor changes in these parameters. The precision

parameters of all the non-mixture models fitted to both datasets and the mixture models

fitted to the IdentifilerTM dataset reveal high goodness-of-fit with their inferred distribu-

tions. However, these inferred distributions are not consistent across the two datasets.

For both datasets, the absence of bias-variance trade-off or lack of pooling in the

group level parameters of hierarchical models, is clearly revealed by the almost identical

log-likelihoods of each pair of hierarchical and non-hierarchical models. However, some

minor changes are observed among the predictive measures estimated based on point-

wise predictive densities. Although the hierarchical modelling approach has not been

as effective as expected, obtaining inferred distributions of these parameters with high

goodness-of-fit is an important outcome of this investigation.

121



Chapter 6

Bayesian Multiple Linear Regression

with a Conjugate Prior Distribution

6.1 Introduction

Chapters 2, 4, and 5 already discussed the performance of two-component mixture mod-

els. Robust regression idea was the key motivation factor behind the two-component

mixture models. A bulk of the observations that are modelled in real world datasets are

reasonably well behaved, but in some cases there may be some unstable observations

which can be modelled using another distribution. In 1960, Tukey [166] has discussed

two-component heteroscedastic mixtures of normal densities under the family of con-

taminated normal distributions. In 2011, on his PhD thesis, Maheswaran [145] has also

implemented and expanded the idea of robust statistical models using finite mixtures. The

present study revealed a good performance in two-component normal mixture models in

modelling stutter ratio. Mixture models in general, there is no reason to constraint only

for two components. Practically, it can be used any number of components. However,

in reality, no one knows how many components it should have. In traditional modelling,

it assumes a finite number of components and estimates the parameters of these models.

Treating the number of parameters of the model as another parameter is the key idea of in-

finite mixture modelling. An infinite mixture model is a data driven method of estimating

the number of components in a model. Chapter 6 and 7 extend the idea of two-component
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6.1. Introduction

normal mixture models into infinite mixtures of linear regression models for PCR stutter.

This chapter explains the analytical process of the Bayesian version of multiple linear

regression involving a fully conjugate prior distribution. However, it does not provide any

novel results in relation to this sort of multiple linear regression models. It was unable to

find a complete document related to this topic, and most of the existing literature provided

important results along with partial theoretical derivations. This chapter attempts to fulfil

the gaps in the theoretical derivations reviewing appropriate published literature, peer

reviewed references and unpublished online resources.

Initially, the derivation of the likelihood function, the selection of conjugate prior

distribution, and the combination of them to derive the posterior distribution of model

parameters is discussed. Then, the long analytical process of deriving the prior predictive

distribution of data from the posterior distribution of model parameters is presented and

the posterior predictive distribution of new data is derived. The derived analytical relation-

ships between the prior information, the observed data, and the parameters of posterior

predictive distribution of the data are applied in the next chapter to develop an infinite

mixture of linear regression models for predicting stutter ratio with improved accuracy.

The methods for studying how a dependent variable changes as a mathematical func-

tion of one or more independent variables (covariates/ predictors) are referred to as “re-

gression”, and have a history of more than 100 years. The concept of linear regression was

first used by a British biologist Francis Galton in 1908 [178]. Since then, there has been

a remarkable improvement in the regression methodology. It has already been applied

in various scientific fields, and recognised as one of the most frequently-used analytical

tools in statistical data analysis for both interpolation and extrapolation purposes.

6.1.1 Conditional Bayesian Regression Modelling

Let θ be the vector of regression parameters and ψ be the parameter vector that determines

the distribution of X , p(X |ψ). Gelman et al. [72] have shown that a Bayesian regression

model ignores the information provided by X about the joint prior distribution of θ and

ψ , p(θ ,ψ). This can be explained as below.

In standard regression, it is assumed that the distribution of X , p(X |ψ) does not pro-
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vide any information about the conditional distribution of y given X , p(y|X). A full

Bayesian model involves a joint likelihood of X and y, p(X ,y|ψ,θ) with a prior distri-

bution p(ψ,θ) and a conditional distribution p(X |ψ). If ψ and θ are independent, then,

p(ψ,θ) = p(ψ)p(θ).

Consequently, the posterior distribution of (ψ,θ) can be factored out as

p(ψ,θ |X ,y) = p(ψ|X)p(θ |X ,y).

Without any loss of information, the second factor can be further expanded as a standard

regression model:

p(θ |X ,y) ∝ p(θ)p(y|X ,θ).

Therefore, the distribution of X is no longer considered in fitting a regression model on y.

6.1.2 Bayesian Multiple Linear Regression Modelling

A majority of Bayesian literature focuses on understanding theoretical and practical as-

pects of multiple linear regression models. Banerjee [12] provides a useful set of guide-

lines for developing Bayesian linear regression models including relevant theoretical deriva-

tions.

Let us consider a linear regression model with p−1 predictors. The random variable

Y is an n-dimensional vector of data y. X is an n× p design matrix which includes the

values of covariates, and β is a p× 1 vector of parameters specifying the effect of each

predictor. ε is an n×1 vector of variables that represent the random errors corresponding

to the dependent variable. Then the linear regression model can be presented in the form:

Y = Xβ + ε.

When one assumes an independent and identically distributed (i.i.d.) normal distribution
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6.2. The Likelihood Function

with zero mean and unknown finite variance σ2 for each error term
(
i.e. εi ∼ N

(
0,σ2)),

the distribution of random error terms (ε) is specified as ε ∼MV N
(
0,σ2In

)
, where In is

an n×n identity matrix.

When the multivariate normality is assumed for the random errors, the model is known

as normal linear regression [91] and is written in the form:

Y
∣∣β ,σ2 ∼MNn

(
Xβ ,σ2In

)
. (6.1)

There have been different approaches applied to linear regression modelling. During the

last century, non-Bayesian methods were dominant in both statistical theory and practice.

However, as a result of new computational techniques, a re-emergence of Bayesian ap-

proaches has been observed during the last few decades [72]. The Bayesian mechanism

of model fitting consists of three essential steps [52]:

1. given the unknown parameters, derive the likelihood of the data;

2. propose suitable prior distributions to all unknown parameters;

3. given the data, determine the posterior distribution of the parameters using Bayes’

theorem.

6.2 The Likelihood Function

The joint probability density function of the observed data, which is obtained as a func-

tion of the unknown parameters is called the likelihood. The likelihood function for the

parameters including the regression coefficients and variance
(
β ,σ2) is

p
(
y
∣∣β ,σ2)= 1(

2π
) n

2
∣∣σ2In

∣∣ 1
2

exp
[−1

2
(
y−Xβ

)T(
σ

2In
)−1(y−Xβ

)]
=

1(
2πσ2

) n
2

exp
[ 1

2σ2

(
y−Xβ

)T(y−Xβ
)]
. (6.2)
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6.3 Selection of Prior Distributions

In Bayesian methodology, the parameters of a model are treated as random quantities

themselves. Therefore, in statistical perspective, it is essential to employ suitable prob-

ability distributions to describe them. The information that is related to the level of un-

certainty in the model parameters is typically represented by the prior distributions. The

probability distribution of a new dataset is combined with the prior distributions of the

model parameters to derive the posterior distributions, which are customarily used to

make statistical inferences involving model parameters [69]. In Bayesian hierarchical

modeling, the parameters of the prior distributions are also assumed to be random, and

modelled with hyper (multiple level) priors. Prior/hyper-prior distributions of the model

parameters incorporate either the previous results of similar studies or the experience of

the client/statistician or both. The level of uncertainty in the model parameters, reflected

by the prior distributions is often very high. However, it can be overcome with the use of

strong informative priors. These priors are usually defined based on the empirical results

originated from similar studies with real world data.

Subjectivity is a common issue that can be seen in all the statistical models, because,

each model is a mathematical realisation of the real world [72]. As a consequence of rely-

ing on prior distributions, Bayesian methods are sometimes extensively criticised regard-

ing subjectivity. The reliance on the priors is the most controversial aspect of Bayesian

statistics [127].

6.3.1 Conjugate Prior Distributions

Various types of priors are found in Bayesian literature. However, the advantages in the

use of conjugate priors have been emphasised in many publications [14, 18, 37, 60, 72, 77,

100, 127, 130]. Let us assume that p
(
θ
)

is the prior density of parameter θ , and p
(
θ
∣∣y) is

the posterior density of θ after observing data y. If the both prior and posterior densities,

p
(
θ
)

and p
(
θ
∣∣y) belong to a class of parametric densities F, then the prior density p

(
θ
)

is said to be a conjugate prior with respect to likelihood p
(
y
∣∣θ) [100]. Therefore, the

conjugacy of a prior distribution is a well-defined property of the prior density with re-
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spect to the likelihood function; hence, conjugate priors are sometimes said to be “closed

under sampling” [14, 100]. Intractability is a typical problem in many target posterior dis-

tributions, and can be avoided by the use of conjugate prior distributions [14, 127, 130].

When a conjugate prior distribution is used for the parameters of a given Bayesian model,

the consequential posterior distribution certainly follows a known parametric form [72].

Therefore, the use of a conjugate prior distribution is always mathematically convenient.

In addition to this advantage, the information containing in the conjugate prior distri-

butions can be interpreted as additional data. Very often, the posterior parameters are

expressed as weighted means of the conjugate prior parameters and maximum likelihood

estimators [130].

6.3.2 The Joint Conjugate Prior

In the Bayesian approach, the variance of random error term σ2 and the vector of unknown

regression coefficients β of a linear regression model are treated as random quantities, and

it is required to place appropriate prior distributions on them. The selection of conjugate

prior distributions and the steps for deriving posterior distributions for linear regression

models have been discussed by a number of authors [5, 60, 100, 127, 130]. Two inde-

pendent conjugate prior distributions can be suggested for these two parameters
(
β ,σ2).

A p-dimensional multivariate normal and inverse-gamma densities are the intuitive op-

tions for β and σ2 respectively. A scaled inverse chi-square distribution with degrees of

freedom ν0 and scale parameter σ2
0 is a convenient parametrisation of the inverse gamma

distribution [72, 126] and is referred to as the natural conjugate prior for σ2. According

to this parametrisation, prior information is equivalent to an average squared deviation

σ2
0 of a sample of ν0 observations. An inverse chi-square distribution with parameters

ν0 and σ2
0 is equivalent to an inverse gamma distribution with parameters ν0

2 and ν0σ2
0

2 .

Let us assume that µβ and V̈β are the mean vector and variance-covariance matrix of the

p-dimensional multivariate normal prior distribution of β respectively. The shape and

scale parameters of the inverse gamma prior distribution for σ2 are designated by a and b

respectively. Then the joint prior distribution of
(
β ,σ2) is defined as the product of these
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two independent conjugate prior distributions.

p
(
β ,σ2)= p

(
β
)

p
(
σ

2)= MNp
(
µβ ,V̈β

)
IG
(
a,b
)

Surprisingly, this joint prior is not conjugate with respect to the likelihood function de-

fined in Equation 6.2. Conversely, the conditional densities p
(
β
∣∣σ2) and p

(
σ2
∣∣β) are

individually conjugate with respect to the given likelihood. The priors with this prop-

erty are sometimes labelled as “semi-conjugate” or “conditionally conjugate”. Higher

dimensionality of the parametric space and greater model complexity are the key factors

affecting the level of difficulty of obtaining conjugate prior distributions [65]. There-

fore, conditional conjugacy is a common problem in many complex models. When it

is required to specify the joint probability distribution of a model with highly dimen-

sional parametric space, it is intuitive to expect some harder circumstances. However, the

semi-conjugacy problem of the joint prior distribution of
(
β ,σ2) is fixed with the use of

following conditional distribution for β given σ2:

p
(
β |σ2)= MNp

(
µβ ,σ

2Vβ

)
.

Here, the variance-covariance matrix of β has been defined as the product of unscaled

variance-covariance matrix Vβ and σ2. Finally, the joint prior distribution for
(
β ,σ2) is

defined in the following form, and it is a fully conjugate with respect to the likelihood

function of the linear regression model.

p
(
β ,σ2)= p

(
β
∣∣σ2)p

(
σ

2)= MNp
(
µβ ,σ

2Vβ

)
IG
(
a,b
)
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The density function of this joint conjugate prior,

p
(
β ,σ2)= MNp

(
µβ ,σ

2Vβ

)
IG
(
a,b
)

=
1(

2π
) p

2
∣∣σ2Vβ

∣∣ 1
2

exp
[−1

2
(
β −µβ

)T(
σ

2Vβ

)−1(
β −µβ

)]
ba

Γ
(
a
)( 1

σ2

)a+1
exp
(−b

σ2

)
=

ba(
2π
) p

2 Γ
(
a
)∣∣Vβ |

1
2

( 1
σ2

)a+ p
2+1

exp
{−1

σ2

[
b+

1
2
(
β −µβ

)TV−1
β

(
β −µβ

)]}
(6.3)

is analogous to the density function of multivariate normal inverse gamma
(
MNIG

)
dis-

tribution with the parameters µβ , Vβ , a, and b. Therefore, the joint conjugate prior distri-

bution of
(
β ,σ2) is

p
(
β ,σ2)∼MNIG

(
µβ ,Vβ ,a,b

)
. (6.4)

6.4 The Posterior Distribution of Model Parameters

The Bayes’ theorem is employed to combine the joint conjugate prior and the likelihood

function to determine the posterior distribution of the parameters
(
β ,σ2). It is given by,

p
(
β ,σ2∣∣y)= p

(
y
∣∣β ,σ2)p

(
β ,σ2)

p
(
y
) ,

where; p
(
y
)
=
∫

p
(
y
∣∣β ,σ2)p

(
β ,σ2)dβdσ2 is a constant for a given dataset. Therefore,

the posterior distribution of
(
β ,σ2) is proportional to the product between the likelihood

129



6.4. The Posterior Distribution of Model Parameters

and the prior distribution. Hence,

p
(
β ,σ2∣∣y) ∝ p

(
y
∣∣β ,σ2)p

(
β ,σ2)

=
1(

2πσ2
) n

2
exp
[ −1

2σ2

(
y−Xβ

)T(y−Xβ
)]

ba(
2π
) p

2 Γ
(
a
)∣∣Vβ

∣∣ 1
2

( 1
σ2

)a+ p
2+1

exp
{−1

σ2

[
b+

1
2
(
β −µβ

)TV−1
β

(
β −µβ

)]}
∝

( 1
σ2

)a+ n+p
2 +1

exp
{−1

σ2

[
b+

1
2

((
y−Xβ

)T(y−Xβ
)
+
(
β −µβ

)TV−1
β

(
β −µβ

))]}
.

(6.5)

Let us consider the expression
(
y− Xβ

)T(y− Xβ
)
+
(
β − µβ

)TV−1
β

(
β − µβ

)
in the

exponential part of the above equation. Expanding both transposes, the succeeding mul-

tiplications are executed. Then the like terms of the simplified expression are combined

as below.

(
y−Xβ

)T(y−Xβ
)
+
(
β −µβ

)TV−1
β

(
β −µβ

)
=
(
yT −β

T XT)(y−Xβ
)
+
(
β

T −µ
T
β

)
V−1

β

(
β −µβ

)
= yT y−yT Xβ −β

T XT y+β
T XT Xβ

+β
TV−1

β
β −β

TV−1
β

µβ −µ
T
β

V−1
β

β +µ
T
β

V−1
β

µβ

=
(
β

TV−1
β

β +β
T XT Xβ

)
−
(
yT Xβ +β

T XT y
)

−
(
β

TV−1
β

µβ +µ
T
β

V−1
β

β
)
+
(
yT y+µ

T
β

V−1
β

µβ

)
= β

T(V−1
β

+XT X
)
β −2yT Xβ −2µ

T
β

V−1
β

β +
(
yT y+µ

T
β

V−1
β

µβ

)
= β

T(V−1
β

+XT X
)
β −2

(
µ

T
β

V−1
β

+yT X
)
β +

(
yT y+µ

T
β

V−1
β

µβ

)
= β

T(V−1
β

+XT X
)
β −2

(
V−1

β
µβ +XT y

)T
β +

(
yT y+µ

T
β

V−1
β

µβ

)
. (6.6)

Let us assume that U and α are k× 1 matrices. When A is a k× k symmetric positive

definite matrix, then A= AT and A−1 =
(
AT)−1

=
(
A−1)T . Let us consider the expression
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UT AU−2αTU . It can be simplified as:

UT AU−2α
TU =UT AU−UT

α−α
TU

=UT AU−UT AA−1
α−α

T A−1AU

=UT A
(
U−A−1

α
)
−α

T A−1A
(
U−A−1

α
)
−α

T A−1AA−1
α

=
(
UT A−α

T A−1A
)(

U−A−1
α
)
−α

T A−1
α

=
(
UT −α

T A−1)A(U−A−1
α
)
−α

T A−1
α

=
(
U−A−1

α
)T A

(
U−A−1

α
)
−α

T A−1
α

The first two of three sub-expressions in the right hand side of Equation 6.6 can be further

simplified by applying the result in the above equation with U = β , A =
(
V−1

β
+XT X

)
,

and α =
(
V−1

β
µβ +XT y

)
. This yields:

(
y−Xβ

)T(y−Xβ
)
+
(
β −µβ

)TV−1
β

(
β −µβ

)
= β

T(V−1
β

+XT X
)
β −2

(
V−1

β
µβ +XT y

)T
β +

(
yT y+µ

T
β

V−1
β

µβ

)
=
[
β −

(
V−1

β
+XT X

)−1(V−1
β

µβ +XT y
)]T(V−1

β
+XT X

)
[
β −

(
V−1

β
+XT X

)−1(V−1
β

µβ +XT y
)]

−
(
V−1

β
µβ +XT y

)T(V−1
β

+XT X
)−1(V−1

β
µβ +XT y

)
+
(
yT y+µ

T
β

V−1
β

µβ

)
=
[
β −

(
V−1

β
+XT X

)−1(V−1
β

µβ +XT y
)]T(V−1

β
+XT X

)
[
β −

(
V−1

β
+XT X

)−1(V−1
β

µβ +XT y
)]

−
(
V−1

β
µβ +XT y

)T(V−1
β

+XT X
)−1(V−1

β
+XT X

)(
V−1

β
+XT X

)−1(V−1
β

µβ +XT y
)

+
(
yT y+µ

T
β

V−1
β

µβ

)
=
[
β −

(
V−1

β
+XT X

)−1(V−1
β

µβ +XT y
)]T(V−1

β
+XT X

)
[
β −

(
V−1

β
+XT X

)−1(V−1
β

µβ +XT y
)]

−
[(

V−1
β

+XT X
)−1(V−1

β
µβ +XT y

)]T(
V−1

β
+XT X

)[(
V−1

β
+XT X

)−1(V−1
β

µβ +XT y
)]

+
(
yT y+µ

T
β

V−1
β

µβ

)
.
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Let us define Ṽβ and µ̃β as:

Ṽβ =
(
V−1

β
+XT X

)−1

µ̃β =
(
V−1

β
+XT X

)−1(V−1
β

µβ +XT y
)
= Ṽβ

(
V−1

β
µβ +XT y

)
and substitute them in the above equation. Then,

(
y−Xβ

)T(y−Xβ
)
+
(
β −µβ

)TV−1
β

(
β −µβ

)
=
(
β − µ̃β

)TṼ−1
β

(
β − µ̃β

)
− µ̃

T
β

Ṽ−1
β

µ̃β +
(
yT y+µ

T
β

V−1
β

µβ

)
=
(
β − µ̃β

)TṼ−1
β

(
β − µ̃β

)
+
(
yT y+µ

T
β

V−1
β

µβ − µ̃
T
β

Ṽ−1
β

µ̃β

)
. (6.7)

Now the result in Equation 6.5 is modified in the light of the result obtained in Equa-

tion 6.7. Then,

p
(
β ,σ2∣∣y) ∝

( 1
σ2

)a+ n+p
2 +1

exp
{−1

σ2

[
b+

1
2

((
y−Xβ

)T(y−Xβ
)
+
(
β −µβ

)TV−1
β

(
β −µβ

))]}
=
( 1

σ2

)a+ n+p
2 +1

exp
{−1

σ2

[
b+

1
2
(
β − µ̃β

)TṼ−1
β

(
β − µ̃β

)
+
(
yT y+µ

T
β

V−1
β

µβ − µ̃
T
β

Ṽ−1
β

µ̃β

)]}
.

Let us define ã and b̃ as:

ã = a+
n
2

b̃ = b+
1
2

(
yT y+µ

T
β

V−1
β

µβ − µ̃
T
β

Ṽ−1
β

µ̃β

)
and substitute them in the expression of the posterior density of

(
β ,σ2) given above.

Consequently, it becomes

p
(
β ,σ2∣∣y) ∝

( 1
σ2

)ã+ p
2+1

exp
{−1

σ2

[
b̃+

1
2
(
β − µ̃β

)TṼ−1
β

(
β − µ̃β

)]}
. (6.8)

As discussed previously, the fully conjugate prior distribution of
(
β ,σ2) is a multivariate

normal inverse gamma distribution (i.e; MNIG
(
µβ ,Vβ ,a,b

)
) whose density function was
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in the form (see Equation 6.3):

p
(
β ,σ2)

∝

( 1
σ2

)a+ p
2+1

exp
{−1

σ2

[
b+

1
2
(
β −µβ

)TV−1
β

(
β −µβ

)]}
. (6.9)

As shown in Equations 6.8 and 6.9, the prior and posterior distributions of
(
β ,σ2) be-

long to one class of densities. Therefore; the posterior distribution of
(
β ,σ2) is also a

multivariate normal inverse gamma distribution. Hence,

p
(
β ,σ2∣∣y)∼MNIG

(
µ̃β ,Ṽβ , ã, b̃

)
. (6.10)

6.5 The Prior Predictive Distribution

The inferences that can be made on unknown observable data are very important in all

fields of statistics. In the Bayesian point of view, it is often called predictive inference.

The distribution of unknown observable data y is not conditional on prior observations.

In addition, it can be used to predict them. Therefore, the distribution of observable

quantity y is informatively labelled as prior predictive distribution [72]. It is also named

as marginal distribution and can be obtained as an integral of the conditional density

p
(
y
∣∣σ2) with respect to σ2. The evaluation of the conditional distribution p

(
y
∣∣σ2) is

given below.

p
(
y
∣∣σ2)= ∫

β

p
(
y
∣∣β ,σ2)p

(
β
∣∣σ2)dβ

=
∫
β

Nn
(
Xβ ,σ2In

)
Np
(
µβ ,σ

2Vβ

)
dβ

=
∫
β

1(
2π
) n

2
∣∣σ2In

∣∣ 1
2

exp
[−1

2
(
y−Xβ

)T(
σ

2In
)−1(y−Xβ

)]
1(

2π
) p

2
∣∣σ2Vβ

∣∣ 1
2

exp
[−1

2
(
β −µβ

)T(
σ

2Vβ

)−1(
β −µβ

)]
dβ

=
∫
β

1(
2π
) n+p

2
∣∣Vβ

∣∣ 1
2
(
σ2
) n+p

2

exp
{ −1

2σ2

[(
y−Xβ

)T(y−Xβ
)
+
(
β −µβ

)TV−1
β

(
β −µβ

)]}
dβ
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This is further simplified applying the result in the Equation 6.7.

p
(
y
∣∣σ2)= ∫

β

1(
2π
) n+p

2
∣∣Vβ

∣∣ 1
2
(
σ2
) n+p

2

exp
{ −1

2σ2

[(
yT y+µ

T
β

V−1
β

µβ − µ̃
T
β

Ṽ−1
β

µ̃β

)
+
(
β − µ̃β

)TṼ−1
β

(
β − µ̃β

)]}
dβ

=
1(

2π
) n

2
∣∣Vβ

∣∣ 1
2
(
σ2
) n

2
exp
[ −1

2σ2

(
yT y+µ

T
β

V−1
β

µβ − µ̃
T
β

Ṽ−1
β

µ̃β

)]
∣∣Ṽβ

∣∣ 1
2

∫
β

1(
2π
) p

2
∣∣σ2Ṽβ

∣∣ 1
2

exp
{−1

2

[(
β − µ̃β

)T(
σ

2Ṽβ

)−1(
β − µ̃β

)]}
dβ .

Now it considers the fact that

∫
β

1(
2π
) p

2
∣∣σ2Ṽβ

∣∣ 1
2

exp
{−1

2

[(
β − µ̃β

)T(
σ

2Ṽβ

)−1(
β − µ̃β

)]}
dβ = 1.

Then the conditional distribution p
(
y
∣∣σ2) becomes

p
(
y
∣∣σ2)= ∣∣Ṽβ

∣∣ 1
2(

2π
) n

2
∣∣Vβ

∣∣ 1
2
(
σ2
) n

2
exp
[ −1

2σ2

(
yT y+µ

T
β

V−1
β

µβ − µ̃
T
β

Ṽ−1
β

µ̃β

)]
. (6.11)

The simplification of this result is highly dependent on the expression

yT y+µ
T
β

V−1
β

µβ − µ̃
T
β

Ṽ−1
β

µ̃β .

According to the definition of µ̃β , it is known that

µ̃β = Ṽβ

(
V−1

β
µβ +XT y

)
.

