
Adapting
“Single Algorithm Multiple Data” Programs

for Multiprocessing Vector Computers

R. W. Doran

Auckland Computer Science Report No. 45

July 1990



Adapting

“Single Algorithm Multiple Data” Programs

for

Multiprocessing Vector Computers

R. W. Doran

Abstract

This paper explores the way that simple but inherently parallel programs may be adapted to a
parallel vector computer. Starting with an example algorithm that is applied independently to
many sets of data, we proceed to convert it systematically into a highly parallel form by using
multiprocessing and vector processing. The various versions of the program are written in
Fortran for the Cray X-MP. Performance data are collected to show the extent of the
performance improvement that can be expected.



1

1.  SAMD programs

There is a common type of computer program where the same algorithm is to be applied to all
members of a set of data and where the operations on each data item are quite independent of
the operations on others. Examples are many graphics programs where the same operation is
applied to each pixel and in monte-carlo simulation where each trial is independent.  There
seems to be no good word yet coined to describe such a program or program section - the
epithet "event processing style" is applied in experimental physics as it is the basic nature of
the programs in this area. Lets invent a term, say SAMD for “Single Algorithm Multiple
Data”, using Flynn's enduring terminology, where we imply that the course of execution of
the program on one data item is completely independent of the execution course of the
program on other data and that the course of execution may well be different for different
data.

What we will  do here is describe in a tutorial fashion the techniques involved in adapting a
SAMD program to work on a vector processing computer that has multiple processors.
Although there have been many examples given of adapted programs (see for example
Iliffe[1]) the process by which they are derived has not been well described. We will
illustrate the techniques by applying them to a single example program on a specific
computer.  The computer that we shall use is the Cray X-MP. This has four CPUs sharing a
common memory.  Each CPU is a highly parallel vector processor that operates on vectors of
length up to 64. All the example programs are written in Fortran CFT77.

2.  The serial program

The example we will use is the heapsort applied to many arrays of different lengths. The
arrays are presented to the program packed contiguously into a large array with the sections
to be sorted identified by a pair of other arrays that specify bases and lengths, as follows:

SUBROUTINE SORTSET(M,N,BASE,X)
REAL X(*)
INTEGER M, !number of arrays to be sorted

N(1:M), !length of each array
BASE(1:M) !base of each array

C Sort the M arrays: X(BASE(W)+1:BASE(W)+N(W)), W = 1..M
INTEGER W
DO 100 W = 1, M

  100 CALL SORT(N(W),X(BASE(W)+1))
END

The heapsort algorithm is essentially serial so may not be the first choice for use on a parallel
computer. However, it is a nice example for this exercise as it has a lot of structure yet is
very compact. The sort is done in two phases, the first places the array in "tree order", i.e.
such that X(I) is greater than both X(2*I) and X(2*I+1). The second phase orders the
array, making use of the fact that the top of the tree is the largest element in the array:



2

SUBROUTINE SORT(N,X)
INTEGER   N
REAL      X(1:N)

C Bring X(1:N) into ascending order using heap sort
INTEGER   K, L
REAL      XT

C Ensure that N is > 1
IF( N .LT. 2 ) RETURN     ! Exit

C Place X into descending tree order
DO 30 L = N/2, 1, -1

C Insert X(L) in subtree L+1:N
   30 CALL INSERT(N,X,X(L),L,N)
C Bring X into full order

DO 300 K = N, 2, -1
C As tree 1..K is in tree order, X(1) is
C largest, so place at top of array,
C saving old top in XT

XT = X(K)
X(K) = X(1)

C Restore tree order to tree 1:(K-1) by
C inserting XT in subtree 2:K-1
  300 CALL INSERT(N,X,XT,1,K-1)

END

Both phases make use of a subroutine INSERT that inserts an element into an array in tree
order so that tree order is maintained:

SUBROUTINE INSERT(N,X,XS,B,T)
INTEGER N, B, T
REAL X(1:N), XS

C Insert XS in subtree X(B+1:T), starting at X(B)
C which is the initial insert slot, making use
C of the fact that X(B+1:T) is in tree order

INTEGER I, J
C Select initial subtree I

I = B
C Recursively insert in subtree I
   20 CONTINUE
C Set J to first branch, but exit if I terminal

J = I + I ! possible first branch
IF (J .GT. T) GOTO 30

C If there are two branches choose the larger
IF( J .LT. T ) THEN

IF( X(J) .LT. X(J+1) ) J = J+1
ENDIF

C Exit if XS >= larger branch
IF( XS .GE. X(J) ) GOTO 30

C Make insert slot in larger branch
X(I) = X(J)



3

C Select larger branch subtree then continue
I = J
GOTO 20

C Place XS into insert slot
   30 X(I) = XS

END

This subroutine in fact comprises an algorithm that calls itself recursively, but this would be
so inefficient that not even the purest purist would express it recursively.

Measuring the program's performance

Our goal is to improve the performance of the program; viewed in isolation the goal is to
reduce the time that the program takes to execute. We need therefore to measure the speed of
execution of the serial sort to use as a basis for comparison. Unfortunately, the execution
time for this sort depends not only on the size of the array but also on the way that the data is
arranged, so that we will have to be content with estimating the mean performance over a
range of sample data. We will assume that the array lengths and the data themselves are
uniformly distributed (generated by the built-in random number function). The performance
will be tabulated for varying maximum array size and for varying batch size (number of
arrays in a batch - M in the algorithm above). Reasonably representative figures can only be
obtained by ensuring that a large number of arrays are sorted. This happens naturally if the
batch size is large but for small batches many repetitions are required - in the figures below
there are always at least 100 arrays sorted - this gives enough accuracy for our purpose but
we have to be careful when interpreting small differences in performance. Because the X-MP
is a multiprocessor, the performance of a processor on one CPU may be degraded by
memory accesses made by the others executing other programs, a more-likely affect when
the amount of data being processed is large. This is dealt with by making a number of runs
and eliminating anomalously slow results.

For the serial algorithm we get performance figures as in Table 1 where the units are time in
microseconds per element sorted, the columns are arranged in order of increasing batch size
and the rows in increasing maximum array length.

Table 1: Structured serial sort

1

4.6
4.5
4.9

8.1

4

2.3
3.4
4.5
6.2

16

1.7
3.2
4.4
6.2
7.8

64

7.8
6.2

1.6
3.1
4.4
6.0
7.8

256

1.5
3.4
4.5
6.2
7.8

max
array
length

size of batch

1
4

16
64

256

This behaviour is much as would be expected. Apart from when the array and batch sizes are
very small, the size of the batch doesn't make much difference. The time per element
increases appropriately with the log of the array size. (The reason for the increase when batch
size is large is unknown - there are a number of such small anomalies in the data collected
that we will just ignore).



