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ABSTRACT:

Multivariant functions in Kea are a statically-typed form of the multi-methods of CLOS (Keene,
1989) but encapsulation is retained.  Multivariants permit fine typing distinctions to be made,
allow despatching to be avoided in some cases, and may be used to avoid some restrictions of
the contravariance rule.

Once multivariant functions are introduced by example, the semantics of the despatch of
multivariants are provided, based on the generation of despatching variants.  Three issues arise
with despatching: redundancy, ambiguity, and exhaustiveness of a (partially-ordered) set of
variants with respect to a function call.  It is shown that the approach taken here is consistent
with separate compilation.
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1 . Introduction
A form of multi-methods is introduced in the context of Kea1, a statically-typed object-oriented
and functional programming language which is currently being extended to include higher-order
and (implicitly) polymorphic functions.  Multivariant functions in Kea are a statically-typed form
of the multi-methods of CLOS, in which despatching depends on the class of all arguments to a
function (Keene, 1989).  Unlike CLOS, however, Kea retains a notion of encapsulation.
Multivariants permit fine typing distinctions to be made, allow despatching to be avoided in
some cases, and may be used to avoid some restrictions of the contravariance rule (Cook,
1989).

In the Simula despatching model, an object is the implicit first argument to a procedure (or
function) call;  the class of this object determines the procedure that is executed (Dahl and
Nygaard, 1966).  This model is inherited by Smalltalk and most other object-oriented languages
(Goldberg and Robson, 1983).  In class-based approaches, methods are associated with classes
in a class hierarchy or partially-ordered set, and encapsulation is provided in some form, giving
the benefits of abstract data types.

The Common Lisp Object System (CLOS) introduced the multiple-despatch model, in which the
selection of the method to be executed depends on the class of all arguments to the message, not
just the object (Keene, 1989).  CLOS provides for multiple despatch with generic functions in a
dynamically-typed setting but where encapsulation has been ignored.

The advantages of a statically-typed programming language are well known.  The most
important is that many errors can be detected at compile-time;  such errors have to be found at
run-time in a dynamically-typed language like Smalltalk or CLOS, sometimes long after a
program is "complete".  However, the disadvantages of an inflexible typing system, and/or the
need to supply type information, lead many to prefer dynamically-typed languages.  An
important aim is to find typing systems which do not place unnecessary demands or restrictions

1 Kea was previously known as Class Language;  a kea is an inquisitive New Zealand alpine
bird.
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on a programmer; automatic type inference and bounded parametric polymorphism are steps
towards this goal (Cardelli and Wegner, 1985).

Section 2 of this paper briefly introduces Kea to provide a context for multivariant functions.
Section 3 introduces multivariant functions by example and shows that there is not a clear
distinction between overloading and inclusion polymorphism.  Multivariants may be used to
avoid some of the restrictions of the contravariance rule.  Section 4 defines the semantics of
despatching multivariant functions with a scheme for the automatic generation of despatching
variants.  Three issues that arise with despatching are defined: redundancy, ambiguity, and
exhaustiveness of a (partially-ordered) set of variants with respect to a function call.  Section 5
raises compilation issues, including provision for separate compilation.  The final section
concludes the paper and suggests future work.

2 . Introduction to Kea
Kea inherits from the object-oriented paradigm the notions of information-hiding, abstract data
types, inclusion polymorphism, method overriding, and multiple inheritance.  In addition, it
introduces dynamic classification (Hamer et al, 1989; Hamer, 1990a; Hosking et al, 1990).
From the functional language paradigm, Kea inherits higher-order and polymorphic functions,
type inference, and lazy evaluation.

A class consists of a signature and an implementation.  The signature consists of public features
of the class.  A public feature of a component object is referenced using the “^” operator.  The
implementation consists of expressions for public and private (non-public) features.  A feature
of a class is typed;  its expression is evaluated when a value is required, such as in the evaluation
of another expression.  An object is created on demand with the pseudo-function new.  The
arguments to new  are lazily evaluated;  they pass information to the new object (as object
parameters) from the context in which it was created.