Substituting µ̃β in the expression:

yT y+µ
T
β

V−1
β

µβ − µ̃
T
β

Ṽ−1
β

µ̃β
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with Ṽβ

(
V−1

β
µβ +XT y

)
it can be simplified as given below.

yT y+µ
T
β

V−1
β

µβ − µ̃
T
β

Ṽ−1
β

µ̃β

= yT y+µ
T
β

V−1
β

µβ −
(

Ṽβ

(
V−1

β
µβ +XT y

))T
Ṽ−1

β

(
Ṽβ

(
V−1

β
µβ +XT y

))
= yT y+µ

T
β

V−1
β

µβ −
(

V−1
β

µβ +XT y
)T

ṼβṼ−1
β

(
ṼβV−1

β
µβ +Ṽβ XT y

)
= yT y+µ

T
β

V−1
β

µβ −
(

µ
T
β

V−1
β

+yT X
)(

ṼβV−1
β

µβ +Ṽβ XT y
)

= yT y+µ
T
β

V−1
β

µβ −µ
T
β

V−1
β

ṼβV−1
β

µβ −µ
T
β

V−1
β

Ṽβ XT y−yT XṼβV−1
β

µβ −yT XṼβ XT y

=
(

yT y−yT XṼβ XT y
)
−
(

yT XṼβV−1
β

µβ +µ
T
β

V−1
β

Ṽβ XT y
)

+
(

µ
T
β

V−1
β

µβ −µ
T
β

V−1
β

ṼβV−1
β

µβ

)
= yT

(
In−XṼβ XT

)
y−2yT XṼβV−1

β
µβ +µ

T
β

(
V−1

β
−V−1

β
ṼβV−1

β

)
µβ (6.12)

A further simplification of this expression would be very advantageous in future calcu-

lations. According to Equation 6.12, the simplification is greatly dependent on two key

expressions: XṼβV−1
β

and V−1
β
−V−1

β
ṼβV−1

β
. According to the definition of Ṽβ , it is

known that Ṽβ =
(
V−1

β
+XT X

)−1, therefore, Ṽ−1
β

= V−1
β

+XT X . The simplification of

XṼβV−1
β

can be progressed with the identity ṼβṼ−1
β

= Ip.

Ṽβ

(
V−1

β
+XT X

)
= Ip

ṼβV−1
β

= Ip−Ṽβ XT X

XṼβV−1
β

= X−XṼβ XT X

XṼβV−1
β

=
(
In−XṼβ XT)X (6.13)

The steps associated with the simplification of V−1
β
−V−1

β
ṼβV−1

β
are substantially depen-

dent on the Sherman-Morrison-Woodbury formula. Even though there are a number of

advancements and/or generalisations related to this, the original formula has been used to

derive the inverse of a matrix [51]. The formula is defined in the following way. Let us

assume that, S and UT represents m×n matrices. R and T are square matrices with n×n
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and m×m dimensions respectively. When R and T are non-singular [51, 93],

(
R+STU

)−1
= R−1−R−1S

(
T−1 +UR−1S

)−1UR−1.

The formula can be proved in several ways; however, succeeding to a few tricky steps in

matrix operations it can be proved as follows.

RHS = R−1−R−1S
(
T−1 +UR−1S

)−1UR−1

=
(
R+STU

)−1(R+STU
)[

R−1−R−1S
(
T−1 +UR−1S

)−1UR−1]
=
(
R+STU

)−1[In +STUR−1−
(
S+STUR−1S

)(
T−1 +UR−1S

)−1UR−1]
=
(
R+STU

)−1[In +STUR−1−ST
(
T−1 +UR−1S

)(
T−1 +UR−1S

)−1UR−1]
=
(
R+STU

)−1[In +STUR−1−STUR−1]
=
(
R+STU

)−1

= LHS

The term Ṽβ in the expression V−1
β
−V−1

β
ṼβV−1

β
is replaced with its original expression:

Ṽβ =
(
V−1

β
+XT X

)−1. Subsequently, the result is modified into a form that is analogous

to the Sherman-Morrison-Woodbury formula.

V−1
β
−V−1

β
ṼβV−1

β
=V−1

β
−V−1

β

(
V−1

β
+XT X

)−1V−1
β

=V−1
β
−V−1

β

[(
(XT X)−1)−1

+V−1
β

]−1V−1
β

=V−1
β
−V−1

β
Ip
[(
(XT X)−1)−1

+ IpV−1
β

Ip
]−1IpV−1

β

This is further simplified by substituting R = Vβ , S = U = Ip, and T = (XT X)−1 in the

Sherman-Morrison-Woodbury formula. Then,

V−1
β
−V−1

β
ṼβV−1

β
=
(
Vβ + Ip(XT X)−1Ip

)−1
=
(
(XT X)−1 + IpVβ Ip

)−1
.
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Again the Sherman-Morrison-Woodbury formula is applied with a different setting to sim-

plify this result. Here, it assumes R = (XT X)−1, S =U = Ip, and T =Vβ . Subsequently,

V−1
β
−V−1

β
ṼβV−1

β
= XT X−XT XIp

(
V−1

β
+ IpXT XIp

)−1IpXT X

= XT X−XT X
(
V−1

β
+XT X

)−1XT X

= XT(In−X
(
V−1

β
+XT X

)−1XT)X .

However, according to the definition of Ṽβ ,
(
V−1

β
+XT X

)−1
= Ṽβ . Therefore,

V−1
β
−V−1

β
ṼβV−1

β
= XT(In−XṼβ XT)X . (6.14)

Then Equations 6.13 and 6.14 are employed in Equation 6.12 and get,

yT y+µ
T
β

V−1
β

µβ − µ̃
T
β

Ṽ−1
β

µ̃β

= yT
(

In−XṼβ XT
)

y−2yT XṼβV−1
β

µβ +µ
T
β

(
V−1

β
−V−1

β
ṼβV−1

β

)
µβ

= yT
(

In−XṼβ XT
)

y−2yT
(

In−XṼβ XT
)

Xµβ +µ
T
β

XT
(

In−XṼβ XT
)

Xµβ

=
(

yT −µ
T
β

XT
)(

In−XṼβ XT
)(

y−Xµβ

)
=
(

y−Xµβ

)T(
In−XṼβ XT

)(
y−Xµβ

)
. (6.15)

Using the definition of Ṽβ ; Ṽβ =
(
V−1

β
+XT X

)−1, the expression In−XṼβ XT is reorgan-

ised as

In−XṼβ XT = In−X
(
V−1

β
+XT X

)−1XT

= (In)
−1− (In)

−1X
(
V−1

β
+XT (In)

−1X
)−1XT (In)

−1,

and simplified in light of the Sherman-Morrison-Woodbury formula by replacing R = In,

S = X , U = XT , and T =Vβ . Finally, the subsequent result,

In−XṼβ XT =
(
In +XVβ XT)−1
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is applied in the Equation 6.15, and then its form is reduced to:

yT y+µ
T
β

V−1
β

µβ − µ̃
T
β

Ṽ−1
β

µ̃β =
(

y−Xµβ

)T(
In−XṼβ XT

)(
y−Xµβ

)
=
(

y−Xµβ

)T(
In +XVβ XT

)−1(
y−Xµβ

)
. (6.16)

In addition to this result, it is very important to simplify the ratio

∣∣Ṽβ

∣∣ 1
2∣∣Vβ

∣∣ 1
2

, to streamline the

conditional distribution p
(
y
∣∣σ2) (Equation 6.11) into a simple form. The simplification

can be started with the following formula that is very useful in evaluating the determinant

of a sum of matrices of the form of R+STU [93]. Let R and T be non-singular matrices

with dimensions n× n and m×m respectively. The dimensions of matrices S and U are

n×m and m×n respectively. Then,

∣∣R+STU
∣∣= ∣∣R∣∣∣∣T ∣∣∣∣T−1 +UR−1S

∣∣.
According to the definition of Ṽβ , Ṽβ =

(
V−1

β
+XT X

)−1. This definition can be slightly

modified as Ṽβ =
(
V−1

β
+XT I−1

n X
)−1. Hence, Ṽ−1

β
= V−1

β
+XT I−1

n X . The determinant

of Ṽ−1
β

is obtained considering the above formula of the determinants.

∣∣∣Ṽ−1
β

∣∣∣= ∣∣∣V−1
β

+XT I−1
n X

∣∣∣
=
∣∣∣V−1

β

∣∣∣∣∣∣I−1
n

∣∣∣∣∣∣In +XVβ XT
∣∣∣∣∣∣Ṽ−1

β

∣∣∣= ∣∣∣V−1
β

∣∣∣∣∣∣In +XVβ XT
∣∣∣

This result has streamlined the ratio of the determinants of Ṽβ and Vβ as

∣∣∣Ṽβ

∣∣∣∣∣∣Vβ

∣∣∣ = 1∣∣∣In +XVβ XT
∣∣∣ .
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Therefore;

∣∣∣Ṽβ

∣∣∣ 1
2

∣∣∣Vβ

∣∣∣ 1
2
=

1∣∣∣In +XVβ XT
∣∣∣ 1

2
.

The Equation 6.11 is simplified based on Equation 6.16 and the result of the above equa-

tion in order to obtain the final form of the conditional density p(y
∣∣σ2).

p
(
y
∣∣σ2)= ∣∣Ṽβ

∣∣ 1
2(

2π
) n

2
∣∣Vβ

∣∣ 1
2
(
σ2
) n

2
exp
[ −1

2σ2

(
yT y+µ

T
β

V−1
β

µβ − µ̃
T
β

Ṽ−1
β

µ̃β

)]
=

1(
2π
) n

2
∣∣∣In +XVβ XT

∣∣∣ 1
2 (

σ2
) n

2

exp
[ −1

2σ2

(
y−Xµβ

)T(
In +XVβ XT

)−1(
y−Xµβ

)]

=
1(

2π
) n

2
∣∣∣σ2
(

In +XVβ XT
)∣∣∣ 1

2
exp
{−1

2

(
y−Xµβ

)T[
σ

2
(

In +XVβ XT
)]−1(

y−Xµβ

)}

According to this result it is obvious that

p
(
y
∣∣σ2)∼ Nn

(
Xµβ ,σ

2(In +XVβ XT)).
The prior predictive (marginal) distribution of y, p(y) is calculated as an integral of the

joint probability density of y and σ2, with respect to σ2. That is,

p(y) =
∞∫

0

p(y,σ2)pσ
2.

However, mathematically, it is very convenient to proceed with an integral of the con-

ditional distribution of y. Hence, the computation of p(y) progresses an integration of
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p(y
∣∣σ2) with respect to σ2 as given below.

p
(
y
)
=

∞∫
0

p
(
y
∣∣σ2)p

(
σ

2)dσ
2 =

∞∫
0

Nn

(
Xµβ ,σ

2(In +XVβ XT))IG(a,b)dσ
2

=

∞∫
0

1(
2π
) n

2
∣∣∣σ2
(

In +XVβ XT
)∣∣∣ 1

2
exp
{−1

2

(
y−Xµβ

)T[
σ

2
(

In +XVβ XT
)]−1

(
y−Xµβ

)} ba

Γ
(
a
)( 1

σ2

)a+1
exp
(−b

σ2

)
dσ

2

=
ba(

2π
) n

2 Γ
(
a
)∣∣∣In +XVβ XT

∣∣∣ 1
2

∞∫
0

( 1
σ2

)( 2a+n
2

)
+1

exp
{−1

σ2

[
b+

1
2

(
y−Xµβ

)T(
In +XVβ XT

)−1(
y−Xµβ

)]}
dσ

2

(6.17)

Let us assume that S is a random variable such that, S∼ IG(α,λ ). Then,

p(S) =
λ α

Γ
(
α
)(1

S

)α+1
exp
(−λ

S

)
and

∞∫
0

p(S)dS = 1.

Therefore,

∞∫
0

(1
S

)α+1
exp
(−λ

S

)
dS =

Γ
(
α
)

λ α
.

Replace λ =
[
b+ 1

2

(
y−Xµβ

)T(
In+XVβ XT

)−1(
y−Xµβ

)]
, S = σ2, and α =

(
2a+n

2

)
in above integration. Then,

∞∫
0

( 1
σ2

)( 2a+n
2

)
+1

exp
{−1

σ2

[
b+

1
2

(
y−Xµβ

)T(
In +XVβ XT

)−1(
y−Xµβ

)]}
dσ

2

=
Γ
(2a+n

2

)
[
b+ 1

2

(
y−Xµβ

)T(
In +XVβ XT

)−1(
y−Xµβ

)]( 2a+n
2

) .
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In the light of this result, Equation 6.17 can be simplified as below.

p
(
y
)
=

ba(
2π
) n

2 Γ
(
a
)∣∣∣In +XVβ XT

∣∣∣ 1
2

∞∫
0

( 1
σ2

)( 2a+n
2

)
+1

exp
{−1

σ2

[
b+

1
2

(
y−Xµβ

)T(
In +XVβ XT

)−1(
y−Xµβ

)]}
dσ

2

=
ba(

2π
) n

2 Γ
(
a
)∣∣∣In +XVβ XT

∣∣∣ 1
2

Γ
(2a+n

2

)
[
b+ 1

2

(
y−Xµβ

)T(
In +XVβ XT

)−1(
y−Xµβ

)]( 2a+n
2

)
=

ba(
2π
) n

2 Γ
(
a
)∣∣∣In +XVβ XT

∣∣∣ 1
2

Γ
(2a+n

2

)
(

b
)( 2a+n

2

)[
1+ 1

2b

(
y−Xµβ

)T(
In +XVβ XT

)−1(
y−Xµβ

)]( 2a+n
2

)
=

Γ
(2a+n

2

)
(
2π
) n

2 Γ
(
a
)(

b
) n

2
∣∣∣In +XVβ XT

∣∣∣ 1
2

[
1+

1
2b

(
y−Xµβ

)T(
In +XVβ XT

)−1(
y−Xµβ

)]−( 2a+n
2

)
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It is important to reorganise required parts of this equation in the way of identifying the

distribution of the prior predictive distribution of y, p(y).

p
(
y
)
=

Γ
(2a+n

2

)
(
2π
) n

2 Γ
(
a
)(

b
) n

2
∣∣∣In +XVβ XT

∣∣∣ 1
2

[
1+

1
2b

(
y−Xµβ

)T(
In +XVβ XT

)−1(
y−Xµβ

)]−( 2a+n
2

)
=

Γ
(2a+n

2

)
(
π
) n

2 Γ
(
a
)∣∣∣(2b

)(
In +XVβ XT

)∣∣∣ 1
2

[
1+

a
2ab

(
y−Xµβ

)T(
In +XVβ XT

)−1(
y−Xµβ

)]−( 2a+n
2

)
=

Γ
(2a+n

2

)
(
π
) n

2 Γ
(
a
)∣∣∣(2a

)(b
a

)(
In +XVβ XT

)∣∣∣ 1
2

[
1+

1
2a

(
y−Xµβ

)T[(b
a

)(
In +XVβ XT

)]−1(
y−Xµβ

)]−( 2a+n
2

)

Finally,

p
(
y
)
=

Γ
(2a+n

2

)
(
π
) n

2 Γ
(2a

2

)(
2a
) n

2
∣∣∣(b

a

)(
In +XVβ XT

)∣∣∣ 1
2

[
1+

1
2a

(
y−Xµβ

)T[(b
a

)(
In +XVβ XT

)]−1(
y−Xµβ

)]−( 2a+n
2

)
.

(6.18)

Suppose T is a dT dimensional random variable that has a multivariate Student t distribu-

tion with mean µT , scale matrix ΣT , and degrees of freedom νT
(
i.e. T ∼MV St(νT )(µT ,ΣT )

)
.

Then the probability density function of T is in the form [127]:

p(t
∣∣µT ,ΣT ,νT ) =

Γ
(

νT+dT
2

)
(
π
) dT

2
(
νT
) dT

2 Γ
(

νT
2

)∣∣∣ΣT

∣∣∣ 1
2

∣∣∣1+ 1
νT

(
t−µT

)T
Σ
−1
T
(
t−µT

)∣∣∣−
(

νT +DT
2

)
.

(6.19)
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The Equation 6.18 is analogous to the probability density function of a Multivariate Stu-

dent’s t distribution (Equation 6.19). Hence, the prior predictive of y is a multivariate

Student’s t distribution with mean Xµβ , scale matrix
(

b
a

)(
In +XVβ XT

)
, and degrees of

freedom 2a. It can be denoted as:

p(y)∼MV St(2a)

(
Xµβ ,

(b
a

)(
In +XVβ XT

))
.

In conclusion, the computation of prior predictive distribution of y can be summarised as:

p
(
y
)
=

∞∫
0

p
(
y
∣∣σ2)p

(
σ

2)dσ
2

=

∞∫
0

Nn

(
Xµβ ,σ

2(In +XVβ XT))IG(a,b)dσ
2

=

∞∫
0

MNIG
(

Xµβ ,σ
2(In +XVβ XT),a,b)dσ

2

∼MV St(2a)

(
Xµβ ,

(b
a

)(
In +XVβ XT

))
. (6.20)

Alternatively, the prior predictive distribution of y can be defined as:

p
(
y
)
=

∞∫
0

∫
β

p
(
y
∣∣β ,σ2)p

(
β ,σ2)dβdσ

2.

Taking Equations 6.1 and 6.4 into account, the above result can be revised as:

p
(
y
)
=

∞∫
0

∫
β

MNn
(
Xβ ,σ2In

)
MNIG

(
µβ ,Vβ ,a,b

)
dβdσ

2.

However, the prior predictive distribution of y has been already verified and shown in

Equation 6.20. Therefore, it is obvious that,

∞∫
0

∫
β

MNn
(
Xβ ,σ2In

)
MNIG

(
µβ ,Vβ ,a,b

)
dβdσ

2 ∼MV St(2a)

(
Xµβ ,

(b
a

)(
In +XVβ XT

))
.

(6.21)
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6.6 The Posterior Predictive Distribution

Let us assume that, X̃m is the matrix of known covariates that requires predicting the anal-

ogous outcome ỹm. X̃m and ỹm are m× p and m× 1 matrices respectively. The distribu-

tion of ỹm is expected to predict conditional on the data that have been already observed.

Therefore, the distribution of ỹm, p(ỹm
∣∣y) is called the posterior predictive distribution.

In general, the posterior predictive distribution is defined as an average that is calculated

based on the conditional predictions over the posterior distribution of (β ,σ2). The pro-

cess followed in calculating the prior predictive is extended to determine the posterior

predictive distribution of unobserved data ỹm [72].

According to the definition of the posterior predictive distribution,

p(ỹm,
∣∣y) = ∫

σ2

∫
β

p(ỹm,β ,σ
2∣∣y)dβdσ

2 =
∫
σ2

∫
β

p(ỹm
∣∣β ,σ2,y)p(β ,σ2∣∣y)dβdσ

2,

and assuming the conditional independence of y and ỹm given (β ,σ2) [72],

p(ỹm,
∣∣y) = ∫

σ2

∫
β

p(ỹm
∣∣β ,σ2)p(β ,σ2∣∣y)dβdσ

2. (6.22)

In case of known β and σ2, the distribution of ỹm is multivariate normal with mean X̃mβ

and variance-covariance matrix σ2Im. That is,

p(ỹm
∣∣β ,σ2)∼MNm

(
X̃mβ ,σ2Im

)
. (6.23)

Even though, β and σ2 are unknown, posterior samples of them can be used to overcome

the problem of unknown parameters. The posterior predictive distribution given by Equa-

tion 6.22, is reformed as below, based on Equation 6.23 and the posterior distribution of
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β ,σ2), which is given by Equation 6.10,

p(ỹm,
∣∣y) = ∫

σ2

∫
β

p(ỹm
∣∣β ,σ2)p(β ,σ2∣∣y)dβdσ

2

=
∫
σ2

∫
β

MNm
(
X̃mβ ,σ2Im

)
MNIG

(
µ̃β ,Ṽβ , ã, b̃

)
dβdσ

2.

This result is directly analogous to the outcome of the Equation 6.21. Therefore, posterior

predictive of ỹm is a multivariate Student’s t distribution with mean X̃mµ̃β , scale matrix(
b̃
ã

)(
Im + X̃mṼβ X̃T

m

)
, and degrees of freedom 2ã. It can be denoted as:

p(ỹm,
∣∣y)∼MV St(2ã)

(
X̃mµ̃β ,

( b̃
ã

)(
Im + X̃mṼβ X̃T

m

))
. (6.24)

6.7 Summary

Stutter ratio can be modelled as a simple linear regression model of longest uninterrupted

sequence (LUS). Therefore, the theoretical outcomes discussed in this chapter must be

simplified to a simple linear regression model.

β T =(β0,β1) is the regression coefficient matrix and σ2 is the unknown finite constant

variance of the random errors of the regression model. µβ , Vβ , a, and b are respectively

the mean vector, variance-covariance matrix, shape, and scale parameters of bi-variate

normal inverse gamma joint prior distribution of β and σ2. The respective parameters of

the posterior distribution of β and σ2 are µ̃β , Ṽβ , ã, and b̃. The joint prior distribution and

the observed data are connected in the following way to calculate these parameters where

n, y, and X are the sample size, response variable, and the design matrix respectively.

Ṽβ =
(
V−1

β
+XT X

)−1

µ̃β =
(
V−1

β
+XT X

)−1(V−1
β

µβ +XT y
)
= Ṽβ

(
V−1

β
µβ +XT y

)
ã = a+

n
2

b̃ = b+
1
2

(
yT y+µ

T
β

V−1
β

µβ − µ̃
T
β

Ṽ−1
β

µ̃β

)
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6.7. Summary

The posterior predictive distribution of a new datum (X̃ , ỹ) can be derived by replac-

ing (X̃m, ỹm) by (X̃ , ỹ) and the number of data points in the new dataset m by one, in

Equation 6.24. Then the posterior predictive distribution of the new datum is a univari-

ate non-standardised Student’s t distribution with location, scale, and degrees of freedom

parameters X̃ µ̃β ,
(

b̃
ã

)(
1+ X̃Ṽβ X̃T

)
, and 2ã respectively.
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Chapter 7

Infinite Mixtures of Linear Regression

Models

7.1 Introduction

Extending the idea of two-component mixture models presented in Chapter 2, this chapter

introduces the infinite mixtures of linear regression modelling approach to develop more

robust models for predicting stutter ratio. With the normality assumption of random error

terms, a mixture of linear regression models can be interpreted as a mixture of Gaussian

distributions. In addition, an infinite mixture is the infinite limit of a finite mixture model.

Hence, a brief review of finite mixture models, especially the finite mixtures of normal

densities is presented. Finally, this chapter briefly discusses some of the approaches in-

cluding Chinese Restaurant Process (CRP) that can be used to deal with infinite mix-

tures and introduces some improvements to the collapsed Gibbs sampling algorithm in

order to search better models in terms of log posterior density (log-likelihood).

In real-world phenomena, data that we are trying to model are often much more com-

plex than would be expected under theoretical considerations. For instance, data that have

originated from heterogeneous sources could indicate more than one peak in its probabil-

ity distribution. The presence of bi-modal histograms with a sufficient gap between two

peaks probably indicates a mixture of two or more sources for the data [123]. Occasion-

ally, irregular combinations of high and low probability masses can also be seen in the
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7.2. Beyond Multiple Linear Regression Models

distribution of data. In an extreme case, a deviation or isolation of one or more parts

of the distribution could also be demonstrated. Using a set of assumptions is an indis-

pensable characteristic of any statistical model. In most of the model building methods,

a single distribution is frequently assumed for the data. However, if the data originated

from more than one distribution, then they may not be well-characterised by a single dis-

tribution [105]. It is not uncommon to encounter situations where the probability distribu-

tion of data is not compatible with any of the known statistical probability distributions.

The modelling of datasets with above or similar characteristics is always challenging

and requires much expertise in the state-of-the-art techniques. In circumstances where

a standard single probability distribution does not help, a finite mixture of parametric

probability distributions may be useful to model data.

7.2 Beyond Multiple Linear Regression Models

Generally, a multiple linear regression model is presented as

yi = E(yi)+ εi,

where E(yi) and εi are the mathematical expectation and the random error term of the ith

observation of the response variable yi respectively [178]. Let us assume that we have a

multiple linear regression model with k explanatory variables X1,X2, ...,Xk. If there are

n observations (x11,x21, ...,xk1), (x12,x22, ...,xk2), ..., (x1n,x2n, ...,xkn) corresponding to a

particular scenario, then the model can be written as

yi = β0 +β1x1i +β2x2i + ...+βkxki + εi f or i = 1,2, ...,n.

Typically, we assume that the errors are independent and identically distributed (i.i.d)

with zero mean (i.e. E(εi) = 0) and that we have unknown finite constant variance (i.e.

Var(εi) = σ2
ε ). In addition, we usually assume that the errors are normally distributed.

