From Serial to Massively Parallel
Constraint Satisfaction*

Hans Werner Guesgen
Auckland University
Computer Science Report No. 69

March 1993

Abstract

Local propagation algorithms such as Waltz filtering and Mackworth’s AC-x algo-
rithms have been successfully applied in Al for solving constraint satisfaction problems
(CSPs). It has been shown that they can be implemented in parallel very easily. How-
ever, algorithms like Waltz filtering and AC-x are not complete. In general, they can
only be used as preprocessing methods as they do not compute a globally consistent
solution for a CSP; they result in local consistency also known as arc consistency.

In this paper, we introduce extensions of local constraint propagation to overcome
this drawback, i.e. to compute globally consistent solutions for a CSP. The idea is
to associate additional information with the values during the propagation process so
that global relationships among the values are maintained. The result are algorithms
that are complete and for which there are straightforward, parallel and massively
parallel implementations.

1 Introduction

Constraint satisfaction algorithms have been applied successfully in many subfields of Al,
such as circuit analysis [21], computer vision [23], diagnosis [3, 8, 4], logic programming
[14], and planning [22]. The realizations of constraint satisfaction algorithms lie in a
broad spectrum, having serial implementations at the one end and massively parallel ones
at the other. This paper describes a family of constraint satisfaction algorithms for which
serial, parallel, and massively parallel implementations exist. Unless other approaches,
the algorithms are easy to compare, since they are all based on the same principle: They
apply local propagation combined with techniques that associate additional information
with the values of the constraint variables.

The paper may be viewed as part three of a trilogy, the first part of which [13] de-
scribes how constraints can be used with other knowledge representation formalisms such
as frames, rules, logic, etc. and the second part of which [10] introduces a constraint
language and an interpreter for this language. In part three, we will report about the

“The author performed part of this work while at the German National Research Center for Computer
Science (GMD) in St. Augustin, Germany, and the International Computer Science Institute in Berkeley,
California. At the GMD he was supported by the German Federal Ministry for Research and Technology
within the joint projects TEX-B (grant [TW8506D) and TASSO (grant [ITW8900AT).

T (& Y

Figure 1: Graph of the constraint network Nj. The variables are represented by circles
and the constraints by rectangles. An edge between a circle and a rectangle means that
the corresponding variable belongs to the constraint represented by the rectangle.

realization of constraint satisfaction algorithms. Although this part is closely connected
to the other two parts, it is a report of its own and should be understandable without
knowing its predecessors.

Throughout this paper, we will view a constraint as consisting of a set of variables and
a relation on these variables. Networks of constraints are obtained by sharing variables
among constraints. A constraint satisfaction problem (CSP) can be defined as follows:
Given a constraint network and an initial assignment of possible values to its variables,
find one or more tuples of values that satisfy the constraint network, i.e. that are elements
of the relation represented by the network.

Consider, for example, the following coloring problem: Three fields of a map are to be
colored with either red or green in such a way that adjacent fields have different colors.
This problem can be represented in a constraint network /Ny, consisting of the constraints
Cy, Cs, and C3, and the variables x, y, and z (cf. figure 1). Cq, Cy, and C5 are binary
constraints over the domain D = {red, orange, yellow, green, blue, purple}, each constraint
realizing the relation {(red, green), (green, red)}.

A brute-force approach to finding a solution for a constraint network is to use a
backtracking algorithm. However, a distributed implementation of backtracking requires
decomposability of the given CSP. Beyond that, Dechter & Meiri [5] have shown that
backtracking alone is inefficient for many CSPs. To improve backtracking, a variety of
algorithms has been developed which may be viewed as preprocessing methods and which
achieve several kinds of consistency for a constraint network such as arc consistency, path
consistency, etc. (see [17]). For example, initializing x, y, and z with D, respectively, arc
consistency algorithms such as Mackworth’s AC-x would reduce D to {red, green}.

The key idea of the AC-x algorithms is local constraint propagation: A constraint is
evaluated and the result is propagated to its direct neighbors in the network. It has been
shown that there are parallel versions of local propagation algorithms. Kasif [15], Rosenfeld
[19], and Samal & Henderson [20] have introduced such algorithms. Moreover, there are
also massively parallel algorithms: AC Chip which can be implemented directly in VLSI
and which computes an arc-consistent solution to CSPs almost instantaneously, and ACP
which has been designed for SIMD computers like the Connection Machine (see [2] as
reference for both algorithms). They are closely related to Mohr and Henderson’s AC-4
algorithm [18], which is optimal for doing arc consistency on single-processor machines.