A class inherits the signatures and implementations of all its generalisation classes
(superclasses); it may extend either.  A class inherits a feature only once from a superclass even
when there are several inheritance paths.   Generalisation relationships between classes define a
(partial) type ordering, similar to Trellis/Owl (Halbert and O'Brien, 1987).  There is no notion
of inheritance without a type relationship, in contrast to Smalltalk (Goldberg and Robson,
1983).

Classification expresses sufficient conditions for object class membership;  for example, a
rectangle with equal sides can be treated as a square.  A classification attribute specifies a cluster:
a set of mutually-exclusive subclasses (Smith and Smith, 1977).  If class A has a cluster {B,
C}, classification ensures that any object of class A will also belong to either class B or C (but
not both).  In this way, clusters constrain types;  for example, the presence of cluster {B, C}
means that no class can inherit from both B and C.  Multiple classification is achieved with
independent classification attributes, so that an object can be classified to several independent
subclasses.

Dynamic classification of an object permits its type to be elaborated at run-time.  An object may
be explicitly classified as also belonging to other classes, based on the evaluation of its
classification attributes.  This process of classification is carried out on demand, whenever a
possible classification may lead to code which can affect the current evaluation of an expression.
Classification is lazy in that it is only carried out to the extent that is necessary.  Classification
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need not mirror inheritance, allowing for “classification leaps” down the class inheritance
structure.  Hosking et al (1990) provides further details.

2 . 1 Higher-Order and Polymorphic Functions in the List Classes

Kea is currently being extended to include higher-order, (implicitly) polymorphic functions with
multiple despatch.  The use of higher-order and polymorphic functions in class List and its
subclasses is shown in Fig. 2.1.  The three classes here together define a data structure for a list
of integers.  The class List specifies the signatures of the public functions available
(corresponding to "virtuals" in Simula (Dahl and Nygaard, 1966)), as well as defining the
constructor function cons.

class List.
 public cons, filter, map, fold, append.
 classification defaultEmpty: [EmptyList, ListNode]

:= EmptyList.
  cons(front: integer) := new ListNode(front, self).
  filter(keep: integer -> boolean): List.
  map(trans: integer -> integer): List.
  fold(accum: (integer, Any) -> Any, identity: Any): Any.
  append(other: List): List.
 end List.

class EmptyList.
 generalisation List.
  filter(keep) := self.
  map(trans) := self.
  fold(accum, identity) := identity.
  append(other) := other.
 end EmptyList.

class ListNode.
 generalisation List.
 parameter head: integer.

tail: List.
 public head, tail.
  filter(keep)

:= tail^filter(keep)^cons(head) if keep(head)
|  tail^filter(keep).

  map(trans) := tail^map(trans)^cons(trans(head)).
  fold(accum, identity)

:= accum(head, tail^fold(accum, identity)).
  append(other) := tail^append(other)^cons(head).
 end ListNode.

Figure 2.1  The List  Classes2

Class EmptyList  provides code for the empty list case.  Class ListNode defines the non-empty
list case with object parameters head and tail.  The classification feature defaultEmpty in class
List specifies that the two subclasses of List are mutually exclusive.  An object of class List will
be classified to class EmptyList, as defined by the expression for defaultEmpty, on the first
access to a public function of the object (other than cons).  Thus, class List is not an abstract
class;  the default classification makes “new List” operationally equivalent to “new EmptyList”.

2  The symbol “|” is read as “or” in function expressions.
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Functions in Kea may be higher-order and/or polymorphic, as is usual in functional languages
(Field and Harrison, 1988).  For example, the higher-order function map in class ListNode in
Fig. 2.1 is inferred to be of type “ListNode → (integer → integer) → ListNode”.  This function
returns the list resulting from applying the function trans to each of the elements of the provided
list.  The map function call in Fig. 2.2 returns the increment of each of the integers in a list,
using an anonymous function.  Similarly, the function filter is used in Fig. 2.2 to select the
positive integers from a list.

ints := new List^cons(-1)^cons(2).
positives := ints^filter(lambda(i: integer) => i > 0).
increment := ints^map(lambda(i: integer) => i + 1).
sum := ints^fold(add, 0).
add(i: integer, total: integer) := i + total.

