A Literate Programming Pearl in cP Systems

Radu Nicolescu
Department of Computer Science,
University of Auckland,
Auckland, New Zealand

CDMTCS-506
May 2017

Centre for Discrete Mathematics and Theoretical Computer Science
A Literate Programming Pearl in cP Systems

RADU NICOLESCU
Department of Computer Science
The University of Auckland, Private Bag 92019
Auckland, New Zealand
r.nicolescu@auckland.ac.nz

Abstract

We assess the “computer science” capabilities of our cP systems by solving a version of a famous programming pearl, originally posed by Jon Bentley (1984): printing the most common words in a text file, in their frequency order. Several interesting solutions have been proposed by Knuth (an exquisite model of literate programming, 1986), McIlroy (an engineering example of combining a timeless set of tools, 1986), Hanson (an alternate efficient solution, 1987). Here we propose a concise efficient solution based on the fast parallel and associative capabilities of our cP systems. We also briefly check their sorting capabilities and propose a dynamic version of the classical pigeonhole algorithm.

Keywords: Literate programming, sorting, parallel sorting, pigeonhole algorithm, dynamic pigeonhole algorithm, associative data structures, membrane computing, P systems, cP systems, inter-cell parallelism, intra-cell parallelism, Prolog terms and unification, complex symbols, nested subcells, generic rules.

1 Introduction and Background

We are further assessing our current version of P systems with complex symbols, called cP systems [7], which enables the creation and manipulation of high-level data structures that are typical in high-level languages, such as: numbers, relations (graphs), associative arrays, lists, trees, strings.

Here we assess the “computer science” capabilities of our cP systems by solving a version of a famous programming pearl, posed by Jon Bentley (1984): printing the most common words in a text file, more precisely (but still a bit vague) [1]:

Given a text file and an integer k, print the k most common words in the file (and the number of their occurrences) in decreasing frequency.

Additionally, the integer N is typically used for the number of words, d is the number of distinct words, and f is the highest frequency count. Of course, one typically assumes that $N > d > k$ and $N - d + 1 \geq f \geq N/d$, but some solutions are optimised for the more special case $N \gg d \gg k$.

Several interesting solutions have been proposed by Knuth in 1986 – an exquisite model of literate programming [1], McIlroy in 1986 – an engineering example of combining a timeless set of tools [1], Hanson in 1987 – an alternate efficient solution [12]. All these three solutions can be considered as great literate programming sample models, if we take “literate programming” in a generic sense – not just Knuth’s WEB/TANGLE implementation [2].

Here we propose a concise efficient solution based on the fast parallel capabilities of our cP systems. Our solution follows Hanson’s revised formulation [12] of the original problem specification, which clarifies the slight ambiguity of the original:

Given a text file and an integer k, you are to print the words (and their frequencies of occurrence) whose frequencies of occurrence are among the k largest in order of decreasing frequency.
A tiny but artificial example may clarify these specifications. Assume that \(k = 2 \) and the input text is:

\[
\text{ccc aa aa aa ccc bb d aa d}
\]

Note that, here, \(N = 9, d = 4, f = 4 \). Bentley’s original formulation, used by Knuth and McIlroy [1], essentially requires – a bit ambiguously – one of the following two outputs:

\[
\begin{align*}
4 & \text{ aa} \\
2 & \text{ ccc}
\end{align*}
\]

or

\[
\begin{align*}
4 & \text{ aa} \\
2 & \text{ d}
\end{align*}
\]

In contrast, Hanson’s revised formulation [12], requires the following output – which is unambiguous, if the order of word sublists is not relevant (i.e. \(\text{ccc d} \equiv \text{d ccc} \)):

\[
\begin{align*}
4 & \text{ aa} \\
2 & \text{ ccc d}
\end{align*}
\]

Schematically, all these there solutions follow four main phases: (I) reading and splitting the text file into words (parsing it); (II) computing the word frequencies; (III) sorting according to frequencies; and (IV) printing the required output.

Knuth and Hanson provide large monolithic solutions, which include all four phases. Moreover, they combine phases I and II, by using associative data structures: Knuth uses a custom hash-trie and Hanson a custom hashtable with splay (move to front) lists. For phase III, both authors try to use efficient sorting methods. Knuth uses a fast sorting method, assuming that \(N \gg d \gg k \) and that most frequent words tend to appear from the beginning of the text – as McIlroy points out, this does not always hold. Hanson offers a more universal fast sorting method based on the pigeonhole algorithm, with \(f \) holes.

McIlroy’s solution is a textbook example for the separation-of-concerns principle, via a pipeline of staple general-purpose utilities initially developed for UNIX. Each of the four phases is implemented via just one or two commands. Together, phases II and III take exactly three lines in the pipe [1]:

\[
\begin{align*}
(3) & \text{ sort |} \\
(4) & \text{ uniq -c |} \\
(5) & \text{ sort -rn |}
\end{align*}
\]

Line (3) sorts the \(N \) input words (lexicographically). Line (4) counts then discards the duplicates, keeping \(d \) unique exemplars and their frequency counts (as count/word pairs). Line (5) sorts \(d \) count/-word pairs, in reverse count order (numerically).