The purpose of this paper is to show how algorithms based on local propagation (such
as the AC-x algorithms) can be used to compute a global solution for a CSP (rather than

only as a preprocessing method resulting in arc consistency) and how these algorithms
can be realized in a serial, parallel, and massively parallel manner. Our approach is to
provide the domain values with tags and to apply the local propagation algorithm to the
tagged values. The tags, which are tuples of indices in the serial and parallel case and
Godel numbers or bit vectors in the massively parallel one, maintain the information that
is usually lost during local propagation.

2 The Tagging Method

The tagging method is based on the idea of maintaining global relationships among the
values during the propagation process. Since in a typical local propagation algorithm the
variables are associated with value sets rather than single values, it does not make sense
to describe dependencies among variables as in, for example, reason maintenance systems.
For the constraint network of figure 1, e.g., it is inadequate to propose that « depends on
y. Instead, it is more appropriate to state that the value red of x depends on the value
green of y, and vice versa, as constraint networks are not directed in most cases.

So the question is: How can relationships among values be represented in an undirected
way so that they can be handled efficiently during local propagation? One answer is
to construct higher-order constraints until an m-ary constraint (m being the number of
variables in the network) is obtained that represents the relation of the network [7]. The
solution presented here is to tag values during the propagation process, assigning identical
tags to values whose combination satisfies the constraints.

We distinguish between two types of tags: Those that are assigned to the values when
single constraints are evaluated and those that are used in constraint networks. The tags
that are assigned when a constraint is evaluated are integers, whereas the tags used in
constraint networks, i.e. the tags that are propagated among the constraints, are more
complex. Suppose that the network consists of n constraints'. Then, every tag is an
n-tuple where the ith value in the tuple is the tag assigned by the ith constraint. For
example, red(s 1 3y means that Cy, Cs, and Cj assigned the tags 2, 1, and 3, respectively.
The advantage of using tuples as tags in constraint networks is obvious: Each subtag in
the tuple can be uniquely mapped to a constraint of the network which facilitates their
handling, especially in the case of hierarchical constraint networks.

Before a constraint is evaluated, the tags of the values of its corresponding variables
are simplified. Suppose that the ith constraint of the network is to be evaluated, then only
the ith position in the tag is of interest. Hence, every value is simplified before evaluation,
replacing its tag by the ith position of the tag. For example, the value reds ; 3) is simplified
to red; when C5 is to be evaluated. The projection assures that a subordinated constraint
can only manipulate the part of the tag that is related to the constraint.

After the tags have been simplified, a standard algorithm for constraint evaluation
is applied. Such an algorithm can be formulated as follows:> Compute the Cartesian
product of the constraint variables and intersect this set with the constraint relation. In
addition to such an evaluation algorithm, the tagging algorithm matches the tags of each

!Bach of these constraints may also be a subordinated constraint network, i.e. the tagging algorithm is
not restricted to flat networks but may also be applied to hierarchies of constraint networks.

’In [10], a more efficient way to evaluate constraints is discussed. However, we do not apply it here for
reasons of simplicity and clarity.

tuple of the Cartesian product. This is done in the following way. First, the common tag
is computed, which is a new tag if all values of the tuple are untagged. If some values
are already provided with tags, and if all of them are identical, then the common tag is
determined by this tag; otherwise it is undefined. For example, the common tag of reds
and green is 2, whereas the common tag of redy and greens is undefined. If the common
tag of a tuple is undefined, the tuple represents an invalid value combination with respect
to the tags, and therefore is deleted from the set of permitted tuples. In the other case,
the tags of the values in the tuple are updated by the common tag.

After the evaluation of a constraint, the projection procedure described above is ex-
ecuted in the opposite way. For that purpose, the subtags, i.e. the tags which result
from the evaluation process, are merged with the original tags. After that, tags which
are merged with the same subtag are unified. Unification in this context means that the
components of the tags are compared, and if the known components are equal, a common
tag exists and the unknown components are substituted by this tag. In the case where
unification is not possible, the corresponding values are deleted.