Figure 2.2  Using functions filter, m a p , and fo ld

Parametric polymorphism for functions is implicit, both in bounded and unbounded forms
(Cardelli and Wegner, 1985).  For example, the function fold in Fig. 2.1 has the type Any
specified for some of the parameters.  The type of this function is inferred to be “List → (integer
→ x → x) → x → x”, in which x is a type variable.   The function fold is used in Fig. 2.2 to sum
the elements of an List;  the actual type of the function application here is “List → (integer →
integer  → integer ) → integer  → integer”.

3 . Multivariant Functions by Example
Kea’s multivariant functions are related to the multi-methods of CLOS (Keene, 1989).  As with
multi-methods, the code chosen for execution (during despatching) depends on the type of all
function call arguments, rather than just the type of the primary object (self).  Kea, however, is
statically typed;  multivariant functions and their calls are statically checked for type-correctness.
The selection of the appropriate function variant can be made at compile-time if the types of
function call arguments are suitable, as discussed below.

3 . 1 Overloading

Multivariant functions provide for overloading, where different variants have unrelated
parameter types.  For example, in Fig. 3.1 the function div accepts either integers or reals.  The
applicable variant (and hence the result type) can be determined at compile-time for a call of the
function div.  Thus the expression for aList in Fig. 3.1 is incorrectly typed because the List
function cons requires an integer parameter;  it is rejected at compile-time.  Compile-time
selection of the appropriate variant for a function call means that there need be no despatch at
run-time.
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div(r1: real, r2: real) := r1 / r2. % real
div(r: real, i: integer) := r / toReal(i). % real
div(i: integer, r: real) := toReal(i) / r. % real
div(i1: integer, i2: integer) := i1 div i2. % integer

anInt := div(4,2). % integer
aReal := div(4, 2.0). % real
aList := new List^cons(div(2.0, 4)). % Type error

Figure 3.1 Overloaded Function

Overloading also arises naturally from the coincidental matching of function names from
unrelated classes.

3 . 2 Despatching

Type information about the parameters of a function call may not be sufficient to select the
appropriate function variant at compile-time.  For example, consider the function equal in the
classes Point and ColorPoint in Fig. 3.2 (adapted from Canning et al, 1989).  The types of the
two variants are “Point → Point → boolean” and “ColorPoint → ColorPoint → boolean”.  With a
function call in which the types of the arguments are only known (statically) to be of type Point,
a selection must be made at run-time between the two relevant variants, based on the type of the
actual parameters.  For example, if the actual parameters to the function call are both of class
ColorPoint, the variant in class ColorPoint is dynamically selected.

class Point.
 public x, y, move, equal.
 parameter x, y.
  x: float.
  y: float.
  equal(p: Point) := x = p^x and y = p^y.
 end Point.

class ColorPoint.
 generalisation Point.
 public color.
 parameter color: Color.
  equal(p: ColorPoint) := x = p^x and y = p^y

and color = p^color.
 end ColorPoint.

Figure 3.2  Despatching

Encapsulation is enforced:  a function within a class may access any parameters and functions of
an object of that class.  However, access is only permitted to public functions of the arguments
of a function.
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Cook (1989) points out that the contravariance rule3 is violated in Eiffel, a statically-typed
language which uses the Simula despatching model (Meyer, 1988).  Multivariant functions in
Kea allow the benefits of subclassing to be retained without violating this rule.  The
contravariance rule is satisfied because the function equal in class ColorPoint does not
completely override the inherited function;  instead, it provides code to handle the case when the
object and the function parameter are both of type ColorPoint.

The two uses of equal in the expression for consistent  in Fig. 3.3 provide the same result; if
either the object or the parameter (or both) are of type Point, the function variant in class Point is
called.

a := new Point(x := 0.0, y := 0.0).
b := new ColorPoint (x := 0.0, y := 0.0, colour := red).

consistent := a^equal(b) = b^equal(a).