This assumption allows us to make inferential statements. These assumptions on the error

lead to the following assumptions on the response variable y.
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7.2. Beyond Multiple Linear Regression Models

1. Independence

2. Normality

3. Constant variance

Any of these assumptions may be dropped by changing the model under specific condi-

tions. For example, the independence assumption can be dropped and use a time series

model where the data are time-based. Significant violations of the assumption of normal-

ity may lead to poor prediction performance, and misleading inferences. The presence of

skewness (lack of symmetry), heavy-tailedness, and light-tailedness are some of the indi-

cations of violations of normality. When the error variance is fixed to a finite constant σ2
ε ,

the data is said to be homoscedastic, otherwise it is referred to as heteroscedastic [178]. If

the data have no constant variance or normality, generalised linear models (GLMs) may

be possible under certain conditions (e.g. if the data are rightly-skewed, a log-normal or a

gamma distribution may be appropriate). Incorrectly specified models and the skewed dis-

tribution of the explanatory variables have been frequently discussed as possible reasons

for heteroscedasticity in linear regression models [91, 178], and is a problem in GLMs

too. When a model is specified without one or more important variables, it is possible

to arrive at a situation with heteroscedastic features. However,these features can often be

removed with the introduction of appropriate variables to the model. Heteroscedasticity

is also addressed by way of transformation of the response. For example, it is common to

take the logarithm of the response when the variance increases with the mean.

If there is a lack of independence in data, then the estimators are inefficient and this

leads to too small (underestimated) standard deviations. However, there is no problem re-

lated to this assumption in modelling stutter ratio. According to the central limit theorem,

when we use large datasets, any violation of the assumptions does not have a considerable

effect on model parameter estimates or confidence intervals for the mean. However, if a

model is fitted for a predictive purpose, then a misspecified model or variance parame-

ters with non-constant behaviour lead to poor performance in interpretations that depend

on the predicted information. In addition, even with large datasets traditional modelling

techniques may not be effective when the data has specific characteristics. For example,

149



7.3. History of Finite Mixture Models

when data exhibit a clustered behaviour, it is very difficult to model them using a known

single distribution [179].

Transformation may not help in situations where the residuals of a linear regression

model exhibit several modes. However, finite mixture models can be applied as an al-

ternative, powerful, and flexible tool [105]. The flexibility that is provided by the mix-

ture models to address the issues related to heavy-tailed, skewed (asymmetrical), multi-

model, and leptokurtic or platykurtic data sets is widely appreciated in statistical mod-

elling [105, 123, 179]. It is rather difficult to approximate these situations using most of

the known distributions. Mixture models, in contrast, can be equally employed to assess

such datasets that have originated from either known or unknown distributions. They are

also capable in handling underdispersion, overdispersion, and heteroscedasticity issues

related to traditional models [105].

Mixture models can be basically dichotomised as finite and infinite. In principle,

a convex combination of two or more probability density functions is defined as a finite

mixture model. More generally, it is a statistically weighted finite collection of probability

density functions. The infinite limit of a finite mixture model is usually regarded as an

infinite mixture model. The infinite mixture model is also known as a Dirichlet process

mixture model, which is a distribution over distributions. It is widely recognised as a

stochastic process that can be used in Bayesian non-parametric modelling of data. There

are numerous applications of Dirichlet processes in recent literature [4, 133].

7.3 History of Finite Mixture Models

Finite mixtures of distributions are increasingly receiving attention from both theorists

and practitioners as an extremely flexible method that provides a mathematical-based ap-

proach for modelling [123]. There are numerous applications in the fields of astronomy,

biology, genetics, medicine, psychiatry, economics, and engineering which emphasise

the effectiveness of finite mixture models in complex situations. When the populations

of data are known or are suspected to be comprised of sub-populations, finite mixture

models can be effectively used [57]. In cluster analysis, it is very convenient to address
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7.3. History of Finite Mixture Models

the issue of heterogeneity, using finite mixtures of distributions [123]. In the univariate

case, a finite mixture of normal distributions with common variance can be successfully

employed to approximate any continuous distribution. Similarly, in multivariate cases,

the common variance is replaced by a common variance-covariance matrix. Moreover,

finite mixture models provide a convenient semi-parametric framework to model distri-

butions with any unidentified shapes. A mixture model with an appropriate number of

components is capable in representing reasonably complex models with a high degree

of accuracy. Finite mixture models are attracting extensive interest in situations where a

single parametric family reveals inability to produce a satisfactory model to represent the

distributional characteristics of the observed data.

A paper entitled ”Contributions to the Mathematical Theory of Evolution” [132] writ-

ten in 1894 by reputed biometrician K. Pearson is regarded as one of the earliest to use

finite mixture models. In his study on several body measures of crabs, the mixture model

(two-component heterogeneous mixture of normal densities) provided a better description

of the data because it models the sub-species differences. The methodology adopted in

this analysis was based on the method of moments derived from the observed frequency

distribution concerning the mid-points of ratios of the forehead to body length intervals.

The moment-based method involved a massive amount of calculations in finding the five

parameters of the mixture model. Rao [57] suggested the maximum likelihood estimation

as an alternative technique to fit a two-component mixture model. In comparison with

the moment-based estimation, maximum likelihood estimators have many desirable sta-

tistical properties. The maximum likelihood approach is appreciated as a method which

is capable in producing highly efficient results [142]. However, the calculation of maxi-

mum likelihood estimates subjected to incomplete datasets is a common problem in many

statistical applications. With the introduction of “Expectation-Maximisation” [EM] al-

gorithm in 1977 by Dempster, Laird, and Rubin, the method of maximum likelihood

estimation has been extensively recognised as the most commonly-used method of fitting

finite mixture distributions [50, 123].
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7.4. Finite Mixtures of Normal Densities

7.4 Finite Mixtures of Normal Densities

Finite mixture models, especially the Gaussian mixtures, are frequently employed as fun-

damental data analysis tools in clustering and classification of data. The interpretability

of the results under these models is fully empowered by its comprehensive mathemati-

cal basis [62]. As a consequence of this, they are being progressively preferred by the

modelling practitioners. Among the various clustering procedures, the ones that provide

facilities to model overlapping clusters are highly sophisticated. The finite mixture model

is regarded as a probabilistic approach combined with model based procedure, which has

been capable of modelling overlapping clusters. In real-world problems where the un-

observed heterogeneity in data cannot be disregarded, finite mixture models have been

regarded as a powerful framework [53]. In the applications of these models, the observa-

tions are assumed to be drawn from more than one heterogeneous sources (populations).

Each source is termed as a cluster or a sub-population. In model-based clustering, each

source is reflected by a cluster and the clusters are modelled using parametric models. In

Gaussian mixtures, the family of normal distributions are used to build parametric mod-

els for each cluster. Sometimes, these clusters are naturally defined, hence, the number

of components in the model is known. However, in the problems where clusters cannot

be naturally recognised, this has to be specified by the user. In such circumstances, the

optimal number of components in the model can be assessed in terms of the likelihood of

data under each competing model [62].

It is very convenient to illustrate the broadness of normal mixtures with the consid-

eration of univariate case. A univariate Gaussian mixture density can be defined as a

weighted average of individual Gaussian densities. Let us consider a K-component Gaus-

sian mixture with mean, variance, and mixing proportion vectors µ = (µ1,µ2, . . . ,µK)
T ,

σ2 = (σ2
1 ,σ

2
2 , . . . ,σ

2
K)

T , and π = (π1,π2, . . . ,πK)
T respectively. Here; µk, σ2

k , and πk

(k = 1,2, . . . ,K) denote the mean, variance and mixing proportion corresponding to the kth

component of the mixture respectively. Mixing proportions are non-negative and summed

to one. Then the mixture density f (y j|µ,σ2,π) of a random variable y j can be defined in
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Figure 7.1: Density plots of two component 1:1 mixtures of univariate normal densities.
SP(µ,σ2,γ) denotes a symmetric platykurtic distribution with µ , σ2, and γ as the loca-
tion, scale, and kurtosis parameters respectively.

the form

f (y j
∣∣µ,σ2,π) =

K

∑
k=1

πkφk(y j
∣∣µk,σ

2
k ),

where

φk(y j
∣∣µk,σ

2
k ) =

1√
2πσk

exp
[
− 1

2

(y j−µk

σk

)2]
.

The flexibility of finite mixtures of Gaussians in approximating various types of distri-

butions can be graphically illustrated. The first plot of Figure 7.1 illustrates the flexibility

in approximating heavy-tailed symmetric distributions. In real-world applications, there

may be some densities deviated substantially from elliptically symmetric behaviours and

cannot be modelled even with the family of t-distributions. A mixture density as it illus-

trated in Figure 7.1, can be efficiently used to approximate such asymmetric densities.

The family of Symmetric Platykurtic (SP) distributions is one of the best alternatives that

can be used to overcome the poor fitting problems of normal densities especially with the

presence of heavy tailed distributions [6]. The probability density function of a symmetric
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platykurtic distribution with parameters µ , σ2, and γ; SP(µ,σ2,γ) is defined as

f (x|µ,σ2,γ) =

[
2γ +

(x−µ

σ

)2]γe−
1
2

(
x−µ

σ

)2

γ

∑
k=0

(
γ

k

)
(2γ)γ−k2k+ 1

2 Γ(k+ 1
2)σ

,

where, µ and σ(> 0) are the location and scale parameters. The kurtosis parameter γ

determines the shape of the distribution and takes only non-negative integers. The Gaus-

sian distribution is a special case of symmetric platykuric distributions when γ = 0. The

second plot in Figure 7.1 illustrates a symmetric platykurtic distribution as a mixture of

two homoscedastic Gaussian densities with equal weights (1:1 mixture). The third plot

visually evidences the goodness-of-fit of this Gaussian mixture in approximating sym-

metric platykurtic distribution with location, scale, and kurtosis parameters 1, 1.21, and 1

respectively.

The problems associated with heavy-tailed distributions are generally encountered

with the family of Student’s t-distributions. It is a rich member of the well-known bell-

shaped symmetric distributions family and enables more flexibility and robustness in

modelling. Degrees of freedom, the additional parameter empowers to accommodate

heavier tails in the distribution than with the standard normal distribution. The non-

standardised Student’s t-distribution is a member of location-scale family and provides

more facilities to accommodate various bell-shaped behaviours in statistical modelling.

The mean and variance are defined when the degrees of freedom of the distribution is

greater than 1 and 2 respectively. The mean of the distribution exactly equals the lo-

cation parameter as it does in Gaussian distribution. In contrast, the scale parameter of

the distribution does not exactly equal the variance, unlike the normal density. However,

the variance is a function of both degrees of freedom ν and scale parameter σ2 of the

distribution, and is defined as ν

ν−2σ2.

Representation of the Student-t distribution as a scale mixture of normal is a well-

known fact in statistics. The Student’s t-distribution with location, scale, and degrees of

freedom parameters θ , σ2, and ν respectively can be expressed as a mixture of normal

distributions N(µ,ω2σ2) assuming an inverse gamma distribution IG(ν

2 ,
ν

2 ) for ω2 [1, 38,
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39]. Mathematically,

tν
(
x|θ ,σ2)= ∞∫

0

N
(
x|θ ,ω2

σ
2)IG

(
ω

2|ν
2
,
ν

2
)
dω

2

=

∞∫
0

1√
2πω2σ2

e−
1
2

(
x−µ

ωσ

)2 (ν

2 )
ν

2

Γ(ν

2 )
ω
−(ν+2)e

(
− ν

2ω2

)
dω

2.

Scale mixtures of normal densities are efficiently used in Bayesian estimation via Markov

Chain Monte Carlo (MCMC) methods[55]. However, a lack of performance has been

observed in the symmetric versions of scale mixtures with the presence of extreme outliers

that are revealed only in one side of the data distribution. As an alternative, skewed scale

mixtures that can accommodate both skewness and heavy-tailedness have been introduced

to overcome the problems associated with their symmetric counterparts. For example, the

symmetric Student-t distribution is replaced with the skewed Student-t density, which is

a mixture of skewed normal distributions.

Finite mixtures of Gaussian densities are frequently found in various fields of mod-

elling [57]. However, the lack of robustness with the presence of outliers is a key limita-

tion of the finite mixtures of normal distributions [8]. The influence of outlying data on

estimating the means and the variances (or variance-covariance matrices) is a well-known

fact in statistics, and is regarded as one of the main reasons for the robustness problems

in finite Gaussian mixtures. The behaviour of outliers in a dataset can be captured by

increasing the number of components (clusters) in the model. However, increased com-

plexity of the model as a result of these additional components needs to be considered.

The problem of model complexity with the existence of outliers can be successfully over-

come by using Student-t mixtures instead of Gaussian mixtures.

Among the literature on stochastic volatility models can be found some interesting ap-

plications of finite mixtures of normal densities that approximate log chi-square random

variables with one degree of freedom (i.e.log- χ2
1 ). Chi-square distributions are always

positively skewed and the level of skewness decreases as the degrees of freedom increases.

Hence, the distribution with one degree of freedom is the most right-skewed one among

others. Log transformations are frequently used to obtain symmetric behaviours for pos-
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Figure 7.2: Various shapes of normal mixture densities

Table 7.1: Parameters for normal mixture densities shown in Figure 7.2

Mixture density Weights and parameters of the component densities

1. Skewed unimodal 1
5N(0,1)+ 1

5N
(

1
2 ,(

2
3)

2
)
+ 3

5N
(

13
15 ,(

5
9)

2
)

2. Strongly skewed
7
∑

k=0

1
8N
(

3
[
(2

3)
k−1

]
,(2

3)
2k
)

3. Bimodal 1
2N
(
−1,(2

3)
2)+ 1

2N
(
1,(2

3)
2)

4. Separated bimodal 1
2N
(
− 3

2 ,(
1
2)

2
)
+ 1

2N
(

3
2 ,(

1
2)

2
)

5. Asymmetric bimodal 3
4N(0,1)+ 1

4N
(

3
2 ,(

1
3)

2
)

6. Trimodal 9
20N
(
− 6

5 ,(
3
5)

2
)
+ 9

20N
(

6
5 ,(

3
5)

2
)
+ 1

10N
(

0,(1
4)

2
)

Source: Adapted from Marron and Wand [121]

itively skewed random variables. However, the logarithm of chi-square distribution with

one degree of freedom is moderately left-skewed. The log-square transformation of a

standard normal (logarithm of a chi-square) random variable is a key problem in many

stochastic volatility models for financial time series. In these models, log chi-square ran-
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dom variables with one degree of freedom (log- χ2
1 ) are very poorly approximated by

normal distributions, especially with small samples [107]. As a consequences of this,

Gaussian mixtures have been used as an approximation in many applications related to

volatility models. For example, a seven-component mixture of normal densities was suc-

cessfully used to approximate the log chi-square distribution by Kim et al.[107], in their

study about stochastic volatility models. Following this study, Mahieu et al.[119], con-

ducted an experiment on this approximation and settled for a three-component mixture

(with mixing proportions 0.70, 0.25, and 0.05) instead of seven. In another applica-

tion of stochastic volatility models with expectation-maximisation (EM) algorithm, a two

component normal mixture has been used to replace the log chi-square distribution, and

observed a robust fit [106]. Marron and Wand [121] presented a wide variety of fi-

nite normal mixtures in order to illustrate their flexibility in approximating various types

of distributional features including different magnitudes of skewness and multimodality.

Even though their article contained 15 such mixtures, only six of them are reproduced

in Figure 7.2 to demonstrate the broadness of the normal mixtures in modelling. The

weights and parameters corresponding to the individual components of these six mixture

densities are presented in Table 7.1 for further information.

7.5 Finite Mixtures of Multiple Linear Regression Mod-

els

Finite mixture models for linear regression models can be regarded as a special case of

Gaussian mixtures as it employs the family of normal distributions to model the errors

within each component.

Let us assume a K-component finite mixture of multiple linear regression models

with p− 1 predictors. The conditional density h of an n-dimensional vector of data y =

(y1,y2, . . . ,yn) of a dependent variable Y is in the form

h(y
∣∣X ,β1,β2, . . . ,βK,π1,π2, . . . ,πK) =

K

∑
j=1

π jφ j(y j
∣∣X j,β j,σ

2
j ),
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where π j is the mixing probability of cluster j. π j’s are positive and summed to one (i.e.

0 < π j ≤ 1, for all j = 1,2, . . . ,K and
K
∑
j=1

π j = 1). X is an n× p design matrix which

includes the values of the covariates, β j and σ2
j are the p× 1 vector of the regression

coefficients and variance of random error terms for cluster j respectively. Assuming n j

number of observations for the jth cluster, the density φ j of an n j-dimensional vector of

dependent variable yT
j = (y j1,y j2, . . . ,y jn j) has been defined conditional on n j× p design

matrix X j and β j as follows.

φ j(y j
∣∣X j,β j,σ

2
j ) =

1(
2π
) n j

2
∣∣σ2

j In j

∣∣ 1
2

exp
[−1

2
(
y j−X jβ j

)T(
σ

2
j In j

)−1(y j−X jβ j
)]

=
1(

2πσ2
j
) n j

2

exp
[ 1

2σ2
j

(
y j−X jβ j

)T(y j−X jβ j
)]

Finite mixtures of regression models have been broadly discussed in existing litera-

ture. Various types of models including linear, generalised linear, and generalised linear

mixed models have been reported in these literatures. Extending the usefulness of the

concepts highlighted in the literature, software packages have been developed. Gener-

ally, finite mixtures of multiple linear regression models can be treated as the simplest

among others. Various R packages developed to provide computational functionality of

finite mixture models are found. For instance, the R package flexmix is a computational

software solution that offers conveniences through flexible infrastructure for fitting mix-

tures of regression models [90]. Basically, the package empowers the functionality of the

model-based clustering, and the Expectation-Maximization (EM) algorithm is used to es-

timate the model parameters. The R package mclust provides computational infrastruc-

ture for model-based clustering, classification, and density estimation using maximum

likelihood technique via EM algorithm for parameter estimation [63]. The R package

mixtools also offers a wide range of alternatives for fitting finite mixtures of regression

models. Either the EM algorithm itself or the ideas developed based on it are used as the

basis for many algorithms in the package [13].

Statistical Analysis Software (SAS/STAT R©) is another leading computational soft-

ware that provides a broad range of procedures in statistical modelling. Linear regression

models are always treated as special cases of generalised linear models, and the FMM
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procedure (PROC FMM) in SAS provides essential facilities for fitting mixtures of them

[105]. Both maximum likelihood and Bayesian techniques are available in the FMM

procedure. A majority of the R packages for fitting finite mixture models are heavily de-

pendent on the EM algorithm in maximum likelihood estimation (e.g. flexmix, mclust,

and mixtools). PROC FMM in SAS, in contrast, uses a dual quasi-Newton optimisation

algorithm as the default method in parameter estimation in the context of mixture models.

However, several other optimisation methods, namely, conjugate-gradient, double-dogleg,

Nedler-Mead simplex, Newton-Raphson technique with ridging, and trust-region are also

available to accomplish parameter estimation under finite mixture models. Alternatively,

Gibbs sampling technique is used as the default option under the Bayesian version of

PROC FMM. However, the Metropolis-Hasting algorithm that was originally proposed

by Gamerman [64] is used especially for the situations where the Gibbs sampling is im-

possible [105].

7.5.1 Number of Components in a Finite Mixture Model

Finite mixture models provide a great flexibility in modelling data that are assumed to

come from more than one source population. In fact, the number of sources that the data

were generated under many practical phenomena is generally unknown. Hence, the selec-

tion of an appropriate number of sources, which is the number of components in the mix-

ture model that reflects the optimal level of model complexity, is always problematic. A

comprehensive review of finite mixture modelling, including the problem of selecting the

number of components, has been provided by McLachlan et al. [123]. The issue of deter-

mining the number of components has been further reviewed with updated information by

McLachlan et al. [124] in the context of Gaussian mixture models. The selection of num-

ber of components in a finite mixture model has been discussed in relation to several meth-

ods such as reversible jump sampler in relation to MCMC methods [89, 116, 125, 143],

methods related to Bayes factors or BIC which approximates the logarithm of a Bayes

factor [62, 103, 123, 124, 150], birth-and-death process [33, 125, 155, 158], and methods

related to likelihood ratio tests [102, 117, 124]. In the context of density estimation, the

Akaike’s information criterion (AIC) and the Bayesian information criterion (BIC) are
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considered as adequate criteria to determine the appropriate number of mixture compo-

nents [123]. However, the BIC has been highlighted as the most widely used measure to

determine the number of components [124, 149].

7.6 Infinite Mixture Models

The model complexity is often expressed in terms of number of parameters in the model.

A misfit between the model complexity and the amount of data at hand can lead to over-

fitting or under-fitting problems in traditional parametric models that have fixed and finite

number of parameters [163]. Bayesian non-parametric methods provide increased flex-

ibility in applied statistical modelling as they do not restrict the number of parameters

in the model. In fact, the models where the number of parameters can grow with the

size of training dataset are more appropriate to be referred to as fully non-parametric.

In Bayesian non-parametric modelling, Dirichlet processes, in particular Dirichlet pro-

cess mixture models, are frequently used [163]. Specifying the number of components in

finite mixture models however is practically difficult even though the calculations are rel-

atively simple. Infinite mixture models, in contrast, do not require the user to specify the

number of components. Instead, a Dirichlet process [61], which is an infinite-dimensional

generalisation of the Dirichlet distribution [163] is used.

7.6.1 Dirichlet Process (DP)

Non-parametric models have been continuously influenced by Bayesian modelling tech-

niques [163]. It is a general practice to assume that the data at hand have been drawn

identically and independently from an unknown underlying distribution (say F). In the

Bayesian approach, a prior distribution is assumed on the parameters of F , and the pos-

terior distribution is derived based on the observed data and the prior. Non-parametric

Bayesian approach, in contrast, places a prior distribution over a set of distributions [42].

A Dirichlet prior is a typical example for a non-parametric prior distribution. DP mixture

models are also known as infinite mixtures. In these models, the number of components

is countably infinite, which can technically be controlled by defining a prior distribution
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on the mixing proportions [88, 128]. The Chinese restaurant process, the Stick-breaking

construction, and the Pólya urn scheme are frequently used as Dirichlet prior distributions

in Bayesian mixture models. These representations of DP offer different inference algo-

rithms for DP-based mixture models [162]. However, there are some close relationships

among them [3, 88, 164]. For example, Polya urn scheme is closely related to CRP, which

is a distribution over partitions. This scheme can be generalised using exchangeability,

and it leads to the DP.

A DP is a stochastic process [163] and is a distribution over distributions (a measure on

measures) [42]. It is mathematically defined along with advanced principles of measure

theory. Let Θ is measurable space, H is a probability measure defined on Θ, and α is a

positive scaler [61, 163]. Then G is defined as a Dirichlet process with parameters H and

α (i.e. DP(α,H)), if G(B1), . . . ,G(Bk) has a Dirichlet distribution for all finite measurable

partitions
(
B1, . . . ,Bk

)
of Θ for every k = 1,2, . . . . In notational form

G∼ DP(α,H),

if
(
G(B1), . . . ,G(Bk)

)
∼ Dir

(
αH(B1), . . . ,αH(Bk)

)
for every finite measurable partition B1, . . . ,Bk of Θ.

There are two parameters of Dirichlet process: the base distribution H and the con-

centration (strength) parameter α [48, 92, 128]. The base distribution is a joint prior

distribution of the component parameters [88, 179], and the concentration parameter is a

positive scaler. For any measurable set B of Θ (i.e. B⊂ Θ), the mean and the variance of

G(A) are formulated as below [163].

E[G(A)] = H(A)

Var[G(A)] =
H(A)(1−H(A))

(α +1)

Therefore, H and α can be understood as the mean and inverse variance of DP(α,H).

G is a random distribution for any finite measurable partition B1, . . . ,Bk of Θ, hence

G(B1), . . . ,G(Bk) is also random. When H is continuous, the probability of any two

samples of H being equal is theoretically zero. However, the samples drawn from a
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DP are always discrete as it is made up of countably infinite collection of point masses

[48, 154, 163]. Consequently, two samples of a DP can be collided with a non-zero prob-

ability. The discreteness of the samples drawn from a DP facilitates the clustering in DP

mixture models.

Let B1, . . . ,Bk be a finite measurable partition of Θ, and θ1, . . . ,θn be a set of inde-

pendent draws from G. The number of draws θis (i = 1,2, . . . ,n) belonging to the rth

(r = 1,2, . . . ,k) partition is denoted by nr. Then the posterior distribution of G is also a

DP such that [163]

(
G(B1), . . . ,G(Bk)

)
|θ1, . . . ,θn ∼ Dir

(
αH(B1)+n1, . . . ,αH(Bk)+nk

)
.

The result shown in the above equation is true for all finite measurable partitions of Θ.

Consequently, the posterior distribution of G is also a DP. Hence, DP is very important as

a non-parametric conjugate family of prior over distributions. The posterior distribution

of G can be shown to be

G|θ1, . . . ,θn ∼ DP
(

α +n,
α

α +n
H +

n
α +n

∑
n
i=1 δθi

n

)
,

where δθi is the distribution concentrated at θi [128], and ∑
n
i=1 δθi

n is the empirical distri-

bution. It is very clear that the posterior base distribution is the weighted average of the

base and empirical distributions where the weights are proportional to the concentration

parameter α and the number of observations n respectively. The posterior concentration

parameter is simply calculated as the sum of α and n. Hence, the concentration parameter

of prior distribution α implies the prior information in terms of number of observations.

This is one of the important properties of conjugate family of distributions.

