
From Serial to Massively ParallelConstraint Satisfaction�Hans Werner GuesgenAuckland UniversityComputer Science Report No. 69March 1993AbstractLocal propagation algorithms such as Waltz �ltering and Mackworth's AC-x algo-rithms have been successfully applied in AI for solving constraint satisfaction problems(CSPs). It has been shown that they can be implemented in parallel very easily. How-ever, algorithms like Waltz �ltering and AC-x are not complete. In general, they canonly be used as preprocessing methods as they do not compute a globally consistentsolution for a CSP; they result in local consistency also known as arc consistency.In this paper, we introduce extensions of local constraint propagation to overcomethis drawback, i.e. to compute globally consistent solutions for a CSP. The idea isto associate additional information with the values during the propagation process sothat global relationships among the values are maintained. The result are algorithmsthat are complete and for which there are straightforward, parallel and massivelyparallel implementations.1 IntroductionConstraint satisfaction algorithms have been applied successfully in many sub�elds of AI,such as circuit analysis [21], computer vision [23], diagnosis [3, 8, 4], logic programming[14], and planning [22]. The realizations of constraint satisfaction algorithms lie in abroad spectrum, having serial implementations at the one end and massively parallel onesat the other. This paper describes a family of constraint satisfaction algorithms for whichserial, parallel, and massively parallel implementations exist. Unless other approaches,the algorithms are easy to compare, since they are all based on the same principle: Theyapply local propagation combined with techniques that associate additional informationwith the values of the constraint variables.The paper may be viewed as part three of a trilogy, the �rst part of which [13] de-scribes how constraints can be used with other knowledge representation formalisms suchas frames, rules, logic, etc. and the second part of which [10] introduces a constraintlanguage and an interpreter for this language. In part three, we will report about the�The author performed part of this work while at the German National Research Center for ComputerScience (GMD) in St. Augustin, Germany, and the International Computer Science Institute in Berkeley,California. At the GMD he was supported by the German Federal Ministry for Research and Technologywithin the joint projects TEX-B (grant ITW8506D) and TASSO (grant ITW8900A7).1

C3 ����z C2����x C1 ����yFigure 1: Graph of the constraint network N1. The variables are represented by circlesand the constraints by rectangles. An edge between a circle and a rectangle means thatthe corresponding variable belongs to the constraint represented by the rectangle.realization of constraint satisfaction algorithms. Although this part is closely connectedto the other two parts, it is a report of its own and should be understandable withoutknowing its predecessors.Throughout this paper, we will view a constraint as consisting of a set of variables anda relation on these variables. Networks of constraints are obtained by sharing variablesamong constraints. A constraint satisfaction problem (CSP) can be de�ned as follows:Given a constraint network and an initial assignment of possible values to its variables,�nd one or more tuples of values that satisfy the constraint network, i.e. that are elementsof the relation represented by the network.Consider, for example, the following coloring problem: Three �elds of a map are to becolored with either red or green in such a way that adjacent �elds have di�erent colors.This problem can be represented in a constraint network N1, consisting of the constraintsC1, C2, and C3, and the variables x, y, and z (cf. �gure 1). C1, C2, and C3 are binaryconstraints over the domain D = fred; orange; yellow; green; blue; purpleg, each constraintrealizing the relation f(red; green); (green; red)g.A brute-force approach to �nding a solution for a constraint network is to use abacktracking algorithm. However, a distributed implementation of backtracking requiresdecomposability of the given CSP. Beyond that, Dechter & Meiri [5] have shown thatbacktracking alone is ine�cient for many CSPs. To improve backtracking, a variety ofalgorithms has been developed which may be viewed as preprocessing methods and whichachieve several kinds of consistency for a constraint network such as arc consistency, pathconsistency, etc. (see [17]). For example, initializing x, y, and z with D, respectively, arcconsistency algorithms such as Mackworth's AC-x would reduce D to fred; greeng.The key idea of the AC-x algorithms is local constraint propagation: A constraint isevaluated and the result is propagated to its direct neighbors in the network. It has beenshown that there are parallel versions of local propagation algorithms. Kasif [15], Rosenfeld[19], and Samal & Henderson [20] have introduced such algorithms. Moreover, there arealso massively parallel algorithms: AC Chip which can be implemented directly in VLSIand which computes an arc-consistent solution to CSPs almost instantaneously, and ACPwhich has been designed for SIMD computers like the Connection Machine (see [2] asreference for both algorithms). They are closely related to Mohr and Henderson's AC-4algorithm [18], which is optimal for doing arc consistency on single-processor machines.The purpose of this paper is to show how algorithms based on local propagation (suchas the AC-x algorithms) can be used to compute a global solution for a CSP (rather than2