Figure 3.3  Consistency of Result from equal

Functions that access objects need not be defined within a class; in this case access is only
permitted to publics of those objects supplied as parameters.  This is illustrated with the function
firmEqual in Fig. 3.4 which provides a different notion of equality:  an object of class Point can
not be equal to an object of class ColorPoint.  The order of variants defines the sequence in
which they are considered during despatching.

  firmEqual(p: ColorPoint, q: ColorPoint)
:= p^x = q^x and p^y = q^y and p^colour = q^colour.

  firmEqual(p: ColorPoint, q: Point) := false.
  firmEqual(p: Point, q: ColorPoint) := false.
  firmEqual(p: Point, q: Point) := p^x = q^x and p^y = q^y.

Figure 3.4  A Different Notion of Equality

3 . 3 Overloading and Despatching

The need for despatching may depend on the particular function call.  For example, consider the
function addList in Fig. 3.5, which extends the List classes of Fig. 2.1.  This function takes two
lists and adds them element by element; the resulting list is the length of the shortest of the two
lists.  The types of the three variants in Fig. 3.5 are “EmptyList →  List →  EmptyList”,
“ListNode → EmptyList → EmptyList”, and “ListNode → ListNode → ListNode” respectively.

3 The contravariance rule specifies that a function f of type “AA → B” is a subtype of function g

of type “A → BB” (i.e. f  ≤ g) if and only if A ≤ AA and B ≤ BB.  That is, the subtype may
“narrow” the result type but can only “widen” the parameter type.
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class List.
...
   cons(front: integer) := new ListNode(front, self).
...
   addList(other: List): List.
 end List.

class EmptyList.
 ...
  addList(other) := self.
 end EmptyList.

class ListNode.
 ...
 parameter head: integer.

tail: List.
...
  addList(other: EmptyList) := other.
  addList(other: ListNode)

:= tail^addList(other^tail)^cons(head + other^head).
 end ListNode.

Figure 3.5 Function addList

Consider the example function calls in Fig. 3.6 (with result types shown as comments).
Despatching is not needed for the expressions of v1, v2, and v3, as adequate type information is
available to select the appropriate variant statically.  In addition, the specific type of these
expressions is determined.  For example, the function call in the expression for v3 is "ListNode
→ ListNode → x";  given that the third variant is selected statically, the type variable x is
determined to be ListNode.

empty := new EmptyList. % EmptyList
one := empty^cons(1). % ListNode
positives := one^filter(lambda(x) => x > 0). % List
v1 := empty^addList(one). % EmptyList
v2 := one^addList(empty). % EmptyList
v3 := one^addList(one). % ListNode
v4 := one^addList(positives). % List
v5 := positives^addList(positives). % List

Figure 3.6 Overloaded and Despatching Function Calls

Despatching is required for the calls to addList in the expressions of v4 and v5.  The
expressions are both of type List; this type is based on the types of the variants involved in the
selection.

4 . Semantics of Despatching Multivariant Functions
We define the semantics of multivariant functions through their translation to a lazy functional
language.  Despatching variants are generated during this translation;  these define the selection
between variants that is carried out at run-time.  For functions within a class, the object is made
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explicit as self, the first parameter.  For example, the function addList from Fig. 3.5 is translated
to the code shown in Fig. 4.1 (in which redundant conformance tests have been removed).

addList1(self, p1) := self. % EmptyList → List → EmptyList
addList2(self, p1) := p1. % ListNode → EmptyList → EmptyList
addList3(self, p1) % ListNode → ListNode → ListNode

:= cons(addList5(tail(self), tail(p1)),
  head(self) + head(p1)).

addList4(self, p1) % ListNode → List → List
:= addList2(self, p1) if conforms(p1)(EmptyList)
|  addList3(self, p1).

addList5(self, p1) % List → List → List
:= addList1(self, p1) if conforms(self)(EmptyList)
|  addList4(self, p1).

Figure 4.1 Generated Code for addList

Two depatching variants addList4 and addList5  have been generated to select between other
variants.  For example, the variant addList4  (called by v4 in Fig. 3.6) selects at run-time
between the variants addList2 and addList3 depending on the type of the second actual
parameter;  this variant is of type “ListNode → List → List”.  The function conforms takes an
object and returns a function which in turn takes a class identifier as parameter; the latter function
returns true if the object is of that class.

