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Upwards and downwards accumulations on trees

all

upwards downwards accumulations

Bird-Meertens formalism

An is a higher-order operation over structured objects of some

type; it leaves the `shape' of an object unchanged, but replaces each element of that object

with some accumulated information about the other elements. Upwards and downwards

accumulations on trees are two instances of this scheme; they replace each element of a tree

with some function|in fact, some homomorphism|of that element's descendants and of its

ancestors, respectively. These two operations can be thought of as passing information up

and down the tree. We describe these two accumulations, and show how together they solve

the so-called `pre�x sums' problem.
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The value of being able to calculate computer programs formally from their

speci�cations is now widely recognized. This ability to calculate can only be

achieved with the aid of mathematically precise and concise tools. In this pa-

per we look at the calculation of solutions to problems about trees. Trees are

important in computing because they capture the idea of hierarchical struc-

ture. They permit fast parallel collection and dissemination of information

among their elements; indeed, it could be argued that algorithms that

take logarithmic time, whether sequentially or in parallel, do so because of an

underlying tree structure.

We introduce two tools for reasoning with problems about trees, namely,

and on trees. These accumulations embody

the notions of passing information up a tree, from the leaves towards the root,

and down, from the root towards the leaves. We use these accumulations in

the derivation of a fast algorithm for the pre�x sums problem.

The workbench on which we use these tools is the

(Meertens, 1986; Bird, 1987, 1988; Backhouse, 1989). We give a crash course

in the relevant notation below.
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id

a a a b

a f g a

f g a

f g a f g a

a b a b b a

a b b a

a A a A

f A C

g B D

f g A B C D

f g A B C D

A f A A f f

f A B g A C h B A k C A

f g A B C

h k B C A

A B A

A B B

F F X, F X X

tree A A tree A tree A

The identity function is written ; the constant function always returning

is written ! . Function application is written with an in�x , so ! =

. Application is tightest binding, and associative, so parses as

( ) ; we �nd this more useful than left associative application. Function

composition is backwards, written with an in�x , and is weakest binding:

( ) =

The Bird-Meertens formalism makes free use of in�x binary operators. Such

operators are turned into unary functions by :

= =

The of a binary operator is written and satis�es

=

The type judgement ` has type ' is written (this is not intended

to mean that types are sets). The function type former is written . The

cartesian product of two types is denoted by , and their sum by . Indeed,

and are bifunctors, acting on functions as well as types: if and

then

We write and as abbreviations for and . The product

and sum morphisms `fork' and `join' are denoted by and , the shapes

suggesting processes splitting and recombining as they `move down the page';

if and , and and , then

The projections for products are

We do not need injections for sums in this paper.

Data types are constructed as the least �xed points of polynomial functors,

that is, as the initial algebras in the appropriate categories of algebras. We

will just use the ideas informally here, not having the space to present them

formally; the reader is referred to Malcolm (1990) or Hagino (1987) for the

details. For functor , an -algebra is a pair ( ) such that .

The trees we will be considering, , are de�ned by the

equation

=
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ternary
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h m -i

h m-i F

h m -i � h m-i - h m-i

F m� m-
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h m(i (

h m)i )

tree A,

A T X A X A X

A tree A

tree A A tree A tree A

b d e

b

a

d

c

e

�ve

A tree A

f A B f tree A tree B id id f g f g

h f, g F

h f g F h

X, F

f , f F

F f F

f

f

f a f a

f x y f x f y

, f T h

, f f F F X F X F X h

, f F 1 i n

leaves 1 u v u v

branches 0 u v u 1 v

Informally, this says that the algebra ( ) of trees with elements of

type is the least �xed point of the functor that maps to ( ) ;

the constructors (pronounced `leaf') and (a corruption of the Chinese

ideogram , pronounced `moo' and meaning `wood' or `tree') have types

Note that is a operator; its middle argument is written as a sub-

script. For example, the tree

( )

corresponds to the tree

We will call this tree , and use it as a running example.

The operation on types that sends to is a functor: its action on

functions, written with a post�x ` ', respects identity and composition. Thus,

if , then , and = and ( ) = .