For example, let red(l 2,—) and green_ _ 3y be values for the variables y and z, re-
spectively. When Cj is activated, the tuple (redy, green) is matched with the constraint
relation, resulting in (reds, greenQ). The new tags are merged with the original ones (which
is trivial for the value red):

redy — red,
red(l,Z,*) (1’2’7)
greens,

green_) —— green(_ o 3)

Since the subtags with which the original tags are merged are both identical, the resulting
tags must be unified:

redg o,) — red(y23)

green_ o3 —— greeng o)

3 Application of the Tagging Method to V;

In the following, we will illustrate the tagging method by applying it to the constraint
network N7 whose graph is shown in figure 1. The initial variable coverings are:

x =y = z = {red, orange, yellow, green, blue, purple}

C7 removes the values orange, yellow, blue, and purple from x and y and provides red
and green with tags:
x = {redy,greeny}

y = {redy,green,}
Then the merging/unifying step computes the following:

v = {redq_ _),greeny _ _y}
y = A{redg_ _),greeng _ _}
z = {red, orange, yellow, green, blue, purple}

Now either C; or C'5 may be evaluated. Let us suppose that C5 is the one selected to
be evaluated first. Then the tags of y (z does not yet have any tags) are simplified such
that each tag tuple is replaced by the second element of the tuple. The resulting values
are constrained by Cs as follows:

y = {T@d, green} evaluation

z = {red, green}

y = {T@dg, green4} merging/unifying
z = {redy,greeny}

v = {redq), greeny_ _}

y = {red(2,3,f)7 97’66"(1,4,—)}

z = {red(14_),green(2737_)}

Pt

The evaluation of C5 detects that there is no global solution for Vy:

€T = {red7 green} evaluation
z = {red, green}

= {reds, greeng} merging
z = {redgs, greens}

{T@d(17_75), green(Q,_ﬁ)} unifying

y = {Ted(2,3,—)7 97"66"(1,4,7)}
z = {Ted(1,4,6)7 97"66"(2,3,5)}
z = 0
y = {red(2,3,f)7 97“66”(1,4,—)}
z = 0

The first subtag of red(; _ 5y is unequal to the first subtag of green(, 3 5. The same holds
for greenp _) and red(y 46). Thus, unification results in empty variable coverings for x
and z.

After activating the first constraint once more, the inconsistency in the network is

completely detected and the empty set is associated with each variable:

T =

Y

z =

Il
ss s

In general, not all values are removed from the variable coverings. The remaining
values specify the solution(s) of the CSP, i.e. it is admissible to combine those values to

solution tuples that have the same tag.
Consider, for example, the following modifications to the example, resulting in the

constraint network No:

Cs) . g

Figure 2: Graph of the constraint network Ns.

1. Oy, Cs, and Cj are extended to C, C%, and C}, respectively, by adding yellow, i.e.
the relations of C1, C%, and Cj are identical and equal to:

{(red, green), (red, yellow)
(green, red), (green, yellow)
(yellow, red), (yellow, green)}

2. The constraint Cy is inserted into the network, constraining the variable x to be red
(cf. figure 2).

The algorithm would assign quadruples as tags, the fourth position corresponding to the
constraint C4. Assuming that this constraint is evaluated first, followed by an evaluation
of the constraints C7, C%, and C4 as in the example above, the result would be:

= {Ted(2,4,6,1)7 Ted(3,5,7,1)}
y = {97"66"(2,4,6,1)7 yellow(3)5,7)1)}
z = {yellowy g1y, greens syt

These variable coverings state that there are two solutions for the constraint network No,
namely (red, green, yellow) and (red, yellow, green).

4 Parallel Implementation

In the previous section, we illustrated the tagging method by embedding it in a serial
local propagation algorithm.® As other authors have shown, local propagation can be
implemented on parallel machines in a variety of different ways [2, 15, 19, 20]. In principle,
the tagging algorithm works like a common local propagation algorithm. The difference is
only in the values that are propagated, which, in our case, contain more information than
just possible values of the variables, namely their relationships to other values. It is thus
possible to implement the tagging algorithm on a parallel computer.

In the following, the rough sketch of a simple parallel local propagation algorithm is
given:

1. Assign a processor to each variable and each constraint. Communication is allowed
only between different types of processors, i.e. between constraints and their corre-
sponding variables.

3We implemented this algorithm in Lisp in a straightforward manner.

processor; Processor; , | Processor; o

Figure 3: Parallel implementation with a limited number of processors.