only as a preprocessing method resulting in arc consistency) and how these algorithmscan be realized in a serial, parallel, and massively parallel manner. Our approach is toprovide the domain values with tags and to apply the local propagation algorithm to thetagged values. The tags, which are tuples of indices in the serial and parallel case andG�odel numbers or bit vectors in the massively parallel one, maintain the information thatis usually lost during local propagation.2 The Tagging MethodThe tagging method is based on the idea of maintaining global relationships among thevalues during the propagation process. Since in a typical local propagation algorithm thevariables are associated with value sets rather than single values, it does not make senseto describe dependencies among variables as in, for example, reason maintenance systems.For the constraint network of �gure 1, e.g., it is inadequate to propose that x depends ony. Instead, it is more appropriate to state that the value red of x depends on the valuegreen of y, and vice versa, as constraint networks are not directed in most cases.So the question is: How can relationships among values be represented in an undirectedway so that they can be handled e�ciently during local propagation? One answer isto construct higher-order constraints until an m-ary constraint (m being the number ofvariables in the network) is obtained that represents the relation of the network [7]. Thesolution presented here is to tag values during the propagation process, assigning identicaltags to values whose combination satis�es the constraints.We distinguish between two types of tags: Those that are assigned to the values whensingle constraints are evaluated and those that are used in constraint networks. The tagsthat are assigned when a constraint is evaluated are integers, whereas the tags used inconstraint networks, i.e. the tags that are propagated among the constraints, are morecomplex. Suppose that the network consists of n constraints1. Then, every tag is ann-tuple where the ith value in the tuple is the tag assigned by the ith constraint. Forexample, red(2;1;3) means that C1, C2, and C3 assigned the tags 2, 1, and 3, respectively.The advantage of using tuples as tags in constraint networks is obvious: Each subtag inthe tuple can be uniquely mapped to a constraint of the network which facilitates theirhandling, especially in the case of hierarchical constraint networks.Before a constraint is evaluated, the tags of the values of its corresponding variablesare simpli�ed. Suppose that the ith constraint of the network is to be evaluated, then onlythe ith position in the tag is of interest. Hence, every value is simpli�ed before evaluation,replacing its tag by the ith position of the tag. For example, the value red(2;1;3) is simpli�edto red1 when C2 is to be evaluated. The projection assures that a subordinated constraintcan only manipulate the part of the tag that is related to the constraint.After the tags have been simpli�ed, a standard algorithm for constraint evaluationis applied. Such an algorithm can be formulated as follows:2 Compute the Cartesianproduct of the constraint variables and intersect this set with the constraint relation. Inaddition to such an evaluation algorithm, the tagging algorithm matches the tags of each1Each of these constraints may also be a subordinated constraint network, i.e. the tagging algorithm isnot restricted to at networks but may also be applied to hierarchies of constraint networks.2In [10], a more e�cient way to evaluate constraints is discussed. However, we do not apply it here forreasons of simplicity and clarity. 3