4

Optimizing for a serial processor

Most Fortran programmers would be horrified by the above program because by their
experience it contains constructs that perform poorly. The worst culprits here are the
subroutine calls. There is a natural tendency to remove these by flattening the inner calls,
replacing them by the subroutine bodies. In this program it is easy to make such a change for
the inner loops where the most benefit will be obtained. Such an improvement has effect as
in Table 2.

This has the same general behaviour as the structured version but is faster by a factor of
about 1.37, which does show why Fortran programmers tend to be "flat earthers". We will
work with both forms of program because we do want to see whether or not such
optimization is still worthwhile when parallelism has been introduced.

1.6
1.7
2.5
4.1
5.7

2.2
1.9
2.6
4.1
5.8

4.4
2.9
2.9

5.7
4.1

1.5
1.6
2.5
3.9
5.7

1.5
1.6
2.5
4.1
5.7

Table 2: Flattened Serial Sort

1 4 16 64 256

max
array
length

size of batch

1
4

16
64

256

3. Multiprocessing

There are two methods provided to take advantage of multiprocessing in Cray Fortran. One
is conventional macro-tasking which requires the programmer to split programs into
independent communicating processes. The other approach is called micro-tasking; it is very
easy to apply to SAMD programs.

Microtasking - The Cray fray

Microtasking as introduced by Cray [2,3,4] is simple, elegant, and easy to use. The
programmer is told not to bother thinking of the number of processors that are available but
to concentrate on exhibiting the natural parallelism in programs. The basic concept that is
introduced is that of a fray which is a procedure that may be executed by any number of
processors. In our example it is natural for us to pick the procedure for sorting a batch as
being a fray�-�this is done merely by inserting a pseudo-comment at the start of the
procedure:

CMIC$ MICRO
SUBROUTINE SORTSET(M,N,BASE,X)

The fray will have processors applied to its execution until it has been fully executed, each
processor will start at the beginning and, unless directed otherwise, will execute the whole
fray using its own copy of the local variables - global variables (parameters and common)



5

will not be replicated for each processor. This will clearly be of little use if each processor
does execute the entire procedure, hence sections of the fray must be defined as control
structures that are to be executed only once but which are composed of sections that may be
executed in parallel (for the most part independently) - global variables must only be accessed
from code within control structures. Any section of a fray may be defined to be part of a
control structure but the most usual approach is to specify that a DO-loop is to be a control
structure with every iteration being an independent section. In our example:

CMIC$ MICRO
SUBROUTINE SORTSET(M,N,BASE,X)

REAL X(*)
INTEGER M, N(1:M), BASE(1:M)

C Sort the M arrays X(BASE(I),BASE(I)+N(I)-1)
CMIC$ DO GLOBAL FOR 4

DO 100 I = 1, M
  100 CALL SORT(N(I),X(BASE(I)))

END

In this case we have not only specified with DO�GLOBAL that each iteration is an
independent section of a control structure but that we also think that it would be a good idea
to divide the work into four chunks (remembering that there are four processors). In more
complicated programs there will be frays that have some parts that must be completed before
others are started and sections that can only be executed one CPU at a time but, in our
example, nothing more is required than an indication to the compiler of the maximum number
of CPUs that we would like to have applied to our problem. These controls must come, in
execution order, before and after the fray:

CMIC$ GETCPUS 4

CMIC$ RELCPUS

The program must now be processed by a precompiler before execution. The precompiler
generates subroutine calls in the Fortran program and also produces a small assembly
language program that must be bound into the executable module.

Microtasking performance

With microtasking the performance is even less predictable than before. All of the desired
processors are not necessarily available so that, although results from run to run on the same
data are mostly consistent, some will be way out of line. Additionally, when the control
sections are rather large it seems to be more difficult to claim the attention of all of the CPUs
all of the time. The figures in Table 3 are for four processors and are the minimum that was
obtained in each case. Although minimum, they do represent the gains to be had when other
users are not competing for the system.



6

0.8
1.7
1.2
1.7
2.1

9.6
6.6
5.7
6.6
8.1

3.5
3.0
2.6
2.8
3.3

1.5
1.9
2.1
2.1
2.8

1.0
1.8
1.5
1.9
2.3

0.8
1.5
1.3
1.6
2.2

Table 3: Structured sort - microtasking with 4 CPUs

max
array
length

size of batch

1 4 16 64 256 1024

1
4

16
64

256

One notable point is the low overhead of microtasking. Even with only one batch (and
therefore only one processor) the overhead is negligible except for the trivial cases. The best
improvement that is achieved over the serial version is by a factor of 3.7. This shows that
memory access conflicts are not serious in this case. The improvement with two CPUs is
about 1.9.

The improvements with the flattened optimized program are also listed in Table 4 for later
comparison. Here the maximum performance improvement observed is a little less at 3.6,
perhaps an indication of the more concentrated data accesses to memory made by the faster
algorithm.

Table 4:  Flattened Sort - Microtasking with 4 CPUs

max
array
length

size of batch

9.6
5.0
3.5
4.3
5.7

3.3
2.0
1.4
2.0
2.5

1.6
1.1
0.9
1.7
2.0

1.0
0.9
0.7
1.2
1.7

0.8
0.9
0.7
1.0
1.6

0.8
0.8
1.3
1.6
1.6

1 4 16 64 256 1024

1
4

16
64

256

4. Vectorization

There is no obvious use of vectors in our sort algorithm.  However, there is a technique that
can be applied quite systematically to vectorize such programs (see Lipps[5]). This is not
really a task suited to humans as it is far too complex and error prone. It is much better left to
compilers but, alas, compilers do not currently do the job.  It is our intent to explore what
can be done so we will vectorize our SAMD program trying to use rules that can be easily
generalized and followed by others.

The first step, SAMD to STMD

The motivation behind what we are doing here is that a computer such as the Cray which is
widely considered to be a vector computer, can equally be regarded as a classic SIMD
(Single Instruction Multiple Data) machine because, with most vector instructions, elements



7

of vectors are manipulated quite independently of each other. Thus, rather than regarding the
Cray as a processor that deals with vectors of 64 elements, we can equally (for the most part)
regard it as a machine containing 64 processors that are responsive to the same instruction
and each of which operates on scalar operands. We can regard our task as one of converting
our program to SIMD form.