Let θ1, . . . ,θn be independently and identically distributed draws from G. Suppose

that it is expected to draw a new observation θn+1 after observing n draws from G. This is

equivalent to drawing the new observation from the posterior of G. Let B be a measurable

subset of Θ (i.e. B⊂ Θ), then the probability that the new observation θn+1 belongs to B
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after observing n draws, can be calculated as [163]

Pr
(
θn+1 ∈ B|θ1, . . . ,θn

)
= E

[
G(B)|θ1, . . . ,θn

]
=

1
α +n

(
αH(B)+

n

∑
i=1

δθi(B)
)
.

This is corresponding to the posterior base distribution G that is conditional on the initial

sequence of n observations. Consequently, the predictive distribution of θn+1 becomes

the posterior base distribution given θ1, . . . ,θn i.e.

θn+1|θ1, . . . ,θn ∼
1

α +n

(
αH +

n

∑
i=1

δθi

)
.

The discreteness of the draws from a DP generates repeated values among the realisations.

These repeated values are directly involved in creating clusters and clustering property

of DP. The relationship between discreteness and clustering properties of DP facilitates

clustering via DP mixture models. Let θ̃1, . . . , θ̃K be the set of distinct (unique) draws

among θ1, . . . ,θn. Accordingly, the predictive distribution of θn+1 can be written in the

form

θn+1|θ1, . . . ,θn ∼
1

α +n

(
αH +

K

∑
k=1

nkδ
θ̃k

)
,

where nk be the number of repeats of θ̃k among the n (n = ∑
K
k=1 nk) draws. Hence, the

probability that θ̃k will be drawn as θn+1 is proportional to the number of times it has

already been observed. Consequently, the clusters that have more observations than others

grow faster. This is called ”rich-gets-richer” phenomenon. The mean and variance of

the number of clusters K among n observations are approximated as follows.

E
(
K|n
)
' α log

(
1+

n
α

)
for n,α � 0

Var
(
K|n
)
' α log

(
1+

n
α

)
for n > α � 0
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7.6.2 Stick-breaking Construction

In 1994, Sethuraman [153] introduced the stick-breaking construction as a simple con-

structive process. This is obviously more straightforward and simple than the other repre-

sentations and proofs of DPs [163]. In this construction, a probability stick of length one

is sequentially breaking into two pieces randomly according to a Beta distribution. The

construction is represented in Figure 7.3 and can be summarised into the following steps.

1. Draw a random observation β1 from Beta(1, α) distribution. Then break the stick

into two pieces being proportional to β1 : (1− β1). Select the length of the first

piece β1 as the first probability weight π1. Then π1 = β1.

2. To derive the next probability weight πk, draw another random observation βk from

Beta(1, α) distribution.

3. Break the remaining part of the stick of length ∏
k−1
b=1(1−βb) into two pieces being

proportional to βk : (1−βk). Calculate πk such that πk = βk ∏
k−1
b=1(1−βb).

4. Repeat step 2 and 3.

Figure 7.3: Stick-breaking construction

The vector of πis needs not to be in the descending order of their magnitudes. Assuming

a base distribution H, a concentration parameter α , and a sequence of probability weights

π = (π1,π2, . . .), a Dirichlet process G can be expressed as below [154, 163].

βk ∼ Beta(1,α) πk = βk

k−1

∏
b=1

(1−βb)

θ̃k ∼ H G∼
∞

∑
k=1

πkδ
θ̃k
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7.6.3 Pólya Urn Scheme

The Pólya urn construction is sometimes referred to as Blackwell-MacQueen scheme

[163] to acknowledge the work of Blackwell and MacQueen [16] on this topic. The Pólya

urn scheme represents draws from a Dirichlet process rather than the Dirichlet process

itself [164]. The discreteness property of Pólya urn draws facilitates clustering property.

In a Pólya urn scheme, the values of the parameter space Θ of the base distribution H are

represented by a collection of balls with different colours. The parameter space Θ in rela-

tion to the urn problem is the set of all possible unique colours [154]. Suppose all the balls

in the urn can be classified into K distinct colours c1, . . . ,cK with frequencies α1, . . . ,αK

respectively. The balls are drawn randomly with equal probabilities and sampling with

replacement. In addition, subsequently to each draw, a new ball with the same colour is

added to the urn. Then the proportion of the balls in different colours in the urn G follows

a Dirichlet distribution (i.e.G ∼ Dir(α1, . . . ,αK)) in the limit of infinite number of draws

from the urn.

In DP applications, the modelling of successive independent draws from G without a

direct reference to it, is very important. In this approach, it uses an empty urn at the start

and the subsequent steps are as below.

1. Draw the first colour θ1 at random from the base distribution H and add a ball of

that colour to the empty urn.

2. Suppose the number of balls in the urn is denoted by n. Draw a colour θn+1 from

the base distribution H with probability α

α+n or draw a colour (ball) from the urn

with probability n
α+n .

3. Increase the number of balls in the urn by adding a new ball of the colour θn+1.

4. Repeat step 2 and 3.

According to the Pólya urn scheme, the predictive distribution of θn+1 after observing

θ1, . . . ,θn is derived as

θn+1|θ1, . . . ,θn ∼
1

α +n

(
αH +

n

∑
i=1

δθi

)
.
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The clustering property in the Pólya urn scheme can be represented by assuming θ̃1, . . . , θ̃K

distinct colours in the urn before drawing θn+1. When nk represents the number of balls

of the colour θ̃k in the urn, the predictive distribution of θn+1 can be written in the form

θn+1|θ1, . . . ,θn ∼
1

α +n

(
αH +

K

∑
k=1

nkδ
θ̃k

)
.

7.6.4 Chinese Restaurant Process

In 1978, Pitman [139] published an article named ”An extension of de Finetti’s theorem”.

Following the findings of this study with some additional contributions, in 1985, Aldous

[3] named the Chinese restaurant process (CRP) as a distribution over partitions. The

process is closely related to the Pólya Urn Scheme as a distribution over partitions.

CRP is described with a hypothetical restaurant with an infinite number of tables and

unbounded number of seats for each table [154, 163, 164]. Each customer enters the

restaurant one after the other and decides a table based on the number of customers already

seated at each non-empty table. The steps associated with CRP can be summarised as

below.

1. The first customer enters the restaurant and sits at Table 1.

2. Suppose the total number of customers already occupied are denoted by n and num-

ber of non-empty tables are labelled as Table 1, . . . , Table K. The number of cus-

tomers seated at Table k (k = 1, . . . ,K), is denoted by nk.

3. When the customer n+ 1 arrives, he selects the Table k with probability nk
α+n or a

new table (say Table K +1) with probability α

α+n .

4. Repeat step 2 and 3 for all the customers.

CRP clearly illustrates the clustering property of the Dirichlet process. Each table in a

CRP represents a cluster, and the customers at the table represent the observations be-

longing to that cluster. It assumes round tables to represent permutations of the obser-

vations within the cluster [163]. Conceptually, CRP assumes infinite number of clusters;

however, use only a finite number of them to partition the observed data. The mixing
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proportion related to any component in a mixture model tends to be zero as the number of

components tends to infinity. However, combining all the empty partitions into a single

component, the number of components can be fixed to a finite number. In a CRP, the

total number of clusters cannot be greater than the number of observations at hand as n

observations can be assigned at most n clusters. However, it can grow as the number of

observation increases.

7.6.5 Pitman-Yor Process

The Pitman-Yor process [138] is a two parameter (α and β ) generalisation of the CRP

and has the rich-gets-richer property. In this process the (n+ 1)th customer selects the

Table k (where k = 1, . . . ,K) with probability nk−β

n+α
and a new table (say Table K+1) with

probability α+βK
n+α

. As it noted in CRP, nk and α represent the number of customers already

occupied at Table k and the concentration parameter respectively. β is referred to as the

discount parameter. Contrasting to the CRP, in a Pitman-Yor process, the probability of

introducing a new table increases as the number of tables increases.

7.7 Collapsed Gibbs Sampling with CRP for Better Mod-

els

This section describes the procedure of fitting an infinite mixture model for stutter ratio

(SR). Assuming Gaussian errors, a simple linear regression of longest uninterrupted se-

quence (LUS) is used to model SR. The theoretical aspects of Bayesian model fitting in

the context of linear regression model, assuming a fully conjugate prior distribution has

been discussed in Chapter 6. CRP was employed as a non-parametric (Dirichlet) prior to

fit an infinite mixture of regression models for predicting SR. The CRP is selected as the

representation of DP due to its simplicity in calculations and understanding. Its property

of being the predictive probability proportional to the number of observations in the clus-

ter is statistically attractive. However, CRP has been paid little attention in applications

than other DP representations. Therefore, this study attempts to evaluate the behaviour of

CRP in order to search the space of models, rather than drawing posterior samples. Mod-
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Table 7.2: Notations used in the algorithm

Notation Description

NN Total number of observations

XX Covariate matrix (NN×2)

YY Column vector of SR

IGa Shape parameter of the inverse gamma prior

IGb Scale parameter of the inverse gamma prior

IGATilda Posterior shape parameter of the inverse gamma

IGBTilda Posterior scale parameter of the inverse gamma

MuBeta Prior mean vector of β (2×1)

ScaleBeta Prior scale matrix of β (2×2)

MuBetaTilda Posterior mean vector of β (2×1)

ScaleBetaTilda Posterior scale matrix of β (2×2)

KK Number of active mixture components

Al pha Concentration parameter of the Dirichlet prior

ZZ A vector of length NN that keeps cluster indicators of all the observations

nn A vector of length KK that keeps the number of observations in each cluster

ii A vector of length NN that keeps an indicator (1 : NN) for each datum

ifications motivated by “data cloning” can focus the search on higher likelihood models.

In this study, infinite mixture models are fitted only to the D2S1338 locus of the NGM

SElectTM dataset. The notation that has been used in the algorithm is given in Table 7.2.

The study acknowledges the online materials and MATLAB code of Yee Whye Teh [161].

The steps related to the computation can be summarised as below.

Step 1: Read the observed SR into YY and corresponding LUS values into the second col-

umn of XX . All the elements of the first column are ones. Calculate NN as the

length of YY vector. Set an initial value for the number of active mixture compo-

nents KK and concentration parameter of the Dirichlet prior Al pha.

Step 2: Set the appropriate prior information for the normal-inverse gamma prior (IGa,

IGb, MuBeta, ScaleBeta).

Step 3: Generate KK+1 number of empty clusters. Assign all the observations into the first

KK clusters randomly. Keep a track of cluster indicators in ZZ. The component
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KK +1 takes care of all the empty clusters.

Step 4: Remove each datum from the current model, then add it back in according to the

conditional probability.

4a: Remove datum ii from the appropriate cluster.

– If there are any other observations in the cluster:

- reduce the number of observations in the particular cluster by one.

- update the posterior parameters: IGATilda, IGBTilda, MuBetaTilda,

and ScaleBetaTilda of the cluster.

– If there is no observation in the cluster, delete it and:

- reduce the number of active clusters by one.

- adjust the cluster indicators ZZ and the number of observations in each

cluster nn appropriately.

4b: Add datum ii to an appropriate cluster according to the conditional probability.

- calculate the likelihoods (posterior predictive densities) of the datum ii

under each of the active K clusters.

- calculate the likelihood (prior predictive density) of the datum ii under

the empty (K +1) cluster.

- calculate the conditional probability pk (k = 1, . . . ,K +1) of the datum ii

fitting to cluster k, such that pk is proportional to the number of observa-

tions nnk and the likelihood (use nnK+1 = α).

4c: Assign datum ii to cluster k with probability pk.

– If there are any other observations in the selected cluster:

- increase the number of observations in the cluster by one.

- adjust the cluster indicator of the datum appropriately.

- update the posterior parameters: IGATilda, IGBTilda, MuBetaTilda,

and ScaleBetaTilda of the cluster.

– If it is a new cluster:
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- set the previous empty cluster (K +1) into the new active cluster.

- set the cluster indicator and the number of observations of this cluster into

K +1 and 1 respectively.

- update the posterior parameters: IGATilda, IGBTilda, MuBetaTilda,

and ScaleBetaTilda of the cluster.

- increase the number of active clusters by one introducing a new empty

cluster .

4d: Repeat steps 4a, 4b, and 4c for all the observations in the dataset.

Step 5: Repeat step 4 until the required number of iterations (5000 for this study) is achieved.

7.7.1 Selection of Prior Parameters

The selection of the parameters of normal inverse gamma prior distribution is a key prob-

lem in this application. The calculation of these parameters based on a small random

sample of observation from the dataset is a convenient option, and it was labelled as

prior A. However, the number of observations (n0) in this sample is directly related with

the two parameters (a, b) of the inverse gamma prior distribution. When a multiple linear

regression model with k−1 predictors is considered, the two parameters are estimated in

the following way, where MSE is the mean squared error of the regression model fitted to

the selected sample.

a =
n0− k

2

b =
n0− k

2
MSE

This study selected five different random samples of size five (n0 = 5) from the dataset

of size 406 to evaluate the behaviour of CRP across different samples. As LUS is the only

predictor used in this application, k = 2, hence the quantity n0−k
2 equals to 1.5. This

factor was reduced to 0.1 to minimise the effect of prior sample on the performance of

collapsed Gibbs sampling with CRP, and used as the second option (prior B) of deriving

the prior parameters. The performance of this modification was also examined based
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on the same five samples. In the third option (prior C), in addition to the factor 0.1,

the sample of five observations was replaced with the full dataset. The mean vector µβ

and the unscaled covariance matrix Vβ were also calculated based on the selected sample

under each method.

7.7.2 Initial Allocation of Clusters

The Gibbs sampling can be initialised with any number of clusters that is not more than

the size of the dataset. This study used two settings, one with a single starting cluster and

the other with ten initial clusters. The one that starts with a single cluster was labelled as

forward method and the other as backward method. These two methods were separately

applied with each of the three methods proposed for prior parameter estimation. The

observations in the dataset were randomly allocated to these clusters prior to the Gibbs

sampling. As there are a massive number of deletions of existing clusters and creations of

new clusters, the Gibbs sampler like this can be regarded as a birth-and-death process

of clusters.

7.7.3 Concentration Parameter (α)

The effect of CRP depends on the concentration parameter α , which controls the number

of active clusters in the mixture . As the effect of CRP in collapsed Gibbs sampling cannot

be predicted, this study repeated each combination of prior selection (prior A, prior B, and

prior C) and the initial cluster allocation (forward and backward) for 20 different values

of α (10−15,10−14, . . . ,104).

7.7.4 Improvements made to Collapsed Gibbs Sampling Algorithm

for better Models

In Gibbs sampling, each datum is allocated to either an existing cluster or a new cluster

based on the respective conditional probabilities. The conditional probability of a given

observation corresponding to a given cluster is proportional to the number of observations

and the likelihood (posterior predictive density) of the observation. When the number
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of observations and the likelihood of a new observation belonged to the cluster k of K

clusters are denoted by nk and pk, then the conditional probability of the observation

fitting to cluster k, Pk, is calculated as below.

Pk ∝ nk pk ;k = 1, . . . ,K (7.1)

For a given observation, a new cluster is created based on the probability PK+1, which

is proportional to the product of the concentration parameter α and the likelihood (prior

predictive density) of the observation pK+1. The new cluster is represented by the cluster

indicator (K +1). Therefore,

PK+1 ∝ α pK+1

Hence the concentration parameter α can be considered as the number of observations in

the (K +1)th cluster, which is actually empty.

Since the conditional probabilities in the original collapsed Gibbs sampling are pro-

portional to the size of the cluster (nk), large clusters get larger in many occasions. This

is called the ‘rich-gets-richer’ phenomenon. When there are two or more clusters with

approximately similar likelihoods in relation to a given observation, being selected the

one with more observations is a good statistical property in clustering. However, a large

cluster even with a small likelihood can be favourable than the other small clusters with

relatively high likelihoods. This characteristic can desperately affect the performance of

clustering. Hence, this study proposes to increase the relative priority of the likelihoods

in calculating conditional probabilities.

When the clusters are overlapping or not far apart from each other, there may be at

least few clusters with relatively large likelihoods for a given observation. Under these cir-

cumstances, the cluster with the highest likelihood for the observation may have a smaller

conditional probability of being selected than not being selected. The same situation can

be expected with relatively large number of clusters. If our goal is finding high likelihood

models, this is a shortfall of the original version of the collapsed Gibbs sampling algo-

rithm with CRP. Therefore, this study proposes to use either the second or third power of
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these likelihoods instead of the original value. This is not a completely new idea as it has

already been adopted in data cloning which utilizes both Bayesian framework and MCMC

computational methods. In this method, it assumes the likelihood of k independent copies

of data instead of the likelihood of the observed data themselves [113]. When the con-

ditional probabilities are calculated under collapsed Gibbs sampling, the use of second

power of the likelihood corresponds to an additional independent copy of the observation.

Similarly, the third power corresponds to two additional copies of the observation. This

modification may be really helpful in isolating the cluster with the highest likelihood for a

given observation, from the rest of the clusters. Considering this suggestion, Equation 7.1

is revised as

Pk ∝ nk pd
k ; k = 1, . . . ,K +1, nK+1 = α, and d = 1,2,3. (7.2)

7.7.5 Computational Limitations

Prior A and prior B were evaluated on five different samples, hence there were 11 possi-

bilities (levels) of prior. When each possibility was considered with two settings of cluster

allocations and 20 different values of α , it made 440 (11×2×20) testing conditions. This

study evaluated the performance of collapsed Gibbs sampling with CRP for better models

at each level of d, hence there were 1320 (440× 3) testing conditions altogether. Since

this required a massive amount of computational resources to test the performance under

the above conditions, this study used the stutter information of only one locus (D2S1338)

of the NGM SElectTM dataset that has the largest number (406) of stutter peaks.

7.8 Results and Discussion

Posterior samples were drawn using collapsed Gibbs sampling, considering each com-

bination of prior selection (11 levels), cluster initialisation (2 levels), and concentration

parameter α (20 levels). After 3000 burn-in steps, each sampler was run for another 2000

iterations. Using a thinning interval of four, 500 posterior draws were recorded under

each testing condition. Even though the performance of collapsed Gibbs sampling with
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Table 7.3: The results of collapsed Gibbs sampling with CRP at α = 10−15

Pk ∝ nk pk Pk ∝ nk p2
k Pk ∝ nk p3

k

Condition NC N LL NC N LL NC N LL

AF1 1 500 1230 1 500 1230 4 500 1629
AF2 1 500 1229 1 500 1229 4 500 1633
AF3 1 500 1228 1 500 1228 4 500 1623
AF4 1 500 1233 1 500 1233 3 500 1487
AF5 1 500 1231 1 500 1231 4 500 1622

AB1 2 500 1362 4 500 1584 5 500 1669
AB2 2 500 1367 4 500 1596 5 500 1724
AB3 2 500 1366 5 500 1682 5 500 1706
AB4 2 500 1351 3 500 1474 4 500 1584
AB5 2 500 1358 4 500 1569 4 500 1622

BF1 1 500 1245 1 500 1245 4 500 1658
BF2 1 500 1245 1 500 1245 4 500 1657
BF3 1 500 1245 1 500 1245 4 500 1678
BF4 1 500 1245 1 500 1245 4 500 1656
BF5 1 500 1245 1 500 1245 4 500 1656

BB1 2 500 1382 4 500 1621 6 500 1807
BB2 2 500 1383 5 500 1712 6 500 1785
BB3 2 500 1384 6 500 1766 7 500 1848
BB4 2 500 1378 4 500 1631 6 500 1783
BB5 2 500 1381 3 500 1632 6 500 1797

CF 1 500 1245 1 500 1245 2 500 1384
CB 1 500 1245 2 500 1364 3 500 1435

CRP for better models was tested for 20 different values of the concentration parameter

α , the results corresponding to a set of selected α values are presented.

The following notations have been used in summarising the results. A testing condi-

tion is labelled as Combination which is represented by two letters and a number. The

first letter (A, B, or C) is used to denote the prior method (prior A, prior B, or prior C

respectively). The initial cluster allocation: “forward” (starting with a single cluster) or

“backward” (starting with ten clusters) is represented by the second letter (F or B respec-

tively). A number between 1 and 5 is used (only with prior A and prior B) as the third

symbol to indicate the sample that has been used to derive the prior parameters. The

notation NC is used to denote the number of active (non-empty) clusters in the infinite

mixture model. This can be varied even within a single testing condition. Hence, the

number of MCMC samples out of 500 posterior draws that is compatible with the given

NC value is represented by N. The average log-likelihood calculated over the posterior

draws is represented by LL.

Table 7.3 to 7.7 present the variations in the performance of collapsed Gibbs sam-
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Table 7.4: The results of collapsed Gibbs sampling with CRP at α = 10−11

Pk ∝ nk pk Pk ∝ nk p2
k Pk ∝ nk p3

k

Condition NC N LL NC N LL NC N LL

AF1 1 500 1230 3 500 1485 4 500 1629
AF2 1 500 1229 1 500 1229 4 500 1633
AF3 1 500 1228 3 500 1488 4 500 1644
AF4 1 500 1233 3 500 1474 3 500 1487
AF5 1 500 1231 3 500 1480 4 500 1622

AB1 2 500 1362 4 500 1584 5 500 1669
AB2 2 499 1367 4 500 1596 5 129 1724

3 1 1441 6 371 1743
AB3 2 500 1366 5 500 1682 5 500 1706
AB4 2 499 1351 3 500 1474 4 500 1584

3 1 1384
AB5 2 499 1358 4 500 1569 4 500 1622

3 1 1390

BF1 1 500 1245 4 500 1637 4 500 1658
BF2 1 500 1245 4 500 1632 4 500 1657
BF3 1 500 1245 3 500 1506 4 500 1685
BF4 1 500 1245 3 500 1497 4 500 1656
BF5 1 500 1245 3 500 1503 4 500 1656

BB1 2 499 1382 5 500 1693 6 500 1807
3 1 1438

BB2 2 498 1383 5 435 1708 6 500 1785
3 2 1431 6 65 1768

BB3 2 500 1384 6 500 1766 7 500 1848
BB4 2 493 1378 4 500 1631 6 500 1783

3 7 1437
BB5 2 499 1382 5 500 1690 6 500 1797

3 1 1419

CF 1 500 1245 2 500 1365 3 500 1435
CB 1 500 1245 2 500 1364 3 500 1435

pling with CRP, under different combinations of prior selection methods, initial cluster

allocations, and concentration parameter values. In addition, the consistency of prior A

and prior B across various samples was examined. In each table, the effects of the second

and third powers of the likelihoods, which have been used in calculating the conditional

probabilities, on the performance are compared. The additional information (cluster sizes

and the standard deviations of log-likelihoods) relevant to the results given in Table 7.3 to

7.7 are presented in Appendix B.

The overall picture of the results reveals an increasing trend in the variation of the

number of clusters as the number of clusters increases. In addition, the study frequently

observed small clusters (containing few observations) as the number of clusters increases

(Appendix B). The effect of prior sample used to estimate the parameters of prior A and B

was evaluated for five different random samples. The same five samples were used in all
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Table 7.5: The results of collapsed Gibbs sampling with CRP at α = 10−8

Pk ∝ nk pk Pk ∝ nk p2
k Pk ∝ nk p3

k

Condition NC N LL NC N LL NC N LL

AF1 1 500 1230 3 500 1485 4 500 1629
AF2 1 500 1229 3 139 1488 4 500 1633

4 361 1580
AF3 1 500 1228 3 500 1488 4 500 1644
AF4 1 495 1233 3 500 1474 3 500 1487

2 5 1249
AF5 1 500 1231 3 500 1480 4 500 1604

AB1 2 161 1361 4 500 1584 5 500 1669
3 339 1418

AB2 2 189 1366 4 500 1611 6 500 1743
3 311 1422

AB3 2 322 1366 5 500 1682 5 500 1706
3 178 1423

AB4 2 435 1351 3 500 1474 4 500 1584
3 65 1405

AB5 2 323 1358 4 500 1569 4 500 1622
3 177 1411

BF1 1 500 1245 4 500 1637 4 500 1658
BF2 1 500 1245 4 500 1632 4 500 1657
BF3 1 500 1245 3 500 1506 4 87 1684

5 413 1761
BF4 1 500 1245 4 500 1630 5 500 1714
BF5 1 500 1245 4 500 1632 4 500 1656

BB1 2 56 1386 5 500 1693 6 500 1807
3 444 1441

BB2 2 82 1380 5 1 1738 6 500 1785
3 418 1439 6 499 1768

BB3 2 351 1384 6 500 1766 7 500 1848
3 149 1439

BB4 2 278 1376 5 500 1680 6 500 1783
3 222 1433

BB5 2 144 1380 5 500 1690 6 500 1797
3 356 1437

CF 1 500 1245 2 497 1364 3 500 1435
3 3 1372

CB 1 500 1245 2 489 1365 3 500 1435
3 11 1380

the occasions. The results reveal a moderate variation in the number of active clusters due

to the differences of these samples. The variation is clearly visible with backward method

of initial cluster allocation, especially with smaller values of the concentration parameter.