tuple of the Cartesian product. This is done in the following way. First, the common tagis computed, which is a new tag if all values of the tuple are untagged. If some valuesare already provided with tags, and if all of them are identical, then the common tag isdetermined by this tag; otherwise it is unde�ned. For example, the common tag of red2and green is 2, whereas the common tag of red2 and green3 is unde�ned. If the commontag of a tuple is unde�ned, the tuple represents an invalid value combination with respectto the tags, and therefore is deleted from the set of permitted tuples. In the other case,the tags of the values in the tuple are updated by the common tag.After the evaluation of a constraint, the projection procedure described above is ex-ecuted in the opposite way. For that purpose, the subtags, i.e. the tags which resultfrom the evaluation process, are merged with the original tags. After that, tags whichare merged with the same subtag are uni�ed. Uni�cation in this context means that thecomponents of the tags are compared, and if the known components are equal, a commontag exists and the unknown components are substituted by this tag. In the case whereuni�cation is not possible, the corresponding values are deleted.For example, let red(1;2;�) and green(�;�;3) be values for the variables y and z, re-spectively. When C2 is activated, the tuple (red2; green) is matched with the constraintrelation, resulting in (red2; green2). The new tags are merged with the original ones (whichis trivial for the value red): red2red(1;2;�)) 7�! red(1;2;�)green2green(�;�;3)) 7�! green(�;2;3)Since the subtags with which the original tags are merged are both identical, the resultingtags must be uni�ed: red(1;2;�) 7�! red(1;2;3)green(�;2;3) 7�! green(1;2;3)3 Application of the Tagging Method to N1In the following, we will illustrate the tagging method by applying it to the constraintnetwork N1 whose graph is shown in �gure 1. The initial variable coverings are:x = y = z = fred; orange; yellow; green; blue; purplegC1 removes the values orange, yellow, blue, and purple from x and y and provides redand green with tags: x = fred1; green2gy = fred2; green1gThen the merging/unifying step computes the following:x = fred(1;�;�); green(2;�;�)gy = fred(2;�;�); green(1;�;�)gz = fred; orange; yellow; green; blue; purpleg4

Now either C2 or C3 may be evaluated. Let us suppose that C2 is the one selected tobe evaluated �rst. Then the tags of y (z does not yet have any tags) are simpli�ed suchthat each tag tuple is replaced by the second element of the tuple. The resulting valuesare constrained by C2 as follows:y = fred; greengz = fred; greeng) evaluation -y = fred3; green4gz = fred4; green3g) merging/unifying -x = fred(1;�;�); green(2;�;�)gy = fred(2;3;�); green(1;4;�)gz = fred(1;4;�); green(2;3;�)gThe evaluation of C3 detects that there is no global solution for N1:x = fred; greengz = fred; greeng) evaluation -x = fred5; green6gz = fred6; green5g) merging -x = fred(1;�;5); green(2;�;6)gy = fred(2;3;�); green(1;4;�)gz = fred(1;4;6); green(2;3;5)g 9>=>; unifying -x = ;y = fred(2;3;�); green(1;4;�)gz = ;The �rst subtag of red(1;�;5) is unequal to the �rst subtag of green(2;3;5). The same holdsfor green(2;�;6) and red(1;4;6). Thus, uni�cation results in empty variable coverings for xand z.After activating the �rst constraint once more, the inconsistency in the network iscompletely detected and the empty set is associated with each variable:x = ;y = ;z = ;In general, not all values are removed from the variable coverings. The remainingvalues specify the solution(s) of the CSP, i.e. it is admissible to combine those values tosolution tuples that have the same tag.Consider, for example, the following modi�cations to the example, resulting in theconstraint network N2: 5

