
Linear-time breadth-�rst tree algorithms:An exercise in the arithmetic of folds and zipsGeraint Jones� and Jeremy GibbonsyAbstract. This paper is about an application of the mathematics of the zip, reduce (fold)and accumulate (scan) operations on lists. It gives an account of the derivation of a linear-timebreadth-�rst tree traversal algorithm, and of a subtle and e�cient breadth-�rst tree labellingalgorithm.Keywords. Derivation, functional programming, breadth-�rst, traversal, labelling.1 IntroductionThe algorithms which are developed in this paper relate trees to sequences in a waythat respects the breadth-�rst ordering of the nodes of the tree: nodes nearer theroot are earlier in the ordering, and nodes on the same level are ordered from leftto right.We distinguish between �nite and in�nite sequences, which we call lists andstreams respectively. Lists of elements of type � are modelled as the least solutionlist.� of the equationlist.� = [] j � :: list.�That is, the empty list [] has type list.� , and if x has type � and xs has type list.�then x :: xs has type list.� . We abbreviate the list x :: (y :: (z :: [])) by [x, y, z] .Streams of elements of type � are modelled as the greatest solution stream.� ofthe equationstream.� = � :: stream.�That is, every stream of type stream.� has a `head' of type � and a `tail' of typestream.� . These components are extracted by the destructors hd and tl . (Strictlyspeaking, we should use di�erent constructors for lists and streams; instead, we willtrust to context to disambiguate ` :: '.)If f takes objects of type � to objects of type � , then f� (pronounced ` f map')takes objects of type list.� to objects of type list.� , and objects of type stream.�Copyright c
1993 Geraint Jones and Jeremy Gibbons. Authors' addresses: Oxford UniversityProgramming Research Group, 11 Keble Road, Oxford OX1 3QD, England, emailgeraint@prg.oxford.ac.uk (�); Dept of Computer Science, University of Auckland, PrivateBag 92019, Auckland, New Zealand, email jeremy@cs.aukuni.ac.nz (y). Presented at IFIPWG2.1 meeting number 45, as working paper 705 WIN-2.

Linear-time breadth-�rst tree algorithms 2to objects of type stream.� , by applying the function f to every element of thesequence. For example,f�.[x, y, z] = [f.x, f.y, f.z]Note that function application is written with an in�x ` . '; it is right-associativeand tightest binding.If (is an associative operator from � � � to � , then (= (pronounced `plusslereduce') takes objects of type list.� to objects of type � , by `inserting' (betweenadjacent elements. For example,(=.[x, y, z] = x(y (zThe reduction (= of the empty list is the unit of (, which is unique if it exists.We also use directed reductions and accumulations on lists. The leftwards re-duction (!e of a list is de�ned by(!e.[] = e(!e.(x :: xs) = x ((!e.xsFor example,(!e.[x, y, z] = x((y ((z(e))Note that the (need not be associative.The leftwards accumulation (#e of a list is de�ned by(!e�.tails.xs = [(!e.xs] ++ (#e.xsHere, tails.xs is the list of su�xes of xs in order of decreasing length, from xsitself to the empty list, and ++ is list concatenation. (Later on, we will extend listconcatenation to concatenate a list with a stream, in the obvious way.) Note thatthe accumulation of a list is the same length as the list itself, and that it does notdepend on the head of the list if the list is non-empty.Rightwards reduction satis�es the equations(e.[] = e(e.(x :: xs) = (e(x.xsand rightwards accumulation satis�es(e�.inits.xs = ("e.xs++ [(e.xs]where inits returns the pre�xes of a list.The trees in this paper are non-empty homogeneous rose trees (Meertens, 1988);every tree of type tree.� consists of a root labelled with an element of type � , anda list of children each of which is itself a tree of type tree.� . Trees are modelled asthe least solution tree.� of the equationtree.� = �
 list.tree.�For example, the tree