Intentionally not given here are pipe lines (1), (2) and (6), which deal with phases I and IV. Reading, splitting into words and printing can be defined in a seemingly endless multiplicity of ways, which may not be worth discussing here. In particular, the concept of "word" itself may be highly interpretable: does it include ASCII letters, UNICODE letters, digits, punctuation signs, does it have a length limit, etc. Here, we will stay away from this discussion.

McIlroy’s solution is also reasonably fast - not as fast as the other two - but it is extremely crisp and clear, and can be flexibly adapted to other input and output formats. Such a solution can be developed and deployed in just a few minutes – this sounds amazing, but does not account for the many man-months required to develop and tune the used building blocks (UNIX tools). McIlroy also notes that his solution could be sped up by replacing the more costlier lines (3) and (4) by a hypothetical tool based on associative arrays – in fact, this would bring his solution closer to Hanson’s solution for phase II.

Our cP solution follows the spirit of McIlroy’s and Hanson’s solutions. It is based on associative data types and a sorting idea close to Hanson’s pigeonhole algorithm. It also uses a small number of rules –
close to McIlroy’s pipeline size - but, in contrast, it is built from scratch (not on higher building block as the UNIX commands).

We offer two alternate solutions: (i) a solution which solves Hanson’s version of the problem – where the result is a sorted sequence of word multisets; and (ii) a solution which solves the original problem, as posed by Bentley and used by Knuth and McIlroy – where the result is a sorted sequence of words.

In this process, we propose and use a dynamic pigeonhole algorithm, adaptable to other platforms with strong associative capabilities, where – metaphorically - pigeonholes are only opened one at at time, instantly attracting objects with matching keys.

In our case, we must first adapt the above problem formulation to typical P systems, where cells contain multisets of symbols, not ordered structures. What is a sorted multiset? Ordered structures must be constructed in terms of multisets – in our cP systems, we can create the required high-level structures by deep nesting of complex symbols (subcells).

As above mentioned, we chose to skip over the reading phase (I) and we assume that all words are “magically” present in our cP system when it starts. Our focus is on phases II and III, where all operations are clearly defined and can be efficiently performed by cP systems.

Finally – as used in our first solution (i) – we simulate the printing phase IV, by sequentially sending out the required results, in order, over a designated line. Alternatively – as used in our second solution (ii) – we actually build an ordered list containing the required results.

For completeness, Section 2 introduces high-level data structures in cP systems and Appendix A offers a more complete definition of our cP systems – both these sections are largely reproduced from our earlier paper [7]. The remaining sections discuss our solution.

2 Data structures in cP systems

We assume that the reader is familiar with the membrane extensions collectively known as complex symbols, proposed by Nicolescu et al. [8, 9, 6]. However, to ensure some degree of self-containment, our revised extensions, called cP systems, are reproduced in Appendix A.

In this section we sketch the design of high-level data structures, similar to the data structures used in high-level pseudocode or high-level languages: numbers, relations, functions, associative arrays, lists, trees, strings, together with alternative more readable notations.

Natural numbers. Natural numbers can be represented via multisets containing repeated occurrences of the same atom. For example, considering that 1 represents an ad-hoc unary digit, the following complex symbols can be used to describe the contents of a virtual integer variable \(a() = a(\lambda)\) — the value of \(a\) is 0: \(a(1^3)\) — the value of \(a\) is 3. For concise expressions, we may alias these number representations by their corresponding numbers, e.g. \(a() \equiv a(0), b(1^3) \equiv b(3)\). Nicolescu et al. [8, 9] show how the basic arithmetic operations can be efficiently modelled by P systems with complex symbols.

Relations and functions. Consider the binary relation \(r\), defined by: \(r = \{(a, b), (b, c), (a, d), (d, c)\}\) (which has a diamond-shaped graph). Using complex symbols, relation \(r\) can be represented as a multiset with four \(r\) items, \(\{r(a)(v(b)), r(b)(v(c)), r(a)(v(d)), r(b)(v(c))\}\), where ad-hoc atoms \(\kappa\) and \(v\) introduce domain and codomain values (respectively). We may also alias the items of this multiset by a more expressive notation such as: \(\{(a \mapsto b), (b \mapsto c), (a \mapsto d), (d \mapsto c)\}\).

If the relation is a functional relation, then we can emphasise this by using another operator, such as “mapsto”. For example, the functional relation \(f = \{(a, b), (b, c), (d, c)\}\) can be represented by multiset \(\{f(a)(v(b)), f(b)(v(c)), f(d)(v(c))\}\) or by the more suggestive notation: \(\{(a \mapsto b), (b \mapsto c), (d \mapsto c)\}\). To highlight the actual mapping value, instead of \(a \mapsto b\), we may also use the succinct abbreviation \(f(a) = b\).

In this context, the \(\mapsto\) and \(\rightarrow\) operators are considered to have a high associative priority, so the enclosing parentheses are mostly used for increasing the readability.