We say that a function is ( ) - if

=

The important fact about the initial algebra in a category of algebras, the

, states that, if ( ) is the initial -algebra, then

for a given there is a function that is ( ) -promotable. This

function is called a and is written : ; if the functor is

clear from context, we write simply . In the case of trees, the catamorphism

satis�es

=

( ) =

and is the unique function that is ( ) -promotable. (Note that

is ( ) -promotable if = , and is

( ) -promotable for .) For example, the functions returning the

numbers of leaves and branches of a tree are catamorphisms, given by

= ! where = +

= ! where = + +
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3 Upwards accumulations

promotion the-

orem

predecessors

descendants

root

root id u v a

id

h f, g F h F f F g

1 branches leaves

1 0 , 1 T

inits

inits a, b, c a , a, b , a, b, c

inits

subtrees

subtrees �ve

Another example is the function , which returns the root of a tree:

= where =

and another is the identity function, the catamorphism built from the con-

structors of the type:

=

Catamorphisms are important because they are `eminently manipulable'.

One corollary of the unique extension property is called the

; the proof is in Malcolm's thesis, among other places.

If is ( ) -promotable, then : = : .

For example, the popular student exercise in structural induction of showing

that

+ =

follows from the promotion theorem, because + is (! ! ) -

promotable.

We now turn to the main topic of this paper, namely accumulations. Func-

tional programmers will be familiar with the function on (non-empty)

lists, which returns a list of all the initial segments of its argument; for exam-

ple,

[ ] = [[ ] [ ] [ ]]

Upwards and downwards accumulations arise from generalizing this concept

to trees.

One way of thinking about is as replacing every element of a list with

its , that is, with the initial segment of the list ending with that

element. By analogy, the function on trees replaces every element of

a tree with its , that is, with the subtree rooted at that element.

For example, applying to the tree yields the tree of trees
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subtrees

subtrees a a

subtrees x y subtrees x subtrees y

root subtrees id

subtrees x y subtrees x subtrees y

u v u v z root u root v

subtrees

subtrees

g subtrees

h h g subtrees

h a g a

h x y h x h y b g x y

h g

g h

g

g x y g x g y

The equations characterizing are

=

( ) =

We can see by case analysis that

=

and so

( ) =

where

= where =

That is, is a catamorphism, ( ) .

Functions that `pass information upwards', from the leaves of a tree towards

the root, are characterized in terms of :

Functions of the form are called .

Suppose that is an upwards pass, and that = , so that

=

( ) = where = ( )

This does not yield a quick way of computing , even if we have one for ;

for example, if takes time proportional to the depth of the tree, then will

take parallel time proportional to the square of the depth.

However, suppose further that is a tree catamorphism, so that

( ) =

for some . Now, we already have
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one

upwards accumulations

up-

wards accumulations

quickly up to

quickly

root h g

g x y root h x root h y

h x y h x h y

u v u v b root u root v

h x y h x h y

h

f subtrees

f,

h

sizes

sizes size subtrees

size

size 1 u v u 1 v

sizes 1,

sizes

f subtrees f,

subtrees

=

and so

( ) =

Thus,

( ) =

where

= where =

The important point is that ( ) can be computed from and

using only more application of , and so can be computed in parallel

time proportional to the depth of the tree times the time taken by . Such

functions are what we mean by :

Functions of the form are called

, and are written ( ) .

The phrase above about the time taken to compute is rather unwieldy;

we shall say instead that a function on trees can be computed

, or just when the is understood, if it can be computed in parallel

time proportional to the depth of the tree times the time taken by .

One simple example of an upwards accumulation is the function , which

replaces every element of a tree with the number of descendants it has:

=

Since is a catamorphism,

= ! where = + +

we have a quick algorithm

= (! )

for .

The equation

= ( )

can be seen as an e�ciency-improving transformation, when used from left

to right. It can also, of course, be used from right to left, when it forms a

`manipulability-improving' transformation; catamorphisms, maps and

enjoy many useful properties, and the left hand side may be more amenable to

calculation than the right. This choice between manipulability and e�ciency

is a characteristic of accumulations.

We have just discussed upwards accumulation, which captures the notion of

passing information up through a tree from the leaves towards the root. We
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. &

downwards

ancestors

thread

subtrees

paths

d

�ve

a

c

d

paths �ve

H X

A X A X A

thread A A thread A A thread A A

a c d

paths

turn now to accumulation, which corresponds to passing informa-

tion in the opposite direction, from the root towards the leaves.

