Constructing Multi-View Editing Environments Using MViews

John C. Grundy and John G. Hosking

Department of Computer Science
University of Auckland, New Zealand
email: john@cs.auckland.ac.nz

MViews abstracts out common features of multi-view

editing environments that support integrated textual and 2. Multiple view support

graphical programming. It provides a conceptual model

and reusable object-oriented framework for constructing Requirements

such environments. Multiple views of a base document are
supported with consistency automatically maintained

Visual programming environments that support

between each of the views. MViews has been used tonultiple views require several facilities:

construct a visual and textual programming and program e
visualisation environment for object-oriented systems.
Other applications of MViews under development include
entity-relationship and dataflow diagrammers with
detailed descriptions programmed with text.

1. Introduction

In this paper we describe MViews, a model and °
framework for supporting the construction of visual
programming environments. MViews includes a multiple
view with consistency model and free interchange
between textual and graphical modes of programming.
Visual programming environments for particular tasks, *
such as object-oriented programming, are constructed by
specialising MViews classes. *

The advantages of MViews for visual language
implementation include its representation of programs and
program views as graphs. This allows graph-based
languages, typical of visual languages [2], to be
represented naturally and graph-based semantics to b
represented in the same manner. For multi-view editing,

the text/graphics consistency model produces a novel ani

flexible method for integrating high-level graphical
programming and low-level textual programming. The use
of a reusable object-oriented framework, rather than an
environment generator, produces a very flexible set of
building-blocks for constructing environments.

The paper begins with a description of the MViews
conceptual model. This is followed by discussion of SPE
a specialisation of MViews, providing a programming
environment for an object-oriented Prolog. An overview
of the MViews framework and its implementation is

presented and the paper concludes with a discussion O{)I’O

current and future work.

A graph-based, abstract and flexible program structure
and semantics representation [1, 2].

Textual and graphical view support, as visual
programming is typically useful for high-level detail
while text is typically useful for low-level detail [9,
11, 13].

View editing strategies most programmers prefer,
such as interactively editing graphics and free-editing
text, rather than structure-editing [15].

An efficient view change propagation mechanism so
all views are made consistent after one view is
updated. This should support incremental view
updates and visual indication of changes that
environments cannot automatically carry out [5, 11].
An undo/redo facility [12] and modification history
for program components.

Program persistency and support for tool integration
and extensibility [11].

Existing systems

Smalltalk’s Model-View-Controller (MVC) [7]
Erovides a framework where views of a model object are
ent “update yourself” messages when the model changes.
his often requires a view to redisplay itself whenever its
model changes as only an indication of change is
propagated [5].
incremental view updating nor efficient recalculation of
semantic attributes.

MVC does not directly support

Unidraw [14] provides a damage algorithm for

incremental view updating and commands implement
"undo/redo. It does not directly support textual views
(except a simple export facility) nor modification
histories.

PECAN [12] and GARDEN [13] provide flexible

gram representations, program persistency and
undo/redo. They use an MVC-like update model,

however, and do not support modification histories or A dval ue, Newval ue>. Dependent components interpret

visual change indication. update records and modify themselves if necessary,
Generated environments like Dora [11], possibly generating further update records.
Mjglner/ORM [10], and LOGGIE [2] provide structure A component may store update records (using a list

oriented editing for views of a program. This editing style attribute) to provide a modification history. Update

has yet to gain wide acceptance among programmers [15]records may also be stored to support undo/redo by
The 1temli st [5] provides incremental view sending them back to their generating components for

updating, similar view and program representation, andreversal. Update records can also be used to drive data-

undo/redo. It does not provide a natural way of driven semantics recalculation and support lazy,

representing visual program structure or semantics,incremental view updating.

however, nor generic editing mechanisms for view Dependent components know the exact change to their

manipulation. parent, unlike MVC, and thus can make more efficient and
_) precise responses [5]. This also allows more flexible and
3. MViews architecture efficient re-computation after change than data-driven

: . . attribute recalculation. Our program graph approach
MViews was designed to satisfy the above ., ides a comparable representation to abstract syntax

requ?rements. A central database hold_s all infor_mationtrees but supports graph-based program structures and
relating to program structure, semantics and different ¢o 4 ntics.

views of a program. Tools communicate via this database
and tools for a specific environment, such as text or
graphic editors, are either specialised from generic
MViews tools, built using the framework, or existing tools
reused, such as compilers and run-time systems.

4. The Snart Programming Environment

The first application of MViews has been in the
development of the Snart Programming Environment
Conceptual foundations (SPE) for Snart, an object-oriented Prolog [9].