Associative arrays. Consider the associative array \(x\), with the following key-value mappings (i.e. functional relation): \(\{1 \mapsto a; 1^3 \mapsto c; 1^7 \mapsto g\}\). Using complex symbols, array \(x\) can be represented as a multiset with three items, \(\{x(\kappa(1))v(a), x(\kappa(1^3))v(c), x(\kappa(1^7))v(g)\}\), where ad-hoc atoms \(\kappa\) and
v introduce keys and values (respectively). We may also alias the items of this multiset by the more expressive notation \{1 \mapsto a, 1^3 \mapsto c, 1^7 \mapsto g\}.

Lists. Consider the list \(y \), containing the following sequence of values: \([u; v; w]\). List \(y \) can be represented as the complex symbol \(y(\gamma(u \gamma(v \gamma(w \gamma())))) \), where the ad-hoc atom \(\gamma \) represents the list constructor \(\text{cons} \) and \(\gamma() \) the empty list. We may also alias this list by the more expressive equivalent notation \(y(u | v | w) \) – or by \(y(u | y', y'(v | w) \) – where operator | separates the head and the tail of the list. The notation \(z() \) is shorthand for \(z(\gamma()) \) and indicates an empty list, \(z \).

Trees. Consider the binary tree \(z \), described by the structured expression \((a, (b, (c, (d, (e))))), \) i.e. \(z \) points to a root node which has: (i) the value \(a \); (ii) a left node with value \(b \); and (iii) a right node with value \(c \), left leaf \(d \), and right leaf \(e \). Tree \(z \) can be represented as the complex symbol \(z(a \phi(b) \psi(c \phi(d) \psi(e))) \), where ad-hoc atoms \(\phi, \psi \) introduce left subtrees, right subtrees (respectively).

Strings. Consider the string \(s = "abc" \), where \(a, b, \) and \(c \) are atoms. Obviously, string \(s \) can be interpreted as the list \(s = [a; b; c] \), i.e. string \(s \) can be represented as the complex symbol \(s(\gamma(a \gamma(b \gamma(c \gamma()))) \), etc.

3 Our parallel cP algorithm – solution (i)

3.1 Initial state

We need one cell with one designated output line. Required data structures are built as complex symbols, using the interpretations and notations defined in Section 2. In particular, the \(N \) input words are strings built via functor \(w \); these complex symbols are already extant when the systems starts. Figure 1 illustrates the initial cell contents for the sample given in Section 1.

<table>
<thead>
<tr>
<th>“ccc” “aa” “aa” “ccc” “bb” “d” “aa” “d”</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w(cw(cw()))) (w(aaw(aaw()))) (w(aaw(aaw()))) (w(cw(cw()))) (w(bwbw())) (w(dw())) (w(aaw(aaw()))) (w(dw()))</td>
</tr>
<tr>
<td>(a) High-level strings.</td>
</tr>
<tr>
<td>(b) Underlying complex symbols.</td>
</tr>
</tbody>
</table>

Figure 1: Sample initial word multiset.

3.2 Phase II

Using an associative relation, \(\alpha \), each word is tagged with an initial “frequency” count of 1 and then we merge all word duplicates and sum their associated counts. In the end, we get \(d \) words, each one with its actual frequency count.

Figure 2 shows the three rules for phase II. This ruleset starts in state \(S_0 \). Rule (0) establishes relation \(\alpha \) between extant strings given by \(w(X) \) and the initial frequency count 1; it runs in \text{max} mode, so it completes its job in 1 cP step.

Rule (1) repeatedly merges word duplicates and sums their associated counts; it runs in \text{max} mode, so it completes its job in \(\log(d) \) cP steps – this rule is non-deterministic but confluent.

After rule (1) completes, rule (2) moves to the final state of this ruleset, \(S_2 \). Table 1 illustrates the evolution of the cell contents for our initial sample.
\[S_0 \quad w(W) \quad \rightarrow_{\text{max} \otimes \text{min}} \quad S_1 \quad \alpha(w(W) f(1)) \quad (0) \]
\[S_1 \quad \alpha(w(W) f(F)) \quad \alpha(w(W) f(F')) \quad \rightarrow_{\text{max} \otimes \text{min}} \quad S_1 \quad \alpha(w(W) f(FF')) \quad (1) \]
\[S_1 \quad \rightarrow_{\text{min} \otimes \text{min}} \quad S_2 \quad (2) \]

Figure 2: Ruleset for phase II.

<table>
<thead>
<tr>
<th>Apply</th>
<th>State</th>
<th>Cell contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>rule (0)</td>
<td>S₀</td>
<td>“ccc” “aa” “aa” “ccc” “bb” “d” “aa” “d”</td>
</tr>
</tbody>
</table>
| rule (1) | S₁ | \(\alpha(“ccc” f(1)) \) \(\alpha(“aa” f(1)) \) \(\alpha(“aa” f(1)) \) \(\alpha(“aa” f(1)) \) ...
| rule (1) | S₁ | \(\alpha(“ccc” f(2)) \) \(\alpha(“aa” f(2)) \) \(\alpha(“aa” f(2)) \) \(\alpha(“bb” f(1)) \) \(\alpha(“d” f(2)) \) |
| rule (2) | S₁ | \(\alpha(“ccc” f(2)) \) \(\alpha(“aa” f(4)) \) \(\alpha(“bb” f(1)) \) \(\alpha(“d” f(2)) \) |
| – | S₂ | \(\alpha(“ccc” f(2)) \) \(\alpha(“aa” f(4)) \) \(\alpha(“bb” f(1)) \) \(\alpha(“d” f(2)) \) |

Table 1: Phase II evolution of our sample word multiset.