2. Activate the processors. The constraints receive the current values of their variables,
evaluate their relations, and send the results back to the variables which intersect
the incoming values.

3. If the variables do not receive any new messages, i.e. if the network is stable, then:

(a) Deactivate the processors.

(b) Return the variable coverings.

Details about the parallel implementation of the tagging algorithm can be found in [12].

In the case where the number of available processors is not necessarily equal to or
greater than the number of variables plus the number of constraints in the network, the
above scheme can be extended as follows. Let p be the number of available processors,
m be the number of variables, and n be the number of constraints. If p > m + n, then
each variable and each constraint can be associated with its own processor. If p < m + n,
then some processors obtain subnetworks, performing local propagation among these (cf.
figure 3).

5 Connectionist Constraint Satisfaction

We will now illustrate how connectionist networks may be used for constraint satisfaction.
Similar to [2], the nodes used in our networks are in accordance with the unit/value
principle (cf. [6]): A separate connectionist node is dedicated to each value of each variable
and each tuple of each constraint of the constraint network. To compute global consistency
(rather than arc consistency as in [2]), we apply a technique that is closely related to the
tagging method.

Let V be the set of variables on which the constraints are defined, and let D be their
domains. We represent each variable-value pair (z,a), x € V, a € D, by a connectionist
node (v-node) and denote such a node by v(x,a).

We restrict ourselves here to binary constraints, i.e. constraints consisting of sets of
pairs, each pair representing a consistent value assignment for the variables. We introduce
a connectionist node (c-node) for each quadruple (x,y,a,b) with x,y € V and a,b € D,

(A c-nodes
(b,) O
i v-nodes
(b, a) O
b O OO (,0) | O O O
a | O OO (wa) | O O O

=
™
~

T Y Z (x,y) (:C,Z> (

Figure 4: Scheme of a connectionist network for constraint satisfaction.

and denote such a node by c(z,y,a,b). Because of symmetry, ¢{x,y,a,b) and c(y,x,b,a)
denote the same node.

This representation corresponds directly to the one in [2]. As it is shown there, v-nodes
and c-nodes can be connected in such a way that arc consistency is computed (cf. figure 4).
For that purpose, the nodes are initialized as follows:

e Each v-node obtains potential 1.

e A c-node ¢(z,y, a, b) obtains potential 1, if (a, b) is an admissible assignment of values
for (x,y); else it obtains potential 0.

Since it is more convenient, we will use v{(x, a) for referring to the potential of a node as
well as for denoting the node itself.

A v-node is reset to 0 if one cannot find at least one v-node for every other variable
such that the constraint between this v-node and the given v-node is satisfied. This rule
is called the arc consistency label discarding rule:

reset(v(z,a)) =~ /\ \/ (v(y,b) A c(x,y,a,b))

yeVv beD

This is equivalent to:

1 ifVyeVabe D :vly, by ANe{x,y,a,b
U<m7a>:{0 it vy (y,b) A clw,y, a,b)

We will show in the next section how the connectionist networks sketched above can
be extended such that global consistency is computed rather than arc consistency. The
approach described in that section may be compared with the one in [16], where signatures
are used to maintain variable bindings.

6 Towards Global Consistency

The idea is to use the potential of a v-node to encode information about how the vari-
able/value pair contributes to a solution (and not only whether or not it does so). The
information is composed from codings that are associated with the c-nodes. In particu-
lar, we encode each c-node by a prime number and denote this encoding by a function
e : V2 x D?> — P from the set of c-nodes to the set of prime numbers.

For example, let V' = {z,y} and D = {red, green}, then e may be defined as follows:

e(x, x, red, red) = 2 e(x,y, red, redy = e(y, x, red, red) = 11

e(x, x, green, green) = 3 e(x,y, red, green) = e(y, z, green, red) = 13
ey, y, red, red) = 5 e(x,y, green, red) = e(y, x, red, green) = 17
ey, y, green, green) =7 e(x,y, green, green) = e(y, x, green, green) = 19

Nodes such as ¢(x, x, red, green) do not make sense and therefore are omitted in the coding.

We will again use the same notation for a node and its potential, i.e. the term ¢(x, y, a, b)
may denote the connectionist node representing the tuple (a,b) of the constraint between
x and y, or may denote the potential of that node. It is determined by the context which
meaning is intended.