To assist in defining the semantics of multivariant despatching, we informally introduce a "first
pass" translation.  The results of this translation are used to define the generation of despatching
variants.  Three important properties of sets of variants are defined: redundancy, ambiguity, and
exhaustiveness.  We stress that the aim here is to define the semantics of despatching; an
implementation will use rather different techniques.  For example, conforms information and the
results of unary functions are cached in the current system (Hamer, 1990b).

4 . 1 The "First Pass" Translation

The first pass takes a Kea program and produces:

• Function variants in a functional form in which the object is included as an explicit
first parameter (self) to encapsulated functions.  This means that the implicit
parameter can be treated the same as other parameters in Section 4.2.

• The partial order of the variants of each function;

• Functions for object creation and access to object parameters;  and

• Subtyping and classification information.

We ignore here a number of issues in this translation: signatures, checking that encapsulation is
respected, and checking the constraints imposed by classification attributes.

For example, the definition of the function addList, which appears in the classes EmptyList and
ListNode in Fig. 3.5, is translated to the functional form shown in Fig. 4.2.  Function calls are
later resolved to specific function variants, as defined in Section 4.2.
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addList1(self: EmptyList, other: List) := self.
addList2(self: ListNode, other: EmptyList) := other.
addList3(self: ListNode, other: ListNode)

:= cons(addList(tail(self), tail(other)),
  head(self) + head(other)).

Figure 4.2 Function addList  in Functional Form

Information is gathered about the class relationships and clusters.  Each class has zero or more
clusters, where a cluster is a set of classes corresponding to a single classification attribute.  For
example, clusters(List) = {{EmptyList, ListNode}}.  The subtype relation < is the transitive
closure of immediate subclass;  the relation ≤ is the reflexive transitive closure.

A multivariant function f is defined as a triple (P, V, Θ), where P is the number of arguments of

the function, V is the set of variants with name f and P arguments,  and Θ specifies the partial
order of the variants in V.  For the purposes of the following discussion, we are only concerned
with the type of the variants.

The partial order is defined as follows.  Let v1, v2 ∈  V where v1 appears in class C1 and v2

appears in class C2.  The set Θ contains the element v1 << v2 iff:  C1 = C2 and v1 appears
before v2; or C1 < C2.  For example, the function addList in Fig. 4.2 is defined as the triple (2,
{addList1, addList2, addList3}, {addList2 << addList3}).  For the purpose of defining Θ,
function variants which are declared outside of classes are treated as being defined within a class
T, where for all C  ∈  the user-defined classes, C ≤ T.

For each class, there is a function to create new objects of that class.  There is also a function to
access each object parameter.  For example, consider the class ColorPoint from Fig. 3.2.  The
function new_ColorPoint, shown in Fig. 4.3, creates an object of class ColorPoint.  An object
consists of a pair (M, P), where  M is a class membership function and P is a sequence of actual
object parameters.4  The general function conforms selects M from the pair;  it is used in
depatching code.  The argument to conforms is used when a class has one or more classification
attributes.

new_ColorPoint(p1, p2, p3) := o where o :=
(conformsCP(o), (p1, p2, p3)).

conformsCP(o) := lambda(c) => c = ColorPoint or c = Point.
x((c, (p1, ...))) := p1.
y((c, (p1, p2, ...))) := p2.
color((c, (p1, p2, p3))) := p3.

conforms((c,p)) := c.

Figure 4.3  Object Creation and Object Parameters

4 The treatment of object parameters is simplified here; under multiple inheritance they are
partially ordered.



11

4 . 2 Despatching Function Calls

The second phase of translation involves the generation of despatching variants.  Three issues
arise in depatching function calls: redundancy, ambiguity, and exhaustiveness.  A variant is
redundant if it can never be selected;  redundancy points to a programmer error.  A set of
variants is ambiguous with respect to a function call if different total orderings of the partial
order of the relevant variants lead to different results.  A set of variants is exhaustive with
respect to a function call if the variants cover all possible subtypes of the arguments of the
function call.

These properties of variant sets are defined in this section, along with the generation of
despatching variants.  These definitions do not take account of polymorphic or recursive
function variants;  see Mugridge et al (1991a) for further details.