3.3 Phase III

We create maximal word multisets by merging all words sharing the same frequency counts.

Figure 3 shows the two rules for phase III. This ruleset starts in state \(S_2 \), the final state for phase II (3.2). Rule (3) merges word multisets sharing the same frequency counts; it runs in \text{max} mode, so it completes its job in \(\log(f) \) cP steps – this rule is non-deterministic but confluent.

After rule (3) completes, rule (4) moves to the final state of this ruleset, \(S_3 \). Table 2 illustrates the evolution of the cell contents for our initial sample.

\[S_2 \quad \alpha(W f(F)) \quad \alpha(W' f(F)) \quad \rightarrow_{\text{max} \otimes \text{min}} \quad S_2 \quad \alpha(W W' f(F)) \quad (3) \]
\[S_2 \quad \rightarrow_{\text{min} \otimes \text{min}} \quad S_3 \quad (4) \]

Figure 3: Ruleset for phase III.

<table>
<thead>
<tr>
<th>Apply</th>
<th>State</th>
<th>Cell contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>rule (3)</td>
<td>S₂</td>
<td>(\alpha(“ccc” f(2))) (\alpha(“aa” f(4))) (\alpha(“bb” f(1))) (\alpha(“d” f(2)))</td>
</tr>
<tr>
<td>rule (4)</td>
<td>S₂</td>
<td>(\alpha(“ccc” “d” f(2))) (\alpha(“aa” f(4))) (\alpha(“bb” f(1)))</td>
</tr>
<tr>
<td>–</td>
<td>S₃</td>
<td>(\alpha(“ccc” “d” f(2))) (\alpha(“aa” f(4))) (\alpha(“bb” f(1)))</td>
</tr>
</tbody>
</table>

Table 2: Phase III evolution of our sample word multiset.
3.4 Phase IV

We send out all existing word multisets, sequentially, in decreasing order of their frequency counts. We propose and use a dynamic version of the classical pigeonhole algorithm (adaptable to other platforms with strong associative capabilities), where – metaphorically - pigeonholes are only opened one at a time, instantly attracting objects with matching keys.

First, we determine the highest frequency count. Next, we repeatedly output the word multiset having the current highest frequency count – if any – and then decrement this count, until we reach 0. This current highest frequency count is the “enabled pigeonhole” which “attracts” the word multiset having the same frequency count. For simplicity, we do not consider the parameter k, but it is straightforward to include it in this ruleset.

Figure 4 shows the rules for phase IV. This ruleset starts in state S_3, the final state for phase III (3.3). Rule (5) extracts frequency counts; it runs in max mode, so it completes its job in 1 cP steps.

Rule (6) determines the highest frequency count by taking pairwise maximums (note that all extant frequency counts are different); it runs in max mode, so it completes its job in $\log(f)$ cP steps – this rule is non-deterministic but confluent.

After rule (6) completes, rule (7) moves to the next state of this ruleset, S_5. Rule (8) outputs the word multiset having the current (highest) non-zero frequency count – if any – and then decrements this count; rule (9) just decrements this count, if there is no matching word multiset; this pair of rules complete their job in $\log(f)$ cP steps.

After all the word multisets are sent out, the cell remains idle in the final state, S_5 – alternatively, one more rule could clear the remaining $f(0)$ counter and transit to another state (e.g. S_6). Table 3 illustrates the evolution of the cell contents for our initial sample. Essentially, in this scenario we output the sequence [("aa", 4); ("ccc" “d”, 2); ("bb", 1)].

\[
\begin{align*}
S_3 & \quad \alpha(W f(F)) \quad \rightarrow_{\text{max} \otimes \text{min}} S_4 \quad \alpha(W f(F) \ f(F)) & (5) \\
S_4 & \quad f(F) \ f(F1F') \quad \rightarrow_{\text{max} \otimes \text{min}} S_4 \ f(F1F') & (6) \\
S_4 & \quad \quad \rightarrow_{\text{min} \otimes \text{min}} S_5 & (7) \\
S_5 & \quad \alpha(W f(F1)) \ f(F1) \quad \rightarrow_{\text{min} \otimes \text{min}} S_5 \ \alpha(W f(F1)) \downarrow f(F) & (8) \\
S_5 & \quad f(F1) \quad \rightarrow_{\text{min} \otimes \text{min}} S_5 \ f(F) & (9)
\end{align*}
\]

Figure 4: Ruleset for phase IV.