Linear-time breadth-�rst tree algorithms 3x1x2 x3 x4x5 x6 x7�is represented by the expressionx1
 [x2
 [x5
 [], x6
 []], x3
 [], x4
 [x7
 []]]We will call this tree seven , and use it as an example throughout.The two tree destructors rt and ch are de�ned byt = rt.t
 ch.tThe two functions we will concern ourselves with in this paper are for breadth-�rst traversal and labelling of a tree. As we shall see, they are in a sense eachother's inverses, and we will derive an algorithm for relabelling by inverting one fortraversal.Informally, breadth-�rst traversal takes a tree of elements and returns a list ofthose elements in breadth-�rst order; for example, the breadth-�rst traversal ofthe tree seven is [x1, x2, x3, x4, x5, x6, x7] . Conversely, breadth-�rst labelling takesa stream of elements and returns a tree whose breadth-�rst traversal is a �nitepre�x of that stream. Since traversal destroys information about the `shape' of atree, the labelling function must be provided with a tree|informally, the tree to berelabelled|to determine the shape of its result. For example, labelling seven withthe stream [y1, y2, y3, : : :] yields the tree y1y2 y3 y4y5 y6 y7�2 Breadth-�rst traversalBreadth-�rst traversal is de�ned in terms of a close relative, levelorder traversal(Gibbons, 1991). Levelorder traversal takes a tree of � s to a list of lists of � s|infact, to a non-empty list of non-empty lists of � s. The �rst element of the traversalis a singleton list containing just the root of the tree, the second element of thetraversal consists of all the nodes of the tree at depth two, and so on. For example,the levelorder traversal of seven is the list of lists[[x1], [x2, x3, x4], [x5, x6, x7]]

Linear-time breadth-�rst tree algorithms 4Formally, the function levels has type tree.�! list.list.� and is de�ned bylevels.(x
 ts) = [x] :: 1++=.levels�.tsHere, 1(is `long zip with plussle'; it combines corresponding elements of two listsusing (, returning a list as long as its longer argument. For example,[x, y, z] 1([u, v] = [x(u, y (v, z]and in general, xs 1([] = xs[] 1(ys = ys(x :: xs) 1((y :: ys) = (x (y) :: (xs 1(ys)(Later on, we apply long zips to pairs of sequences, rather than simply pairs of lists,in the obvious way.)The breadth-�rst traversal of a tree is obtained simply by concatenating the levelsof the tree:bft = ++= � levelswhere � is backwards functional composition.Together, these de�nitions give an executable program in a functional languagefor computing the breadth-�rst traversal of a tree:bft = ++= � levels | (1)where levels.(x
 ts) = [x] :: 1++=.levels�.tsThis program has time complexity O(n log n) in the size n of its output, which isthe size of the tree: the dominant factor is constructing the levels, each of whichhas length O(n) and is built by a tree of concatenations.3 A linear breadth-�rst traversalIt is well known|a `folk fact'|that the breadth-�rst traversal of a tree can becomputed in linear time in the length of its output. This linear-time algorithm canbe calculated straightforwardly from the characterisation of bft given above.We observe thatbft.(x
 ts)= n bft o++=.levels.(x
 ts)= n levels o++=.([x] :: 1++=.levels�.ts)= n (=.(x :: xs) = x ((=.xs o[x] ++ ++=.1++=.levels�.ts= n [x] ++ xs = x :: xs ox :: ++=.1++=.levels�.ts

Linear-time breadth-�rst tree algorithms 5= n introduce bfts = ++= � 1++= � levels� ox :: bfts.tsInformally, bfts computes the traversal of a forest. Expanding bfts , we see thatbfts.[]= n bfts o++=.1++=.levels�.[]= n f�.[] = [] o++=.1++=.[]= n 1++ has unit [] o++=.[]= n ++ has unit [] o[]so bfts.[] = [] .As for non-empty forests, we note �rst that, for associative (,(=.((x :: xs) 1(ys) = x ((=.(ys 1(xs)For example,(=.((x1 :: [x2, x3, x4]) 1([y1, y2, y3])= n 1, reduction o(x1 (y1)((x2 (y2)((x3 (y3)(x4= n associativity ox1 ((y1 (x2)((y2 (x3)((y3 (x4)= n reduction, 1 ox1 ((=.([y1, y2, y3] 1([x2, x3, x4])The general proof, by induction on xs and ys , is straightforward and is omitted.Returning now to the traversal of a non-empty forest, we havebfts.((x
 ts) :: us)= n bfts o++=.1++=.levels�.((x
 ts) :: us)= n map, reduce o++=.(levels.(x
 ts) 1++ 1++=.levels�.us)= n levels o++=.(([x] :: 1++=.levels�.ts) 1++ 1++=.levels�.us)