Eventually we will get a program that will have the one course of execution for each set of
data (which is what SIMD requires) but the actual course taken by our serial algorithm may
well be dependent on the particular data being operated on. A first step is to alter our serial
program so that, aside from loop exits, it will always take the same course of execution and
so that it will not be affected by extra loop iterations. Lets call this form Single Thread
Multiple Data form or STMD. (It is difficult to define this form in a single phrase - the idea is
that for a given batch of data there will be one trace of execution that is a superset of all the
others needed for that batch and that the superset could be applied to any in the batch and still
give the correct results).

This is not a trivial thing to do. The mechanism is to precede every statement by a mask test
that can "turn off" execution when it is not needed and to alter loops so that exits are also
made on the basis of testing a mask. Lets see what happens to our example:

SUBROUTINE SORT(N,X)
INTEGER   N
REAL      X(1:N)

C Bring X(1:N) into ascending order using heap sort
INTEGER   K, L
REAL      XT
LOGICAL M1

C Ensure that N is > 1
IF( N .LT. 2 ) RETURN     ! Exit

C Place X in descending tree order
DO 30 L = N/2, 1, -1

M1 = (N .GE. 2*L)
C Insert X(L) in subtree L+1:N
   30 CALL INSERT(N,X,X(L),L,N,M1)
C Bring X into full order

DO 300 K = N, 2, -1
M1 = (N .GE. K)

C As tree 1..K is in tree order, X(1) is
C largest, so place at top of array,
C saving old top in XT

IF (M1) THEN
XT = X(K)
X(K) = X(1)
ENDIF

C Restore tree order to tree 1:(K-1) by
C inserting XT in subtree 2:K-1
  300 CALL INSERT(N,X,XT,1,K-1,M1)

          END
Here, in the SORT procedure, the two loops are made independent of the number of
iterations by introducing a mask that if false indicates that the iteration of the loop is to have



8

no effect i.e. the loops will work correctly if the upper bound on the index is replaced by a
larger value.  In the second loop the mask is applied to all the statements inside the loop. In
both loops the mask is passed to the INSERT subroutine as a parameter to nullify its
execution, if necessary:

SUBROUTINE INSERT(N,X,XS,B,T,M1)
INTEGER N, B, T
REAL X(1:N), XS

C Insert XS in subtree X(B+1:T), starting at X(B)
C which is the initial insert slot, making use
C of the fact that X(B+1:T) is in tree order

INTEGER I, J
LOGICAL M1, M2, M3

C Select initial subtree I
IF (M1) I = B

C Recursively insert in subtree I
M2 = M1

   20 CONTINUE
C Set J to first branch, but exit if I terminal

IF (M2) J = I + I !possible first branch
!IF (J .GT. T) GOTO 30

IF (M2) M2 = (J .LE. T)
IF (.NOT. M2) GOTO 30

C If there are two branches choose the larger
!IF( J .LT. T ) THEN

!IF( X(J) .LT. X(J+1) ) J = J+1
!ENDIF
M3 = M2
IF (M3) M3 = (J .LT. T)
IF (M3) M3 = (X(J) .LT. X(J+1))
IF (M3) J = J+1

C Exit if XS >= larger branch
!IF( XS .GE. X(J) ) GOTO 30

IF (M2) M2 = (XS .LT. X(J))
IF (.NOT. M2) GOTO 30

C Make insert slot in larger branch
!X(I) = X(J)

IF (M2) X(I) = X(J)
C Select larger branch subtree then continue

IF (M2) I = J
GOTO 20

C Place XS into insert slot
   30 IF (M1) X(I) = XS

END

This has a lot more content of interest. Every statement in the procedure is masked by M1
passed as a parameter, or by some restriction of M1. The loop is masked by mask M2 which
is initially set from M1. The exits from the loop are made on the basis of testing mask M2,
with the mask being restricted to ensure that extra iterations of the loop can do no harm. In
the depth of the loop there is highly conditional operation. This is handled by introducing a



9

further temporary mask M3 and restricting that.

What we now have is a serial program that uses standard Fortran but has our STMD
character. It should still produce the same results as the SAMD form which is good check at
this stage (although the performance will be severely degraded).
The general approach that is necessary should be clear, although there are many other
program constructs hat are not in this particular example.

Step 2: STMD with unique data

The next step is tedious but mechanical. We must take our scalar variables and extend them
so that there is a unique name for each variable/data combination.  The tool we have for that
in Fortran is to introduce an array to replace each scalar variable. For example, a mask such
as M1 used for the M batches of data must be replaced by an array M1(1:M) so that M1(W)
is the mask used with batch W. Herbert Lipps[5] calls this process "colouring" the program.

The outermost loop calling our STMD procedure remains the same except that the iteration
variable is passed to the procedure so that differentiation may take place. SORTSET becomes:

SUBROUTINE SORTSET(M,N,BASE,X)
REAL X(*)
INTEGER M, !number of arrays to be sorted

N(1:M), !length of each array
BASE(1:M) !base of each array

C Sort the M arrays X(BASE(W)+1,BASE(W)+N), W = 1..M
INTEGER W
DO 100 W = 1, M

  100 CALL SORT(M,N,BASE,X,W)
END

The remainder of the transformation is very straightforward. As an illustration of what is
involved, here is the second loop of the SORT procedure:

   30 CALL INSERT(M,BASE,X,X(BASE(W)+L),L,N(W),M1,W)
C Bring X into full order

DO 300 K = N(W), 2, -1
M1(W) = (N(W) .GE. K)

C As tree 1..K is in tree order, X(1) is
C largest, so place at top of array,
C saving old top in XT

IF (M1(W)) THEN
                         XT(W) = X(BASE(W)+K)
                         X(BASE(W)+K) = X(BASE(W)+1)
                         ENDIF

C Restore tree order to tree 1:(K-1) by
C inserting XT in subtree 2:K-1

IF (M1(W)) KA(W) = K-1
  300 CALL INSERT(M,BASE,X,XT(W),1,KA(W),M1,W)
  100    CONTINUE

END



10

Note how variables that are different for each array, such as the array size N and the mask
M1, are elevated to be arrays of size (1:M). For the array X, into which the arrays being
sorted are already packed, we have to distinguish elements by referring to the actual offset
inside X e.g. X(K) is replaced by X(BASE(W)+K). The only change that requires a little
thought is to ensure that subroutine arguments are uniform across all calls. In this case the
sixth parameter to INSERT is N(W) in the first call so we have to introduce an array KA so
that the second call also has a W-dependent variable in that position.