4 Our parallel cP algorithm – alternate solution (ii)

Here we sketch an alternate implementation, which actually builds a sorted list of words, ordered on their frequency counts. This solution could be applied to get a sorted list of word multisets, but here we use it to get a sorted list of words, i.e. a result closer to the original problem formulation posed by Bentley and used by Knuth and McIlroy [1].

Conceptually, we start from the interim results of phase II of solution (i) (3.2), but this time we give a complete solution (not explicitly split into phases).

We create a list of words, sorted in decreasing order of their frequency counts. As in the earlier phase II (3.2) each word is tagged with an initial “frequency” count of 1 and then we merge all word duplicates and sum their associated counts. In the end, we get d words, each one with its actual frequency count.

Then, as in the earlier phase IV (3.4), we use a dynamic version of the classical pigeonhole algorithm, but this time we stack the “attracted” words in a result list (instead of sending them out).
Table 3: Phase IV evolution of our sample word multiset – each time it is applied, the highlighted rule (8) outputs one word multiset and its associated frequency count.

First, we “enable a pigeonhole” for frequency 1 and create an empty result list. Next, we repeatedly stack all words having the current pigeonhole frequency count – if any – and then increment this count, until we exhaust all extant words. For simplicity, we again do not consider the parameter k, but it is straightforward to include it in this ruleset.

Figure 5 shows all rules for this alternate solution. Rules (0) and (1) are exactly as in the earlier phase II. Rule (2) is modified: to “enable a pigeonhole” for frequency 1 and to create an empty result list, ρ.

Rule (3) repeatedly stacks onto ρ all words having the current frequency count – if any; the standalone f acts as a promoter. Rule (4) increments this frequency count, if there are no (more) matching words for this count, but there are still other words to process; any extant $\alpha(...)$ acts as a promoter. The rules pair (3) and (4) complete their job in $\log(f)\; cP$ steps.

After all the words are stacked, the cell remains idle in the final state, S_2. The evolution is non-deterministic, which exactly corresponds to the slight vagueness of the original problem formulation. Table 4 illustrates a possible evolution of the cell contents for our initial sample. Essentially, in this scenario we obtain the list ["aa", 4]; ("d" 2); ("ccc" 2); ("bb", 1)], but we could have also obtained the list ["aa", 4]; ("ccc" 2); ("d" 2); ("bb", 1)].

$$
\begin{align*}
S_0 & \rightarrow_{\text{max} \otimes \text{min}} S_1 \alpha(w(W) f(1)) & (0) \\
S_1 & \rightarrow_{\text{max} \otimes \text{min}} S_1 \alpha(w(W) f(F')) & (1) \\
S_1 & \rightarrow_{\text{min} \otimes \text{min}} S_2 f(1) \rho() & (2) \\
S_2 & \rightarrow_{\text{max} \otimes \text{min}} S_2 \rho(\alpha(w(W) f(F)) \rho(R)) \rightarrow_{\text{min} \otimes \text{min}} S_2 f(F1) & (3) \\
S_2 & \rightarrow_{\text{min} \otimes \text{min}} S_2 f(F1) & (4)
\end{align*}
$$

Figure 5: Ruleset for alternate solution (ii).
Table 4: Alternate solution (ii): possible evolution of our sample word multiset. Here the final result is the sorted list \([α(“aa” f(4)); α(“d” f(2)); α(“ccc” f(2)); α(“bb” f(1))]\).

5 Reflections and open problems

Both our solutions seem to have an optimal runtime complexity, or close to it, essentially \(O(\log(d) + \log(f))\) cP steps, which, in the worst case, is \(O(\log(N))\), but typically much smaller. This optimality is not proven, but seems a believable hypothesis.

Also, our solutions seem to have a very decent static complexity, comparable to the best known solution in this regard, proposed by McIlroy: 10 or 5 rules – in our two solutions – vs. 4 lines – the combination of 4 powerful UNIX commands in McIlroy’s excellent solution. Moreover, in contrast to this, our solutions are build from “scratch” (including for sorting!), not on other complex utilities. Also, as presented, McIlroy’s solution runs in \(O(N \log(N))\) steps (because of the initial sorting), which makes it slower than ours. In all fairness, McIlroy mentions potential speed-ups, but these do not seem yet available.

In fact, these comparisons may be misleading, as our solution runs on a highly parallel engine – cP systems – while the other solutions are purely sequential. It may be interesting to evaluate other parallel solutions to this problem, including other P systems solutions, but we are not aware of any.

It is also interesting to note that our solutions seem to struggle a bit when they are constrained to run in a purely sequential mode, as in phase IV of solution (i), but feel more comfortable when they can unleash the parallel associative potential of cP systems, as in solution (ii).

To the best of our knowledge, this paper proposes a novel sorting algorithm, with a crisp expression: a dynamic version of the classical pigeonhole algorithm, apparently suitable for any platform with strong associative features (such as many or most versions of P systems).

Finally, as an open problem, it might be worthwhile to invest more effort into developing a real literate model for P systems and to develop a set of tools corresponding to Knuth’s WEB toolset – perhaps P-WEB or cP-WEB?