C 03 ����z C 02C4 ����x C 01 ����yFigure 2: Graph of the constraint network N2.1. C1, C2, and C3 are extended to C 01, C 02, and C 03, respectively, by adding yellow, i.e.the relations of C 01, C 02, and C 03 are identical and equal to:f(red; green); (red; yellow)(green; red); (green; yellow)(yellow; red); (yellow; green)g2. The constraint C4 is inserted into the network, constraining the variable x to be red(cf. �gure 2).The algorithm would assign quadruples as tags, the fourth position corresponding to theconstraint C4. Assuming that this constraint is evaluated �rst, followed by an evaluationof the constraints C 01, C 02, and C 03 as in the example above, the result would be:x = fred(2;4;6;1); red(3;5;7;1)gy = fgreen(2;4;6;1); yellow(3;5;7;1)gz = fyellow(2;4;6;1); green(3;5;7;1)gThese variable coverings state that there are two solutions for the constraint network N2,namely (red; green; yellow) and (red; yellow; green).4 Parallel ImplementationIn the previous section, we illustrated the tagging method by embedding it in a seriallocal propagation algorithm.3 As other authors have shown, local propagation can beimplemented on parallel machines in a variety of di�erent ways [2, 15, 19, 20]. In principle,the tagging algorithm works like a common local propagation algorithm. The di�erence isonly in the values that are propagated, which, in our case, contain more information thanjust possible values of the variables, namely their relationships to other values. It is thuspossible to implement the tagging algorithm on a parallel computer.In the following, the rough sketch of a simple parallel local propagation algorithm isgiven:1. Assign a processor to each variable and each constraint. Communication is allowedonly between di�erent types of processors, i.e. between constraints and their corre-sponding variables.3We implemented this algorithm in Lisp in a straightforward manner.6

processori
C1�������x1 PPPPPPPP����x2 ���C2 processori+1����x3 processori+2C3 �������x5 C5@@@����x4 C4Figure 3: Parallel implementation with a limited number of processors.2. Activate the processors. The constraints receive the current values of their variables,evaluate their relations, and send the results back to the variables which intersectthe incoming values.3. If the variables do not receive any new messages, i.e. if the network is stable, then:(a) Deactivate the processors.(b) Return the variable coverings.Details about the parallel implementation of the tagging algorithm can be found in [12].In the case where the number of available processors is not necessarily equal to orgreater than the number of variables plus the number of constraints in the network, theabove scheme can be extended as follows. Let p be the number of available processors,m be the number of variables, and n be the number of constraints. If p � m + n, theneach variable and each constraint can be associated with its own processor. If p < m+ n,then some processors obtain subnetworks, performing local propagation among these (cf.�gure 3).5 Connectionist Constraint SatisfactionWe will now illustrate how connectionist networks may be used for constraint satisfaction.Similar to [2], the nodes used in our networks are in accordance with the unit/valueprinciple (cf. [6]): A separate connectionist node is dedicated to each value of each variableand each tuple of each constraint of the constraint network. To compute global consistency(rather than arc consistency as in [2]), we apply a technique that is closely related to thetagging method.Let V be the set of variables on which the constraints are de�ned, and let D be theirdomains. We represent each variable-value pair hx; ai, x 2 V , a 2 D, by a connectionistnode (v-node) and denote such a node by vhx; ai.We restrict ourselves here to binary constraints, i.e. constraints consisting of sets ofpairs, each pair representing a consistent value assignment for the variables. We introducea connectionist node (c-node) for each quadruple hx; y; a; bi with x; y 2 V and a; b 2 D,7

v-nodes
-x y z

6ab kk kk kk
c-nodes
-hx; yi hx; zi hy; zi

6
ha; aiha; bihb; aihb; bi

kkk
k

kkk
k

kkk
k� �

������
� �

�
Figure 4: Scheme of a connectionist network for constraint satisfaction.and denote such a node by chx; y; a; bi. Because of symmetry, chx; y; a; bi and chy; x; b; aidenote the same node.This representation corresponds directly to the one in [2]. As it is shown there, v-nodesand c-nodes can be connected in such a way that arc consistency is computed (cf. �gure 4).For that purpose, the nodes are initialized as follows:� Each v-node obtains potential 1.� A c-node chx; y; a; bi obtains potential 1, if ha; bi is an admissible assignment of valuesfor hx; yi; else it obtains potential 0.Since it is more convenient, we will use vhx; ai for referring to the potential of a node aswell as for denoting the node itself.A v-node is reset to 0 if one cannot �nd at least one v-node for every other variablesuch that the constraint between this v-node and the given v-node is satis�ed. This ruleis called the arc consistency label discarding rule:reset(vhx; ai) = : ŷ2V _b2D(vhy; bi ^ chx; y; a; bi)This is equivalent to:vhx; ai = (1 if 8y 2 V 9b 2 D : vhy; bi ^ chx; y; a; bi0 elseWe will show in the next section how the connectionist networks sketched above canbe extended such that global consistency is computed rather than arc consistency. Theapproach described in that section may be compared with the one in [16], where signaturesare used to maintain variable bindings. 8