The performance of this version should be much worse than before but, we hope, it will all
be worth it after the next step.

Step 3: STMD to SIMD

The change to make here is to alter the program to a form that is suited to a SIMD machine.
In essence, the same instructions must be executable for all data simultaneously, with masks
used to stop individual processors executing where that is appropriate. The previous step
gave unique names to the variables used to sort each array. The program is now such that it
does not matter how the instructions to sort each batch are interleaved as long as the
instructions within a batch remain in the same order. Thus we can take the loop over all
batches in the outermost loop in procedure SORTSET and move the loop "in" as far as we
like, so that we iterate over a small set of statements. Such small inner loops can be regarded
as the parallel commands to an SIMD machine.

In this example, if the W loop in SORTSET is moved inwards then SORTSET no longer has
any separate purpose and could well be combined with SORT:

SUBROUTINE SORTSET(M,N,BASE,X)
REAL X(*)
INTEGER M, !number of arrays to be sorted

N(1:M), !length of each array
BASE(1:M) !base of each array

C Sort the M arrays X(BASE(W)+1,BASE(W)+N), W = 1..M
CALL SORT(M,N,BASE,X)

END

Inside SORT, things get messy because the W loops now cut right across our program's
structure. They are made obvious in the following listing of SORT by a highlight of ****s.
(The complete program listing is in the appendix, only an outline is given here.)

SUBROUTINE SORT(M,N,BASE,X)
............

NMAX = N(1)
DO 839 I = 2, M

  839 IF (N(I) .GT. NMAX) NMAX = N(I)
C Ensure that NMAX is > 1

IF( NMAX .LT. 2 ) RETURN     ! EXIT



11

C Place X in descending tree order
DO 30 L = NMAX/2, 1, -1

DO 991 W = 1, M !****************************************
M1(W) = (N(W) .GE. 2*L)
IF (M1(W)) XT(W) = X(BASE(W)+L)

  991 CONTINUE !**********************************************
   30 CALL INSERT(M,BASE,X,XT,L,N,M1)
C Bring X into full order

DO 300 K = NMAX, 2, -1
DO 992 W = 1, M !****************************************

M1(W) = (N(W) .GE. K)
IF (M1(W)) XT(W) = X(BASE(W)+K)
IF (M1(W)) X(BASE(W)+K) = X(BASE(W)+1)
IF (M1(W)) KA(W) = K-1

  992 CONTINUE !**********************************************
  300 CALL INSERT(M,BASE,X,XT,1,KA,M1)

END

An SIMD program has to have the same course of execution for all data so the variable-sized
DO-loops have to be replaced by just one loop. Thus the introduction of the NMAX variable
which must be calculated first. Notice that the number of calls on the INSERT subroutine has
been reduced to only two.

More change is needed inside INSERT:

SUBROUTINE INSERT(M,BASE,X,XS,B,T,M1)
              ..........
DO 321 W = 1, M !**********************************

IF (M1(W)) I(W) = B
M2(W) = M1(W)

  321 CONTINUE!******************************************
   20 CONTINUE

DO 322 W = 1, M !**********************************
IF (M2(W)) J(W) = I(W) + I(W)

IF (M2(W)) M2(W) = (J(W) .LE. T(W))
  322 CONTINUE !*****************************************

!IF (.NOT. M2(W)) GOTO 30
DO 323 I6 = 1, M

  323 IF (M2(I6)) GOTO 324
GOTO 30

  324 CONTINUE
DO 325 W = 1, M !**********************************

C               If there are two branches choose the larger
M3(W) = M2(W) .AND. (J(W) .LT. T(W))
IF (M3(W)) M3(W) = (X(BASE(W)+J(W))

     1 .LT. X(BASE(W)+J(W)+1))
IF (M3(W)) J(W) = J(W)+1



12

C               Exit if XS >= larger branch
IF (M2) M2 = (XS .LT. X(J))
IF (M2(W)) M2(W) =

     1 (XS(W) .LT. X(BASE(W)+J(W)))
  325 CONTINUE !*******************************************

!IF (.NOT. M2(W)) GOTO 30
DO 326 I6 = 1, M

  326 IF (M2(I6)) GOTO 327
GOTO 30

  327 CONTINUE
DO 328 W = 1, M !***************************************

C Make insert slot in larger branch
IF (M2(W)) X(BASE(W)+I(W)) =

     1 X(BASE(W)+J(W))
C Select larger branch subtree then continue

IF (M2(W)) I(W) = J(W)
  328 CONTINUE !********************************************

GOTO 20
C Place XS into insert slot
   30           CONTINUE

DO 329 W = 1, M !****************************************
IF (M1(W)) X(BASE(W)+I(W)) = XS(W)

  329 CONTINUE !********************************************
END

Just as within SORT, the only changes that have to be made to individual statements are at
control points where the total status of all processors has to be considered. In this case there
have to be loops introduced to test all mask bits before exiting from any of the various loops.

This can now be compiled and tested. The CFT77 compiler has to be told to forget its
concerns about vectorizing some loops (the CDIR$�IVDEP controls) but it can be cajoled
into vectorizing all of the inner loops (except those, such as that for finding NMAX, that are
essentially serial). The performance obtained is as in Table 5.

71
91

112
121
130

19
36
49
55
61

4.6
9.7
14
18
22

1.3
3.2
6.1
8.9
11

1.8
1.7
3.9
6.6
8.9

0.6
1.6
3.2
5.7
7.9

Table 5: Structured SIMD sort

max
array
length

size of batch

1 4 16 64 256 1024

1
4

16
64

256

Step 4: Optimizing for the Cray

The above is not very good at all, in fact worse than when we started. The main problem is
that the compiler guarantees correct code and is very cautious in the way that it handles
conditional assignments. For example, with



13

IF (M3(W)) M3(W) = J(W) .LE. T(W)

the compiler will ensure that there are no errors resulting from the J and T comparison by
generating code like:

set s1 to element of J selected by first 1 bit of M3
set temporary vector T1 to J but with s1 where M3 false
create T2 likewise from T
compare T1 with T2 to give T3
assign to M3 from M3 or T3 depending on M3

What we have to do now is to recast our program so that the compiler is less cautious. This
is a highly machine and algorithm dependent operation. On the Cray, in particular, it is very
dangerous to the integrity of the program because the vector mask does not apply to
operations other than loads, stores, and merges. Any errors caused by garbage being selected
are not masked off.