Linear-time breadth-�rst tree algorithms 6= n lemma o[x] ++ ++=.(1++=.levels�.us 1++ 1++=.levels�.ts)= n promotion o[x] ++ ++=.1++=.levels�.(us++ ts)= n bfts o[x] ++ bfts.(us++ ts)= n :: ox :: bfts.(us++ ts)Noting thatbft.t = bfts.[t]yields the programbft.y = bfts.[t] where bfts.[] = []bfts.((x
 ts) :: us) = x :: bfts.(us++ ts)This is essentially how breadth-�rst traversal is usually implemented in an impera-tive programming language|using a queue of trees `yet to be traversed'. Executednaively in a typical functional language, however, this program takes quadratictime, because appending ts to us takes time proportional to the length of us ,which grows linearly in the size of the tree.Fortunately, there is a standard technique for eliminating queues in functionallanguages, provided that their use is only `single threaded'. This is the same tech-nique that turns the naive quadratic program for reversing a list into the linear`fast reverse'. It involves representing a queue xs as a pair of lists (ys, zs) such thatxs = ys++ rev.zs . We de�nefastbfts.(us, vs) = bfts.(us++ rev.vs)(so that bfts.ts = fastbfts.(ts, [])) and calculatefastbfts.([], [])= n fastbfts obfts.[]= n bfts o[]and fastbfts.([], v :: vs)= n fastbfts obfts.rev.(v :: vs)

Linear-time breadth-�rst tree algorithms 7= n fastbfts ofastbfts.(rev.(v :: vs), [])and �nally,fastbfts.((x
 ts) :: us, vs)= n fastbfts obfts.((x
 ts) :: us++ rev.vs)= n bfts ox :: bfts.(us++ rev.vs++ ts)= n reverse ox :: bfts.(us++ rev.(rev.ts++ vs))= n fastbfts ox :: fastbfts(us, rev.ts++ vs)This program takes linear amortized time in the length of its output, assuming revis computed in linear time|the time is proportional to the time spent on rev , andevery list of children gets reversed once when it is placed on the second list andonce more when it migrates to the �rst list; the sum of the lengths of all lists ofchildren of a tree is one less than the size of the tree. More formally, if we de�nef.([], []) = 0f.([], v :: vs) = #.(v :: vs) + f.(rev.(v :: vs), [])f.((x
 ts) :: us, vs) = #.ts+ f.(us, rev.ts++ vs)(where # returns the length of a list), so that f.(us, vs) counts the `amount of time'spent on rev in computing fastbfts.(us, vs) , then we can show by induction thatf.(ts, []) = 2�+=.s�.ts where s.t = size.t� 14 A second linear breadth-�rst traversalThere is an entirely di�erent linear program for breadth-�rst traversal, again arisingby calculation from the characterisation (1). This time the linearisation comes fromrepresenting the levels in the levelorder traversal|non-empty lists|in such a waythat they can be concatenated in constant time.One such representation uses the least solution join.� of the equationjoin.� = 8.� j join.� +++ join.�|that is, as non-empty leaf-labelled binary trees in which every parent has exactlytwo children. The abstraction function is fringe : join.� ! list.� , given byfringe.8.x = [x]fringe.(j+++ k) = fringe.j++ fringe.kUnder this abstraction, levels is implemented by a function jlevels , of type tree.�!list.join.� , such that

Linear-time breadth-�rst tree algorithms 8fringe� � jlevels = levelsIt is easy to see that the de�nitionjlevels.(x
 ts) = 8.x :: 1+++=.jlevels�.tssatis�es this requirement. (There are other de�nitions of jlevels that satisfy, becausefringe is not injective, but this de�nition is the `simplest'.)Computing jlevels.t involves linearly many applications of +++|in fact, size.t�depth.t applications, since there is one application for each pair of adjacent elementsin the levelorder traversal|and so takes linear time.In terms of join lists, bft is given bybft = ++= � fringe� � jlevelsand so it remains only to compute ++= � fringe� in time proportional to the length ofits result. This can be done by introducing a leftwards reduction: the SpecialisationTheorem (Bird, 1987) states that, for associative (,(=.f�.xs (e =)!e.xs where x) y = f.x(y | (2)In particular, if (has unit e then(=.f�.xs =)!e.xs | (3)Thus, ++= � fringe� =)![] where j) xs = fringe.j++ xsWe can synthesize a de�nition of) taking time proportional to the size of its leftargument:8.x) xs= n) ofringe.8.x++ xs= n fringe ox :: xsand (j+++ k)) xs= n) ofringe.(j+++ k) ++ xs= n fringe ofringe.j++ fringe.k++ xs= n) oj) (k) xs)hence bft =)![] � jlevelswhere