References

Appendix

A.1 Complex symbols as subcells

Complex symbols play the roles of cellular micro-compartmentst or substrucutures, such as organelles, vesicles or cytoophidium assemblies (“snakes”), which are embedded in cells or travel between cells, but without having the full processing power of a complete cell. In our proposal, complex symbols represent nested data compartments which have no own processing power: they are acted upon by the rules of their enclosing cells.

Technically, our complex symbols, also called subcells, are similar to Prolog-like first-order terms, recursively built from multisets of atoms and variables. Atoms are typically denoted by lower case letters (or, occasionally, digits), such as a, b, c, 1. Variables are typically denoted by uppercase letters,
such as \(X, Y, Z \). For improved readability, we also consider anonymous variables, which are denoted by underscores (“_”). Each underscore occurrence represents a new unnamed variable and indicates that something, in which we are not interested, must fill that slot.

Terms are either (i) simple atoms, or (ii) atoms (called functors), followed by one or more parenthesized multisets (called arguments) of other symbols (terms or variables), e.g. \(a(b^2c), a(X^2c(Y)), a(b^2)(c(Z)) \). Functors that are followed by more than one parenthesized argument are called curried (by analogy to functional programming) and, as we see later, are useful to precisely described deep “micro-surgical” changes which only affect inner nested symbols, without directly touching their enclosing outer symbols.

Terms that do not contain variables are called ground, e.g.:

- Ground terms: \(a, a(\lambda), a(b), a(bc), a(b(c)), a(b(c)d(e)), a(b(c)d(e)), a(b(c)d(e(\lambda)))) \), \(a(b^2c)d; \) or, a curried form: \(a(b^2)(c(d)e^3) \).

- Terms which are not ground: \(a(X), a(bX), a(b(X)), a(XY), a(XdY), a(Xc(i)), a(b(X)d(e)), a(b(c)d(Y)), a(b(X)d(c(Y))), a(b(X)^2d(d(eXf^2))); \) or, a curried form: \(a(b(X))(d(Y)e^3); \) also, using anonymous variables: \(a(b_2), a(X_2), a(b(X)d(e_2))) \).

Note that we may abbreviate the expression of complex symbols by removing inner \(\lambda \)'s as explicit references to the empty multiset, e.g. \(a(\lambda) = a() \).

Complex symbols (subcells, terms) can be formally defined by the following grammar:

\[
\begin{align*}
\text{<term> ::=} & \text{ <atom> \mid <functor> ('(' <argument> ')') } ^ * \\
\text{<functor> ::=} & \text{ <atom> } \\
\text{<argument> ::=} & \text{ \(\lambda \) \mid (<term-or-var>) } ^ * \\
\text{<term-or-var> ::=} & \text{ <term> \mid <variable> }
\end{align*}
\]

Unification. All terms (ground or not) can be (asymmetrically) matched against ground terms, using an ad-hoc version of pattern matching, more precisely, a one-way first-order syntactic unification, where an atom can only match another copy of itself, and a variable can match any bag of ground terms (including the empty bag, \(\lambda \)). This may create a combinatorial non-determinism, when a combination of two or more variables are matched against the same bag, in which case an arbitrary matching is chosen. For example:

- Matching \(a(b(X)fY) = a(b(cd(e))f^2g) \) deterministically creates a single set of unifiers: \(X, Y = cd(e), fg \).

- Matching \(a(XY^2) = a(de^2f) \) deterministically creates a single set of unifiers: \(X, Y = df, e \).

- Matching \(a(XY) = a(df) \) non-deterministically creates one of the following four sets of unifiers:
 \(X, Y = \lambda, df; X, Y = df, \lambda; X, Y = d, f; X, Y = f, d \).

Performance note. If the rules avoid any matching non-determinism, then this proposal should not affect the performance of P simulators running on existing machines. Assuming that bags are already taken care of, e.g. via hash-tables, our proposed unification probably adds an almost linear factor. Let us recall that, in similar contexts (no occurs check needed), Prolog unification algorithms can run in \(O(n g(n)) \) steps, where \(g \) is the inverse Ackermann function. Our conjecture must be proven though, as the novel presence of multisets may affect the performance.

A.2 Generic rules

Rules use states and are applied top-down, in the so-called weak priority order. Rules may contain any kind of terms, ground and not-ground. In concrete models, cells can only contain ground terms. Cells which contain unground terms can only be used to define abstract models, i.e. high-level patterns which characterise families of similar concrete models.