Here are examples of what we can do: In SORT:

Replace:
IF (M1(W)) I(W) = B

by:
I(W) = B

This is safe, setting extra values of I is OK because they will not be used and the value B is
constant and valid.

There are many other examples like this:

Replace:
IF (M2(W)) J(W) = I(W) + I(W)

by:
J(W) = I(W) + I(W)

This does no harm because we have now assured that even unused values of I are
initialized.

Replace:
IF (M2(W)) M2(W) = (J(W) .LE. T(W))

by:
M2(W) = (J(W) .LE. T(W))

Which is OK because J and T are fully initialized and J is increasing so that once the
condition becomes false it remains false.

It may seem OK to take the masks off everything that doesn't store into our arrays X.
Unfortunately, making the following change will cause trouble because accesses will be
made to invalid data:



14

Change:
IF (M2(W)) M2(W) = (XS(W) .LT. X(BASE(W)+J(W))

To:
M2(W) = M2(W) .AND. (XS(W) .LT. X(BASE(W)+J(W))

This is bad because it could cause accesses to be made beyond the end of X. Care is needed
here but the obvious trick in this case is to extend X a bit more:

Replace:
REAL X(1:M*NMAX)

by:
REAL X(1:M*NMAX+NMAX+1)

Then we can recast some of the stores that must remain masked into a form provided by Cray
Fortran that will force invalid but safe references to be made. The CVMGT function merges its
two first operands based on the mask in the 3rd operand:

Replace:
IF (M2(W)) I(W) = J(W)

By:
I(W) = CVMGT(J(W),I(W),M2(W))

Another improvement is to reduce the number of exits from loops to just one. This is
possible because all statements are guarded by masks that ensure that some extra executions
do no harm.

Now, the moment of truth, the performance figures for this final form are as in Table 6. The
improvement is by a factor of 2.23 when the number of batches is large. This is good but we
must remember that in the process of vectorizing our program we have reduced subroutine
calls, effectively flattening it, so we must take into account the performance improvement due
to flattening.

Table 6: Structured sort - optimized SIMD

max
array
length

size of batch

4 16 64 256 1024 4096

1
4

16
64

256

19
49
64
66
71

4.5
15
19
20
22

1.3
4.4
5.9
6.6
8.0

1.9
1.9
3.3
3.7
4.7

0.7
1.3
2.3
2.9
3.8

0.4
1.4
2.0
2.8
3.5

The same process of vectorization an be applied to the flattened sort or, alternatively, the last
program can be flattened. There are, in fact, a few more optimizations possible to the
flattened program, leading to figures as in Table 7. So the flattened and unflattened versions
have about the same performance when the array and batch sizes are large. This is
disappointing on the one hand in that it means that the performance gain from vectorizing is
only 1.63. On the other hand, it is heartening in that it means that we do not have to bother
flattening our programs if we are vectorizing them using this approach.



15

36
49
11
11
13

8.7
5.4
4.1
4.8
5.7

3.3
2.1
2.8
2.9
3.9

3.0
1.4
2.2
2.8
3.6

1.0
1.1
2.0
2.8
3.6

0.5
1.1
2.0
2.8
3.5

Table 7: Flattened Sort Optimized SIMD

max
array
length

size of batch

4 16 64 256 1024 4096

1
4

16
64

256

Introduction of vector statements

The messy version of the program that we just created can be much improved in readability
by making the inner loops each apply to a single scalar statement then replacing each loop by
a vector statement. This approach has to be used with caution or else the compiler will
generate poor code because we have asked it to treat each statement as a complete operation
on the whole M arrays. The overhead of breaking the vectors into 64 element chunks is
replicated for every statement. The compiler is not able to make use of temporary values in
vector registers. Note that this isn't an insoluble problem but requires that the compiler is
smart enough to, essentially, unvectorize the program, and combine adjacent loops.

What is possible with vectorization?

The technique that we have been through certainly does not produce the best SIMD code for
the program. For example, the value NMAX is calculated over all arrays whereas it could be
restricted to being the maximum for the batch being processed (in the case of the Cray to the
maximum for each group of 64).

Additionally, there are optimizations that apply to real machines like the Cray that are not
SIMD in reality. For example, it is possible to select for action only those subarrays that are
"active" by using compress instructions and then change the vector length so as to operate on
the set of reduced length arrays. There is no way to do this in Fortran (it is explored fully in
Herbert Lipps' work[5]).

Such compression has the advantage that it will only do actual vector operations that are
necessary and safe. However, to counter the performance gained thereby, it has the
drawback that extra operations will be required to actually select the data required, e.g in our
example to compress the number of bases. Whether or not there would be an overall
performance gain is unclear in this case.

In general, the benefits from vectorization do depend very much on the problem. If most
iterations of loops involve unmasked values then the speed-up is much more marked. In our
example, if all arrays being sorted are the same size of 256 then the time per element for
length 256 arrays is improved from 8.5 to 2.4 microseconds, an improvement  factor of 3.4
(2.7 due to the vectorization).



16

5. Vectorization and Multiprocessing Combined

The two techniques are quite independent of each other so we would expect them to
compound. With 4 processors the structured vectorized sort performs as in Table 8. The
improvement over the flattened sort (table 2) is by a factor of 6 at its best. We would have
expected 3.6 from MP and 1.63 from vectorization for a total of about 5.9 so the two
techniques have compounded with little loss. In the case of equisized length 256 arrays the
delay per element gets as low as .75 microseconds for an overall improvement over flattening
of 8.7 which is a most heartening improvement.

69
107
118
122
128

17
46
46
51
53

4.4
13
13
14
15

1.2
3.1
4.0
3.9
4.0

2.3
.84
1.0
1.2
1.3

.60

.82

.76

.78

.95

Table 8: Structured sort, vectorized and MPed

max
array
length

size of batch

4 16 64 256 1024 4096 �

1
4

16
64

256

6. Conclusions

We have seen that it is mechanical but hard work to manually vectorize a SAMD program.
The performance gain is good enough to be worth the effort if the program is to widely used.
There is no doubt that the task is for compilers, not for people, but the number of special
cases that require algorithm knowledge is such that compilers will have difficulty in getting
the best results. The task would be much easier, for humans or compilers, on computers that
are able to apply masks to all vector operations

It is nice to confirm that programs can be left in structured form. However, it is much easier
to use multiprocessing via microtasking where the performance gain is very good and is
much easier to obtain (though it does not improve system-wide throughput).