6 Towards Global ConsistencyThe idea is to use the potential of a v-node to encode information about how the vari-able/value pair contributes to a solution (and not only whether or not it does so). Theinformation is composed from codings that are associated with the c-nodes. In particu-lar, we encode each c-node by a prime number and denote this encoding by a functione : V 2 �D2 ! P from the set of c-nodes to the set of prime numbers.For example, let V = fx; yg and D = fred; greeng, then e may be de�ned as follows:ehx; x; red; redi = 2 ehx; y; red; redi = ehy; x; red; redi = 11ehx; x; green; greeni = 3 ehx; y; red; greeni = ehy; x; green; redi = 13ehy; y; red; redi = 5 ehx; y; green; redi = ehy; x; red; greeni = 17ehy; y; green; greeni = 7 ehx; y; green; greeni = ehy; x; green; greeni = 19Nodes such as chx; x; red; greeni do not make sense and therefore are omitted in the coding.We will again use the same notation for a node and its potential, i.e. the term chx; y; a; bimay denote the connectionist node representing the tuple ha; bi of the constraint betweenx and y, or may denote the potential of that node. It is determined by the context whichmeaning is intended.The initial potentials of c-nodes are the same as in [1]. A c-node chx; y; a; bi is assignedthe potential 1, if there is a pair ha; bi in the constraint between x and y; else it is 0. Theinitial potential of a v-node vhx; ai is determined by the product of the codes of all c-nodesexcept those that refer to the same variable as the given v-node but to a di�erent valuefor that variable (i.e. a factor ehx; ::; b; ::i with b 6= a does not occur in the product):Yy 2 Vb 2 D ehx; y; a; bi Yy1; y2 2 V n fxgb1; b2 2 D qehy1; y2; b1; b2iThe square root is due to the fact that chy1; y2; b1; b2i and chy2; y1; b2; b1i are identicalnodes.Unlike computing arc consistency (in which a v-node's potential is reset to 0 if it isinconsistent), we will perform here what is called graceful degradation:1. A c-node receives the potentials of its v-nodes and computes their greatest commondivisor (gcd).2. The gcd is returned to the v-nodes if the c-node has potential 0; else 1 is returned.3. A v-node computes the least common multiples (lcm) of data coming in from c-nodesthat refer to the same variables and combines these by computing their gcd.The idea is that the potentials of v-nodes shall reect paths in the network thatcorrespond to solutions of the constraint satisfaction problem. A v-node may be on thesame path as another v-node if the c-node between them has potential 1. We start withallowing all paths among the v-nodes. Whenever a part of path is determined that is notadmissible, i.e. the corresponding c-node has potential 0, the path is deleted.This means that global information about solution paths is held locally in the v-nodesof the network. To keep this information consistent, the c-nodes compute the gcd of thepotentials of neighboring v-nodes. The gcd reects that piece of information neighboring9