A clear difference between the forward and backward methods of initial cluster al-

location in relation to the performance of collapse Gibbs sampling can be observed for

both prior A and B irrespective of the value of the concentration parameter. When the

Gibbs sampler starts with ten initial clusters, the sampler converges into more clusters

than when it starts with one cluster. In contrast, prior C gives almost similar convergence
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Table 7.6: The results of collapsed Gibbs sampling with CRP at α = 10−6

Pk ∝ nk pk Pk ∝ nk p2
k Pk ∝ nk p3

k

Condition NC N LL NC N LL NC N LL

AF1 1 355 1230 4 500 1603 4 500 1629
2 9 1279
3 136 1419

AF2 1 500 1229 4 141 1582 4 500 1633
5 359 1635

AF3 1 500 1228 3 249 1488 5 500 1718
4 251 1622

AF4 1 491 1233 3 500 1474 3 500 1487
2 9 1249

AF5 2 13 1356 3 296 1480 4 500 1604
3 487 1411 4 204 1589

AB1 3 500 1417 4 500 1584 5 500 1669
AB2 2 1 1381 4 500 1611 6 500 1743

3 499 1422
AB3 2 4 1365 5 500 1668 5 500 1706

3 496 1422
AB4 2 28 1348 3 500 1474 4 500 1584

3 472 1403
AB5 2 13 1356 4 500 1569 4 500 1622

3 487 1411

BF1 1 499 1245 4 500 1637 4 500 1658
2 1 1259

BF2 1 500 1245 4 500 1632 4 500 1657
BF3 1 497 1245 3 500 1506 5 500 1764

2 3 1259
BF4 1 500 1245 4 500 1630 5 500 1714
BF5 1 499 1245 4 500 1632 5 500 1718

2 1 1259

BB1 3 500 1440 5 500 1693 6 500 1773
BB2 2 10 1383 6 500 1768 6 500 1785

3 499 1439
BB3 2 13 1384 6 500 1766 7 500 1848

3 487 1441
BB4 2 4 1380 5 500 1680 6 500 1783

3 496 1433
BB5 2 3 1370 5 500 1689 6 500 1797

3 497 1436

CF 1 499 1245 2 321 1365 3 497 1435
1 1259 3 179 1374 4 3 1442

CB 1 500 1245 2 241 1364 3 499 1435
3 259 1384 4 1 1447

for both methods of initial cluster allocation except with the lowest value of concentration

parameter considered in this study (Table 7.3).

The number of observations in the prior sample is directly represented in the prior

distribution under prior A. However as previously mentioned, prior B and C were defined

by minimising this effect. As expected, prior B produced more stable results in terms of

the number of clusters than prior A. In addition, the number of active clusters that resulted
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Table 7.7: The results of collapsed Gibbs sampling with CRP at α = 10−2

Pk ∝ nk pk Pk ∝ nk p2
k Pk ∝ nk p3

k

Condition NC N LL NC N LL NC N LL

AF1 3 481 1417 4 337 1571 5 215 1657
4 19 1422 5 158 1585 6 283 1691

6 5 1581 7 2 1686
AF2 3 480 1422 4 293 1611 5 497 1681

4 19 1425 5 205 1627 6 3 1680
5 1 1411 6 2 1620

AF3 3 484 1422 5 491 1683 6 445 1767
4 16 1426 6 8 1684 7 54 1787

7 1 1684 8 1 1786
AF4 3 495 1401 3 479 1474 4 442 1584

4 5 1401 4 21 1477 5 58 1586
AF5 3 492 1411 4 475 1568 4 177 1622

4 8 1414 5 24 1573 5 321 1633
6 1 1583 6 2 1638

AB1 3 481 1417 4 17 1584 5 44 1673
4 19 1422 5 474 1608 6 453 1692

6 9 1610 7 3 1686
AB2 3 476 1420 5 495 1637 6 500 1743

4 24 1421 6 5 1644
AB3 3 484 1422 5 475 1681 6 484 1734

4 16 1426 6 24 1684 7 16 1740
7 1 1694

AB4 3 495 1403 3 477 1474 4 436 1584
4 5 1408 4 23 1476 5 64 1588

AB5 3 492 1411 4 475 1568 4 158 1622
4 8 1414 5 24 1573 5 340 1633

6 1 1583 6 2 1630

BF1 3 496 1440 6 500 1768 6 499 1780
4 4 1446 7 1 1773

BF2 3 497 1438 5 497 1681 6 500 1807
4 3 1443 6 3 1675

BF3 3 496 1441 6 496 1795 7 498 1843
4 4 1440 7 4 1798 8 2 1845

BF4 3 496 1433 4 498 1630 6 499 1783
4 4 1436 5 2 1630 7 1 1788

BF5 3 497 1436 5 498 1690 5 499 1718
4 3 1447 6 2 1694 6 1 1725

BB1 3 493 1440 5 499 1692 6 495 1780
4 7 1435 6 1 1716 7 5 1793

BB2 3 497 1439 6 499 1769 7 500 1827
4 3 1442 7 1 1776

BB3 3 496 1441 6 497 1795 7 500 1848
4 4 1440 7 3 1799

BB4 3 496 1433 5 498 1680 6 500 1783
4 4 1436 6 2 1675

BB5 3 496 1436 5 498 1689 6 499 1797
4 4 1435 6 2 1691 7 1 1810

CF 1 18 1245 3 372 1383 3 23 1434
2 478 1259 4 128 1399 4 477 1438
3 4 1262

CB 1 22 1245 3 458 1380 3 27 1435
2 476 1259 4 42 1402 4 473 1438
3 2 1262
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under prior B is slightly higher than that of under prior A, on average. Prior C, unlike prior

B, is defined based on the overall estimates of the dataset. When prior C is compared with

prior A and B, it always converged to a relatively low number of clusters.

The use of the second and third powers of likelihoods in calculating the conditional

probabilities makes a significant change in the models explored by collapsed Gibbs sam-

pling with CRP. The number of active clusters increases with the increase in the order of

likelihoods. The variation in the number of active clusters even for a fixed set of values of:

the concentration parameter, initial cluster allocation, prior, and the power of likelihood,

is a key feature of the results. This variation increases with the increase of concentration

parameter as they produce more clusters than with smaller values. Even though the use

of higher orders of likelihoods results in a large number of active clusters, the variation of

them decreases.

The behaviour of the number of active clusters along with their variations according to

the sample selection for estimating the prior parameters, forward and backward methods

of initial cluster allocation, use of different prior distributions, and employing different

powers of likelihoods have been discussed so far. A performance evaluation of the col-

lapsed Gibbs sampling with CRP in the context of log-likelihood with respect to these

factors is vital. The log-likelihoods presented in Tables 7.3 to 7.7 are combined over dif-

ferent values of concentration parameter and five samples used under prior A and B, and

are displayed in Table 7.8. The number of MCMC samples (N) used as the weights in

calculating the weighted averages of log-likelihoods presented in this table.

Even though there are some differences in the number of active clusters due to the

cluster allocation method, they both produce approximately similar log-likelihoods for a

given combination of: prior, the power of likelihood, and the number of active clusters.

However, there are three cases (highlighted in the table) that produced considerably large

differences in the log-likelihoods. Prior C gives almost identical log-likelihoods under

both methods of initial cluster allocation than prior A and B.

The results presented in Table 7.8 clearly indicate an increasing trend in the magnitude

of log-likelihoods as the power of likelihood increases for all the three prior distributions.

Furthermore, a gradual decrease in the standard deviations (SD) of log-likelihoods is evi-
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Table 7.8: The variations in the performance of collapsed Gibbs sampling with CRP in
terms of log-likelihoods

Cluster Number of Active Clusters
Prior Power Allocation 1 2 3 4 5 6 7 8

A 1 Forward 1230 1295 1414 1421 1411
Backward 1231 1360 1416 1421

2 Forward 1230 1480 1589 1645 1637 1684
Backward 1474 1584 1663 1659 1694

3 Forward 1487 1625 1676 1737 1783 1786
Backward 1602 1687 1733 1731

B 1 Forward 1245 1259 1438 1442
Backward 1381 1438 1437

2 Forward 1245 1504 1633 1686 1781 1798
Backward 1632 1627 1691 1770 1793

3 Forward 1660 1731 1790 1843 1845
Backward 1790 1884

C 1 Forward 1245 1259 1262
Backward 1245 1259 1262

2 Forward 1245 1365 1380 1399
Backward 1364 1381 1402

3 Forward 1384 1435 1438
Backward 1435 1438

dent as the power of likelihood increases (Appendix B). Even though the study did not ob-

serve a large number of active clusters under prior C, a lack of gain in the log-likelihoods

is clearly visible even with fewer numbers of active clusters. Therefore, the estimation of

prior parameters based on the whole dataset can be clearly ruled out by comparing with

the performance of prior A and B. It is obvious to expect an approximate difference of 20

in the log-likelihoods under prior B over A as prior B considers 406 observations against

401 under prior A. However, the results reveal a larger improvement than expected in

the log-likelihoods. Hence, the use of prior B with the third power of likelihood can be

recommended as the best method in terms of the gain in log-likelihoods. The study ob-

served a substantial reduction in the overall machine time with the backward method of

initial cluster allocation than the forward method. Hence, this study further recommends

initialising Gibbs sampler with more clusters than with a single cluster.

In a finite mixture model, the number of components is fixed. An infinite mixture

model, in contrast, does not assume a fixed number, and rather changes during the Gibbs

sampler as it consists of a birth-and-death mechanism of components. However, the num-

ber of components is always less than or equal to the size of the dataset. Moreover, it
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converges to a finite number or a set of numbers. In an infinite mixture model, the num-

ber of components is not controlled directly. However, the number or numbers are greatly

dependent on the value of the concentration parameter. Hence, the selection of a suitable

value for the concentration parameter is the ultimate technique for controlling the number

of active clusters in an infinite mixture model.

As discussed in section 7.5.1, BIC is the most widely used method in determining the

number of components in a finite mixture model. Therefore, BIC is an adequate criterion

even for an infinite mixture model to decide the number of components in the final model.

In some cases, this study revealed a set of consecutive numbers (e.g. 5, 6, and 7) as the

active number of components (clusters). In these situations, the number of parameters in

the model is not certain as the number of clusters is not fixed. According to the results

obtained in the study (see Appendix B), in majority of the situations, there are only a few

observations in the additional clusters (e.g. 6th and 7th clusters), hence they can be simply

treated as tiny additional clusters. Therefore, practically, larger differences in the models

cannot be observed due to varying number of clusters. In such situations, the cluster that

produced the largest fraction of MCMC samples could be a practically convenient and

reasonably accurate criterion to be used in deciding the best number of clusters among

them. When there are considerably larger differences among the models due to their

number of clusters, and if there is a model that has produced a fraction of MCMC samples

that is close to unity, then it can be selected as the best number of clusters for the model.

However, when there are larger differences among the models due to number of clusters,

and in the presence of two or more clusters with relatively larger fractions of MCMC

samples, the best model can be selected based on the BIC (likelihood).

The optimal number of active clusters is decided by minimising the value of BIC,

which is defined as −2log-likelihood+ kln(n), where k and n are the number of parame-

ters in the final model and the size of the dataset. Assume that the collapsed Gibbs sampler

does not have multiple convergence of active number clusters for any value of the concen-

tration parameter. The minimum log-likelihood gain required for every additional cluster
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(∆ll) can be calculated as

∆ll =
1
2

kln(n).

Every cluster consists of seven more parameters of bivariate normal inverse gamma joint

distribution of the slope and intercept parameters of the mean model β T = (β0,β1) and

error variance σ2: mean vector (µβ ) (2 parameters), variance-covariance matrix (Vβ ) (3

independent parameters), shape and scale parameters (a,b) (2 parameters). Therefore, the

introduction of every additional cluster increases the model complexity by an additional

eight parameters including the mixing proportion. As the locus D2S1338 of the NGM

SElectTM dataset consists of 406 stutter peaks, n = 406 and k = 8. Therefore, ∆ll becomes

∆ll =
1
2

8ln(406)' 24.

Considering the results presented in Table 7.8 and the value of ∆ll , it is recommended to

use a seven-component mixture model for predicting stutter at this locus. However, an

evaluation of the performance of collapsed Gibbs sampling with CRP beyond seven clus-

ters and extending the model investigation into other loci will be required before making

a final decision on the concentration parameter (number of components).

7.8.1 Performance of Infinite Mixture Models compared to Previ-

ously selected Non-hierarchical Models

The log-likelihoods of the locus-specific variance normal (N1) and the two-component

normal mixture models for the D2S1338 locus in NGM SElectTM dataset are 1245 and

1247 respectively. The infinite mixture models corresponding to these two models are

the ones with one and two clusters respectively. The infinite mixture model with two

clusters yielded relatively larger log-likelihoods under prior B than the two-component

mixture model (Table 7.8). Therefore better performance of the infinite mixture model

against two-component mixture model is obvious. The other models with more than two

clusters also yielded larger log-likelihood gains even after adjusting for model complexity.
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Therefore, based on the findings in terms of log-likelihoods (or BIC), infinite mixture

models up to seven clusters clearly demonstrate a potential to generate better predictions.

7.9 Summary

Initially, this chapter explains the importance of investigating infinite mixture models for

predicting stutter. These models have several advantages in terms of robustness, flexibil-

ity and increased capability of dealing with non-normality and heteroscedasticity issues in

traditional statistical models. A Dirichlet process (DP) is a stochastic process that enables

placing a distribution over distributions, and different representations of DPs are: the

Stick- breaking construction, the Pólya (Blackwell-MacQueen) urn scheme, the Pitman-

Yor process, and the Chinese restaurant process (CRP). This study uses an algorithm

based on the collapsed Gibbs sampling that uses CRP as a non-parametric DP prior, for

fitting an infinite mixture of simple linear regression models for SR using LUS as the pre-

dictor. In addition, the study proposes and illustrates the use of second and third powers

of the likelihoods in calculating the conditional probabilities of Gibbs sampling. In this

study, the performance of collapsed Gibbs sampling with CRP has been varied based on

several factors including the prior samples (five fixed random samples) used to estimate

prior parameters, different priors (A, B, and C that used three methods in estimating prior

parameters), initial cluster allocation (forward and backward - staring with a single clus-

ter and ten clusters respectively), and the power of likelihood in calculating conditional

probabilities of Gibbs sampling (1 - the original version of collapsed Gibbs sampling with

CRP, 2 and 3 - the proposed versions of of collapsed Gibbs sampling with CRP). In addi-

tion, the effect of the concentration parameter (α) was tested at 20 different values. The

performance of collapsed Gibbs sampler with CRP was tested in terms of the variation in

the number of active clusters and the log-likelihoods of the data.

As expected, an increasing trend in the number of clusters was observed in CRP as

the value of α increases. In addition, there was an overall increasing trend in the variation

of the number of active clusters as the number of clusters increases. A moderate variation

in the number of active clusters due to different initial samples of prior parameter esti-
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mation was evident for the backward method of initial cluster allocation, especially with

smaller α . When the Gibbs sampler initialised with ten clusters, it converged to more

clusters than initialising with a single cluster, under prior A and B but not under C. In

terms of the number of clusters, prior B yielded more stable results than prior A. Prior

C resulted in smaller number of clusters than A and B. When the third power of likeli-

hoods was used in calculating the conditional probabilities of Gibbs sampling, the results

revealed more stability in the number of active clusters even with large number of active

clusters. The log-likelihoods were clearly increased with the order of the likelihood used

in calculating the conditional probabilities. Prior B revealed the biggest improvement in

log-likelihoods with the third power of likelihood, and the Gibbs sampler used a fairly

longer machine time with an initialisation of a single cluster. Therefore, the study rec-

ommends using: prior B, the third power of likelihood, and initialisation of the Gibbs

sampler with more clusters. Based on the results obtained, a seven-component mixture

can be selected (in terms of log-likelihoods) as the best option for improving stutter pre-

diction at the D2S1338 locus of the NGM SElectTM dataset. Some important suggestions

for future research based on possible extensions of this study, are explained in Chapter 8.
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Chapter 8

Conclusions and Future Work

8.1 Introduction

The objective of this chapter is to summarise the findings of the previous chapters and

introduce the possible directions for future work related to the study. This research

re-examines existing works on modelling stutter ratio (SR) and develops new advanced

Bayesian models to improve the accuracy of stutter prediction. In addition, this study con-

tributes to the field of statistics by exploring important theoretical aspects related to the

fitting and evaluation of Bayesian models of various types (hierarchical, non-hierarchical,

and mixture). It also makes significant advances in the field of infinite mixture models

that use collapsed Gibbs sampling with Chinese restaurant process, a representation of

the Dirichlet process, as a non-parametric prior.

Forensic DNA analysis is an extremely valuable human identification technique used

in criminal investigations. Since the amount of template DNA extracted from biological

samples collected in crime scenes is often very small (approximately 10−12g), template

DNA is amplified using the polymerase chain reaction (PCR) process. This amplification

allows length variants in the DNA, known as short tandem repeats (STRs). An electro-

pherogram (epg) is the graphical display of the signal detected in STR when a sample is

exposed to laser light. The presence of a peak in an epg corresponds to the alleles (the

variants or polymorphism of a gene) in the DNA sample, which can be used to describe

differences between individuals. Due to its intrinsic probabilistic nature, statistics is es-
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sentially employed in DNA evidence interpretation. There are four main types of models

facilitating the interpretation, namely: classical, binary, semi-continuous, and continu-

ous. Continuous models ensure relatively greater reliability than other types of models

in the evaluation of DNA evidence. However, statistical models for PCR phenomena are

required to implement these models.

Minor peaks in an epg at positions other than the parental allelic positions are known

as stutters. The presence of these stutters in an epg has been a key problem in DNA mix-

ture evidence interpretation. Sophisticated methodologies to distinguish between stutters

and real alleles are essential for accurate interpretation. Thus, practitioners use various

approaches to understand the behaviour of stutters and work hard to make the interpreta-

tions more precise. Production of PCR stutter is usually studied in terms of stutter ratio

(SR), which is defined as the observed stutter peak height as a ratio of the height of the

parent allelic peak.

This research reviews existing models for PCR stutter ratio and develops new ad-

vanced Bayesian models to increase the efficiency of stutter prediction. The two sets of

data: NGM SElectTM and IdentifilerTM that include stutter peak information related to

4646 and 6949 heterozygous loci respectively were used throughout the study. All the

improvements made for modelling stutter ratio can be summarised under three categories,

namely:

1. non-hierarchical (non-mixture and two-component mixture) models

2. hierarchical (non-mixture and two-component mixture) models

3. infinite mixture models

In contrast to previous research, this study performs rigorous performance evaluations for

all types of models fitted except infinite mixture models, which have been evaluated based

on likelihoods only.
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8.2 Non-hierarchical Models

The longest uninterrupted sequence (LUS) has been previously used as the key covariate

in explaining the behaviour of SR. Bright et al. [21] investigated the performance of five

models (two gamma, two log-normal, and one log-normal mixture) for predicting stutter

ratios. In Chapter 2, this work has been extended by introducing six new alternative

models including two normal, two non-standardised Student’s t, and two two-component

mixture models based on normal and non-standardised Student’s t distributions. All these

11 models assumed a locus-specific model for the mean of SR. In variance modelling

of SR, the models were classified into three categories, namely, profile-wide variance,

locus-specific variance, and two-component mixture models. The performance of both

the existing and proposed models was evaluated in Chapter 2 and 4.

In relation to the slope and intercept parameters, the normal and non-standardised

Student’s t models fitted to both datasets have indicated a high degree of concordance.

The concordance in the parameters of log-normal and gamma models is moderate. The

11 models indicated significant differences in locus-specific slopes and intercepts. In

the mean models of normal and log-normal distributions, the above differences were ob-

served only at the TPOX locus of the IdentifilerTM dataset. Similarly, the parameters

were different for gamma models at the TH01 locus of the NGM SElectTM dataset. The

locus-specific and profile-wide standard deviations were significantly different for all the

non-mixture models fitted to both datasets. In the log-normal mixture model fitted to the

IdentifilerTM dataset and the normal and non-standardised Student’s mixture models fitted

to the NGM SElectTM dataset, the component with larger variance captured a relatively

larger percentage of points. The non-standardised Student’s t mixture model has shown

the best ability to capture the stutter ratios, with approximately a 20% increase compared

to the normal mixture model. In comparison with the locus-specific variance models,

the profile-wide variance non-standardised Student’s t models revealed more heavy-tailed

behaviours as their degrees of freedom parameters are small. Regardless of the revealed

heavy-tailed behaviour of the Student’s t-mixture model, large upper bounds of both de-

grees of freedom parameters enables approximating normal-like tail behaviours.

In order to identify appropriate measures to be used in the performance evaluation of

187



8.2. Non-hierarchical Models

the old and new non-hierarchical models presented in Chapter 2, Chapter 3 reviewed the

measures available for the Bayesian model assessment. This assessment comprised de-

tailed reviews of usefulness, shortfalls, and required conditions for using model evaluation

methods: information criteria, cross-validation measures, and Bayesian p-values. Based

on this evaluation, two information criteria (BIC and WAIC), LOO-CV approximations,

and Bayesian p-values were used in Chapter 4 for evaluating the 11 models.

The graphical evaluation with Q-Q and P-P plots was carried out for normal and

log-normal models since such evaluation is not applicable for the other models. This

assessment has identified several lack-of-fit issues in normal and log-normal models.

These problems are critical in the tails of the distributions, and the models fitted to the

IdentifilerTM dataset have mostly evidenced this. Hence, a better performance in the tail

behaviour can be expected from two-component mixture models; however, this cannot be

graphically tested.

The BIC results have implied that, non-standardised Student’s t mixture and the two-

component normal mixture are the first and second best models regardless of the dataset.

However, considering the relative complexity in mixture models, the non-standardised

Student’s t model is selected as the best option. Although WAIC, which uses posterior

predictive distribution rather than point estimates of parameters in calculating likelihoods,

is considered as the best information criterion, it has a certain condition for its validity.

Since the posterior log-predictive densities of more than 95% of the observations in each

dataset exceed 0.4, the validity requirement of WAIC is not satisfied in this study. There-

fore, LOO-CV was selected as the best measure for evaluating the models, based on their

predictive accuracy. Due to the high computational cost associated with exact LOO-CV,

it was approximated using three measures, namely: IS (importance sampling), TIS (trun-

cated importance sampling), and PSIS (Pareto smoothed importance sampling). Despite

the limitations in WAIC and LOO-CV measures, they all have confirmed that the mod-

els based on normal distribution outperform in all the modelling categories (profile-wide

variance, locus-specific variance, and two-component mixture), for both datasets. This

finding is of high importance, as normal distribution is the most widely used, well-known,

simple continuous probability distribution among practitioners. Therefore, the implemen-
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tation of a normal model for stutter ratio, in a continuous Bayesian model of DNA mixture

interpretation would be relatively easy.

Evaluation of model performance based on Bayesian p-values and L-measures offers

mixed findings while not contradicting the above conclusions related to the best models.

The p-values representing marginal predictive distribution have not indicated any problem

in any model fitted to the datasets as they all were close to the desired value 0.5. However,

the p-values based on chi-square discrepancy measure have revealed issues in predictions

of some models. The deviations of predictions in comparison with actual observations,

from the estimated mean of the respective distribution were quite large in gamma mod-

els fitted to the NGM SElectTM dataset. These values were larger for both profile-wide

and locus-specific non-standardised Student’s t models fitted to the IdentifilerTM dataset.

Large L-measures were observed for the log-normal mixture model, and this indicates

larger variations in the predictions. Producing a few unbelievably large predicted val-

ues by the log-normal mixture model has been identified as the possible reason for this.

Table 8.1 summarises the comparative performance of all the non-hierarchical models

developed and evaluated in this study.

Table 8.1: Comparative performance of the fitted models

NGM SElectTM IdentifilerTM

Modelling Category Model Rank BIC LOO-CV BIC LOO-CV

Profile-wide variance
First T0 N0 T0 N0
Second N0 G0 G0 G0
Third G0 LN0 N0 LN0
Fourth LN0 T0 LN0 T0

Locus-specific variance
First T1 N1 T1 N1
Second N1 G1 N1 G1
Third G1 LN1 G1 LN1
Fourth LN1 T1 LN1 T1

Two-component mixture
First MT1 MN1 MT1 MN1
Second MN1 MLN1 MN1 MLN1
Third MLN1 MT1 MLN1 MT1
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8.3 Hierarchical Models

Complete pooling, or analysis of a whole set of data ignoring its inherent hierarchical

structure suppresses variations in the data and may impact on the overall objective of a

study. Performing a separate analysis for each source of the data, or no pooling, also

tends to provide misleading inferences. Therefore, hierarchical models for seven non-

hierarchical models including four locus-specific variance models (gamma, normal, log-

normal, and non-standardised Student’s t) and three two-component mixture models (nor-

mal, log-normal, and non-standardised Student’s t) were investigated in Chapter 5. It was

expected to find an increased accuracy through a shrinkage in locus-specific model param-

eters in stutter prediction. The reason for selecting only these models was that in Chapter

2 and 4, they revealed relatively better performance in comparison with the profile-wide

variance models.

The almost identical log-likelihoods of each pair of hierarchical and non-hierarchical

models indicated the absence of bias-variance trade-off or lack of pooling in the group

level parameters of hierarchical models fitted to both datasets. However, some minor

changes have been observed among the predictive measures that were estimated based on

point-wise predictive densities. In particular, there was no visible pooling in the slope

and intercept parameters of mean model under the hierarchical models. The hierarchi-

cal models have provided a way to estimate the parameters of the normal distributions

from which the locus-specific slopes and intercepts of non-hierarchical models (except the

slope parameters of non-standardised Student’s t mixture), are coming. For normal and

non-standardised Student’s t models, a consistency was observed in these inferred nor-

mal distributions across the two datasets while revealing slight differences for the other

models. Even though the non-mixture models fitted to the datasets did not reveal any

considerable pooling in standard deviation parameters, some occasional minor changes in

these parameters have been observed in mixture hierarchical models.