Acknowledgment:  This paper was first prepared while the author was on sabbatical leave
during 1988 visiting the data handling division of European Organisation for Nuclear
Research (CERN) in Geneva. Thanks is due to The University of Auckland and CERN for
support during this period, and particularly to Herbert Lipps and Mike Metcalf for their
encouragement.

References

[1] Iliffe, J. K. : Advanced Computer Design. Prentice Hall International. 1982

[2] Cray Research Incorporated.: Cray X-MP Multitasking, Programmer's
 Reference Manual,  Publication  No. SR-0222, 1987

[3] Fatoohi, R. A.: "Multitasking on the Cray Y-MP: An Experiment with a 2-D Navier-
Stokes Code. International Journal of High Speed Computing. Vol. 1, No. 3, Sept. 1989, p.
433.



17

[4] Doran R. W.:  "Multiprocessing via Microtasking", Proceedings of the 11th New
Zealand Computer Conference, Lindsay J. Groves Editor, Wellington 16-18th August 1989,
p. 335.

[5] Lipps, H.: Unpublished report,  CERN, 1988.

Appendix - Program Listings

Disclaimer - these examples were tested and run on a Cray X-MP. However, since then they
have been reformatted and it is not guaranteed that some transcription errors may have been
committed.

A. Structured serial sort

SUBROUTINE SORTSET(M,N,BASE,X)
REAL X(*)
INTEGER M, !number of arrays to be sorted

N(1:M), !length of each array
BASE(1:M) !base of each array

C Sort the M arrays: X(BASE(W)+1:BASE(W)+N(W)), W = 1..M
INTEGER W
DO 100 W = 1, M

  100 CALL SORT(N(W),X(BASE(W)+1))
END

C
SUBROUTINE SORT(N,X)

INTEGER   N
REAL      X(1:N)

C Bring X(1:N) into ascending order using heap sort
INTEGER   K, L
REAL      XT

C Ensure that N is > 1
IF( N .LT. 2 ) RETURN     ! Exit

C Place X into descending tree order
DO 30 L = N/2, 1, -1

C Insert X(L) in subtree L+1:N
   30 CALL INSERT(N,X,X(L),L,N)
C Bring X into full order

DO 300 K = N, 2, -1
C As tree 1..K is in tree order, X(1) is
C largest, so place at top of array,
C saving old top in XT

XT = X(K)
X(K) = X(1)

C Restore tree order to tree 1:(K-1) by
C inserting XT in subtree 2:K-1
  300 CALL INSERT(N,X,XT,1,K-1)

END
C



18

SUBROUTINE INSERT(N,X,XS,B,T)
INTEGER N, B, T
REAL X(1:N), XS

C Insert XS in subtree X(B+1:T), starting at X(B)
C which is the initial insert slot, making use
C of the fact that X(B+1:T) is in tree order

INTEGER I, J
C Select initial subtree I

I = B
C Recursively insert in subtree I
   20 CONTINUE
C Set J to first branch, but exit if I terminal

J = I + I ! possible first branch
IF (J .GT. T) GOTO 30

C If there are two branches choose the larger
IF( J .LT. T ) THEN

IF( X(J) .LT. X(J+1) ) J = J+1
ENDIF

C Exit if XS >= larger branch
IF( XS .GE. X(J) ) GOTO 30

C Make insert slot in larger branch
X(I) = X(J)

C Select larger branch subtree then continue
I = J
GOTO 20

C Place XS into insert slot
   30 X(I) = XS

END



19

B. Single thread structured sort

SUBROUTINE SORTSET(M,N,BASE,X)
REAL X(*)
INTEGER M, !number of arrays to be sorted

N(1:M), !length of each array
BASE(1:M) !base of each array

C Sort the M arrays: X(BASE(W)+1:BASE(W)+N(W)), W = 1..M
INTEGER W
DO 100 W = 1, M

  100 CALL SORT(N(W),X(BASE(W)+1))
END

C
SUBROUTINE SORT(N,X)

INTEGER   N
REAL      X(1:N)

C Bring X(1:N) into ascending order using heap sort
INTEGER   K, L
REAL      XT
LOGICAL M1

C Ensure that N is > 1
IF( N .LT. 2 ) RETURN     ! Exit

C Place X in descending tree order
DO 30 L = N/2, 1, -1

M1 = (N .GE. 2*L)
C Insert X(L) in subtree L+1:N
   30 CALL INSERT(N,X,X(L),L,N,M1)
C Bring X into full order

DO 300 K = N, 2, -1
M1 = (N .GE. K)

C As tree 1..K is in tree order, X(1) is
C largest, so place at top of array,
C saving old top in XT

IF (M1) THEN
XT = X(K)
X(K) = X(1)
ENDIF

C Restore tree order to tree 1:(K-1) by
C inserting XT in subtree 2:K-1
  300 CALL INSERT(N,X,XT,1,K-1,M1)

          END
C



20

SUBROUTINE INSERT(N,X,XS,B,T,M1)
INTEGER N, B, T
REAL X(1:N), XS

C Insert XS in subtree X(B+1:T), starting at X(B)
C which is the initial insert slot, making use
C of the fact that X(B+1:T) is in tree order

INTEGER I, J
LOGICAL M1, M2, M3

C Select initial subtree I
IF (M1) I = B

C Recursively insert in subtree I
M2 = M1

   20 CONTINUE
C Set J to first branch, but exit if I terminal

IF (M2) J = I + I !possible first branch
!IF (J .GT. T) GOTO 30

IF (M2) M2 = (J .LE. T)
IF (.NOT. M2) GOTO 30

C If there are two branches choose the larger
!IF( J .LT. T ) THEN

!IF( X(J) .LT. X(J+1) ) J = J+1
!ENDIF
M3 = M2
IF (M3) M3 = (J .LT. T)
IF (M3) M3 = (X(J) .LT. X(J+1))
IF (M3) J = J+1

C Exit if XS >= larger branch
!IF( XS .GE. X(J) ) GOTO 30

IF (M2) M2 = (XS .LT. X(J))
IF (.NOT. M2) GOTO 30

C Make insert slot in larger branch
!X(I) = X(J)

IF (M2) X(I) = X(J)
C Select larger branch subtree then continue

IF (M2) I = J
GOTO 20

C Place XS into insert slot
   30 IF (M1) X(I) = XS

END



21

C. Single thread with unique data

SUBROUTINE SORTSET(M,N,BASE,X)
REAL X(*)
INTEGER M, !number of arrays to be sorted