As upwards accumulations arose by considering the function , which

replaces every element of a tree with its descendants, so downwards accumu-

lations arise by considering the function , which replaces every element

of a tree with its . The ancestors of an element in a tree themselves

form a special kind of tree, called a : a tall thin tree with that element

as its one and only leaf. For example, the ancestors of the element in the

tree form the three-element thread

and applying to yields the tree of threads

As a type, threads are the least �xed point of the functor which sends

to ( ) ( ) ; they are given by the type equation

=

and the three-element thread given above is written ( ) . The

constructors and could be pronounced `left snoc' and `right snoc', and

threads thought of as `snoc' lists with two di�erent colours of constructor.

Now, is a catamorphism, and is given by the equations



a a��

�

�

�

�

�

�

� �

�

Definition (4)

Definition (5)

Lemma (6)

Proof

downwards passes

downwards accumulations

quickly up to

and

� � ���

� h i�� � h i�� �

h�� .i . & �

h�� &i . & �

�� . �� & .

�

}

�

�

+ }

+

h i h i

h i h � i

h i h � i

}

. &

h�� .i . & h�� .i

h i h�� .i

h�� .i h � i

~

paths a a

paths x y a paths x a paths y

a p H a p

a p H a p

a c d a c d

g paths

g g paths

H f paths

f, ,

f, ,

a a

H f a H f a

H f a H f a

f , ,

a , f a H

f a f a

f a f a

F F

� + � ,

+ h m m i

, h m m i

+ ,

,

h m( m)i

( )

( ) (

) ( )

+ ,

h m( m)i + h ( m( m)i

h m( m)i , h ) m( m)i

h m( m)i ( )

m m h m( m)i m( m)

h m( m)i + h h m( m)i m( m)i

h m( m)i (

=

( ) =

(i)

where

= :

= :

Informally, and `cons' elements to threads; for example,

( ) = ( )

Because threads have three constructors, thread catamorphisms involve a `three-

way join', which should be considered a ternary operator rather than two ap-

plications of a binary one.

Functions that `pass information downwards' are characterized by the fol-

lowing de�nition.

Functions of the form are called .

As before, downwards passes need not be quick; however, if the `multiplier'

is a thread catamorphism then is more tractable.

Functions of the form : are called

and are written ( ) .

The downwards accumulation ( ) can be computed

, that is, quickly up to the more expensive of and . To see this,

we note �rst that a thread catamorphism composed with or is

another catamorphism:

: = :

: = :

The catamorphism is ( ) and ( ) promotable,

and so it is ( ( ) ) -promotable;

hence

= ( )

Since = , this gives us the �rst equation. The

second is similar.

Then
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f, , x y

f paths x y

paths

f a paths x a paths y

f a paths x f a paths y

f a , , x f a , , y

paths

paths

paths

paths

id

paths

, ,

f, , x y

f a , , f a , ,

paths

h a f a

h x y a h x a h y

g paths

h h

( ) ( )

=

( )

=

( )

= Lemma 6

=

( ) ( )

and the recursion on can be made in parallel after only one more appli-

cation each of and . For example, we see that can be computed

quickly up to and , that is, in parallel time proportional to the depth

of the tree, because is itself a downwards accumulation:

= =

=

( )

Notice, however, that downwards accumulations are not in general catamor-

phic: the accumulation ( ) of a branch depends on di�erent

accumulations ( ) and ( ) of the children.

The characterization (i) we gave for is an instance of the frequently-

occurring idiom

=

( ) =

(ii)

This looks like a downwards pass, in the sense that every element of the tree is

replaced with some function of its ancestors, but it is not immediately obvious

how it matches the pattern . The following theorem makes the

correspondence clear.

If satis�es (ii) then is a downwards pass.
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daerht

D X A A X A X

daerht A A A daerht A A daerht A

td H thread A daerht A

p a D a p

p a D a p

h

h D f td paths

paths

td a a td

td a a td

td a a

a , F

F X X A

a p b

b a p

a b p

a p b

a , a

D

a td a

a a

Consider the type , pronounced `dirt'; this is the least �xed point of

the functor sending to ( ) ( ) , and is given by the equation

=

(We make no apology for using the same symbol for singleton threads and

for singleton daerhts.) Informally, daerhts are to threads as cons lists are to

snoc lists. More formally, the correspondence between the two is given by the

isomorphism

= :

where

= :

= :

The operators and e�ectively `snoc' elements to daerhts.

It turns out that the function of Theorem 7 satis�es

= :

To show this we will call upon the following lemma, concerning the opera-

tions and from the de�nition of .

=

=

By Lemma 6,

=

Also, associates with |that is, is ( ) -promotable where

= |because

( )

= ( )

= catamorphisms

( )

= ( )

Similarly, associates with , so is ( ( ) )

-promotable, and

= ( )

Since = , the �rst equation holds. The second is symmetric.