green
red
k
kx1

753
2

k
kx2

191713
11

k
kx3

373129
23

k
kx4

���
@@@ �����@@@@@ ���

@@@ �����@@@@@ ���
@@@ �����@@@@@Figure 5: Connectionist network for a simple constraint satisfaction problem.v-nodes can agree on. In order to consider alternatives, the v-nodes compute the lcmof data that comes in from c-nodes connecting to the same variable, and combine theresults by applying the gcd operator. The alternation between the application of gcd andlcm directly corresponds to the semantics of constraints and their constituting tuples: Aconstraints network can be viewed as a conjunction of constraints (therefore gcd) whereasa constraint can be viewed as disjunction of tuples (therefore lcm).More formally, the degradation rule can be denoted as follows:vhx; ai gcd y2V lcm b2D (out(chx; y; a; bi))with out(chx; y; a; bi) = 8><>: gcd(vhx; ai; vhy; bi) if chx; y; a; bi = 11 elseSince the degradation rule is monotonous and discrete, the network �nally settlesdown. After that, the potentials of the v-nodes characterize the set of solutions of thegiven constraint satisfaction problem. In particular, a solution is given by a subset ofv-nodes, W , for which the following holds:1. Every variable occurs exactly once in W .2. The potentials of the v-nodes in W are divisible by p, where:p = Yvhx;ai;vhy;bi2W qehx; y; a; bi(Again, the square root is due to the fact that chx; y; a; bi and chy; x; b; ai are identicalnodes.)7 Illustration of the Connectionist ApproachWe will now illustrate our approach by a small example. Figure 5 shows a part of a10

connectionist network for a constraint problem with variables x1, x2, x3, and x4, whichare constrained by binary constraints according to the following table:Variables Constraintx1; x2 f(red; red); (green; green)gx2; x3 f(red; red); (green; green); (green; red)gx3; x4 f(red; red); (green; red)gHere, we use circles for the representation of v-nodes, boxes with solid boundary linesfor c-nodes that have potential 1, and boxes with dashed boundary lines for c-nodes thathave potential 0. For the sake of simplicity, c-nodes that correspond to universal con-straints, i.e. constraints with the whole Cartesian product as relation, have been omitted.This simpli�cation is admissible since all v-nodes are already connected by nonuniversalconstraints, guaranteeing that inconsistent codes are removed from the potentials of thev-nodes.Figures 6 and 7 show a sequence of tables in which listings of v-node potentials andc-node outputs alternate. It illustrates how the network is initialized and how it settlesdown.The example suggests that nodes in the center of the network (vhx2; redi, vhx2; greeni,vhx3; redi, and vhx3; greeni) settle down faster than nodes at the periphery (vhx1; redi,vhx1; greeni, vhx4; redi, and vhx4; greeni). This, however, is only because we simpli�ed theexample and left out some connections. In a network with full connectivity, there is nodistinction between center nodes and peripheral nodes; therefore, these networks settledown in a more uniform way.8 SummaryIn this paper, we introduced a class of constraint satisfaction algorithms that can becharacterized as follows:� The algorithms use local propagation to interchange information in a constraintnetwork.� Additional data in form of tags or G�odel numbers is associated with the values ofthe constraint variables to maintain dependencies.� They compute global consistency rather than arc consistency, i.e. they determinethe solutions of a given CSP.We described serial, parallel, and massively parallel realizations of the algorithms andillustrated them by means of examples. A discussion of the complexity, soundness, andcompleteness of the algorithms can be found in [9] and [11].9 AcknowledgementsThanks to the members of the TEX-B project and the XPS research group at the GMDwho gave comments on earlier versions, especially Manfred \Manilac" Fidelak (who isnow with the University of Koblenz), Joachim Hertzberg, and Marc Linster. I am also11