N(1:M), !length of each array
BASE(1:M) !base of each array

C Sort the M arrays X(BASE(W)+1,BASE(W)+N), W = 1..M
INTEGER W
DO 100 W = 1, M

  100 CALL SORT(M,N,BASE,X,W)
END

C
SUBROUTINE SORT(M,N,BASE,X,W)

INTEGER   M, N(1:M), BASE(1:M), W
REAL      X(*)

C Bring X(1:N) into ascending order using heap sort
INTEGER K, L, KA(1:M)
REAL XT(1:M)
LOGICAL M1(1:M)

C Ensure that N is > 1
IF( N(W) .LT. 2 ) RETURN     ! EXIT

C Place X in descending tree order
DO 30 L = N(W), 1, -1

M1(W) = (N(W)/2 .GE. 2*L)
C Insert X(L) in subtree L+1:N

IF (M1(W)) XT(W) = X(BASE(W)+L)
   30 CALL INSERT(M,BASE,X,X(BASE(W)+L),L,N(W),M1,W)
C Bring X into full order

DO 300 K = N(W), 2, -1
M1(W) = (N(W) .GE. K)

C As tree 1..K is in tree order, X(1) is
C largest, so place at top of array,
C saving old top in XT

IF (M1(W)) THEN
                         XT(W) = X(BASE(W)+K)
                         X(BASE(W)+K) = X(BASE(W)+1)
                         ENDIF

C Restore tree order to tree 1:(K-1) by
C inserting XT in subtree 2:K-1

IF (M1(W)) KA(W) = K-1
  300 CALL INSERT(M,BASE,X,XT(W),1,KA(W),M1,W)
  100    CONTINUE

END
C



22

SUBROUTINE INSERT(M,BASE,X,XS,B,T,M1,W)
INTEGER M, BASE(1:M), B, T(1:M)
REAL X(*), XS(1:M)

C Insert XS in subtree X(B+1:T), starting at X(B)
C which is the initial insert slot, making use
C of the fact that X(B+1:T) is in tree order

INTEGER I(1:M), J(1:M), W
LOGICAL M1(1:M), M2(1:M), M3(1:M), M4(1:M)

C Select initial subtree I
IF (M1(W)) I(W) = B

C Recursively insert from subtree I
M2(W) = M1(W)

   20 CONTINUE
C Set J to first branch, but exit if I terminal

IF (M2(W)) J(W) = I(W) + I(W) !possible
C  1st branch

!IF (J .GT. T) GOTO 30
IF (M2(W)) M2(W) = (J(W) .LE. T(W))
IF (.NOT. M2(W)) GOTO 30

C If there are two branches choose the larger
!IF( J .LT. T ) THEN

!IF( X(J) .LT. X(J+1) ) J = J+1
!ENDIF
M3(W) = M2(W)
IF (M3(W)) M3(W) = (J(W) .LT. T(W))
IF (M3(W)) M3(W) = (X(BASE(W)+J(W))

     1 .LT. X(BASE(W)+J(W)+1))
IF (M3(W)) J(W) = J(W)+1

C Exit if XS >= larger branch
!IF( XS .GE. X(J) ) GOTO 30

IF (M2(W)) M2(W) =
     1 (XS(W) .LT. X(BASE(W)+J(W)))

IF (.NOT. M2(W)) GOTO 30
C Make insert slot in larger branch

!X(I) = X(J)
IF (M2(W)) X(BASE(W)+I(W)) =

     1 X(BASE(W)+J(W))
C Select larger branch subtree then continue

IF (M2(W)) I(W) = J(W)
GOTO 20

C Place XS into insert slot
   30 IF (M1(W)) X(BASE(W)+I(W)) = XS(W)

END



23

D. SIMD structured sort

SUBROUTINE SORTSET(M,N,BASE,X)
REAL X(*)
INTEGER M, !number of arrays to be sorted

    1 N(1:M), !length of each array
    2 BASE(1:M) !base of each array
C Sort the M arrays X(BASE(W)+1,BASE(W)+N), W = 1..M

CALL SORT(M,N,BASE,X)
END

C
SUBROUTINE SORT(M,N,BASE,X)

INTEGER   M, N(1:M), BASE(1:M), NMAX
REAL      X(*)

C Bring X(1:N) into ascending order using heap sort
INTEGER   K, L, W, KA(1:M)
REAL      XT(1:M)
LOGICAL M1(1:M)

C Find maximum N for batch
NMAX = N(1)
DO 839 I = 2, M

  839 IF (N(I) .GT. NMAX) NMAX = N(I)
C Ensure that NMAX is > 1

IF( NMAX .LT. 2 ) RETURN     ! EXIT
C Place X in descending tree order

DO 30 L = NMAX/2, 1, -1
DO 991 W = 1, M !****************************************

M1(W) = (N(W) .GE. 2*L)
C Insert X(L) in subtree L+1:N

IF (M1(W)) XT(W) = X(BASE(W)+L)
  991 CONTINUE !**********************************************
   30 CALL INSERT(M,BASE,X,XT,L,N,M1)
C Bring X into full order

DO 300 K = NMAX, 2, -1
CDIR$ IVDEP

DO 992 W = 1, M !****************************************
M1(W) = (N(W) .GE. K)

C As tree 1..K is in tree order, X(1) is
C largest, so place at top of array,
C saving old top in XT

IF (M1(W)) XT(W) = X(BASE(W)+K)
IF (M1(W)) X(BASE(W)+K) = X(BASE(W)+1)

C Restore tree order to tree 1:(K-1) by
C inserting XT in subtree 2:K-1

IF (M1(W)) KA(W) = K-1
  992 CONTINUE !**********************************************
  300 CALL INSERT(M,BASE,X,XT,1,KA,M1)

END
C



24

SUBROUTINE INSERT(M,BASE,X,XS,B,T,M1)
INTEGER M, BASE(1:M), B, T(1:M)
REAL X(*), XS(1:M)

C Insert XS in subtree X(B+1:T), starting at X(B)
C which is the initial insert slot, making use
C of the fact that X(B+1:T) is in tree order

INTEGER I(1:M), J(1:M), W
LOGICAL M1(1:M), M2(1:M), M3(1:M), M4(1:M)

CDIR$ IVDEP
DO 321 W = 1, M !****************************************

C Select initial subtree I
IF (M1(W)) I(W) = B

C Recursively insert from subtree I
M2(W) = M1(W)