The precision parameters of all the non-mixture models fitted to both datasets and the

mixture models fitted to the IdentifilerTM dataset revealed high goodness-of-fit with their

inferred distributions which were not consistent across the two datasets. In re-examining

the results, the study has found that hierarchical models are more effective with smaller
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sample sizes. Hence, including a large number of peak height information in each locus

may be the key reason for the lack of pooling revealed in the group level parameters.

8.4 Infinite Mixture Models

The analytical relationships between the prior information, the observed data, and the pa-

rameters of posterior predictive distribution of data, derived in Chapter 6 were applied

in Chapter 7 to develop an infinite mixture of simple linear regression models for pre-

dicting stutter. Fitting an infinite mixture model for SR is important in DNA mixture

evidence interpretation as it provides a more robust, flexible, and accurate prediction for

PCR stutter. When data are coming from different sub-populations, effective modelling

requires taking this existing clustering into consideration. Finite mixture models provide

a great flexibility in modelling data that are assumed to come from more than one source

population. Since in many practical contexts, the number of sources that the data were

generated is unknown, the selection of an appropriate number of sources or the number

of components in the mixture model is problematic. In Bayesian non-parametric methods

that provide increased flexibility by not restricting the number of parameters, Dirichlet

processes (DP)-based mixture models are frequently used.

A DP is a stochastic process that enables placing a distribution over distributions.

The Stick-breaking construction, Pólya (Blackwell-MacQueen) urn scheme, Pitman-Yor

process, and the Chinese restaurant process (CRP) are different representations of DPs.

Considering its relative simplicity and having predictive probabilities proportional to the

number of observations in clusters, this study selected CRP as a non-parametric DP prior

within a collapsed Gibbs sampling algorithm when fitting an infinite mixture of simple

linear regression models for SR using LUS as the predictor. Due to the associated com-

putational cost and the time constraints, this study has developed infinite mixture models

only to the D2S1338 locus of the NGM SElectTM dataset. The performance of collapsed

Gibbs sampling with CRP was tested in terms of the variation in the number of active clus-

ters and the log-likelihoods of data. In addition, the effect of the concentration parameter

(α) was tested at 20 different values.
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The prior sample used, the method of estimating prior parameters (A, B, and C), the

initial cluster allocation method, and the power of likelihood in calculating conditional

probabilities of Gibbs sampling, were the criteria that defined the testing conditions in the

study. The study has found some important associations between the above parameters,

in relation to the performance of collapsed Gibbs sampling with CRP. The number of

clusters was increased as the value of α increases, and there was an increasing trend in

the variation of the number of active clusters as the number of clusters increases. As this

implies, higher values of α lead to increased variation in the active number of clusters in

collapsed Gibbs sampling with CRP. Although no variation in the number of active clus-

ters is generally expected due to different initial samples of prior parameter estimation,

a moderate variation has been observed across the initial samples under the backward

method of initial cluster allocation (starting with ten clusters), particularly with smaller

α . Prior A and B lead to producing more clusters under the backward method than the

forward method (starting with a single cluster) while prior C does not reveal such change

based on the initial cluster allocation. Prior B has exhibited more stability in the results

in terms of number of clusters. In addition, the number of clusters produced by prior C is

noticeably less than that of prior A and B.

The study proposed the second and third powers of the likelihoods (in addition to

the likelihood itself, which is originally used in the collapsed Gibbs sampling with CRP)

for calculating the conditional probabilities of Gibbs sampling. With the use of the third

power of the likelihood, the results have revealed more stability in the number of active

clusters, even with large number of active clusters. In addition, the log-likelihoods indi-

cated a clear increase with the order of the likelihood. The biggest improvement in the

log-likelihoods was evident with prior B and the third power of likelihood. In addition,

the Gibbs sampler used a rather longer machine time in the initialisation with a single

cluster in comparison with many (10) clusters. Based on these findings, the study rec-

ommends using: prior B, the third power of likelihood, and initialisation of the Gibbs

sampler with more clusters, when developing infinite mixture models for SR. Accord-

ing to the log-likelihood results obtained in this study, a seven-component mixture is

selected as the best option for improving stutter prediction at the D2S1338 locus of the
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NGM SElectTM dataset. Implementation of this model or a similar infinite mixture model

across all the loci, in DNA evidence interpretation software, will essentially improve the

quality of DNA mixture interpretation. Furthermore, this study extends infinite mixture

models to the simple linear regression case. The improvements on the collapsed Gibbs

sampling with CRP that are recommended in this study significantly contribute to theory

as the existing amount of applications is rather low.

8.5 Directions for Future Research

Future work related to this study can be broadly classified as: the work related to model

comparison criteria, infinite mixture models for stutter prediction, and the problems asso-

ciated with CRP as a representation of DP. The specific details about the possible research

directions are as follows:

1. After discussing various model comparison criteria, this study selected WAIC as

the best for any set of models including hierarchical and mixture models. How-

ever, WAIC starts to fail when posterior variances of log predictive densities exceed

0.4. The study also used importance sampling approximations to the exact cross-

validation, as it is computationally expensive when evaluating models fitted to large

datasets. The study observed low performance in WAIC and these approximations

when posterior variances exceed 0.4. Hence, it is important to improve these meth-

ods for comparing models fitted to large datasets and produce large posterior vari-

ances.

2. The study has recommended an improved version of collapsed Gibbs sampling CRP

to fit infinite mixture models for predicting SR using LUS as a predictor. The study

selected a seven-component mixture as the best since the study was conducted only

for a selected set of values of concentration parameter. Therefore, the study may

extend to larger values (greater than 10−2) with the recommended version and ex-

amine infinite mixture models for all the loci of both datasets considered in the

overall study.
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3. The inverse proportionality of the variance of stutter height to the amount of tem-

plate DNA is a useful relationship discussed under the modelling for SR. However,

infinite mixture models fitted in this study have not considered this relationship

since the conventional Bayesian linear regression model adopted does not facili-

tate incorporating it. Therefore, developing an infinite mixture model taking this

relationship into account would be better.

4. Once an infinite mixture model is finalised, a comparison between the performance

of that model and the corresponding finite mixture model, for predicting SR would

be an interesting work.

5. Having multi-valued active number of clusters increases the model complexity in

infinite mixture modelling without a substantial improvement in the fit. The sug-

gested use of third power of the likelihood in calculating conditional probabilities

under Gibbs sampling reduces the risk of having a multi-valued active number of

clusters. However, when this problem cannot be avoided, it is important to investi-

gate a suitable technique to minimise the model complexity.
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Appendix A

Locus-specific Variation of Hierarchical

Vs Non-hierarchical Model Parameters
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Figure A.1: Locus-specific variation (95% credible interval with posterior median) of the
mean model parameters (slope β0 and intercept β1) of hierarchical and non-hierarchical
log-normal models for the NGM SElectTM dataset
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Figure A.2: Locus-specific variation (95% credible interval with posterior median) of the
mean model parameters (slope β0 and intercept β1) of hierarchical and non-hierarchical
log-normal models for the IdentifilerTM dataset
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Figure A.3: Locus-specific variation (95% credible interval with posterior median) of the
mean model parameters (slope β0 and intercept β1) of hierarchical and non-hierarchical
gamma models for the NGM SElectTM dataset
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Figure A.4: Locus-specific variation (95% credible interval with posterior median) of the
mean model parameters (slope β0 and intercept β1) of hierarchical and non-hierarchical
gamma models for the IdentifilerTM dataset
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Figure A.5: Locus-specific variation (95% credible interval with posterior median) of the
mean model parameters (slope β0 and intercept β1) of hierarchical and non-hierarchical
normal models for the NGM SElectTM dataset
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Figure A.6: Locus-specific variation (95% credible interval with posterior median) of the
mean model parameters (slope β0 and intercept β1) of hierarchical and non-hierarchical
normal models for the IdentifilerTM dataset
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Figure A.7: Locus-specific variation (95% credible interval with posterior median) of the
mean model parameters (slope β0 and intercept β1) of hierarchical and non-hierarchical
non-standardised Student’s t models for the NGM SElectTM dataset
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Figure A.8: Locus-specific variation (95% credible interval with posterior median) of the
mean model parameters (slope β0 and intercept β1) of hierarchical and non-hierarchical
non-standardised Student’s t models for the IdentifilerTM dataset
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Figure A.9: Locus-specific variation (95% credible interval with posterior median) of the
mean model parameters (slope β0 and intercept β1) of hierarchical and non-hierarchical
log-normal mixture models for the NGM SElectTM dataset
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Figure A.10: Locus-specific variation (95% credible interval with posterior median) of the
mean model parameters (slope β0 and intercept β1) of hierarchical and non-hierarchical
log-normal mixture models for the IdentifilerTM dataset
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Figure A.11: Locus-specific variation (95% credible interval with posterior median) of the
mean model parameters (slope β0 and intercept β1) of hierarchical and non-hierarchical
normal mixture models for the NGM SElectTM dataset
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Figure A.12: Locus-specific variation (95% credible interval with posterior median) of the
mean model parameters (slope β0 and intercept β1) of hierarchical and non-hierarchical
normal mixture models for the IdentifilerTM dataset
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Figure A.13: Locus-specific variation (95% credible interval with posterior median) of the
mean model parameters (slope β0 and intercept β1) of hierarchical and non-hierarchical
non-standardised Student’s t mixture models for the NGM SElectTM dataset
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Figure A.14: Locus-specific variation (95% credible interval with posterior median) of the
mean model parameters (slope β0 and intercept β1) of hierarchical and non-hierarchical
non-standardised Student’s t mixture models for the IdentifilerTM dataset
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Figure A.15: Locus-specific variation (95% credible interval with posterior median) of
the standard deviation parameters of log-normal and gamma models (hierarchical and
non-hierarchical) for the NGM SElectTM dataset
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Figure A.16: Locus-specific variation (95% credible interval with posterior median) of
the standard deviation parameters of log-normal and gamma models (hierarchical and
non-hierarchical) for the IdentifilerTM dataset
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Figure A.17: Locus-specific variation (95% credible interval with posterior median) of
the standard deviation parameters of normal and non-standardised Student’s t models (hi-
erarchical and non-hierarchical) for the NGM SElectTM dataset
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Figure A.18: Locus-specific variation (95% credible interval with posterior median) of
the standard deviation parameters of log-normal and non-standardised Student’s t models
(hierarchical and non-hierarchical) for the IdentifilerTM dataset

204



S
ta

nd
ar

d 
D

ev
ia

tio
n 

 (
σ 0

)

5
10

15
20

D
16

S
53

9

D
18

S
51

D
19

S
43

3

D
21

S
11

D
2S

13
38

D
8S

11
79

F
G

A

T
H

01

vW
A

D
3S

13
58

D
10

S
12

48

D
22

S
10

45

D
2S

44
1

D
1S

16
56

D
12

S
39

1

S
E

33

MLN1

MLN2

S
ta

nd
ar

d 
D

ev
ia

tio
n 

 (
σ 1

)

0
20

0
40

0

MLN1

MLN2

Figure A.19: Locus-specific variation (95% credible interval with posterior median) of
the standard deviation parameters of hierarchical and non-hierarchical log-normal mixture
models for the NGM SElectTM dataset
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Figure A.20: Locus-specific variation (95% credible interval with posterior median) of
the standard deviation parameters of hierarchical and non-hierarchical log-normal mixture
models for the IdentifilerTM dataset
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Figure A.21: Locus-specific variation (95% credible interval with posterior median) of
the standard deviation parameters of hierarchical and non-hierarchical normal mixture
models for the NGM SElectTM dataset
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Figure A.22: Locus-specific variation (95% credible interval with posterior median) of
the standard deviation parameters of hierarchical and non-hierarchical normal mixture
models for the IdentifilerTM dataset
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Figure A.23: Locus-specific variation (95% credible interval with posterior median) of
the standard deviation parameters of hierarchical and non-hierarchical non-standardised
Student’s t mixture models for the NGM SElectTM dataset
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Figure A.24: Locus-specific variation (95% credible interval with posterior median) of
the standard deviation parameters of hierarchical and non-hierarchical non-standardised
Student’s t mixture models for the IdentifilerTM dataset
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Appendix B

The Additional Information Relevant to

the Performance of Collapsed Gibbs

Sampling with CRP

Table B.1: The results of collapsed Gibbs sampling with CRP at α = 10−15 and Pk ∝ nk pk

Condition NC N LL SD C1 C2

AF1 1 500 1230 401
AF2 1 500 1229 401
AF3 1 500 1228 401
AF4 1 500 1233 401
AF5 1 500 1231 401

AB1 2 500 1362 15 253 148
AB2 2 500 1367 14 253 148
AB3 2 500 1366 13 231 170
AB4 2 500 1351 17 258 143
AB5 2 500 1358 15 255 146

BF1 1 500 1245 406
BF2 1 500 1245 406
BF3 1 500 1245 406
BF4 1 500 1245 406
BF5 1 500 1245 406

BB1 2 500 1382 15 251 155
BB2 2 500 1383 14 250 156
BB3 2 500 1384 14 234 172
BB4 2 500 1378 15 254 152
BB5 2 500 1381 14 255 151

CF 1 500 1245 406
CB 1 500 1245 406
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Table B.2: The results of collapsed Gibbs sampling with CRP at α = 10−11 and Pk ∝ nk pk

Condition NC N LL SD C1 C2 C3

AF1 1 500 1230 401
AF2 1 500 1229 401
AF3 1 500 1228 401
AF4 1 500 1233 401
AF5 1 500 1231 401

AB1 2 500 1362 15 253 148
AB2 2 499 1367 14 253 148

3 1 1441 266 134 1
AB3 2 500 1366 13 231 170
AB4 2 499 1351 17 258 143

3 1 1384 268 130 3
AB5 2 499 1358 15 255 146

3 1 1390 289 101 11

BF1 1 500 1245 401
BF2 1 500 1245 401
BF3 1 500 1245 401
BF4 1 500 1245 401
BF5 1 500 1245 401

BB1 2 499 1382 15 250 156
3 1 1438 266 138 2

BB2 2 498 1383 14 250 156
3 2 1431 16 285 120 2

BB3 2 500 1384 14 234 172
BB4 2 493 1378 15 254 152

3 7 1437 16 270 133 3
BB5 2 499 1382 14 255 151

3 1 1419 289 116 1

CF 1 500 1245 406
CB 1 500 1245 406
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Table B.3: The results of collapsed Gibbs sampling with CRP at α = 10−8 and Pk ∝ nk pk

Condition NC N LL SD C1 C2 C3

AF1 1 500 1230 401
AF2 1 500 1229 401
AF3 1 500 1228 401
AF4 1 495 1233 401

2 5 1249 3 395 6
AF5 1 500 1231 401

AB1 2 161 1361 15 253 148
3 339 1418 12 270 127 4

AB2 2 189 1366 13 253 148
3 311 1422 13 271 126 5

AB3 2 322 1366 13 232 169
3 178 1423 11 256 142 3

AB4 2 435 1351 16 257 144
3 65 1405 13 265 133 3

AB5 2 323 1358 15 253 148
3 177 1411 14 271 127 4

BF1 1 500 1245 406
BF2 1 500 1245 406
BF3 1 500 1245 406
BF4 1 500 1245 406
BF5 1 500 1245 406

BB1 2 56 1386 15 255 151
3 444 1441 12 273 131 3

BB2 2 82 1380 16 251 155
3 418 1439 12 273 131 3

BB3 2 351 1384 14 234 172
3 149 1439 14 260 143 3

BB4 2 278 1376 15 253 153
3 222 1433 13 270 133 3

BB5 2 144 1380 14 256 150
3 356 1437 13 273 131 3

CF 1 500 1245 406
CB 1 500 1245 406
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Table B.4: The results of collapsed Gibbs sampling with CRP at α = 10−6 and Pk ∝ nk pk

Condition NC N LL SD C1 C2 C3

AF1 1 355 1230 401
2 9 1279 48 369 32
3 136 1419 12 269 129 5

AF2 1 500 1229 401
AF3 1 500 1228 401
AF4 1 491 1233 401

2 9 1249 3 397 4
AF5 2 13 1356 16 249 152

3 487 1411 14 270 128 3

AB1 3 500 1417 12 270 127 4
AB2 2 1 1381 277 124

3 499 1422 12 271 125 5
AB3 2 4 1365 20 226 175

3 496 1422 12 156 141 4
AB4 2 28 1348 18 255 146

3 472 1403 15 266 133 2
AB5 2 13 1356 16 249 152

3 487 1411 14 270 128 3

BF1 1 499 1245 406
2 1 1259 405 1

BF2 1 500 1245 406
BF3 1 497 1245 406

2 3 1259 1 405 1
BF4 1 500 1245 406
BF5 1 499 1245 406

2 1 1259 405 1

BB1 3 500 1440 12 272 131 3
BB2 2 10 1383 13 249 163

3 499 1439 12 273 130 3
BB3 2 13 1384 12 227 179

3 487 1441 13 260 143 3
BB4 2 4 1380 19 274 132

3 496 1433 13 269 134 3
BB5 2 3 1370 18 254 152

3 497 1436 13 273 131 3

CF 1 499 1245 406
1 1259 405 1

CB 1 500 1245 406
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Table B.5: The results of collapsed Gibbs sampling with CRP at α = 10−2 and Pk ∝ nk pk

Condition NC N LL SD C1 C2 C3 C4 C5 C6 C7

AF1 3 481 1417 12 270 127 4
4 19 1422 11 269 121 9 2

AF2 3 480 1422 12 270 126 5
4 19 1425 8 279 110 10 2
5 1 1411 283 115 1 1 1

AF3 3 484 1422 12 256 141 4
4 16 1426 14 250 144 5 2

AF4 3 495 1401 14 266 133 3
4 5 1401 8 273 125 2 1

AF5 3 492 1411 14 269 129 3
4 8 1414 12 272 124 4 1

AB1 3 481 1417 12 270 127 4
4 19 1422 11 269 121 9 2

AB2 3 476 1420 12 273 123 4
4 24 1421 16 270 120 9 2

AB3 3 484 1422 12 256 141 4
4 16 1426 14 250 144 5 2

AB4 3 495 1403 15 266 133 3
4 5 1408 15 266 132 2 1

AB5 3 492 1411 14 269 129 3
4 8 1414 12 272 124 4 1

BF1 3 496 1440 12 273 130 3
4 4 1446 5 271 132 2

BF2 3 497 1438 13 272 130 3
4 3 1443 15 271 130 3 1

BF3 3 496 1441 13 260 143 3
4 4 1440 8 263 137 5 1

BF4 3 496 1433 13 270 134 3
4 4 1436 13 265 137 3 1

BF5 3 497 1436 13 273 131 3
4 3 1447 17 270 126 7 3

BB1 3 493 1440 12 272 131 3
4 7 1435 9 277 121 7 1

BB2 3 497 1439 12 273 130 3
4 3 1442 12 273 127 5 1

BB3 3 496 1441 13 260 143 3
4 4 1440 8 263 137 5 1

BB4 3 496 1433 13 270 134 3
4 4 1436 13 265 137 3 1

BB5 3 496 1436 13 271 133 3
4 4 1435 6 266 130 8 3

CF 1 18 1245 0 406
2 478 1259 2 402 4
3 4 1262 4 367 38 2

CB 1 22 1245 0 406
2 476 1259 2 403 3
3 2 1262 1 402 2 2
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Table B.6: The results of collapsed Gibbs sampling with CRP at α = 10−15 and Pk ∝ nk p2
k

Condition NC N LL SD C1 C2 C3 C4 C5 C6

AF1 1 500 1230 401
AF2 1 500 1229 401
AF3 1 500 1228 401
AF4 1 500 1233 401
AF5 1 500 1231 401

AB1 4 500 1584 9 185 111 97 8
AB2 4 500 1596 8 179 119 92 10
AB3 5 500 1682 10 144 108 91 53 5
AB4 3 500 1474 7 257 137 7
AB5 4 500 1569 11 195 107 93 7

BF1 1 500 1245 406
BF2 1 500 1245 406
BF3 1 500 1245 406
BF4 1 500 1245 406
BF5 1 500 1245 406

BB1 4 500 1621 8 189 111 96 11
BB2 5 500 1712 27 149 100 78 56 23
BB3 6 500 1766 10 136 96 87 51 29 7
BB4 4 500 1631 8 194 116 89 7
BB5 3 500 1632 8 197 113 89 7

CF 1 500 1245 406
CB 2 500 1364 6 302 104

Table B.7: The results of collapsed Gibbs sampling with CRP at α = 10−11 and Pk ∝ nk p2
k

Condition NC N LL SD C1 C2 C3 C4 C5 C6

AF1 3 500 1485 6 256 134 12
AF2 1 500 1229 401
AF3 3 500 1488 6 250 140 12
AF4 3 500 1474 6 257 137 7
AF5 3 500 1480 7 258 134 10

AB1 4 500 1584 9 185 111 97 8
AB2 4 500 1596 8 179 119 92 10
AB3 5 500 1682 10 144 108 91 53 5
AB4 3 500 1474 7 257 137 7
AB5 4 500 1569 11 195 107 93 7

BF1 4 500 1637 7 192 113 94 7
BF2 4 500 1632 12 194 112 94 7
BF3 3 500 1506 6 254 142 11
BF4 3 500 1497 6 281 116 8
BF5 3 500 1503 6 261 134 11

BB1 5 500 1693 13 165 106 76 54 5
BB2 5 435 1708 26 151 100 78 55 22

6 65 1768 11 137 96 63 58 50 2
BB3 6 500 1766 10 136 96 87 51 30 7
BB4 4 500 1631 8 194 116 89 7
BB5 5 500 1690 9 189 107 56 49 5

CF 2 500 1365 6 300 106
CB 2 500 1364 6 301 105
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Table B.8: The results of collapsed Gibbs sampling with CRP at α = 10−8 and Pk ∝ nk p2
k

Condition NC N LL SD C1 C2 C3 C4 C5 C6

AF1 3 500 1485 6 256 134 12
AF2 3 139 1488 6 259 130 12

4 361 1580 10 203 103 83 12
AF3 3 500 1488 6 250 140 12
AF4 3 500 1474 6 257 137 7
AF5 3 500 1480 7 258 134 10

AB1 4 500 1584 9 185 111 97 8
AB2 4 500 1611 9 178 124 92 7
AB3 5 500 1682 10 144 108 91 53 5
AB4 3 500 1474 7 257 137 7
AB5 4 500 1569 11 195 107 93 7

BF1 4 500 1637 7 192 113 94 7
BF2 4 500 1632 12 194 112 94 7
BF3 3 500 1506 6 254 142 11
BF4 4 500 1630 8 194 116 89 7
BF5 4 500 1632 8 197 112 89 7

BB1 5 500 1693 13 165 106 76 54 5
BB2 5 1 1738 141 94 78 56 37

6 499 1768 12 135 98 63 58 50 2
BB3 6 500 1766 10 136 96 87 51 30 7
BB4 5 500 1680 11 180 113 59 50 4
BB5 5 500 1690 9 189 107 56 49 5

CF 2 497 1364 6 300 106
3 3 1372 5 315 89 2

CB 2 489 1365 6 300 106
3 11 1380 7 315 80 11
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Table B.9: The results of collapsed Gibbs sampling with CRP at α = 10−6 and Pk ∝ nk p2
k

Condition NC N LL SD C1 C2 C3 C4 C5 C6

AF1 4 500 1603 10 182 123 91 6
4 141 1582 10 200 106 84 12

AF2 5 359 1635 15 167 115 70 46 4
AF3 3 249 1488 5 250 139 12

4 251 1622 11 167 125 104 5
AF4 3 500 1474 6 257 131 7
AF5 3 296 1480 6 258 134 10

4 204 1589 14 185 125 86 6

AB1 4 500 1584 9 185 111 97 8
AB2 4 500 1611 9 178 124 92 7
AB3 5 500 1668 10 139 106 89 61 6
AB4 3 500 1474 7 257 137 7
AB5 4 500 1569 11 195 107 93 7

BF1 4 500 1637 7 192 113 94 7
BF2 4 500 1632 12 194 112 94 7
BF3 3 500 1506 6 254 142 11
BF4 4 500 1630 8 194 116 89 7
BF5 4 500 1632 8 197 112 89 7

BB1 5 500 1693 13 165 106 76 54 5
BB2 6 500 1768 12 135 98 63 58 50 2
BB3 6 500 1766 10 136 96 87 51 30 7
BB4 5 500 1680 11 180 113 59 50 4
BB5 5 500 1689 9 189 107 56 49 5

CF 2 321 1365 6 303 104
3 179 1374 6 313 90 3

CB 2 241 1364 6 303 103
3 259 1384 13 280 97 29
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Table B.10: The results of collapsed Gibbs sampling with CRP at α = 10−2 and Pk ∝ nk p2
k