MViews represents programs and views as collectionsAn overview of SPE
of directed graphs, callg@togram graphsProgram graph
components arelementggraph nodes) arelationships
between components (labelled graph edges) and both ca . X .
have named attribute values. As this representation is 1e construction of many views, eac_h focussmg_ on
graph-based, it can represent visual as well as textuafj”cferer.‘t aspects of the program, reducing the cognitive
languages [1, 2]. Adase viewis used to group program oad in undt_arstandmg a program. Consistency
graphs that comprise a shared, canonical representation dffanagement is employed to maintain data integrity
a program. etween all views sharing information.

Subset vieware program graphs representing a subset Graphical views are |n;eract|vely-ed|ted using a
of the base program graph and its components Thispalette of tools, menus and dialogues and textual views are

allows views of a program to be represenied and oS A P HETEL LS G e
manipulated in the same manner as the program. PP [2. 11] employing

Each subset view is rendered either graphically oeriting [15].

textually using alisplay view Display view components Figure 1 ShOW.S SP.E editing a .S'mp'e .drawmg
render subset view components and include icons, glueorogram. One graphical view shows major inheritance and

andtext forms(sequential text). aggregation hierarchies, the other client-supplier

Operatons modiy a program graph and nclude (PRLESTDS ebuEel vu ooy and e clasces,
component addition and deletion, relationship establishing

and dissolving, attribute updating, and view manipulation, 9" "9 ndow and the other the de method fori gure.
Programmers typically use graphical views for

Propagation and recording of change analysis and design and for static program visualisation.
These views provide class icons with feature names and
MViews program graphs are dependency graphs.generalisation, association, and client-supplier
Every component has zero or more related componentgelationships. View composition and layout are under the
that may be affected by a change to itself, called complete control of a programmer.
dependentomponents An operation applied to a Textual views are typically used to implement
component informs these dependents of a change using amethods and specify additional class interface details.
update record All operations generate update records, Arbitrary documentation of program components can also
which are, conceptually, lists of values describing the be added using textual views. After parsing textual views
change. For example, anpdate_attribut e(Nane, the Snart compiler is used to generate Snart code.
NewVal ue) operation on a compone@dnp will generate
the update recordConp, update_attribute, Name,

SPE supports multiple textual and graphical views of a
ﬁrart program sharing common information. This allows

File Edit Uiews Tools Layout Compile

window-root class drawing_window-Class Definition

r, f#updates_start(§9).
\ update({20). % rename feature gfigures to figures
k S— update({21). % #**% Compilation error: duplicate
T Ly features for clicked
update(22). ¥ User Update: use figures for
- - storing figure references
ok % drawing _window updates_end. */
N
1 p=m IEs
X hutt * Drawing Window class.
figures utton *
B’ 'E"’m' button */
class{draving_window,
parents([
cigsed figure; open figure window([

renamefclicked, window_clicked)

features([
buttons{list{drawing_button)).
current_button{drawving_button}.
gfigures{list{figure}).
clicked

rectangle| [foval fline
= 7 -

figure::hide-Meth
Adupdates_start{il).
update(3). ¥ add client-supplier fig
drawing_window: remove_figure
updates_end. #*/

figure-Drawing

% Hide a figure by removing its repr

LP& window. hid B
% = B)
figure: hide(Fig) :- >d91_131° 7
Fig@window{Window) draw
Windowddel pic{Fig). é -=add_pic

Fig@visible:=false. window

add_figure
remove_figure
figures

———————

Figure 1. The Snart Programming Environment.

Programmers need to locate information easily from as accept the change and have SPE modify the text
large number of views and base data. SPE's approach isto (changingyfigures tOfigures)
use views themselves in a hypertext-like fashion as thee implement the change manually
basis for browsing, with Prograph-style click-points [4] on ¢ reject the change, causing it to be undone
icons. Menus are used for textual views for similar view In some cases, such as the addition of client-supplier
and program browsing facilities. glue in a graphical view, it is not possible to automatically
Programmers can construct additional views for the update a textual view. Such an example is shown in the
sole purpose of program browsing, based on informationti gure: : hi de view of Figure 1. For this change SPE cannot

expanded from the base view via dialogues. infer the appropriate modification tei de and the
programmer must change the method text.
Managing change in SPE Update records may also be used to inform users of

errors and to document changes via “user defined”

MViews provides basic change propagation facilities updates. A compilation error and user-defined update are
based on update records which are used by SPE. Somghown in their awi ng_wi ndow class definition in Figure 1.

changes to graphical views, such as a feature rename, are One important consequence of the update record

applied directly to the view. Other changes, such asapproach to consistency management is that the collection

deletion of a relationship cause affected components to bef update records for a component provides a modification

highlighted in a different colour (eg red for a deleted history which SPE permits to be browsed and modified.
feature).