We are now equipped to prove Theorem 7. Let satisfy
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X h mX mYi � Y h mX mYi

P

h mX mYi P h mX mYi

h mX mYi F m�

F mP h mX mYi

h mX mYi h F mPi

h mX mYi

X Y ( )

X (

Y )

X Y ( ) X Y

( ) X Y ( )

X Y ( )

h mX mYi h m( m)i

u v a u a v

h f

D f td paths f

f td paths a f a

f td paths x y

paths

f td a paths x a paths y

f a td paths x a td paths y

a f td paths x a f td paths y

f td paths x f td paths y

f td paths

f T f td paths

f td paths f h

f td

f, , f, ,

b f a f b a

b f a f b a

f, ,

f, , f, ,

f, , f, ,

D f td H f

=

so that = ( ) . We will show that

: = ( )

too.

(of Theorem 7) On leaves we have

=

while on branches we get

( )

=

( )

= Lemma 8

( )

= catamorphisms

=

( ) ( )

Combining the two we get

( )

= (( ) ) ( )

and therefore

= ( ) =

We have just seen that functions satisfying (ii) are downwards passes. Under

what conditions are they accumulations? That is, under what conditions is

a thread catamorphism? This question is answered next.

We say ( ) ( ) if

=

=

and and each associate with both and . We say ( ) is

if there exist and such that ( ) inverts to ( ) .

If ( ) inverts to ( ) then

: = :
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h mX mYi h m m i h m X mYi (

h X mX Yi h mX mYi (

X (

X ( h ( mX mYi ( h mX mYi

X ( ( X X Y Y

X ( ( X Y

X Y ( )

( )

F F
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X Y

- -
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f , ,

f p a f p a

f p a f p a

f p a f p a

f a p f p a

f a , p f p a

b f a f b a a f a f

b f a f b a a , ,

b f a f b a a

h f, , f, ,

h f, ,

depths

depths a 1

depths x y 1 depths x 1 depths y

depths f 1

a u 1 u depths

depths

1, , 1, ,

depths 1, ,

depths

According to the promotion theorem, it is su�cient to show that

is ( ) and ( ) promotable, that is, that the two equations

( ) =

( ) =

hold. We prove the �rst of these; the second is symmetric.

( ) =

=

=

= promotion, catamorphisms

=

condition on and

= ( ) =

promotion

= is ( ) and ( ) promotable

= de�nition

= associates with and with

If satis�es (ii), and ( ) inverts to ( ) , then

= ( )

For example, consider the function , which replaces every element of

a tree with its depth in that tree; it satis�es

=

( ) = + +

That is, satis�es (ii), with being ! and and both being the

such that = + ; hence, by Theorem 7, is a downwards

pass and a catamorphism. Computed naively, will take parallel time

quadratic in the depth of the tree, but (! ) inverts to (! ) and so

= (! )

and can be computed quickly too.

Accumulations on trees provide a valuable tool for abstraction, as we hope to

show by the following example.
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The problem is a problem on non-empty lists, which are given

by the equation

= ++

modulo the law that ++ is associative. The list catamorphism satis�es

the equations

=

( ++ ) =

where the operator must also be associative. One example of a list cata-

morphism is the function , which returns the last element of a list:

=

Another is the function mentioned earlier:

= ( ) where = ++ ++

The pre�x sums problem is to evaluate the `running totals'

of a list. The operator must be associative; we also assume that it has

a unit, . For example, applied to the list [ ] , the problem is to

compute

[ ]

This problem encapsulates a very common pattern of computation on lists; it

has applications in, among other places, the evaluation of polynomials, com-

piler design, and numerous graph problems including minimum spanning tree

and connected components (Akl, 1989).

It might appear from the above example that the problem inherently takes

linear time to solve, even in parallel; the structure of the result seems to pre-

clude any faster solution. However, Ladner and Fischer (1980), reworking

earlier results by Kogge and Stone (1973) and Estrin (1960), show that the

evaluation can be performed in logarithmic time on a linear number of proces-

sors acting in parallel. It turns out that their `parallel pre�x' algorithm, which

we derive here, is naturally expressed in terms of accumulations on trees.