Linear-time breadth-�rst tree algorithms 9jlevels.(x
 ts) = 8.x :: 1+++=.jlevels�.tsand 8.x) xs = x :: xs(j+++ k)) xs = j) (k) xs)This program takes linear time.5 Breadth-�rst labellingThe breadth-�rst labelling (b
.t).xs of a tree t with a stream xs is determined bytwo facts. The �rst is that the result is a tree of the same shape as t :shape.(b
.t).xs = shape.tHere, shape takes a tree of � s to a tree of 1 s, 1 being the unit type:shape = unit� where unit : � ! 1The second fact is that the breadth-�rst traversal of (b
.t).xs is a �nite pre�xof xs . Since (b
.t).xs and t have the same shape, their traversals have the samelength, and so the breadth-�rst traversal of (b
.t).xs consists of the �rst #.bft.telements of xs :bft.(b
.t).xs = #.bft.t@ xsHere, @ (pronounced `take') takes a number n and a stream xs and returns thelist consisting of the �rst n elements of xs :0 @ xs = [](n+ 1)@ (x :: xs) = x :: (n@ xs)The derivation of b
 proceeds by inverting the speci�cation of bft . Recall thatlevels.(x
 ts)= n levels o[a] :: 1++=.levels�.ts= n specialisation (3): let tR xss = levels.t 1++ xss o[a] ::R![].tsInformally, tR xss is the sequence of sequences obtained by placing the levelordertraversal of t `beside' the sequence of sequences xss . The operator R is invertible,in the sense that t and t R xss determine xss ; moreover, t R xss and shape.tdetermine t . That is, the equationxss = (xss- t)R (xss* t) | (4)|together with the requirement that xss- t be the same shape as t|determinesxss- t and xss* t .The requirement that xss- t be the same shape as t suggests that there is someconnection between - and relabelling. For which xss , if any, does the equation(b
.t).xs = xss- t | (5)hold?

Linear-time breadth-�rst tree algorithms 10In answering this question, we will encounter streams as solutions to the equationys = xs 1(tl.ys | (6)in ys . The solutions of such equations are leftwards accumulations|the streamsolutions are exactly streams ys of the formys = (xs 1((#e.xs) ++ es where es = e :: esfor various values of e . Further, the equationy = hd.ys where ys = xs 1(tl.yshas solutions in yy = (!e.xsfor various e . This can be seen by writing out (6) as a series of equations on theelements of ys ; if xs = [x1, : : : , xn] and ys = [y1, y2, : : :] , then (6) reduces toy1 = x1 (y2y2 = x2 (y3...yn = xn (yn+1yn+1 = yn+2yn+2 = yn+3...which can be solved from last to �rst.Returning to investigate the consequences of (5), we note that one of the require-ments on b
 is that bft.(b
.t).xs be a pre�x of xs , that is, there is a stream yssuch thatxs= n requirement obft.(b
.t).xs++ ys= n (5) obft.(xss- t) ++ ys= n bft o++=.levels.(xss- t) ++ ys= n specialisation (2) o++!ys.levels.(xss- t)= n observation above ohd.yss where yss = levels.(xss- t) 1++ tl.yss= n R ohd.yss where yss = (xss- t)R tl.yss

Linear-time breadth-�rst tree algorithms 11Here, the xs is known and the equation is to be solved for xss and yss . Equation (4)suggests a solution: if tl.yss = xss * t then yss = xss and hd.yss = xs . Thisdetermines xss in terms of xs and t :xss = xs :: (xss* t)and outlines a program for b
 :(b
.t).xs = xss- t where xss = xs :: (xss* t) | (7)It remains only to synthesize de�nitions of - and * .We havehd.xss= n (4) ohd.((xss- t)R (xss* t))= n R ohd.(levels.(xss- t) 1++ (xss* t))= n hd and 1 ohd.levels.(xss- t) ++ hd.(xss* t)= n hd.levels.t = [rt.t] o[rt.(xss- t)] ++ hd.(xss* t)whence we deduce thatrt.(xss- t) = hd.hd.xsshd.(xss* t) = tl.hd.xssSimilarly, we havetl.xss= n (4) otl.((xss- t)R (xss* t))= n R otl.(levels.(xss- t) 1++ (xss* t))= n tl and 1 (and levels yields non-empty lists) otl.levels.(xss- t) 1++ tl.(xss* t)= n tl.levels.u = 1++=.levels�.ch.u o1++=.levels�.ch.(xss- t) 1++ tl.(xss* t)= n specialisation (2) oR!tl.(xss*t).ch.(xss- t)in which shape�.ch.(xss- t) = shape�.ch.t