Pattern matching. Rules are matched against cell contents using the above discussed pattern matching, which involves the rule’s left-hand side, promoters and inhibitors. Moreover, the matching is valid only
if, after substituting variables by their values, the rule’s right-hand side contains ground terms only (so no free variables are injected in the cell or sent to its neighbours), as illustrated by the following sample scenario:

- The cell’s current content includes the ground term: \(n(a \phi(b \phi(c) \psi(d)) \psi(e)) \)
- The following rewriting rule is considered: \(n(X \phi(Y \phi(Y_1) \psi(Y_2)) \psi(Z)) \rightarrow v(X) n(Y \phi(Y_2) \psi(Y_1)) v(Z) \)
- Our pattern matching determines the following unifiers: \(X = a, Y = b, Y_1 = c, Y_2 = d, Z = e. \)
- This is a valid matching and, after substitutions, the rule’s right-hand side gives the new content: \(v(a) n(b \phi(d) \psi(e)) v(e) \)

Generic rules format. We consider rules of the following generic format (we call this format generic, because it actually defines templates involving variables):

| current-state symbols... \(\rightarrow_\alpha \) target-state (in-symbols)... (out-symbols)\(_\delta \)... | promoters... \(\neg \) inhibitors... |

Where:

- All symbols, including states, promoters and inhibitors, are multisets of terms, possibly containing variables (which can be matched as previously described).
- Parentheses can be used to clarify the association of symbols, but otherwise have no own meaning.
- Subscript \(\alpha \in \{\text{min, max}\} \times \{\text{min, max}\} \), indicates a combined instantiation and rewriting mode, as further discussed in the example below.
- In-symbols become available after the end of the current step only, as in traditional P systems (we can imagine that these are sent via an ad-hoc fast loopback channel);
- Out-symbols are sent, at the end of the step, to the cell’s structural neighbours. These symbols are enclosed in round parentheses which further indicate their destinations, above abbreviated as \(\delta. \) The most usual scenarios include:
 - \((a) \downarrow_i \) indicates that \(a \) is sent to child \(i \) (unicast);
 - \((a) \uparrow_i \) indicates that \(a \) is sent to parent \(i \) (unicast);
 - \((a) \downarrow\psi \) indicates that \(a \) is sent to all children (broadcast);
 - \((a) \uparrow\psi \) indicates that \(a \) is sent to all parents (broadcast);
 - \((a) \downarrow\psi \) indicates that \(a \) is sent to all neighbours (broadcast).

All symbols sent via one generic rule to the same destination form one single message and they travel together as one single block (even if the generic rule has multiple instantiations).

Example. To explain our combined instantiation and rewriting mode, let us consider a cell, \(\sigma \), containing three counter-like complex symbols, \(c(1^2), c(1^3), c(1^4) \), and the four possible instantiation@rewriting modes of the following “decrementing” rule:
Thus, in this case, the instantiation is an idempotent and each one of the instantiated rules is applied once possible, without superfluous max-based sets of non-generic rules. For example, consider the rule

\begin{align*}
\rho_1 &\colon S_1 \; c(I \cdot X) \rightarrow_a S_2 \; c(X), \quad \alpha \in \{\text{min}, \text{max}\} \times \{\text{min}, \text{max}\}.
\end{align*}

1. If \(\alpha = \text{min} \odot \text{min}\), rule \(\rho_{\text{min} \odot \text{min}}\) nondeterministically generates and applies (in the \(\text{min}\) mode) one of the following two rule instances:

\begin{align*}
(\rho'_1) &\colon S_1 \; c(I^2) \rightarrow_{\text{min}} S_2 \; c(I) \quad \text{or} \\
(\rho''_1) &\colon S_1 \; c(I^3) \rightarrow_{\text{min}} S_2 \; c(I^2).
\end{align*}

Using \((\rho'_1)\), cell \(\sigma\) ends with counters \(c(1), c(I^2), c(I^3)\). Using \((\rho''_1)\), cell \(\sigma\) ends with counters \(c(I^2), c(I^3), c(I^2)\).

2. If \(\alpha = \text{max} \odot \text{min}\), rule \(\rho_{\text{max} \odot \text{min}}\) first generates and then applies (in the \(\text{min}\) mode) the following two rule instances:

\begin{align*}
(\rho'_2) &\colon S_1 \; c(I^2) \rightarrow_{\text{min}} S_2 \; c(I) \quad \text{and} \\
(\rho''_2) &\colon S_1 \; c(I^3) \rightarrow_{\text{min}} S_2 \; c(I^2).
\end{align*}

Using \((\rho'_2)\) and \((\rho''_2)\), cell \(\sigma\) ends with counters \(c(I), c(I^2), c(I^3)\).

3. If \(\alpha = \text{min} \odot \text{max}\), rule \(\rho_{\text{min} \odot \text{max}}\) nondeterministically generates and applies (in the \(\text{max}\) mode) one of the following rule instances:

\begin{align*}
(\rho'_3) &\colon S_1 \; c(I^2) \rightarrow_{\text{max}} S_2 \; c(I) \quad \text{or} \\
(\rho''_3) &\colon S_1 \; c(I^3) \rightarrow_{\text{max}} S_2 \; c(I^2).
\end{align*}

Using \((\rho'_3)\), cell \(\sigma\) ends with counters \(c(I), c(I^2), c(I^3)\). Using \((\rho''_3)\), cell \(\sigma\) ends with counters \(c(I^2), c(I^3), c(I^2)\).

