Version

This is the Supplement to the publisher’s version. This version is defined in the NISO recommended practice RP-8-2008 http://www.niso.org/publications/rp/

Suggested Reference

Copyright

Items in ResearchSpace are protected by copyright, with all rights reserved, unless otherwise indicated. Previously published items are made available in accordance with the copyright policy of the publisher.

This is an open-access article distributed under the terms of the Creative Commons Attribution License.

For more information, see General copyright, Publisher copyright, SHERPA/RoMEO.
Strong claims for early life have been described from several stratigraphic horizons within the Pilbara Supergroup, including (Fig. 1):

- c. 3.48 Ga Dresser Formation (diverse stromatolites, putative microfossils, carbonaceous material, sulfur isotopes) (Walter et al., 2007).
- Highly negative 13C values in organic carbon in Edgeswiek conglomerate (van Kranendonk et al., 2010).
- Terrestrial atmosphere and oceans by 3.4 Mg.yr$^{-1}$ (Van Kranendonk, 2000).
- The top of the Dresser Group is largely composed of clastic sedimentary rocks and is interpreted to relate to rifting of EPT margins, prior to the onset of terrane accretion at 3.07 Ga (Thorpe et al., 1992a; McNaughton et al., 1993).

The mafic succession is punctuated by felsic volcanic rocks of the c. 3515–3500 Ma Coucal Formation. The lowest group is the Warrawoona Group, deposited from 3515–3427 Ma as a well-preserved, autochthonous succession of four groups deposited over c. 565 m.y. (van Kranendonk et al., 2004a).

The mafic succession is punctuated by felsic volcanic rocks of the c. 3515–3500 Ma Coucal Formation. The lowest group is the Warrawoona Group, deposited from 3515–3427 Ma as a well-preserved, autochthonous succession of four groups deposited over c. 565 m.y. (van Kranendonk et al., 2004a).

The mafic succession is punctuated by felsic volcanic rocks of the c. 3515–3500 Ma Coucal Formation. The lowest group is the Warrawoona Group, deposited from 3515–3427 Ma as a well-preserved, autochthonous succession of four groups deposited over c. 565 m.y. (van Kranendonk et al., 2004a).

The mafic succession is punctuated by felsic volcanic rocks of the c. 3515–3500 Ma Coucal Formation. The lowest group is the Warrawoona Group, deposited from 3515–3427 Ma as a well-preserved, autochthonous succession of four groups deposited over c. 565 m.y. (van Kranendonk et al., 2004a).
Supplementary Figure 2 | Locality 24S containing Dresser geyserite intraclasts in an inferred fluvial setting. (a) Pebble to cobble conglomerate. (b) Edgewise conglomerate with sinter clasts stacked in packed arrays. (Scale bar: 10 cm).
Supplementary Figure 3 | Mineral data of Dresser botryoidal geyserite (Location 16N). Scale bar measurements indicated. (a) BSE image of K-Al rich flakes in light layers and Ti-rich crystals concentrated in dark layers, set in a Si (microquartz) matrix (100 µm). (b) BSE image of K-Al (kaolinite+illite) laths and flakes. (10 µm). (c) Close-up of TiO₂ (anatase) grains. (10 µm). (d) SEM-EDS spectra for Al-K flakes in (b). (e) SEM-EDS spectra for Ti grains in (c). (f) Raman data confirms quartz matrix and anatase grains. (g) XRD spectra of kaolinite+illite flakes.
Supplementary Figure 4 | XRD point analysis of Dresser botryoidal geyserite. (a) XRD pattern shows peak data for quartz, anatase, and kaolinite. (b) Image of 0.5 mm elliptical analysis area (circled).
Supplementary Figure 5 | Mineral data of stratiform Dresser geyserite (Location 1S). Scale bar measurements indicated. (a) Micrograph of light and dark microlaminations (1 mm), inset box of (b) BSE image with point locations for (c) EDS spectra showing concentrations of points 1 and 2 with titanium illuminated as bright grains within dark laminae compared with point 3 showing a microquartz matrix. (d) Raman spectra confirming TiO$_2$ (anatase) and SiO$_2$ (quartz).
Supplementary Figure 6 | Mineral data of Dresser geyserite ‘sintraclasts’ (Location 245). Scale bar measurements indicated. Micrographs (a,b). (a) Angular intraclast (1 mm). Inset box of (b) showing light (Al-K rich) and dark (Ti-rich) microlaminations. (200 μm). Inset box of (c) SEM image showing light grey flakes (Al-K) in light layers and bright (Ti) grains packed in dark layers. (50 μm). (d) SEM-EDS spectrographs showing concentration of point locations (e) 1 – titanium in bright grains and 2 – Al-K laths, within 3 – a silica rich matrix. (10 μm).
Supplementary Figure 7 | Mineral data of equigranular troughs between Dresser geyserite botryoids. (a) Micrograph of equigranular troughs between botryoids. Inset box of (b) SEM-EDS image showing portion of equigranular sediment-filled trough. Corresponds to SEM-EDS element map data (c) titanium (blue), (d) aluminum (green), and (e) potassium (magenta).
Supplementary Figure 8 | Locality 16N. Outcrop location (arrow) of columnar-botryoidal Dresser geyserite with textural biosignatures. Note the planar to convex barite vein (dashed line) that cuts through the bedding, but terminates beneath the geyserite deposit, representing subsurface hydrothermal fluid flow to the surface.
Supplementary Figure 9 | Shearing versus palisade fabrics in the Dresser Formation and modern geothermal settings. Scale bar measurements indicated. Dresser Formation quartz textures; (a) Epithermal quartz textures infilling cavity space (Lens cap 2.5 cm). (b) Sheared quartz lens beneath domal structure composed of finely layered chert. (1 mm). (c) Dresser palisade fabric (Lens cap 2.5 cm). (d) ~150 Ma fossil palisade fabric oriented vertical to bedding, Claudia Sinter, Deseado Massif province, Argentine Patagonia. (80 μm).
Supplementary Figure 10 | Locality 24S: Elongate domical and conical stromatolites.
Scale bar measurements indicated. (a) Plan view in outcrop showing irregular, elongate, laminated ovoid stromatolites, 2-3 cm wide x 5-10 cm long. Synoptic relief is < 2.5 cm. They are composed of irregular black, dark brown to creamy brown, opaque laminaions. (b) Thin section scan of elongate domical and conical stromatolites. (1 mm). Micrographs (c,d). (c) Well preserved glass shards (red arrow) and sand sized grains (blue arrow) that infill a crack within the conical stromatolite. (1 mm). (d) Microbial laminates with palimpsest fabric within domical stromatolite. (1 mm).