Changes are not immediately made to textual views. Runtime support
Rather, a readable rendering of an update record is o
inserted into the view and a programmer can accept, Programs can be run and debugged from within SPE.
implement, or reject the update. A. rudimentary V|su_al debugger allow; object d_ata to .be
For example, from Figure 1 the first update record in dllsplayed and navigated between using graphical object
thedravi ng_wi ndow view indicates that the i gures feature ~ VIEWS. o
has been renamed togures in another view. The MViews can also be used to produce animations of
programmer can: executing Snart programs. Snart provides a dynamic
object tracing mechanism where individual objects and

some of an object’s features can be spied. MViews useglasses Subclassing can also over-ride default method
this to produce update records equating to object methodmplementations to provide application-specific language
calls and attribute assignment which can be used to drivesemantics and constraints. Update records are propagated

an animation. and stored as objects with attribute values describing the
update.
L L Subset component classes support the same operations

window-root tlass 'sn_traced(197)'(197) tally

and update propagation mechanism as base components
with extra methods for view support. Subset views record
subset component updates for undo/redo and interface to
display views and external systems.

Textual and graphical display views group renderings
of subset view components as icons, glue or text forms.
Display views and components are defined as

e specialisations of subset views and components.

" 1 # e Graphical views use interactive editing of graphical

- o icons and glue. The built-in MViews text editor is used to

aaaaaaa free-edit textual views. Textual views are parsed, using
: e application- specific parsers, to update MViews base

components.

K
Tan LE
]
&

rew

A Snart implementation of MViews

MViews has been implemented in Snart and this
provides a reusable framework of Snart classes.
Components and relationships are implemented as Snart
classes, attributes stored as Snart object attributes, and
operations implemented by Snart methods.

Systems such as SPE are constructed by appropriately

Fig. 2. Program visualisation in SPE.

For example, Figure 2 shows an animation of a sorting
algorithm, a tally graph showing method calls to an object,

and an object data view. Sort animation deteCtsspecialising these framework classes. For example, a
compa_re/swap met_hod calls on a sorting object. The tallybalse cl ass is specialised fromvase_conponent , a
graph is a subset view of a hashtable which counts anothe(gI ass_icon from graphic_icon and' a

(i this casea bar graphy. We are extending SPE-sL| 255_code_vi ewfrom L ext ual _vi ew. Environments
visualisation capabilities to iﬁclude graphical inter-object define their own attributes, relationships and operation
references, similar to [6], and to support control flow methods but reuse MViews’ multiple views, consistency
CETe e ' management and persistency systems.
visualisation.
ThelspelM framework and SPE
5. Design and implementation
Development of SPE was a two step process. Firstly

To produce a reusable implementation for MViews a IspelM, a framework which supports programming
programming environment generator with its own environments for object-oriented languages (i.e. is
specification language [2, 10] or a specialisable object language independent and reusable for different
oriented framework [14] could be implemented. Many languages), was specialised from MViews. Further
aspects of an interactive environment, such as good editogpecialisation tailored IspelM for programming in Snart
interfaces, require specialisation and fine-tuning on producing SPE. IspelM defines classes specialised from
difficult to provide with a generator. For these reasons aMViews which implement:

framework approach was chosen. ¢ Object-oriented program representation including
_ _ class and feature components, and generalisation and
The MViews ar chitecture client-supplier relationships.

. , e Graphical display views and components for
A collection of abstract classes provide a framework gescribing and manipulating class relationships with
for MViews-based environments. Different kinds of most methods for interactive editing inherited from

MViews components are modelled as a class hierarchy, Mviews classes.

operations are implemented as method calls and attributes Textyal display views and text form classes with text

and relationships as objects. form management, editing, and parsing and unparsing
Base program component classes hold program primitives inherited from MViews classes.

structure and semantics data and relationships connect gpg specialises IspelM to support development of

these components. Basic component operation methodgnart programs. SPE classes define Snart-specific parsers

can be augmented with more complex operations iR sub gng unparsers for textual display views, saving and

loading support for Prolog code, and an interface to the
existing Snart compiler and run-time system.

Experience with MViews systems

The development of SPE and IspelM was
considerably easier when compared with Ispel, which was
implemented without framework support [8]. A program
visualisation system, an entity-relationship modeller and a
dataflow diagrammer are currently under development
using MViews. These support multiple textual and
graphical views of quite diverse visual programming
languages and related textual information. Preliminary
results suggest development of these systems is greatll,é]
simplified by using the MViews model and framework.