  321 CONTINUE!********************************************
   20 CONTINUE
CDIR$  IVDEP

DO 322 W = 1, M !****************************************
C Set J to first branch, but exit if I terminal

IF (M2(W)) J(W) = I(W) + I(W) !possible
C  1st branch

!IF (J .GT. T) GOTO 30
IF (M2(W)) M2(W) = (J(W) .LE. T(W))

  322 CONTINUE !********************************************
!IF (.NOT. M2(W)) GOTO 30

DO 323 I6 = 1, M
  323 IF (M2(I6)) GOTO 324

GOTO 30
  324 CONTINUE
CDIR$ IVDEP

DO 325 W = 1, M !****************************************
C If there are two branches choose the larger

!IF( J .LT. T ) THEN
!IF( X(J) .LT. X(J+1) ) J = J+1
!ENDIF
M3(W) = M2(W) .AND. (J(W) .LT. T(W))
IF (M3(W)) M3(W) = (X(BASE(W)+J(W))

     1 .LT. X(BASE(W)+J(W)+1))
IF (M3(W)) J(W) = J(W)+1

C Exit if XS >= larger branch
!IF( XS .GE. X(J) ) GOTO 30

IF (M2(W)) M2(W) =
     1 (XS(W) .LT. X(BASE(W)+J(W)))

IF (.NOT. M2(W)) GOTO 30
  325 CONTINUE !********************************************

!IF (.NOT. M2(W)) GOTO 30
DO 326 I6 = 1, M

  326 IF (M2(I6)) GOTO 327
GOTO 30

  327 CONTINUE
CDIR$ IVDEP



25

DO 328 W = 1, M !****************************************
C Make insert slot in larger branch

!X(I) = X(J)
IF (M2(W)) X(BASE(W)+I(W)) =

     1 X(BASE(W)+J(W))
C Select larger branch subtree then continue

IF (M2(W)) I(W) = J(W)
  328 CONTINUE !********************************************

GOTO 20
C Place XS into insert slot
   30           CONTINUE
CDIR$ IVDEP

DO 329 W = 1, M !****************************************
IF (M1(W)) X(BASE(W)+I(W)) = XS(W)

  329 CONTINUE !********************************************
END



26

E. Sort optimized for the Cray X-MP

S SUBROUTINE SORTSET(M,N,BASE,X)
REAL X(*)
INTEGER M, !number of arrays to be sorted

    1 N(1:M), !length of each array
    2 BASE(1:M) !base of each array
C Sort the M arrays X(BASE(W)+1,BASE(W)+N), W = 1..M

INTEGER   M, N(1:M), BASE(1:M), NMAX
REAL      X(*)

C Bring X(1:N) into ascending order using heap sort
INTEGER   K, L, W, KA(1:M)
REAL      XT(1:M)
LOGICAL M1(1:M)

C Find maximum N for batch
NMAX = N(1)
DO 839 I = 2, M

  839 IF (N(I) .GT. NMAX) NMAX = N(I)
C Ensure that NMAX is > 1

IF( NMAX .LT. 2 ) RETURN     ! EXIT
C Place X in descending tree order

DO 30 L = NMAX/2, 1, -1
DO 991 W = 1, M !****************************************

M1(W) = (N(W) .GE. 2*L)
C Insert X(L) in subtree L+1:N

XT(W) = X(BASE(W)+L)
  991 CONTINUE !********************************************
   30 CALL INSERT(M,BASE,X,XT,L,N,M1)
C Bring X into full order

DO 300 K = NMAX, 2, -1
CDIR$ IVDEP

DO 992 W = 1, M !****************************************
M1(W) = (N(W) .GE. K)

C As tree 1..K is in tree order, X(1) is
C largest, so place at top of array,
C saving old top in XT

XT(W) = X(BASE(W)+K)
X(BASE(W)+K) =

     1 CVMGT(X(BASE(W)+1),X(BASE(W)+K),M1(W))
C Restore tree order to tree 1:(K-1) by
C inserting XT in subtree 2:K-1

KA(W) = K-1
  992 CONTINUE !**********************************************
  300 CALL INSERT(M,BASE,X,XT,1,KA,M1)

END
C



27

SUBROUTINE INSERT(M,BASE,X,XS,B,T,M1)
INTEGER M, BASE(1:M), B, T(1:M)
REAL X(*), XS(1:M)

C Insert XS in subtree X(B+1:T), starting at X(B)
C which is the initial insert slot, making use
C of the fact that X(B+1:T) is in tree order

INTEGER I(1:M), J(1:M), W
LOGICAL M1(1:M), M2(1:M), M3(1:M), M4(1:M)

CDIR$ IVDEP
DO 321 W = 1, M !****************************************

C Select initial subtree I
IF (M1(W)) I(W) = B

C Recursively insert from subtree I
M2(W) = M1(W)

  321 CONTINUE!********************************************
   20 CONTINUE
C Single uniform exit point for loop

!IF (.NOT. M2) goto 30
DO 323 I6 = 1, M

  323 IF (M2(I6)) GOTO 324
GOTO 30

  324 CONTINUE
CDIR$  IVDEP

DO 328 W = 1, M !****************************************
C Set J to first branch, but exit if I terminal

J(W) = I(W) + I(W) !possible first branch
!IF (J .GT. T) GOTO 30

M2(W) = M2(W) .AND. (J(W) .LE. T(W))
C If there are two branches choose the larger

!IF( J .LT. T ) THEN
!IF( X(J) .LT. X(J+1) ) J = J+1
!ENDIF
M3(W) = M2(W) .AND. (J(W) .LT. T(W))
M3(W)=M3(W).AND.

    1 (X(BASE(W)+J(W)).LT.X(BASE(W)+J(W)+1))
J(W) = CVMGT(J(W)+1,J(W),M3(W))

C Exit if XS >= larger branch
M2(W)=M2(W).AND.(XS(W).LT.X(BASE(W)+J(W)))

C Make insert slot in larger branch
!X(I) = X(J)

X(BASE(W)+I(W))=CVMGT(X(BASE(W)+J(W)),
    1 X(BASE(W)+I(W)),M2(W))
C Select larger branch subtree then continue

I(W) = CVMGT(J(W),I(W),M2(W))
  328 CONTINUE !********************************************

GOTO 20
C Place XS into insert slot
  30 CONTINUE
CDIR$ IVDEP

DO 329 W = 1, M !****************************************
X(BASE(W)+I(W)) =  CVMGT(XS(W),X(BASE(W)+I(W))



28

     1  ,M1(W))
  329 CONTINUE !********************************************

END