An Example.

Consider the classes in subtype relations B ≤ D, B ≤ A, and C ≤ A and where clusters(A)
={{B, C}}.  The function f is defined as the triple (2, Vf, Θf), where Vf = {f1: D → D → T,

f2: A → B → T, f3: B → D → T, f4: C → B → T, f5: C → C → T}, and Θf = {f3 << f1, f4

<< f2, f4 << f5, f5 << f2}.  The function g is defined as the triple (1, Vg, Θg), where Vg = {g1:

D → T, g2: A → T}, and Θg = {}.  This situation is illustrated in Fig. 4.4.  In the remainder of

this section, we consider a function call, such as f’: A → B → x, as being a variant type in
which the result type x is unknown.

The following problems arise:

• The variant f2 is redundant;  due to the variants f3 and f4 and the cluster, it can never
be selected.  A function call f’: A → B → x will match either f3 and f4 because an object
of class A must also be either of class B or class C due to the cluster.

• The variants g1 and g2 are ambiguous with respect to a function call g’: B → x.  Both

variants apply but there is no order defined between them in Θg.

• The variant set Vf is not exhaustive with respect to the function call f’: A → C → x.  It

would be with the addition of the variant f6: B → C → T.
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class B
f3: B -> D -> T

class D
g1: D -> T

f1: D -> D -> T

class C
f4: C -> B -> T
f5: C -> C -> T

class A
g2: A -> T

f2: A -> B -> T
classification ca:[B,C]

Figure 4.4 Redundancy, Ambiguity, and Exhaustiveness

Definitions.

Cover: The cover of a variant v: t1 → ... → tn → w is the set {s1 → ... → sn | s1 ≤ t1, ..., sn ≤
tn}.  The cover of a set of variants V is {c | c ∈  cover(v’) and v’ ∈  V}.

ExtendedCover: We can extend the variants in a cover by considering clusters.  If {si1,…,
sin} ∈  clusters(si) and a cover of a variant contains all the classes si1, …, sin in argument
position i, then the variant must also cover the class si in that argument position.

The extendedCover of a set of variants V is the set C where C contains:

• all variants in cover(V);

• S → t → U  if C contains S → ti → U, ..., S → �tm → U where {t1, ..., tm} ∈
clusters(t), S is a type s1 → ... → si and U is a type u1 → ... → uj.

Relevant.  Let a function f be (n, V, Θ).  A variant v ∈  V is relevant to a function call f’ iff

cover(v) ∩ cover(f’) ≠ Ø.

Exhaustive:  A set of variants E is exhaustive with respect to a variant v iff cover(v) {
extendedCover(E).

Redundant.  There are two sources of redundancy.  The simplest case is where a set of
function variants from the same class (i.e. with the same first argument) cover all the argument
types of a later variant from that class.  The second case, illustrated in the example above, arises
where a set of function variants from the classes in a cluster cover all the argument types of a
variant from the cluster’s class.  These forms of redundancy are defined as follows:
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(1) Direct Redundance: Let a function f be (n, V, Θ), v ∈  V, V’ = {v' ∈  V | v’ << v ∈  Θ and v
and v’ have the same first argument type}.  The variant v is redundant if V’ is exhaustive with
respect to v.

(2) Extended Redundance: Let a function f be (n, V, Θ) and v ∈  V.  The variant v is redundant

if there exists a cluster C such that V’ = {v’ ∈  V | v’ << v ∈  Θ and the type of the first argument

of v’ is Ci ∈  C} and V’ is exhaustive with respect to v.

Ambiguous: Let a function f be (n, V, Θ).  The variant set V is ambiguous with respect to a

function call f' iff there exists distinct variants vi, vj ∈  cover(V) such that there is no ordering

defined between vi and vj in Θ and cover(vi) ∩ cover(vj) ∩ cover(f')  ≠ Ø.

Despatch Variant: The generation scheme despatch generates code to select between an
exhaustive set of variants as follows:

despatch({vi: t1,1 → ...  → t1,m→ w1,   ...  , vn: tn,1 → ... → tn,m → wn}) =

v0(p1, ...,pm) := v1(p1, ... , pm) if conforms(p1)(t1,1) and ...
and conforms(pm)(t1,m)

   | ...
   |  vn(p1, ... , pm) if conforms(p1)(tn,1) and ...

and conforms(pm)(tn,m).