The problem is to evaluate

=

The �rst step in the derivation is to change the problem from one on lists to

one on trees; the motivation for this is that trees often lead to logarithmic

algorithms, whereas lists rarely do. So, we are looking for a quick function

, which evaluates pre�x sums on a tree, satisfying

= (iii)

where is the function returning the leaves of a tree as a list:

= where = ++
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We can calculate immediately the result of applying to a leaf, since

=

and hence

=

because is injective on leaves. Letting = , we have on

branches

( )

= speci�cation of

( )

=

( ++ )

= ,

( ++ ++ )

= , catamorphisms

++

= ; speci�cation of

++

This does not completely determine on branches, since is not injec-

tive on branches, but it is `sweetly reasonable' to suppose that

( ) =

for some ; certainly, this supposition is consistent with the indirect speci�-

cation (iii) of . The calculation can tell us nothing about , the root of

( ) , because throws branch labels away.

This gives us now a direct|that is, executable|speci�cation of :

=

( ) = (iv)

for some . Executing this speci�cation requires parallel time quadratic in the

depth of the tree; we show next how to improve this to linear parallel time, by

exploiting the freedom in the choice of value for .

Suppose that = , that is, that

( ) =
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Intuitively, this allows the computation of ( ) from and

to be split into two parts, the �rst bringing to the root of the tree and the

second mapping over the right child. More formally, suppose that

( ) =

( ) =

whence

( ) =

so follows the same pattern as . An inductive proof shows that

( = ) ( = )

(We cannot use the unique extension property because we do not yet know

whether is a catamorphism.) The premise of this implication is satis�ed

if

=

=

We have not yet improved the e�ciency; and both take parallel

time quadratic in the depth of the tree. However, as the names suggest,

and are upwards and downwards passes, and we know how to make such

functions quick: we turn them into accumulations.

Let = , so

=

( ) =

Now,

=

so is indeed an upwards pass. It is not an accumulation, because is not

a catamorphism: ( ) depends on and not just on . However,

as this suggests, a catamorphism,

= ( ) (( ) )

(In fact, is a (Malcolm, 1990): a function which, although

not catamorphic by itself, becomes catamorphic when tupled with another

function|in this case, |that is itself a catamorphism.) This means that

= above
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= pairs

( )

= is a catamorphism

( ) (( ) )

=

( ( ) )

which can be evaluated quickly up to .

So much for ; what about ? We have

=

( ) =

and so by Theorem 7 is a downwards pass. Again, it is not an accu-

mulation, because ( ) is not top down. For, suppose ( ) were to

invert to ( ) ; then by Theorem 10, the two functions

= :

= :

would be equal. Consider now the three threads

=

= ( )

= ( )

with and such that di�ers from . We have

= =

= = ( )

= = ( )

If and are to be equal, we see that and must also be equal, in which

case returns the same values for and , whereas returns di�erent values.

So, is not an accumulation. Consider, though, the fork of thread

catamorphisms

!

This is itself a catamorphism (Fokkinga, 1990):

! = (! )

where

( ) = ( )

Moreover, it is top down|it inverts to (! ) where

( ) = ( )

( ) = ( )
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Thus,

= Theorem 7

= pairs

(! )

= Theorem 10

(! )

This gives us the promised e�cient algorithm for , an upwards accumula-

tion followed by a downwards accumulation, with maps after each accumula-

tion to `tidy up':

= (! ) ( ( ) )

This is the essence of the parallel pre�x algorithm.

We have presented two kinds of accumulation on binary trees: upwards accu-

mulation, which captures the notion of passing information up from the leaves

of a tree towards the root, and downwards accumulation, which corresponds

to passing information in the other direction, from the root towards the leaves.

We have given conditions under which the accumulations are both catamorphic

and quick, that is, requiring parallel time proportional to the product of the

depth of the tree and the time taken to perform the individual operations. We

have shown how these accumulations neatly provide a solution to the pre�x

sums problem.

O'Donnell (1990) has presented a derivation similar to ours, without using

accumulations; he only went as far as producing the characterization (iv) of

, then developing a quick implementation of it as a single monolithic func-

tion without separating out the two phases. The result is a `sweep' operation

consisting of a tree of processes, each of which `sends information in both di-

rections on each data path'. Accumulations make the data 
ow much clearer,

cleanly separating the two phases, and provide a systematic way of deriving

an e�cient solution to the problem.

The material presented here is covered in much greater depth in the author's

thesis (Gibbons, 1991), but the interested reader is warned that the notation

di�ers in places: di�erent names have been used for the same concept, and

even the same name for di�erent concepts.
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