Systems which support multi-view editing allow
programmers to describe information using the most
convenient representation and level of abstraction [3]. Us€3]
of multiple textual and graphical views in SPE
demonstrates the need for visual indication of view
changes and the ability to automatically apply thesel4]
changes. Together with component change histories, this
provides a novel solution to integrating low-level textual
programming with high-level visual programming and (5]
graphical program visualisation. Use of SPE indicates the
MViews approach shows great promise for integrating
these textual and graphical paradigms [9]. [6]

6. Summary and current and futureresear ch -
We have described MViews which supports: program
structure and semantics representation as program graphfs']

multiple textual and graphical views; consistency

management via update record propagation; update record
storage for undo/redo and modification histories; generic
routines for component persistency; and a consistent usef9]
interface with external tool interfacing. MViews has been
reused in the development of IspelM, an environment for
object-oriented programming. SPE, a specialisation of[10]

IspelM, supports textual and graphical manipulation of

Snart programs. MViews provides abstractions and a

framework so new environments can support multi-view [11]

editing by simply reusing MViews.

Other applications of MViews currently under
development include: visual debugging using diagrams to[12]
illustrate object references; a dataflow programming tool,
similar to Prograph [4], which can be integrated with
textual views allowing a mixture of textual and dataflow
programming in SPE; and an entity-relationship (13
diagramming tool with textual relational schema.

Future applications for MViews include:

e Specialisations of IspelM for object-oriented
languages other than Snart

e Better IspelM support for analysis and design.

* Recording of update records in groups with arbitrary [15]
undo/redo to support flexible version control. With
configuration management this could be used to
support distributed multi-user software development.

(14]

Acknowledgments

The financial assistance of the University of Auckland
Research Committee is gratefully acknowledged. John
Grundy is supported by IBM, William Georgetti and New
Zealand Universities Postgraduate Scholarships.

References

Arefi, F., Hughes, C.E., and Workman, D.A. (1990):
Automatically Generating Visual Syntax-Directed Editors,
In CACM, 33 (3), 1990, 349-360.

Backlund, B., Hagsand, O., Pehrson, B. (1990): Generation
of Visual Language-oriented Design Environments, In
Journal of Visual Languages and Computih@g4), 1990,
33-354.

Brown, M.H. (1991): Zeus: A System for Algorithm
Animation and Multi-View Editing, InProc of IEEE
Symposium on Visual Languag#&891, 4-9.

Cox, P.T., Giles, F.R., Pietrzykowski T. (1990): Prograph:
a step towards liberating programming from textual
conditioning, InProceedings of 1990 IEEE Workshop on
Visual Languagesl 990, 150-156.

Dannenberg, R.B. (1990): A Structure for Efficient Update,
Incremental Redisplay and Undo in Graphical Editors, In
Software-Practice and Experien@§ (2), 1990, 109-132.
Fenwick, S., and Hosking, J.G. (1998)sual Debugging

of Object-Oriented System®epartmental Report #65,
Computer Science Department, University of Auckland.
Goldberg, A. and Robson, D. (1984 malltalk-80: The
Language and its Implementatiomddison-Wesley,
Reading MA., 1984.

Grundy, J.C., Hosking, J.G., and Hamer, J. (1991): A
Visual Programming Environment for Object-Oriented
Languages, IrProc TOOLS 5Prentice-Hall, 1991, 129
138.

Grundy, J.C., and Hosking, J.G. (1992): MViews: A
Framework for Developing Visual Programming
Environments, IrProc TOOLS Pacific ‘93Prentice-Hall.
Magnusson, B., Bengtsson, M., Dahlin, L., Fries, G.,
Gustavsson, A., Hedin, G., Minor, S., Oscarsson, D.,
Taube, M. 1990: An Overview of the Mjginer/ORM
Environment, IlProc TOOLS '90Prentice-Hall.

Ratcliffe, M., Wang, C., Gautier, R.J., Whittle, B.R.
(1992): Dora - a structure oriented environment generator,
In Software Engineering Journal (3), 1992, 184-190.
Reiss, S.P. (1985): PECAN: Program Development
Systems that Support Multiple Views, IhEEE
Transactions on Software Engineerjrig (3), 1985, 276
285.

] Reiss, S.P. (1986): GARDEN Tools: Support for Graphical

Programming, In_ecture Notes in Computer Science #244
Springer-Verlag, 1986, 59-72.

Vlissides, J.M., Linton M.A. (1989): Unidraw: A
framework for building domain-specific editors. Rroc
ACM SIGGRAPH Symposium on User Interface Software
and TechnologyNovember 1989, 158-167.

Welsh, J., Broom, B., Kiong, D. (1991): A Design
Rationale for a Language-based Editor, Software - Practice
and Experience2l (9), 1991, 923-948.