Function Call Despatching:  Let a function f be (n, V, Θ) and f’: t1 → ... → tn → x be an
application of function f. Code can be generated for f’ iff R, the set of variants relevant to f’, is
exhaustive and not ambiguous with respect to f’.  In this case, a call is made to the despatching
variant generated by despatch(R).

Examples.

• The cover(f2) = {A → B, B → B,  C → B} and extendedCover({f3, f4}) = {B → D, B → B,

C → B, A → B}.  As cover(f2) { extendedCover({f3, f4}), {f3, f4} is exhaustive with respect
to f2, and hence the variant f2 is redundant.

• The cover of the function call g’: B → x is {B}.  The cover(g1) = {D, B} and cover(g2) = {A,

B, C}.  There is no ordering defined between g1 and g2 in Θg and yet cover(g1) ∩ cover(g2) ∩
cover(g')  = {B}.  Hence g1 and g2 are ambiguous with respect to g’.

• The cover of the function call f’: A → C → x is {A → C, B → C, C → C}.  However, B →
C ∉  extendedCover(Vf) and so Vf is not exhaustive with respect to f’.

• Consider the function call f’: A → B → x.  The relevant variant set R = {f2, f3, f4}, which is
exhaustive and not ambiguous with respect to f’.  A call is made to the the despatching variant v’
defined as follows:
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v’(p1, p2) := f3(p1, p2) if conforms(p1)(B)
     |  f4(p1, p2) if conforms(p1)(C)
     |  f2(p1, p2). % This case is redundant

5 . Compilation Issues
Problems with variant redundancy, ambiguity, and non-exhautiveness must be signalled during
compilation.  We now consider two issues:  handling exhaustiveness and ambiguity at runtime,
and separate compilation of a Kea program.

5 . 1 Runtime Checks

When a set of variants is not exhaustive with respect to a function call, a compilation error
should result.  As it is convenient to develop a partially-completed program, a better approach is
to give a warning and extend the variant set so that it is exhaustive with respect to the function
call.  The extra variant produces an error message at run-time.  For example, a program that calls
the function tail with an argument that is only known to be of type List results in a warning and
leads to the new variant shown in Fig. 5.1.

tail(self: List): List
    := exception("function tail can only be applied to a
ListNode").

Figure 5.1 Automatically-Generated Error-Checking Variant

A warning could also be given when two or more variants are ambiguous with respect to a
subset of the cover of a function call;  an extra variant can be generated which gives an error if
the ambiguity arises at runtime.

5 . 2 Separate Compilation

Provision is made for separate compilation. Consider the set of classes shown in Fig. 5.2, in
which the classes A and B have been compiled within a library and the classes C and D appear in
new code that uses the library.
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Figure 5.2  Library and Added Classes Figure 5.3 After Class Migration

The set of classes in a library is translated so that a class is not used to create objects if it is (or
may become) a superclass of other classes.  The translation, shown in Fig. 5.3, introduces an
empty class A'  as a subclass of A.  Any object which previously would have been created as an
object of class A is instead created as an object of class A'.  This process of "class migration"
automatically introduces an abstract class.5

Class migration opens the way for separate compilation by permitting subclasses to be
introduced later.  When a function call to a variant is compiled, the position of the call is added
to a list of all calls to that variant.  If a new subclass is introduced later, such as class C in Fig.
5.3, new despatch code is generated and all function calls are redirected to the new (despatching)
variant which has been generated to take account of variants in new subclasses.

f(self: A) := h^g.
f(self: B) := g^h.

Fig 5.4  The Functions in the Library

For example, consider the two variants of the function f defined in the library, as shown in Fig
5.4.  The generated code, along with a despatching variant, is shown in Fig. 5.5;  this
despatching variant is based on the assumption that A' and B are the only subclasses of A.

f1(self) := g(h(self)). % A'
f2(self) := h(g(self)). % B
f0(self) := f2(self) if conforms(self)(B) % A

    |  f1(self).