Initial State: V-Node Potentialvhx1; redi 2 � 3 � 11 � 13 � 17 � 19 � 23 � 29 � 31 � 37vhx1; greeni 5 � 7 � 11 � 13 � 17 � 19 � 23 � 29 � 31 � 37vhx2; redi 2 � 5 � 11 � 13 � 23 � 29 � 31 � 37vhx2; greeni 3 � 7 � 17 � 19 � 23 � 29 � 31 � 37vhx3; redi 2 � 3 � 5 � 7 � 11 � 17 � 23 � 29vhx3; greeni 2 � 3 � 5 � 7 � 13 � 19 � 31 � 37vhx4; redi 2 � 3 � 5 � 7 � 11 � 13 � 17 � 19 � 23 � 31vhx4; greeni 2 � 3 � 5 � 7 � 11 � 13 � 17 � 19 � 29 � 37C-Node Outputchx1; x2; red; redi 2 � 11 � 13 � 23 � 29 � 31 � 37chx1; x2; red; greeni 1chx1; x2; green; redi 1chx1; x2; green; greeni 7 � 17 � 19 � 23 � 29 � 31 � 37chx2; x3; red; redi 2 � 5 � 11 � 23 � 29chx2; x3; red; greeni 1chx2; x3; green; redi 3 � 7 � 17 � 23 � 29chx2; x3; green; greeni 3 � 7 � 19 � 31 � 37chx3; x4; red; redi 2 � 3 � 5 � 7 � 11 � 17 � 23chx3; x4; red; greeni 1chx3; x4; green; redi 2 � 3 � 5 � 7 � 13 � 19 � 31chx3; x4; green; greeni 12nd State: V-Node Potentialvhx1; redi 2 � 11 � 13 � 23 � 29 � 31 � 37vhx1; greeni 7 � 17 � 19 � 23 � 29 � 31 � 37vhx2; redi 2 � 11 � 23 � 29vhx2; greeni 7 � 17 � 19 � 23 � 29 � 31 � 37vhx3; redi 2 � 3 � 5 � 7 � 11 � 17 � 23vhx3; greeni 3 � 7 � 19 � 31vhx4; redi 2 � 3 � 5 � 7 � 11 � 13 � 17 � 19 � 23 � 31vhx4; greeni 1C-Node Outputchx1; x2; red; redi 2 � 11 � 23 � 29chx1; x2; red; greeni 1chx1; x2; green; redi 1chx1; x2; green; greeni 7 � 17 � 19 � 23 � 29 � 31 � 37chx2; x3; red; redi 2 � 11 � 23chx2; x3; red; greeni 1chx2; x3; green; redi 7 � 17 � 23chx2; x3; green; greeni 7 � 19 � 31chx3; x4; red; redi 2 � 3 � 5 � 7 � 11 � 17 � 23chx3; x4; red; greeni 1chx3; x4; green; redi 3 � 7 � 19 � 31chx3; x4; green; greeni 1Figure 6: Sequence of v-node potentials and c-node outputs.12

3rd State: V-Node Potentialvhx1; redi 2 � 11 � 23 � 29vhx1; greeni 7 � 17 � 19 � 23 � 29 � 31 � 37vhx2; redi 2 � 11 � 23vhx2; greeni 7 � 17 � 19 � 23 � 31vhx3; redi 2 � 7 � 11 � 17 � 23vhx3; greeni 7 � 19 � 31vhx4; redi 2 � 3 � 5 � 7 � 11 � 17 � 19 � 23 � 31vhx4; greeni 1C-Node Outputchx1; x2; red; redi 2 � 11 � 23chx1; x2; red; greeni 1chx1; x2; green; redi 1chx1; x2; green; greeni 7 � 17 � 19 � 23 � 31chx2; x3; red; redi 2 � 11 � 23chx2; x3; red; greeni 1chx2; x3; green; redi 7 � 17 � 23chx2; x3; green; greeni 7 � 19 � 31chx3; x4; red; redi 2 � 7 � 11 � 17 � 23chx3; x4; red; greeni 1chx3; x4; green; redi 7 � 19 � 31chx3; x4; green; greeni 1Final State: V-Node Potentialvhx1; redi 2 � 11 � 23vhx1; greeni 7 � 17 � 19 � 23 � 31vhx2; redi 2 � 11 � 23vhx2; greeni 7 � 17 � 19 � 23 � 31vhx3; redi 2 � 7 � 11 � 17 � 23vhx3; greeni 7 � 19 � 31vhx4; redi 2 � 7 � 11 � 17 � 19 � 23 � 31vhx4; greeni 1Figure 7: Sequence of v-node potentials and c-node outputs (continued).
13