The initial potentials of c-nodes are the same as in [1]. A c-node ¢(z,y, a, b) is assigned
the potential 1, if there is a pair (a,b) in the constraint between = and y; else it is 0. The
initial potential of a v-node v(x, a) is determined by the product of the codes of all c-nodes
except those that refer to the same variable as the given v-node but to a different value
for that variable (i.e. a factor e(x,..,b,..) with b # a does not occur in the product):

H €<I,y, a, b> H €(y17927b17b2>
yev y1,y2 € V \ {z}
be D by,bs € D

The square root is due to the fact that c¢(yi,y2,b1,b2) and c(yo,y1,b2,b1) are identical
nodes.

Unlike computing arc consistency (in which a v-node’s potential is reset to 0 if it is
inconsistent), we will perform here what is called graceful degradation:

1. A c-node receives the potentials of its v-nodes and computes their greatest common
divisor (ged).

2. The ged is returned to the v-nodes if the c-node has potential 0; else 1 is returned.

3. A v-node computes the least common multiples (lecm) of data coming in from c-nodes
that refer to the same variables and combines these by computing their ged.

The idea is that the potentials of v-nodes shall reflect paths in the network that
correspond to solutions of the constraint satisfaction problem. A v-node may be on the
same path as another v-node if the c-node between them has potential 1. We start with
allowing all paths among the v-nodes. Whenever a part of path is determined that is not
admissible, i.e. the corresponding c-node has potential 0, the path is deleted.

This means that global information about solution paths is held locally in the v-nodes
of the network. To keep this information consistent, the c-nodes compute the ged of the
potentials of neighboring v-nodes. The gcd reflects that piece of information neighboring

Ty 1) T3 Ly

{5

Figure 5: Connectionist network for a simple constraint satisfaction problem.

v-nodes can agree on. In order to consider alternatives, the v-nodes compute the lcm
of data that comes in from c-nodes connecting to the same variable, and combine the
results by applying the gcd operator. The alternation between the application of ged and
lem directly corresponds to the semantics of constraints and their constituting tuples: A
constraints network can be viewed as a conjunction of constraints (therefore gcd) whereas
a constraint can be viewed as disjunction of tuples (therefore lem).

More formally, the degradation rule can be denoted as follows:

v(z,a) — ged yey lem pep (out(c(z, y, a,b)))
with
ged(v(z, a),v(y, b)) if e{z,y,a,b) =1

out(c(z,y,a,b)) =
1 else

Since the degradation rule is monotonous and discrete, the network finally settles
down. After that, the potentials of the v-nodes characterize the set of solutions of the
given constraint satisfaction problem. In particular, a solution is given by a subset of
v-nodes, W, for which the following holds:

1. Every variable occurs exactly once in W.

2. The potentials of the v-nodes in W are divisible by p, where:

b= H \/e<x7y7 a, b>

v(z,a),v(y,byeW

(Again, the square root is due to the fact that ¢(x, y, a, by and ¢(y, x, b, a) are identical
nodes.)

7 Illustration of the Connectionist Approach

We will now illustrate our approach by a small example. Figure 5 shows a part of a

10

connectionist network for a constraint problem with variables =1, x9, x3, and x4, which
are constrained by binary constraints according to the following table:

Variables ‘ Constraint

x1, 9 {(red, red), (green, green)}

To, T3 {(red, red), (green, green), (green, red) }
T3, T4 {(red, red), (green, red) }

Here, we use circles for the representation of v-nodes, boxes with solid boundary lines
for c-nodes that have potential 1, and boxes with dashed boundary lines for c-nodes that
have potential 0. For the sake of simplicity, c-nodes that correspond to universal con-
straints, i.e. constraints with the whole Cartesian product as relation, have been omitted.
This simplification is admissible since all v-nodes are already connected by nonuniversal
constraints, guaranteeing that inconsistent codes are removed from the potentials of the
v-nodes.

Figures 6 and 7 show a sequence of tables in which listings of v-node potentials and
c-node outputs alternate. It illustrates how the network is initialized and how it settles
down.

The example suggests that nodes in the center of the network (v{(xs, red), v{xs, green),
v{xs, red), and v(rs, green)) settle down faster than nodes at the periphery (v(xy, red),
v(xy, green), v(xy, redy, and v(xy, green)). This, however, is only because we simplified the
example and left out some connections. In a network with full connectivity, there is no
distinction between center nodes and peripheral nodes; therefore, these networks settle
down in a more uniform way.