Fig 5.5  Generated Code for the Library Variants

Later compilation of classes C and D with the library makes the original despatching variant f0
incorrect.  Provision must be made for the new variants shown in Fig. 5.6.  New despatch code
is generated, taking account of the new variants, as shown in Fig. 5.7.

5 The original motivation for class migration was "type loss" (Mugridge, et al, 1990b).
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f(self: C) := g^g.
f(self: D) := h^h.

Fig 5.6  The Functions in Classes C  and D

All calls to f0 are redirected to f0' and all calls to f2 are redirected to f2'.  This is handled by re-
linking the list of function calls from f2 so that they are linked to the variant f2'.  A "code
linking" phase runs through the lists and resolves the addresses.  The links makes it possible to
eliminate the code of unused variants in a "garbage collection" phase;  this is important when
using a small portion of a large library.

f3(self) := g(g(self)). % C
f4(self) := h(h(self)). % D
f0'(self) := f3(self) if conforms(self)(C) % A

     |  f4(self) if conforms(self)(D)
     |  f0(self).

f2'(self) := f3(self) if conforms(self)(C) % B
     |  f2(self).

Fig 5.7  The New Generated Code

Adding classes later can invalidate previously acceptable function calls.  For example, if the
subclass C were introduced without a variant for function f, the set of variants would be no
longer exhaustive with respect to function calls to f0.  This is handled as in Section 5.1.

6 . Conclusions and Future Work
Multivariant functions in Kea generalise the notion of despatching in statically-typed object-
oriented languages; the ideas are also relevant to procedural object-oriented languages, such as
Eiffel (Meyer, 1988).  Multivariants are a statically-typed form of the multi-methods of CLOS
(Keene, 1989) but where encapsulation is retained.  As despatching can be avoided when there
is adequate type information about arguments to a function call, there need be no unnecessary
overhead on function calls.  In addition, multivariant functions avoid the restrictions on
subtyping imposed by the contravariance rule.

Cardelli and Wegner (1985) distinguish overloading (ad hoc polymorphism) and universal
polymorphism (parameteric and inclusion polymorphism).  However, multivariant functions
show that the distinction is not so clear; whether overloading or inclusion polymorphism is
involved can depend on the function calls concerned.

Encapsulation of multivariant functions is provided.  Functions in Kea may be organised within
classes (i.e. based on the object: the implicit first argument), where access is available to all
functions of the class, both public and private.  Functions that are written outside of classes may
only access public functions.  Hence the first argument to a function is still given special status,
as in many object-oriented programming languages: Smalltalk (Goldberg and Robson, 1983),
Eiffel (Meyer, 1988), and Trellis/Owl (Halbert and O'Brien, 1987).  This is in comparison with
CLOS, which discards the notion of encapsulation altogether in introducing multi-methods
(Keene, 1989).  Further work is needed in considering other ways to integrate encapsulation and
multi-methods.
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As Kea is currently defined, all function argument types must be specified.  We are considering
the introduction of further type inference so as to eliminate the need for explicit typing where it is
unnecessary.  For example, the signatures defined in class List in Fig. 2.1 could be inferred
automatically.  A related area of investigation is into “type loss”, which prevents the full
potential of static typing from being realised (Mugridge et al, 1991b).  Unfortunately, bounded
parametric polymorphism (Cardelli and Wegner, 1985) only avoids some forms of “type loss”.

Multivariant functions provide a weak form of selection when compared to the pattern-matching
of functional languages like Hope (Field and Harrison, 1988;  Mugridge et al, 1990).  It would
be convenient to introduce a form of pattern-matching into Kea.  We are considering the
definition of patterns (consisting only of public functions) in a class and using those patterns in
variants.  For example, the function addList in class ListNode, from Fig. 3.5, is recoded in Fig.
6.1 to use a possible form of pattern-matching.

class ListNode.
 pattern (head, tail).
 ...
  addList(other: EmptyList) := other.
  addList((h,t): ListNode) := tail^addList(t)^cons(head + h).
 end ListNode.

Figure 6.1 Pattern-Matching in Function addList
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