4. If \(\alpha = \text{max} \odot \text{max}\), rule \(\rho_{\text{min} \odot \text{max}}\) first generates and then applies (in the \(\text{max}\) mode) the following two rule instances:

\begin{align*}
(\rho'_4) &\colon S_1 \; c(I^2) \rightarrow_{\text{max}} S_2 \; c(I) \quad \text{and} \\
(\rho''_4) &\colon S_1 \; c(I^3) \rightarrow_{\text{max}} S_2 \; c(I^2).
\end{align*}

Using \((\rho'_4)\) and \((\rho''_4)\), cell \(\sigma\) ends with counters \(c(I), c(I), c(I^2)\).

The interpretation of \(\text{min} \odot \text{min}, \text{min} \odot \text{max}\) and \(\text{max} \odot \text{max}\) modes is straightforward. While other interpretations could be considered, the mode \(\text{max} \odot \text{min}\) indicates that the generic rule is instantiated as many times as possible, without superfluous instances (i.e. without duplicates or instances which are not applicable) and each one of the instantiated rules is applied once, if possible.

If a rule does not contain any non-ground term, then it has only one possible instantiation: itself. Thus, in this case, the instantiation is an idempotent transformation, and the modes \(\text{min} \odot \text{min}, \text{min} \odot \text{max}, \text{max} \odot \text{min}, \text{max} \odot \text{max}\) fall back onto traditional modes \(\text{min}, \text{max}, \text{min}, \text{max}\), respectively.

Special cases. Simple scenarios involving generic rules are sometimes semantically equivalent to loop-based sets of non-generic rules. For example, consider the rule

\[S_1 \; a(x(I \cdot y(J))) \rightarrow_{\text{max} \odot \text{min}} S_2 \; b(I) \; c(J), \]

where the cell’s contents guarantee that \(I\) and \(J\) only match integers in ranges \([1, n]\) and \([1, m]\), respectively. Under these assumptions, this rule is equivalent to the following set of non-generic rules:

\[S_1 \; a_{i,j} \rightarrow_{\text{min}} S_2 \; b_i \; c_j, \quad \forall i \in [1, n], j \in [1, m]. \]

However, unification is a much more powerful concept, which cannot be generally reduced to simple loops.
Note. For all modes, the instantiations are conceptually created when rules are tested for applicability and are also ephemeral, i.e. they disappear at the end of the step. P system implementations are encouraged to directly apply high-level generic rules, if this is more efficient (it usually is); they may, but need not, start by transforming high-level rules into low-level rules, by way of instantiations.

Benefits. This type of generic rules allow (i) a reasonably fast parsing and processing of subcomponents, and (ii) algorithm descriptions with fixed size alphabets and fixed sized rulesets, independent of the size of the problem and number of cells in the system (often impossible with only atomic symbols).

A.3 Synchronous vs asynchronous

In our models, we do not make any syntactic difference between the synchronous and asynchronous scenarios; this is strictly a runtime assumption [4]. Any model is able to run on both the synchronous and asynchronous runtime “engines”, albeit the results may differ.

In the synchronous scenario of traditional P systems, all rules in a step take together exactly one time unit and then all message exchanges (including loopback messages for in-symbols) are performed at the end of the step, in zero time (i.e. instantaneously). Alternatively, but logically equivalent, we may consider that all rules in a step are performed in zero time (i.e. instantaneously) and then all message exchanges are performed in exactly one time unit. We prefer the second interpretation, because it allows us to interpret synchronous runs as special cases of asynchronous runs.

In the asynchronous scenario, we still consider that rules in a step are performed in zero time (i.e. instantaneously), but then, to arrive at its destination, each message may (independently) take any finite real time in the (0,1] interval (i.e. travelling times are typically scaled to the travel time of the slowest message). Additionally, unless otherwise specified, we also assume that messages traveling on the same directed are follow a FIFO rule, i.e. no fast message can overtake a slow progressing one. This definition closely emulates the standard definition used for asynchronous distributed algorithms [3]. Clearly, the asynchronous model is highly non-deterministic, but most useful algorithms manage to remain confluent.

In both scenarios, we need to cater for a particularity of P systems, where a cell may remain active after completing its current step and then will automatically start a new step, without necessarily receiving any new message. In contrast, in classical distributed models, nodes may only become active after receiving a new message. In contrast, in classical distributed models, nodes may only become active after receiving a new message. We can solve this issue by (i) assuming a hidden self-activation message that cells can post themselves at the end of the step (together with the in-symbols) and (ii) postulating that such self-addressed messages will arrive not later than any other messages coming from other cells.

Obviously, any algorithm that works correctly in the asynchronous mode will also work correctly in the synchronous mode, but the converse is not generally true: extra care may be needed to transform a correct synchronous algorithm into a correct asynchronous one; there are also general control layers, such as synchronisers, that can attempt to run a synchronous algorithm on an existing asynchronous runtime, but this does not always work [3].

Complexity measures. We consider a set of basic complexity measures similar to the ones used in the traditional distributed algorithms field.

- Time complexity: the supremum over all possible running times (which, although not perfect, is the most usual definition for the asynchronous time complexity).
- Message complexity: the number of exchanged messages.
- Atomic complexity: the number of atoms summed over all exchanged messages (analogous to the traditional bit complexity).

Other measure may be considered, such as various static complexities, development time, etc.