8 Summary

In this paper, we introduced a class of constraint satisfaction algorithms that can be
characterized as follows:

e The algorithms use local propagation to interchange information in a constraint
network.

e Additional data in form of tags or Godel numbers is associated with the values of
the constraint variables to maintain dependencies.

e They compute global consistency rather than arc consistency, i.e. they determine
the solutions of a given CSP.

We described serial, parallel, and massively parallel realizations of the algorithms and
illustrated them by means of examples. A discussion of the complexity, soundness, and
completeness of the algorithms can be found in [9] and [11].

9 Acknowledgements

Thanks to the members of the TEX-B project and the XPS research group at the GMD
who gave comments on earlier versions, especially Manfred “Manilac” Fidelak (who is
now with the University of Koblenz), Joachim Hertzberg, and Marc Linster. I am also

11

Initial State: V-Node Potential
v(z1, red) 2-3-11-13-17-19-23-29-31-37
v(z1,green) | 5-7-11-13-17-19-23-29-31-37
v(z2, red) 2-5-11-13-23-29-31-37
v(w2, green) | 3-7-17-19-23-29-31-37
oles,red) | 2-3-5-7-11-17-23 29
v(xg,green> 2-3-5-7-13-19-31-37
v(w4, red) 2:3-5-7-11-13-17-19-23-31
v(wzq, green) | 2-3-5-7-11-13-17-19-29 - 37
C-Node Output
c(z1, 2, red, red) 2-11-13-23-29-31-37
c{z1, T2, red, green) 1
c(z1, 2, green, red) 1
c(z1, 2, green, green) | 7-17-19-23-29-31 - 37
c(z2, 3, red, red) 2-5-11-23-29
c(x2, 3, Ted, green) 1
c(x2, 3, green, red) 3.-7-17-23-29
c{z2,z3, green, green) | 3-7-19-31-37
c(x3, x4, red, red) 2-3-5-7-11-17-23
c(x3, x4, Ted, green) 1
c(z3, T4, green, red) 2:3-5-7-13-19-31
c(ac‘o,,am7 green, green) | 1

2nd State: V-Node Potential
v(z1, red) 2-11-13-23-29-31-37
v(w1, green) | 7-17-19-23-29-31-37
v(w2, red) 2-11-23-29
v(xg,green> 7-17-19-23-29-31-37
v(ws, red) 2-3-5-7-11-17-23
v(ws, green) | 3-7-19-31
v(z4, red) 2-3-5-7-11-13-17-19-23-31
v(az4,green) 1
C-Node Output
c(z1, 2, red, red) 2-11-23-29
c(z1, 2, Ted, green) 1
c{z1, T2, green, red) 1
c(x1, 2, green, green) | 7-17-19-23-29-31 - 37
c(x2, 3, red, red) 2-11-23
c(z2, 3, red, green) 1
c(x2, 3, green, red) 7-17-23
c(x2, x3, green, green) | 7-19-31
c(z3, T4, red, red) 2:3-5-7-11-17-23
c(x3, x4, Ted, green) 1
c(x3, x4, green, red) 3-7-19-31
c(:pg,:m, green, green) | 1

Figure 6: Sequence of v-node potentials and c-node outputs.

12

3rd State: V-Node Potential
v(z1, red) 2.11-23-29
v(w1, greeny | 7-17-19-23-29-31-37
v(z2, red) 2-11-23
v(:pg,green) 7-17-19-23-31
v(zs, red) 2-7-11-17-23
v(:pg, green) | 7-19-31
v{za, red) 2-3-5-7-11-17-19-23-31
v<a047 greeny | 1
C-Node Output
c(z1, w2, red, red) 2-11-23
c(z1, T2, red, green) 1
c(z1, T2, green, red) 1
c(z1, w2, green, green) | 7-17-19-23-31
c(z2, T3, red, red) 2-11-23
c(z2, T3, red, green) 1
c(z2, w3, green, red) 7-17-23
c(z2, 3, green, green) | 7-19-31
c(zs3, T4, red, red) 2.7-11-17-23
c(xs, x4, red, green) 1
c(zs, T4, green, red) 7-19-31
c(a:g,ac;;,green green) | 1
Final State: V-Node Potential
v(z1, red) 2-11-23
v(z1, greeny | 7-17-19-23- 31
v(x2, red) 2-11-23
v(:pg,green) 7-17-19-23-31
v(zs, red) 2-7-11-17-23
v(xs, green) | 7-19-31
v{za, red) 2-7-11-17-19-23-31
v(:m, greeny | 1

Figure 7: Sequence of v-node potentials and c-node outputs (continued).