grateful to Jerry Feldman and Peter Ladkin for their contributions to this paper. Lastbut not least I would like to thank Alix Collison and Renee Reynolds who struggled withmy English.References[1] P.R. Cooper. Parallel object recognition from structure (the tinkertoy project). Tech-nical Report 301, University of Rochester, Computer Science Department, Rochester,New York, 1989.[2] P.R. Cooper and M.J. Swain. Parallelism and domain dependence in constraint sat-isfaction. Technical Report 255, University of Rochester, Computer Science Depart-ment, Rochester, New York, 1988.[3] R. Davis. Diagnostic reasoning based on structure and behavior. Arti�cial Intelli-gence, 24:347{410, 1984.[4] J. de Kleer and B.C. Williams. Diagnosing multiple faults. In Proc. AAAI-86, pages132{139, Philadelphia, Pennsylvania, 1986.[5] R. Dechter and I. Meiri. Experimental evaluation of preprocessing techniques in con-straint satisfaction problems. In Proc. IJCAI-89, pages 271{277, Detroit, Michigan,1989.[6] J.A. Feldman and D.H. Ballard. Connectionist models and their properties. CognitiveScience, 6:201{254, 1982.[7] E.C. Freuder. Synthesizing constraint expressions. Communications of the ACM,21:958{966, 1978.[8] H. Ge�ner and J. Pearl. An improved constraint-propagation algorithm for diagnosis.In Proc. IJCAI-87, pages 1105{1111, Milan, Italy, 1987.[9] H.W. Guesgen. A tagging method for distributed constraint satisfaction. TechnicalReport TR-89-037, ICSI, Berkeley, California, 1989.[10] H.W. Guesgen. A universal constraint programming language. In Proc. IJCAI-89,pages 60{65, Detroit, Michigan, 1989.[11] H.W. Guesgen. A connectionist approach to symbolic constraint satisfaction. Tech-nical Report TR-90-018, ICSI, Berkeley, California, 1990.[12] H.W. Guesgen, K. Ho, and P.N. Hil�nger. A tagging method for parallel constraintsatisfaction. Journal of Parallel and Distributed Computing, 16:72{75, 1992.[13] H.W. Guesgen, U. Junker, and A. Vo�. Constraints in a hybrid knowledge represen-tation system. In Proc. IJCAI-87, pages 30{33, Milan, Italy, 1987.[14] J. Ja�ar and J.L. Lassez. Constraint logic programming. In Conference Record ofthe 14 th Annual ACM Symposium on Principles of Programming Languages, pages111{119, Munich, Germany, 1987. 14

[15] S. Kasif. Parallel solutions to constraint satisfaction problems. In Proc. KR-89, pages180{188, Toronto, Canada, 1989.[16] T.E. Lange and M.G. Dyer. High-level inferencing in a connectionist network. Tech-nical Report UCLA-AI-89-12, University of California, Los Angeles, California, 1989.[17] A.K. Mackworth. Consistency in networks of relations. Arti�cial Intelligence, 8:99{118, 1977.[18] R. Mohr and T.C. Henderson. Arc and path consistency revisited. Arti�cial Intelli-gence, 28:225{233, 1986.[19] A. Rosenfeld. Networks of automata: Some applications. IEEE Transactions onSystems, Man, and Cybernetics, 5:380{383, 1975.[20] A. Samal and T.C. Henderson. Parallel consistent labeling algorithms. InternationalJournal of Parallel Programming, 16:341{364, 1987.[21] R.M. Stallman and G.J. Sussman. Forward reasoning and dependency-directed back-tracking in a system for computer-aided circuit analysis. Arti�cial Intelligence, 9:135{196, 1977.[22] M. Ste�k. Planning with constraints (MOLGEN: Part 1). Arti�cial Intelligence,16:111{140, 1981.[23] D.L. Waltz. Generating semantic descriptions from drawings of scenes with shadows.Technical Report AI-TR-271, MIT, Cambridge, Massachusetts, 1972.

15