Condition NC N LL SD C1 C2 C3 C4 C5 C6 C7

AF1 4 337 1571 9 204 104 84 10
5 158 1585 12 199 103 80 17 3
6 5 1581 11 207 100 74 16 3 2

AF2 4 293 1611 8 178 125 92 7
5 205 1627 13 172 121 74 31 4
6 2 1620 8 179 126 80 14 2 1

AF3 5 491 1683 10 144 108 91 53 5
6 8 1684 6 151 106 85 52 5 2
7 1 1684 148 91 89 66 4 2 1

AF4 3 479 1474 6 257 137 7
4 21 1477 6 256 138 5 2

AF5 4 475 1568 11 195 107 93 7
5 24 1573 8 197 104 91 7 2
6 1 1583 195 108 82 14 1 1

AB1 4 17 1584 9 187 109 98 8
5 474 1608 11 179 108 83 29 3
6 9 1610 13 177 105 79 36 2 2

AB2 5 495 1637 14 173 113 70 43 3
6 5 1644 13 164 117 66 50 3 1

AB3 5 475 1681 11 143 107 91 54 5
6 24 1684 10 144 103 83 56 13 3
7 1 1694 131 101 89 72 5 2 1

AB4 3 477 1474 7 257 137 7
4 23 1476 7 259 135 5 2

AB5 4 475 1568 11 195 107 93 7
5 24 1573 8 197 104 91 7 2
6 1 1583 195 108 82 14 1 1

BF1 6 500 1768 11 136 97 63 58 51 2
BF2 5 497 1681 11 192 98 61 52 3

6 3 1675 4 191 103 57 52 1 1
BF3 6 496 1795 10 116 97 90 59 39 6

7 4 1798 9 114 98 89 59 38 7 1
BF4 4 498 1630 8.1 194 116 89 7

5 2 1630 5 191 115 92 8 1
BF5 5 498 1690 9 189 107 56 49 5

6 2 1694 2 189 105 54 51 7 1
BB1 5 499 1692 13 165 106 76 54 5

6 1 1716 161 99 86 54 5 1
BB2 6 499 1769 10 133 99 63 58 51 2

7 1 1776 131 100 62 57 54 1 1
BB3 6 497 1795 10 116 97 89 58 40 6

7 3 1799 7 118 95 89 58 41 5 1
BB4 5 498 1680 10 179 114 60 49 5

6 2 1675 0 180 111 59 50 6 1
BB5 5 498 1689 10 189 107 57 49 5

6 2 1691 10 196 101 55 48 7 1

CF 3 372 1383 12 282 95 29
4 128 1399 9 207 132 65 2

CB 3 458 1380 11 292 92 22
4 42 1402 11 202 135 68 1
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Table B.11: The results of collapsed Gibbs sampling with CRP at α = 10−15 and Pk ∝

nk p3
k

Condition NC N LL SD C1 C2 C3 C4 C5 C6 C7

AF1 4 500 1629 4 170 134 91 7
AF2 4 500 1633 4 170 134 91 7
AF3 4 500 1623 6 155 122 111 13
AF4 3 500 1487 3 270 123 8
AF5 4 500 1622 5 170 137 87 7

AB1 5 500 1669 8 140 112 77 66 7
AB2 5 500 1724 5 116 106 77 72 31
AB3 5 500 1706 6 130 108 85 69 8
AB4 4 500 1584 5 179 121 94 6
AB5 4 500 1622 4 170 138 87 7

BF1 4 500 1658 4 180 125 94 8
BF2 4 500 1657 4 178 126 95 7
BF3 4 500 1678 4 165 122 108 11
BF4 4 500 1656 5 180 128 87 10
BF5 4 500 1656 4 183 126 89 8

BB1 6 500 1807 5 118 106 68 59 52 3
BB2 6 500 1785 5 130 107 62 54 46 8
BB3 7 500 1848 6 109 85 80 55 50 19 7
BB4 6 500 1783 6 117 107 74 54 50 4
BB5 6 500 1797 5 119 108 71 53 50 5

CF 2 500 1384 3 277 129
CB 3 500 1435 5 196 138 72

Table B.12: The results of collapsed Gibbs sampling with CRP at α = 10−11 and Pk ∝

nk p3
k

Condition NC N LL SD C1 C2 C3 C4 C5 C6 C7

AF1 4 500 1629 4 170 134 91 7
AF2 4 500 1633 4 170 134 91 7
AF3 4 500 1644 4 163 128 102 8
AF4 3 500 1487 3 270 123 8
AF5 4 500 1622 5 170 137 87 7

AB1 5 500 1669 8 140 112 77 66 7
AB2 5 129 1724 5 116 106 77 71 31

6 371 1743 6 115 106 74 68 37 2
AB3 5 500 1706 6 130 108 85 69 8
AB4 4 500 1584 5 179 121 94 6
AB5 4 500 1622 4 170 138 87 7

BF1 4 500 1658 4 180 125 94 8
BF2 4 500 1657 4 178 126 95 7
BF3 4 500 1685 7 171 113 93 29
BF4 4 500 1656 5 180 128 87 10
BF5 4 500 1656 4 183 126 89 8

BF1 6 500 1807 5 118 106 68 59 52 3
BF2 6 500 1785 5 130 107 62 54 46 8
BF3 7 500 1848 6 109 85 80 55 50 19 7
BF4 6 500 1783 6 117 107 74 54 50 4
BF5 6 500 1797 5 119 108 71 53 50 5

CF 3 500 1435 5 196 137 73
CB 3 500 1435 5 198 135 73
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Table B.13: The results of collapsed Gibbs sampling with CRP at α = 10−8 and Pk ∝ nk p3
k

Condition NC N LL SD C1 C2 C3 C4 C5 C6 C7

AF1 4 500 1629 4 170 134 91 7
AF2 4 500 1633 4 170 134 91 7
AF3 4 500 1644 4 163 128 102 8
AF4 3 500 1487 3 270 123 8
AF5 4 500 1604 5 179 120 93 9

AB1 5 500 1669 8 140 112 77 66 7
AB2 6 500 1743 6 115 106 74 68 37 2
AB3 5 500 1706 6 130 108 85 69 8
AB4 4 500 1584 5 179 121 94 6
AB5 4 500 1622 4 170 138 87 7

BF1 4 500 1658 4 180 125 94 8
BF2 4 500 1657 4 178 126 95 7
BF3 4 87 1684 6 171 113 93 28

5 413 1761 7 159 91 83 64 9
BF4 5 500 1714 4 165 120 61 55 6
BF5 4 500 1656 4 183 126 89 8

BB1 6 500 1807 5 118 106 68 59 52 3
BB2 6 500 1785 5 130 107 62 54 46 8
BB3 7 500 1848 6 109 85 80 55 50 19 7
BB4 6 500 1783 6 117 107 74 54 50 4
BB5 6 500 1797 5 119 108 71 53 50 5

CF 3 500 1435 5 199 135 73
CB 3 500 1435 5 197 136 73

Table B.14: The results of collapsed Gibbs sampling with CRP at α = 10−6 and Pk ∝ nk p3
k

Condition NC N LL SD C1 C2 C3 C4 C5 C6 C7

AF1 4 500 1629 4 170 134 91 7
AF2 4 500 1633 4 170 134 91 7
AF3 5 500 1718 5 145 108 80 61 7
AF4 3 500 1487 3 270 123 8
AF5 4 500 1604 5 179 120 93 9

AB1 5 500 1669 8 140 112 77 66 7
AB2 6 500 1743 6 115 106 74 68 37 2
AB3 5 500 1706 6 130 108 85 69 8
AB4 4 500 1584 5 179 121 94 6
AB5 4 500 1622 4 170 138 87 7

BF1 4 500 1658 4 180 125 94 8
BF2 4 500 1657 4 178 126 95 7
BF3 5 500 1764 4 158 93 85 63 8
BF4 5 500 1714 4 165 120 61 55 6
BF5 5 500 1718 4 174 116 57 53 6

BB1 6 500 1773 12 135 107 69 59 32 4
BB2 6 500 1785 5 130 107 62 54 46 8
BB3 7 500 1848 6 109 85 80 55 50 19 7
BB4 6 500 1783 6 117 107 74 54 50 4
BB5 6 500 1797 5 119 108 71 53 50 5

CF 3 497 1435 5 200 132 73
4 3 1442 2 179 158 68 1

CB 3 499 1435 5 194 140 73
4 1 1447 178 159 68 1

218



Table B.15: The results of collapsed Gibbs sampling with CRP at α = 10−2 and Pk ∝ nk p3
k

Condition NC N LL SD C1 C2 C3 C4 C5 C6 C7 c8

AF1 5 215 1657 9 161 129 71 37 3
6 283 1691 8 140 120 66 56 17 3
7 2 1686 18 144 116 65 59 15 2 1

AF2 5 497 1681 5 155 123 70 50 3
6 3 1680 9 158 123 62 54 3 1

AF3 6 445 1767 8 113 89 77 64 52 6
7 54 1787 7 102 93 75 70 41 17 2
8 1 1786 101 99 75 66 40 17 2 1

AF4 4 442 1584 6 179 122 94 6
5 58 1586 6 180 121 93 5 2

AF5 4 177 1622 5 170 138 87 7
5 321 1633 6 169 137 81 12 2
6 2 1638 5 159 150 79 12 1 1

AB1 5 44 1673 7 143 124 68 59 7
6 453 1692 8 139 120 66 56 17 3
7 3 1686 10 139 123 65 57 14 2 1

AB2 6 500 1743 6 115 105 73 68 37 2
AB3 6 484 1734 7 129 105 76 60 26 5

7 16 1740 6 128 105 75 60 26 6 2
AB4 4 436 1584 5 179 121 94 6

5 64 1588 7 178 122 93 6 2
AB5 4 158 1622 5 169 138 87 7

5 340 1633 6 169 137 81 12 2
6 2 1630 8 178 129 82 12 1 1

BF1 6 499 1780 5 143 101 60 54 44 4
7 1 1773 141 107 58 53 45 1 1

BF2 6 500 1807 5 118 106 67 59 52 3
BF3 7 498 1843 6 110 83 78 53 48 32 2

8 2 1845 10 108 82 80 54 52 31 1 1
BF4 6 499 1783 6 117 108 73 54 50 4

7 1 1788 116 111 72 53 49 4 1
BF5 5 499 1718 4 174 116 57 53 6

6 1 1725 159 126 58 57 4 2

BB1 6 495 1780 20 135 107 68 57 36 3
7 5 1793 16 130 101 66 62 34 12 2

BB2 7 500 1827 6 117 105 61 54 37 30 2
BB3 7 500 1848 6 109 85 80 55 50 19 7
BB4 6 500 1783 6 117 107 74 54 50 4
BB5 6 499 1797 5 119 108 71 53 50 5

7 1 1810 116 107 73 52 50 6 2

CF 3 23 1434 4 203 129 73
4 477 1438 5 185 149 70 1

CB 3 27 1435 4 195 137 74
4 473 1438 5 185 149 70 1
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Appendix C

JAGS Model Specifications

G0 model

model{
for(i in 1:N){

sr[i] ~ dgamma(shape[i], rate[i])
log.mu[i] <- b0[marker[i]] + b1[marker[i]]* LUS[i]
mu[i] <- exp(log.mu[i])
tau[i] <- height[i]* invsigmasq
s[i] <- 1/sqrt(tau[i])
shape[i] <- mu[i]*mu[i]/(s[i]*s[i])
rate[i] <- mu[i]/(s[i]*s[i])
sr.new[i] ~ dgamma(shape[i], rate[i])

}
#priors
for(i in 1: nMarkers ){

b0[i] ~ dnorm(0, 0.001)
b1[i] ~ dnorm (0.1, 0.001)

}
invsigmasq ~ dgamma (0.001 , 0.001)
sigma <- sqrt (1/ invsigmasq)

}

G1 model

model{
for(i in 1:N){

sr[i] ~ dgamma(shape[i], rate[i])
log.mu[i] <- b0[marker[i]] + b1[marker[i]]* LUS[i]
mu[i] <- exp(log.mu[i])
tau[i] <- height[i]* invsigmasq[marker[i]]
s[i] <- 1/sqrt(tau[i])
shape[i] <- mu[i]*mu[i]/(s[i]*s[i])
rate[i] <- mu[i]/(s[i]*s[i])
sr.new[i] ~ dgamma(shape[i], rate[i])

}
#priors
for(i in 1: nMarkers ){

b0[i] ~ dnorm(0, 0.001)
b1[i] ~ dnorm(0, 0.001)
invsigmasq[i] ~ dgamma (0.001 , 0.001)
sigma[i] <- sqrt (1/ invsigmasq[i])

}
}
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G2 model

model{
for(i in 1:N){

sr[i] ~ dgamma(shape[i], rate[i])
log.mu[i] <- b0[marker[i]] + b1[marker[i]]* LUS[i]
mu[i] <- exp(log.mu[i])
tau[i] <- height[i]* invsigmasq[marker[i]]
s[i] <- 1/sqrt(tau[i])
shape[i] <- mu[i]*mu[i]/(s[i]*s[i])
rate[i] <- mu[i]/(s[i]*s[i])
sr.new[i] ~ dgamma(shape[i], rate[i])

}
#priors
for(i in 1: nMarkers ){

b0[i] ~ dnorm(mb0 , pb0)
b1[i] ~ dnorm(mb1 , pb1)
invsigmasq[i] ~ dgamma(alpha , beta)
sigma[i] <- sqrt (1/ invsigmasq[i])

}
mb0 ~ dnorm(0, 0.001)
mb1 ~ dnorm(0, 0.001)
pb0 ~ dgamma (0.001 , 0.001)
pb1 ~ dgamma (0.000001 , 0.001)
alpha ~ dgamma (0.001 , 0.001)
beta ~ dgamma (0.001 , 0.001)

}

LN0 model

model{
for(i in 1:N){

sr[i] ~ dlnorm(mu[i], tau[i])
mu[i] <- b0[marker[i]] + b1[marker[i]]*LUS[i]
tau[i] <- height[i]* invsigmasq
sr.new[i] ~ dlnorm(mu[i], tau[i])

}
## priors
for(i in 1: nMarkers ){

b0[i] ~ dnorm(0, 0.001)
b1[i] ~ dnorm (0.1, 0.001)
}

invsigmasq ~ dgamma (0.001 , 0.001)
sigma <- sqrt (1/ invsigmasq)

}

LN1 model

model{
for(i in 1:N){

sr[i] ~ dlnorm(mu[i], tau[i])
mu[i] <- b0[marker[i]] + b1[marker[i]]*LUS[i]
tau[i] <- height[i]* invsigmasq[marker[i]]
sr.new[i] ~ dlnorm(mu[i], tau[i])

}
#priors
for(i in 1: nMarkers ){

b0[i] ~ dnorm(0, 0.001)
b1[i] ~ dnorm(0, 0.000001)
invsigmasq[i] ~ dgamma (0.001 , 0.001)
sigma[i] <- sqrt (1/ invsigmasq[i])

}
}
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LN2 model

model{
for(i in 1:N){

sr[i] ~ dlnorm(mu[i], tau[i])
mu[i] <- b0[marker[i]] + b1[marker[i]]*LUS[i]
tau[i] <- height[i]* invsigmasq[marker[i]]
sr.new[i] ~ dlnorm(mu[i], tau[i])

}
#priors
for(i in 1: nMarkers ){

b0[i] ~ dnorm(mb0 , pb0)
b1[i] ~ dnorm(mb1 , pb1)
invsigmasq[i] ~ dgamma(alpha , beta)
sigma[i] <- sqrt (1/ invsigmasq[i])

}
mb0 ~ dnorm(0, 0.001)
mb1 ~ dnorm(0, 0.001)
pb0 ~ dgamma (0.001 , 0.001)
pb1 ~ dgamma (0.001 , 0.001)
alpha ~ dgamma (0.001 , 0.001)
beta ~ dgamma (0.001 , 0.001)

}

MLN1 model

model{
for(i in 1:N){

sr[i] ~ dlnorm(mu[i], tau[i])
mu[i] <- b0[marker[i]] + b1[marker[i]]*LUS[i]
tau[i] <- height[i]/(1/ t0[marker[i]] + d[i]/t1[marker[i]])
d[i] ~ dbern(pp)
sr.new[i] ~ dlnorm(mu[i], tau[i])

}
#priors
for(i in 1: nMarkers ){

b0[i] ~ dnorm(0, 0.001)
b1[i] ~ dnorm(0, 0.001)
t0[i] ~ dgamma (0.001 , 0.001)
t1[i] ~ dgamma (0.001 , 0.001)
sigma0[i] <- 1/sqrt(t0[i])
sigma1[i] <- 1/sqrt(t1[i])

}
pp ~ dunif (0,1)

}

MLN2 model

model{
for(i in 1:N){

sr[i] ~ dlnorm(mu[i], tau[i])
mu[i] <- b0[marker[i]] + b1[marker[i]]*LUS[i]
tau[i] <- height[i]/(1/ t0[marker[i]] + d[i]/t1[marker[i]])
d[i] ~ dbern(pp)
sr.new[i] ~ dlnorm(mu[i], tau[i])

}
#priors
for(i in 1: nMarkers ){

b0[i] ~ dnorm(mb0 , pb0)
b1[i] ~ dnorm(mb1 , pb1)
t0[i] ~ dgamma(alpha.t0 , beta.t0)
t1[i] ~ dgamma(alpha.t1 , beta.t1)
sigma0[i] <- 1/sqrt(t0[i])
sigma1[i] <- 1/sqrt(t1[i])
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}
pp ~ dunif (0,1)
mb0 ~ dnorm(0, 0.001)
mb1 ~ dnorm(0, 0.001)
pb0 ~ dgamma (0.001 , 0.001)
pb1 ~ dgamma (0.001 , 0.001)
alpha.t0 ~ dgamma (0.001 , 0.001)
beta.t0 ~ dgamma (0.001 , 0.001)
alpha.t1 ~ dgamma (0.001 , 0.001)
beta.t1 ~ dgamma (0.001 , 0.001)

}

N0 model

model{
for(i in 1:N){

sr[i] ~ dnorm(mu[i], tau[i])
mu[i] <- b0[marker[i]] + b1[marker[i]]*LUS[i]
tau[i] <- height[i]* invsigmasq
sr.new[i] ~ dnorm(mu[i], tau[i])

}
## priors
for(i in 1: nMarkers ){

b0[i] ~ dnorm(0, 0.001)
b1[i] ~ dnorm(0, 0.001)

}
invsigmasq ~ dgamma (0.001 , 0.001)
sigma <- sqrt (1/ invsigmasq)

}

N1 model

model{
for(i in 1:N){

sr[i] ~ dnorm(mu[i], tau[i])
mu[i] <- b0[marker[i]] + b1[marker[i]]*LUS[i]
tau[i] <- height[i]* invsigmasq[marker[i]]
sr.new[i] ~ dnorm(mu[i], tau[i])

}
#priors
for(i in 1: nMarkers ){

b0[i] ~ dnorm(0, 0.001)
b1[i] ~ dnorm(0, 0.001)
invsigmasq[i] ~ dgamma (0.001 , 0.001)
sigma[i] <- sqrt (1/ invsigmasq[i])

}
}

N2 model

model{
for(i in 1:N){

sr[i] ~ dnorm(mu[i], tau[i])
mu[i] <- b0[marker[i]] + b1[marker[i]]*LUS[i]
tau[i] <- height[i]* invsigmasq[marker[i]]
sr.new[i] ~ dnorm(mu[i], tau[i])

}
#priors
for(i in 1: nMarkers ){

b0[i] ~ dnorm(mb0 , pb0)
b1[i] ~ dnorm(mb1 , pb1)
invsigmasq[i] ~ dgamma(alpha , beta)

sigma[i] <- sqrt (1/ invsigmasq[i])
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}
mb0 ~ dnorm(0, 0.001)
mb1 ~ dnorm(0, 0.001)
pb0 ~ dgamma (0.001 , 0.001)
pb1 ~ dgamma (0.001 , 0.001)
alpha ~ dgamma (0.001 , 0.001)
beta ~ dgamma (0.001 , 0.001)

}

MN1 model

model{
for(i in 1:N){

sr[i] ~ dnorm(mu[i], tau[i])
mu[i] <- b0[marker[i]] + b1[marker[i]]*LUS[i]
tau[i] <- height[i]/(1/ t0[marker[i]] + d[i]/t1[marker[i]])
d[i] ~ dbern(pp)
sr.new[i] ~ dnorm(mu[i], tau[i])

}
#priors
for(i in 1: nMarkers ){

b0[i] ~ dnorm(0, 0.001)
b1[i] ~ dnorm(0, 0.001)
t0[i] ~ dgamma (0.001 , 0.001)
t1[i] ~ dgamma (0.001 , 0.001)
sigma0[i] <- 1/sqrt(t0[i])
sigma1[i] <- 1/sqrt(t1[i])

}
pp ~ dunif (0,1)

}

MN2 model

model{
for(i in 1:N){

sr[i] ~ dnorm(mu[i], tau[i])
mu[i] <- b0[marker[i]] + b1[marker[i]]*LUS[i]
tau[i] <- height[i]/(1/ t0[marker[i]] + d[i]/t1[marker[i]])
d[i] ~ dbern(pp)
sr.new[i] ~ dnorm(mu[i], tau[i])

}
#priors
for(i in 1: nMarkers ){

b0[i] ~ dnorm(mb0 , pb0)
b1[i] ~ dnorm(mb1 , pb1)
t0[i] ~ dgamma(alpha.t0 , beta.t0)
t1[i] ~ dgamma(alpha.t1 , beta.t1)
sigma0[i] <- 1/sqrt(t0[i])
sigma1[i] <- 1/sqrt(t1[i])

}
pp ~ dunif (0,1)
mb0 ~ dnorm(0, 0.001)
mb1 ~ dnorm(0, 0.001)
pb0 ~ dgamma (0.001 , 0.001)
pb1 ~ dgamma (0.001 , 0.001)
alpha.t0 ~ dgamma (0.001 , 0.001)
beta.t0 ~ dgamma (0.001 , 0.001)
alpha.t1 ~ dgamma (0.001 , 0.001)
beta.t1 ~ dgamma (0.001 , 0.001)

}
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T0 model

model{
for(i in 1:N){

sr[i] ~ dt(mu[i], tau[i], nu[marker[i]])
mu[i] <- b0[marker[i]] + b1[marker[i]]*LUS[i]
invssq[i] <- height[i]* invsigmasq
tau[i] <- invssq[i]*nu[marker[i]]/(nu[marker[i]]-2)
sr.new[i] ~ dt(mu[i], tau[i], nu[marker[i]])

}
## priors
for(i in 1: nMarkers ){

b0[i] ~ dnorm(0, 0.001)
b1[i] ~ dnorm(0, 0.001)
log_nu[i] ~ dunif (1.1, 5)
nu[i] <- exp(log_nu[i])

}
invsigmasq ~ dgamma (0.001 , 0.001)
sigma <- sqrt (1/ invsigmasq)

}

T1 model

model{
for(i in 1:N){

sr[i] ~ dt(mu[i], tau[i], nu[marker[i]])
mu[i] <- b0[marker[i]] + b1[marker[i]]*LUS[i]
invssq[i] <- height[i]* invsigmasq[marker[i]]
tau[i] <- invssq[i]*nu[marker[i]]/(nu[marker[i]]-2)
sr.new[i] ~ dt(mu[i], tau[i], nu[marker[i]])

}
#priors
for(i in 1: nMarkers ){

b0[i] ~ dnorm(0, 0.000001)
b1[i] ~ dnorm(0, 0.000001)
log_nu[i] ~ dunif (1.1, 5)
nu[i] <- exp(log_nu[i])
invsigmasq[i] ~ dgamma (0.000001 , 0.000001)
sigma[i] <- sqrt (1/ invsigmasq[i])

}
}

T2 model

model{
for(i in 1:N){

sr[i] ~ dt(mu[i], tau[i], nu[marker[i]])
mu[i] <- b0[marker[i]] + b1[marker[i]]*LUS[i]

invssq[i] <- height[i]* invsigmasq[marker[i]]
tau[i] <- invssq[i]*nu[marker[i]]/(nu[marker[i]]-2)
sr.new[i] ~ dt(mu[i], tau[i], nu[marker[i]])

}
#priors
for(i in 1: nMarkers ){

b0[i] ~ dnorm(mb0 , pb0)
b1[i] ~ dnorm(mb1 , pb1)
log_nu[i] ~ dunif (1.1, 5)
nu[i] <- exp(log_nu[i])
invsigmasq[i] ~ dgamma(alpha , beta)
sigma[i] <- sqrt (1/ invsigmasq[i])

}
mb0 ~ dnorm(0, 0.001)
mb1 ~ dnorm(0, 0.001)
pb0 ~ dgamma (0.001 , 0.001)
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pb1 ~ dgamma (0.001 , 0.001)
alpha ~ dgamma (0.001 , 0.001)
beta ~ dgamma (0.001 , 0.001)

}

MT1 model

model{
for(i in 1:N){

sr[i] ~ dt(mu[i], tau[i], nu[i])
mu[i] <- b0[marker[i]] + b1[marker[i]]*LUS[i]
tau[i] <- height[i]/(1/ t0[marker[i]] + d[i]/t1[marker[i]])
nu[i] <- (1 - d[i])* pnu1[marker[i]] + d[i]*pnu2[marker[i]]
d[i] ~ dbern(p)

}
#priors
for(i in 1: nMarkers ){

b0[i] ~ dnorm(0, 0.001)
b1[i] ~ dnorm(0, 0.001)
t0[i] ~ dgamma (0.001 , 0.001)
t1[i] ~ dgamma (0.001 , 0.001)
sigma0[i] <- 1/sqrt(t0[i])
sigma1[i] <- 1/sqrt(t1[i])
log_nu1[i] ~ dunif(0, 5)
pnu1[i] <- exp(log_nu1[i])
log_nu2[i] ~ dunif(0, 5)
pnu2[i] <- exp(log_nu2[i])

}
p ~ dunif (0,1)

}

MT2 model

model{
for(i in 1:N){

sr[i] ~ dt(mu[i], tau[i], nu[i])
mu[i] <- b0[marker[i]] + b1[marker[i]]*LUS[i]
tau[i] <- height[i]/(1/ t0[marker[i]] + d[i]/t1[marker[i]])
nu[i] <- (1 - d[i])* pnu1[marker[i]] + d[i]*pnu2[marker[i]]
d[i] ~ dbern(pp)

}
#priors
for(i in 1: nMarkers ){

b0[i] ~ dnorm(mb0 , pb0)
b1[i] ~ dnorm(mb1 , pb1)
t0[i] ~ dgamma(alpha.t0 , beta.t0)
t1[i] ~ dgamma(alpha.t1 , beta.t1)
sigma0[i] <- 1/sqrt(t0[i])
sigma1[i] <- 1/sqrt(t1[i])
log_nu1[i] ~ dunif (1.1, 5)
pnu1[i] <- exp(log_nu1[i])
log_nu2[i] ~ dunif (1.1, 5)
pnu2[i] <- exp(log_nu2[i])

}
pp ~ dunif (0,1)
mb0 ~ dnorm(0, 0.001)
mb1 ~ dnorm(0, 0.001)
pb0 ~ dgamma (0.001 , 0.001)
pb1 ~ dgamma (0.001 , 0.001)
alpha.t0 ~ dgamma (0.001 , 0.001)
beta.t0 ~ dgamma (0.001 , 0.001)
alpha.t1 ~ dgamma (0.001 , 0.001)
beta.t1 ~ dgamma (0.001 , 0.001)

}
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Appendix D

R codes for Infinite mixture models

The same R codes are publicly available in github.com (URL: https://github.com/

sampathf73/InfMixtures).