13

grateful to Jerry Feldman and Peter Ladkin for their contributions to this paper. Last
but not least I would like to thank Alix Collison and Renee Reynolds who struggled with
my English.

References

[1]

[10]

[11]

[12]

P.R. Cooper. Parallel object recognition from structure (the tinkertoy project). Tech-
nical Report 301, University of Rochester, Computer Science Department, Rochester,
New York, 1989.

P.R. Cooper and M.J. Swain. Parallelism and domain dependence in constraint sat-
isfaction. Technical Report 255, University of Rochester, Computer Science Depart-
ment, Rochester, New York, 1988.

R. Davis. Diagnostic reasoning based on structure and behavior. Artificial Intelli-
gence, 24:347-410, 1984.

J. de Kleer and B.C. Williams. Diagnosing multiple faults. In Proc. AAAI-86, pages
132-139, Philadelphia, Pennsylvania, 1986.

R. Dechter and 1. Meiri. Experimental evaluation of preprocessing techniques in con-
straint satisfaction problems. In Proc. IJCAI-89, pages 271-277, Detroit, Michigan,
1989.

J.A. Feldman and D.H. Ballard. Connectionist models and their properties. Cognitive
Science, 6:201-254, 1982.

E.C. Freuder. Synthesizing constraint expressions. Communications of the ACM,
21:958-966, 1978.

H. Geffner and J. Pearl. An improved constraint-propagation algorithm for diagnosis.
In Proc. IJCAI-87, pages 1105-1111, Milan, Italy, 1987.

H.W. Guesgen. A tagging method for distributed constraint satisfaction. Technical
Report TR-89-037, ICSI, Berkeley, California, 1989.

H.W. Guesgen. A universal constraint programming language. In Proc. IJCAI-89,
pages 60-65, Detroit, Michigan, 1989.

H.W. Guesgen. A connectionist approach to symbolic constraint satisfaction. Tech-
nical Report TR-90-018, ICSI, Berkeley, California, 1990.

H.W. Guesgen, K. Ho, and P.N. Hilfinger. A tagging method for parallel constraint
satisfaction. Journal of Parallel and Distributed Computing, 16:72-75, 1992.

H.W. Guesgen, U. Junker, and A. Vo}. Constraints in a hybrid knowledge represen-
tation system. In Proc. 1JCAI-87, pages 30-33, Milan, Italy, 1987.

J. Jaffar and J.L. Lassez. Constraint logic programming. In Conference Record of
the 14 " Annual ACM Symposium on Principles of Programming Languages, pages
111-119, Munich, Germany, 1987.

14

[15]

[16]

[17]

[18]

[19]

[20]

[21]

S. Kasif. Parallel solutions to constraint satisfaction problems. In Proc. KR-89, pages
180-188, Toronto, Canada, 1989.

T.E. Lange and M.G. Dyer. High-level inferencing in a connectionist network. Tech-
nical Report UCLA-AI-89-12, University of California, Los Angeles, California, 1989.

A K. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8:99—
118, 1977.

R. Mohr and T.C. Henderson. Arc and path consistency revisited. Artificial Intelli-
gence, 28:225-233, 1986.

A. Rosenfeld. Networks of automata: Some applications. IEEE Transactions on
Systems, Man, and Cybernetics, 5:380-383, 1975.

A. Samal and T.C. Henderson. Parallel consistent labeling algorithms. International
Journal of Parallel Programming, 16:341-364, 1987.

R.M. Stallman and G.J. Sussman. Forward reasoning and dependency-directed back-
tracking in a system for computer-aided circuit analysis. Artificial Intelligence, 9:135—
196, 1977.

M. Stefik. Planning with constraints (MOLGEN: Part 1). Artificial Intelligence,
16:111-140, 1981.

D.L. Waltz. Generating semantic descriptions from drawings of scenes with shadows.
Technical Report AI-TR-271, MIT, Cambridge, Massachusetts, 1972.

15