Alpha <- 1e-15
locus <- "D2S1338"
locnum <- 4
Power <- 3
mypath <- "./"

progsim <- function (fn , Alpha=Alpha , locus=locus , locnum=locnum ,
Power=Power , mypath=mypath) {

Alpha <- Alpha
locus <- locus
locnum <- locnum
Power <- Power
KKvalue <- 1 # Number of active components KK
filenumber <- fn
niter <- 5000

Resultfile1 <- paste(mypath , "/P", Power , "CS -Loc -",
locnum , "-Alp -", Alpha , "-fn", filenumber ,
"A.csv", sep = "")

Resultfile2 <- paste(mypath , "/P", Power , "LL -Loc -",
locnum , "-Alp -", Alpha , "-fn", filenumber ,
"A.csv", sep = "")

Resultfile3 <- paste(mypath , "/P", Power , "SumLL -Loc -",
locnum , "-Alp -", Alpha , "-fn", filenumber ,
"A.csv", sep = "")

library(Matrix)
library(mnormt)

#################################################################

setClass (" GaussianLR", representation(hh = "list", GLR = "list"),
contains ="list")

GaussianLR <- function(hh) {
new(" GaussianLR",
# Total number of observations N

hh$NN <- as.integer(hh$nn),
# Cavariates matrix (Nx2)

hh$XX <- as.matrix(hh$xx),
# A column matrix of responses

hh$YY <- as.matrix(hh$yy),
# Shape parameter (a) of Inverse Gamma prior
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hh$IGA <- as.numeric(hh$IGa),
# Scale parameter (b) of Inverse Gamma prior

hh$IGB <- as.numeric(hh$IGb),
# Mean vector of betas (2X1)

hh$MuBeta <- as.matrix(hh$mubeta),
# Scale matrix of betas (2X2)

hh$ScaleBeta <- as.matrix(hh$ScaleBeta),

# Total number of observations N
GLR.NN <- as.integer(hh$NN),

# Cavariates matrix (Nx2)
GLR.XX <- as.matrix(hh$XX),

# A column matrix of responses (Nx1)
GLR.YY <- as.matrix(hh$YY),

# Shape parameter (a) of Inverse Gamma prior
GLR.IGA <- as.numeric(hh$IGA),

# Scale parameter (b) of Inverse Gamma prior
GLR.IGB <- as.numeric(hh$IGB),

# Prior mean vector of betas (2X1)
GLR.MuBeta <- as.matrix(hh$MuBeta),

# Prior scale matrix of betas (2X2)
GLR.ScaleBeta <- as.matrix(hh$ScaleBeta),
GLR.LL <- as.numeric (0),

if (hh$NN != 0) {
stop(" Number of observations: nn must be zero")

} else {
# Posterior shape parameter (a) of Inverse Gamma

GLR.IGATilda <- hh$IGA
# Posterior scale parameter (b) of Inverse Gamma

GLR.IGBTilda <- hh$IGB
# Posterior mean vector of betas (2X1)

GLR.MuBetaTilda <- hh$MuBeta
# Posterior scale matrix of betas (2X2)

GLR.ScaleBetaTilda <- hh$ScaleBeta
},

GLR <- as.list(list(NN = GLR.NN, XX = GLR.XX , YY = GLR.YY ,
IGA = GLR.IGA , IGB = GLR.IGB ,
MuBeta = GLR.MuBeta ,
ScaleBeta = GLR.ScaleBeta ,
IGATilda = GLR.IGATilda ,
IGBTilda = GLR.IGBTilda ,
MuBetaTilda = GLR.MuBetaTilda ,
ScaleBetaTilda = GLR.ScaleBetaTilda ,
LL = GLR.LL)))
GLR

} # End of GaussianLR

logpredictive <- function(GLR , XTilda , YTilda) {
# Calculates the log of the predictive probability of a datum
# ll = logpredictive(X, A, B, Mu , Beta , Xstar)
# log predictive probability of YTilda given XTilda
# and other data items in the component
# log p(YTilda|XTilda , (x_1 , y_1),...,(x_n , y_n))

# Degrees of freedom of MVSt distribution
df <- 2 * GLR$IGATilda

# Mean of MVSt distribution
Mean <- XTilda %*% GLR$MuBetaTilda

# Scale parameter of MVSt distribution
# Var_Cov = Scale * df / (df - 2)

ScaleTilda <- (GLR$IGBTilda / GLR$IGATilda )*
(1 + XTilda %*% GLR$ScaleBetaTilda %*% t(XTilda ))

ll <- dmt(YTilda , Mean , ScaleTilda , df , log=TRUE)
ll

} # End of logpredictive
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CLL <- function(GLR) {
# Calculates the log likelihood of a cluster
CLL <- 0
for (item in 1:nrow(GLR$YY ))

CLL <- CLL + logpredictive(GLR , matrix(c(GLR$XX[item ,]),1,2),
matrix(c(GLR$YY[item ,]),1 ,1))

CLL
} # End of CLL

additem2D <- function(GLR , xx, yy) {
# Adds data item to a component
# GLR = additem2D(GLR , xx, yy)
# Ddds datum (xx , yy) into component GLR
# xx is a 1x2 matrix in the form (1 x)

if (GLR$NN == 0) { # Add data to an empty component
# Number of observations in the component

GLR$NN <- nrow(yy)
# Observed covariates of the component

GLR$XX <- matrix(rbind(xx), ncol =2)
# Observed responses of the component

GLR$YY <- matrix(rbind(yy), ncol =1)
} else { # Add data to non -empty components

# Number of observations
GLR$NN <- GLR$NN + nrow(yy)

# Observed covariates of the component
GLR$XX <- matrix(rbind(GLR$XX , xx), ncol =2)

# Observed responses of the component
GLR$YY <- matrix(rbind(GLR$YY , yy), ncol =1)

}

# Posterior shape parameter (a) of Inverse Gamma
GLR$IGATilda <- GLR$IGA + 0.5 * GLR$NN

# Posterior scale parameter (b) of Inverse Gamma
GLR$IGBTilda <- GLR$IGB + 0.5 * as.numeric(t(GLR$YY -

GLR$XX %*% GLR$MuBeta )%*%
solve(Diagonal(GLR$NN)
+ GLR$XX %*% GLR$ScaleBeta %*% t(GLR$XX ))%*%
(GLR$YY - GLR$XX %*% GLR$MuBeta ))

# Posterior scale matrix of betas (2X2)
GLR$ScaleBetaTilda <- solve(solve(GLR$ScaleBeta)

+ t(GLR$XX) %*% GLR$XX)
# Posterior mean vector of betas (2X1)

GLR$MuBetaTilda <- GLR$ScaleBetaTilda %*%
(solve(GLR$ScaleBeta) %*%
GLR$MuBeta + t(GLR$XX) %*% GLR$YY)

GLR$LL <- CLL(GLR)
GLR

} # End of additem2D

delitem2D <- function(GLR , xx, yy) {
# Deletes a data item from a component
# GLR = delitem2D(GLR , xx, yy)
# Deletes datum (xx, yy) from component GLR
# xx is a 1x2 matrix in the form (1 x)

if (GLR$NN == 1) {
# Coverts to an empty component after detetion
# Number of observations in the component

GLR$NN <- 0
# NO observed covariates in the component

GLR$XX <- NA
# No observed responses in the component

GLR$YY <- NA
# Posterior shape parameter (a) of Inverse Gamma

GLR$IGATilda <- GLR$IGA
# Posterior scale parameter (b) of Inverse Gamma
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GLR$IGBTilda <- GLR$IGB
# Posterior mean vector of betas (2X1)

GLR$MuBetaTilda <- GLR$MuBeta
# Posterior scale matrix of betas (2X2)

GLR$ScaleBetaTilda <- GLR$ScaleBeta
GLR$LL <- 0

} else { # Deletes a data item from a component
index = -999
j = 1

while (index < 0) { # Identify the datum to delete
if (( GLR$XX[j,2] == xx[1,2]) && (GLR$YY[j] == yy[1 ,1])) {
index = j # Row number of the datum to be deleted

}
j = j + 1
} # End of while

# Number of observations in the component
GLR$NN <- GLR$NN - 1

# Observed covariates of the component
GLR$XX <- matrix(GLR$XX[-index ,], ncol =2)

# Observed responses of the component
GLR$YY <- matrix(GLR$YY[-index], ncol =1)

# Posterior shape parameter (a) of Inverse Gamma
GLR$IGATilda <- GLR$IGA + 0.5 * GLR$NN

# Posterior scale parameter (b) of Inverse Gamma
GLR$IGBTilda <- GLR$IGB

+ 0.5 * as.numeric(t(GLR$YY - GLR$XX %*%
GLR$MuBeta )%*% solve(Diagonal(GLR$NN)
+ GLR$XX %*% GLR$ScaleBeta %*%
t(GLR$XX) )%*% (GLR$YY
- GLR$XX %*% GLR$MuBeta ))

# Posterior scale matrix of betas (2X2)
GLR$ScaleBetaTilda <- solve(solve(GLR$ScaleBeta)

+ t(GLR$XX) %*% GLR$XX)
# Posterior mean vector of betas (2X1)

GLR$MuBetaTilda <- GLR$ScaleBetaTilda %*%
(solve(GLR$ScaleBeta) %*%
GLR$MuBeta + t(GLR$XX) %*% GLR$YY)

GLR$LL <- CLL(GLR)
} # End of else

GLR
} # End of delitem2D

DPMLR_Init <- function(KK,Alpha ,GLR0 ,xx ,yy ,zz) {
# Initialize DP mixture model
# GLR0 empty GLR component with hh prior ,
# Active mixture components

DPM.KK <- KK
# Total number of observations

DPM.NN <- nrow(yy)
# Concentration parameter of DP prior

DPM.Alpha <- Alpha
# Mixture Components

DPM.GLR <- vector(mode = "list", length = KK+1)
DPM.XX <- xx # Covarites
DPM.YY <- yy # Responses
DPM.ZZ <- zz # Initial cluster assignments (between 1 and KK).
DPM.nn <- matrix(0,1,KK) # KK number of mpty clusters
DPM <- list(KK=DPM.KK , NN=DPM.NN, Alpha=DPM.Alpha , GLR=DPM.GLR ,
XX=DPM.XX , YY=DPM.YY , ZZ=DPM.ZZ, nn=DPM.nn)

# Initialize mixture components
# Component KK+1 takes care of all inactive components

for (kk in 1:(KK+1)) {
# Generating KK+1 number of empty clusters

DPM$GLR [[kk]] <- GLR0
}
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# Add data items into mixture components
for (ii in 1: DPM$NN) {

kk = zz[ii] # Identify the cluster index of the datum ii
DPM$GLR [[kk]] <- additem2D(DPM$GLR [[kk]],matrix(xx[ii ,],1,2),

matrix(yy[ii],1,1))
# Add the datum to the cluster

DPM$nn [[kk]] <- DPM$nn [[kk]] + 1# Cluster size increase by 1
}

DPM
} # End of DPMLR_Init

temp4 <- matrix(NA,nrow =500, ncol =103)
Resultfile4 <- paste(mypath , "/P", Power , "Gibs -Loc -",

locnum , "-Alp -", Alpha , "-fn", filenumber ,
"A.csv", sep = "")

DPMLR_Gibbs <- function(DPMLR , niter , temp4) {
# Gibbs sampler for DPMLR
KK <- DPMLR$KK # Number of active clusters
NN <- DPMLR$NN # Total number of data items
Alpha <- DPMLR$Alpha # Dispersion parameter of DP prior
GLR <- DPMLR$GLR # A vector of mixture components
XX <- DPMLR$XX # A 2-column matrix of covariates
YY <- DPMLR$YY # A column matrix
ZZ <- DPMLR$ZZ # Cluster indicators
nn <- DPMLR$nn # Number of data items in each cluster

for (i in 1: niter) {
# In each iteration , remove each data item from the model
# Then add it back according to the conditional probabilities

for (ii in 1:NN) { # iterate over data items ii
# Remove data item xx[ii] from component GLR[kk]

kk <- ZZ[ii] # Current component data item ii belongs to
# Number of data items in component kk is reduced by 1

nn[kk] <- nn[kk] - 1
GLRtemp1 <- GLR[kk ][[1]] # Component kk

# Remove data item from component kk
GLRtemp2 <- delitem2D(GLRtemp1 , matrix(XX[ii ,],1,2),

matrix(YY[ii],1,1))
# Component kk after removing the data item

GLR[kk ][[1]] <- GLRtemp2

# Delete the component if it has become empty
if (nn[kk] == 0) {

KK <- KK - 1 # Number of components is reduced by 1
GLR <- GLR[-kk] # Delete the empty component
# nn related to empty component is removed

nn <- nn[-kk]
idx <- which(ZZ >kk)

# Adjust all the indicators of the components
# after component kk

ZZ[idx] <- ZZ[idx] - 1
}

# compute conditional probabilities pp(kk)
# of data item ii belonging to each component kk
# compute probabilities in log domain , then exponentiate
# logpredictive(N, X, Y, A, B, MuBeta , ScaleBeta ,
# XTilda , YTilda)
pp <- log(c((nn), Alpha))
for (kkk in 1:(KK+1)) {

GLRtemp3 <- GLR[kkk ][[1]]
pp[kkk] <- pp[kkk] + Power * logpredictive(GLRtemp3 ,

matrix(XX[ii ,],1,2), matrix(YY[ii],1,1))
}
pp <- exp(pp - max(pp)) # -max(p) for numerical stability
pp <- pp / sum(pp)

# Select component kk by sampling from conditional
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# probabitilies
uu <- runif (1)
kk <- 1+sum(uu >cumsum(pp))

# When a new active component is required
if (kk == KK+1) {
# Increse number of components by 1

KK <- KK + 1
# Number of observations in the new component

nn[kk] <- 0
# Increse the indicator of previous empty
# component by 1

GLR[kk+1] <- GLR[kk]
}

# Add data item xx[ii] back into model (component GLR[kk])
ZZ[ii] <- kk

# Number of data items in component kk is reduced by 1
nn[kk] <- nn[kk] + 1
GLRtemp3 <- GLR[kk ][[1]] # Component kk

# Add data item to component kk
GLRtemp4 <- additem2D(GLRtemp3 , matrix(XX[ii ,],1,2),

matrix(YY[ii],1,1))
# Component kk after adding the data item

GLR[kk ][[1]] <- GLRtemp4
} # End of iteration over data items

if ((i > 3000)&(i%%4 == 0)) {
r <- (i - 3000)/4
temp4[r,1] = r
temp4[r,2:(KK+1)]=nn
sumt <- 0
for (k in 1:KK) {

temp4[r,(51+k)]= GLR[[k]]$LL
sumt <- sumt + GLR[[k]]$LL

}
temp4[r ,102]= KK
temp4[r ,103]= sumt

}
} # End of iteration

write.csv(temp4 , Resultfile4)

# Update DPMLR object
DPMLR$GLR <- GLR
DPMLR$ZZ <- ZZ
DPMLR$nn <- nn
DPMLR$KK <- KK
DPMLR

} # End of Gibbs sampler

#################### APPLICATION ###########################

##### NGM DATA #####

df0 <- read.csv(" NGMdata.csv",header=TRUE)
df1 <- df0[,-1]
df2 <- df1
library(plyr)
df2 <- rename(df2 , c(" Marker" = "locus",

"Marker.code" = "marker" ,
"Stutter.Height" = "stheight",
"Allele" = "allele",
"LUS" = "LUS",
"Allele.Height" = "height",
"SR" = "sr"))

locname1 <- as.character(df2$locus[df2$marker == locnum ][1])
df <- df2[df2$locus ==locname1 ,]
sampsize <- nrow(df)

232



set.seed(as.integer(filenumber ))
priordataIndex <- sort(sample (1: sampsize ,5,replace=F))
sr1 <- df$sr
LUS1 <- df$LUS
y0 <- sr1[priordataIndex]
x0 <- matrix(c(rep(1,5), LUS1[priordataIndex ]),

ncol=2, byrow=FALSE)
lm0 <- lm(y0 ~ x0[,2])

Beta0 <- summary(lm0)[[' coefficients ']][1 ,1] # Beta0
Beta1 <- summary(lm0)[[' coefficients ']][2 ,1] # Beta1
MuBeta0 <- matrix(c(Beta0 , Beta1 ),2,1) # (Beta0 , Beta1 )^T
sigma0 <- summary(lm0)[['sigma ']]
cov.unscaled <- matrix(summary(lm0)[['cov.unscaled ']],2,2)
ScaleBeta0 <- cov.unscaled # VBeta
# sigma0 = Residual standard error of the linear model
# = summary(lm0)[['sigma ']] = sqrt(MSE)
# Mean(Beta) = MuBeta
# Var -Cov(Beta) = VBeta * Sigmasquared

################ With n0, x0 , y0 historical data: ############
# Mean(Beta)0 = MuBeta0
# = Beta coefficients of linear model
# based on the sample of size n0
# Mean(Beta)0 = (X0^TX0)^(-1)X0^TY0
# VBeta0 = cov.unscaled = (X0^TX0)^(-1)
# Var -Cov(Beta)0 = (sigma0 )^2 * ScaleBeta0
# = (sigma0 )^2 * VBeta0
# = sigma0 ^2 (X0^TX0)^(-1)
# sigmasquare ~ IG(A,B)
# A = (n0 - k)/2 and B = (n0 - k)* MSE /2

##### Posterior Predictive Distribution #############

# yTilda|y ~ MVSt(2 ATilda )[ XTilda*MuBetaTilda ,
# (BTilda/ATilda )*(I+XTilda*VBetaTilda*XTilda^T)]

A <- 1.5 # since k=2, n0 = 5
B <- 1.5* sigma0 ^2

hh0 <- list(nn=0, xx=NA , yy=NA , IGa=NA, IGb=NA,
mubeta=NA , ScaleBeta=NA)
hh0$IGa <- A
hh0$IGb <- B
hh0$mubeta <- MuBeta0
hh0$ScaleBeta <- ScaleBeta0
GLR0 <- GaussianLR(hh0)

sr2 <- sr1[-( priordataIndex )]
LUS2 <- LUS1[-( priordataIndex )]

xxall <- matrix(c(rep(1,sampsize -5), LUS2), ncol=2,
byrow=FALSE)

yyall <- matrix(c(sr2), ncol =1)

# Initial parameters of Gibbs sampler
KK <- KKvalue # Number of active components

#Alpha # Dispersion parameter of Dirichlet prior
NN <- nrow(yyall) # Total number of observations N

# Initial component indicaters
zz <- ceiling(runif(NN)*KK)

# Initialize DPMLR object
DPMLR = DPMLR_Init(KK,Alpha ,GLR0 ,xxall ,yyall ,zz)

temp1 <- matrix(NA,nrow=1,ncol =50)
temp2 <- matrix(NA,nrow=1,ncol =50)
temp3 <- matrix(NA,nrow=1,ncol =2)

RDatafile <- paste(mypath , "/P", Power , "Loc -",
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locnum , "-Alp -", Alpha , "-fn", filenumber ,
"A.RData", sep = "")

DPMLRtemp <- DPMLR_Gibbs(DPMLR , niter , temp4)
save(DPMLRtemp , file = RDatafile)
temp1 [1,1: length(DPMLRtemp$nn )]= DPMLRtemp$nn
sum <- 0
for (j in 1: length(DPMLRtemp$nn )) {

temp2[1,j] <- DPMLRtemp$GLR [[j]]$LL
sum <- sum + DPMLRtemp$GLR [[j]]$LL

}
temp3 [1,1] <- length(DPMLRtemp$nn)
temp3 [1,2] <- sum

write.csv(temp1 , Resultfile1)
write.csv(temp2 , Resultfile2)
write.csv(temp3 , Resultfile3)

} # End of progsim

###########################################################

RunProg <- function(funnum) {
if (funnum == 1) progsim (fn=1, Alpha=Alpha , locus=locus ,

locnum=locnum , Power=Power ,
mypath=mypath)

if (funnum == 2) progsim (fn=2, Alpha=Alpha , locus=locus ,
locnum=locnum , Power=Power ,
mypath=mypath)

if (funnum == 3) progsim (fn=3, Alpha=Alpha , locus=locus ,
locnum=locnum , Power=Power ,
mypath=mypath)

if (funnum == 4) progsim (fn=4, Alpha=Alpha , locus=locus ,
locnum=locnum , Power=Power ,
mypath=mypath)

if (funnum == 5) progsim (fn=5, Alpha=Alpha , locus=locus ,
locnum=locnum , Power=Power ,
mypath=mypath)

} # End of RunProg

library (" doParallel ")
library (" foreach ")
cl <- makeCluster (5)
registerDoParallel(cl)
prognum <- 1:5
foreach(i=1: length(prognum )) %dopar% RunProg(prognum[i])
stopCluster(cl)
csvfile1 <- paste ("P", Power , "CS-Loc -", locnum ,

"-Alp -", Alpha , "-fn", 1, "A.csv", sep = "")
csvfile2 <- paste ("P", Power , "LL-Loc -", locnum ,

"-Alp -", Alpha , "-fn", 1, "A.csv", sep = "")
csvfile3 <- paste ("P", Power , "SumLL -Loc -", locnum ,

"-Alp -", Alpha , "-fn", 1, "A.csv", sep = "")
mydata1 = read.csv(csvfile1 , header=T)
mydata2 = read.csv(csvfile2 , header=T)
mydata3 = read.csv(csvfile3 , header=T)

for (ff in 2:5) {
csvfiletemp1 <- paste("P", Power , "CS -Loc -",

locnum , "-Alp -", Alpha , "-fn", ff,
"A.csv", sep = "")

csvfiletemp2 <- paste("P", Power , "LL -Loc -",
locnum , "-Alp -", Alpha , "-fn", ff,
"A.csv", sep = "")

csvfiletemp3 <- paste("P", Power , "SumLL -Loc -",
locnum , "-Alp -",
Alpha , "-fn", ff , "A.csv", sep = "")

mydatatemp1 = read.csv(csvfiletemp1 , header=T)
mydatatemp2 = read.csv(csvfiletemp2 , header=T)
mydatatemp3 = read.csv(csvfiletemp3 , header=T)
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mydata1 = rbind(mydata1 , mydatatemp1)
mydata2 = rbind(mydata2 , mydatatemp2)
mydata3 = rbind(mydata3 , mydatatemp3)

}

Fullcsvfile1 <- paste(mypath , "/P", Power ,
"CS-Loc -", locnum , "-Alp -", Alpha ,
"-Complete -", "A.csv", sep = "")

Fullcsvfile2 <- paste(mypath , "/P", Power ,
"LL-Loc -", locnum , "-Alp -", Alpha ,
"-Complete -", "A.csv", sep = "")

Fullcsvfile3 <- paste(mypath , "/P", Power ,
"SumLL -Loc -", locnum , "-Alp -", Alpha ,
"-Complete -", "A.csv", sep = "")

write.csv(mydata1 , Fullcsvfile1)
write.csv(mydata2 , Fullcsvfile2)
write.csv(mydata3 , Fullcsvfile3)

########################
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