Linear-time breadth-�rst tree algorithms 12This is a pair of equations of the formu = R!w.vs shape�.vs = shape�.tsin which u and ts are known, and which we have to solve for w and vs . This canbe seen again as a series of equationsu = u1 = v1 R u2 shape.v1 = shape.t1u2 = v2 R u3 shape.v2 = shape.t2... ...un = vn R w shape.vn = shape.tnwhere u and each ti are known, and we must �nd w and each vi . By equation (4),the pair of equationsu = v R w shape.v = shape.tis solved byv = u- t w = u* tThus we havev1 = u- t1 u2 = u* t1v2 = u2 - t2 u3 = u2 * t2= (u* t1)- t2 = (u* t1)* t2... ...vn = ((u* t1)* � � �* tn�1)- tn w = ((u* t1)* � � �* tn�1)* tnThat is, vs = *"u.ts 1- ts w = * u.tsThus, the pair of equationstl.xss = R!tl.(xss*t).ch.(xss- t)shape�.ch.(xss- t) = shape�.ch.thas solutionsch.(xss- t) = *"tl.xss.ch.t1- ch.ttl.(xss* t) = * tl.xss.ch.tAssembling these discoveries, we getxss- t = rt.(xss- t)
 ch.(xss- t)= hd.hd.xss
 (*"tl.xss.ch.t 1- ch.t)xss* t = hd.(xss* t) :: tl.(xss* t)= tl.hd.xss :: * tl.xss.ch.tThere is some ine�ciency involved in computing the accumulation separately fromthe reduction that would be the next term in a longer accumulation. This can beavoided by tupling the two computations and de�ning a function something likeg(,).(e, xs) = ()"e.xs 1(xs,) e.xs)As it happens, this g has a familiar form: it arises from work on VLSI layout(Jones and Sheeran, 1990), where it is called row and has to do with a row of tilesin a two-dimensional rectangularly connected grid:

Linear-time breadth-�rst tree algorithms 13(row.f).(e, ys) = ()"e.xs 1(xs,) e.xs)where (a(x, a) x) = f.(a, x)It might help to think of row in terms of an automaton whose state transitionfunction f takes a state a and an input x and produces an output a (x and anew state a) x ; then (row.f).(a, xs) produces a pair (ys, c) consisting of a list ysof outputs and a �nal state c .An e�cient characterisation of row can be synthesized in the usual way:(row.f).(a, [])= n row o()"a.[] 1([],) a.[])= n reduction and accumulation o([], a)and (row.f).(a, x :: xs)= n row o()"a.(x :: xs) 1((x :: xs),) a.(x :: xs))= n reduction and accumulation o((a ::)"a)x.xs) 1((x :: xs),) a)x.xs)= n 1 o((a (x) :: ()"a)x.xs 1(xs),) a)x.xs)= n row o((a (x) :: ys, c) where (ys, c) = (row.f).(a) x, xs)= n (and), from de�nition of row o(y :: ys, c) where (y, b) = f.(a, x)(ys, c) = (row.f).(b, xs)If we de�ne f byf.(xss, t) = (xss- t, xss* t)then (*"tl.xss.ch.t 1- ch.t,* tl.xss.ch.t) = (row.f).(tl.xss, ch.t)and so f.(xss, t)= n f o(xss- t, xss* t)= n -, * o(hd.hd.xss
 (*"tl.xss.ch.t1- ch.t), tl.hd.xss ::* tl.xss.ch.t)

Linear-time breadth-�rst tree algorithms 14= n f o(hd.hd.xss
 ts, tl.hd.xss :: yss) where (ts, yss) = (row.f).(tl.xss, ch.t)Moreover,(b
.t).xss= n (7) oxss- t where xss = xs :: (xss* t)= n f oyss where (yss, zss) = f.(xss, t)xss = xs :: zss= n substituting xss oyss where (yss, zss) = f.(xs :: zss, t)which completes the derivation|the program(b
.t).xss = yss where (yss, zss) = f.(xs :: zss, t)where f.((x :: xs) :: xss, w
 ts)= (x
 us, xs :: yss) where (us, yss) = (row.f).(xss, ts)where (row.f).(a, []) = ([], a)(row.f).(a, x :: xs) = (y :: ys, c) where (y, b) = f.(a, x)(ys, c) = (row.f).(b, xs)implements b
 with a cost which is linear in the size of the tree.6 AcknowledgementsThe problem of breadth-�rst labelling was originally posed to us by Joe Fasel.He had been selling functional programming to sceptical imperative programmers(perhaps as a technique for writing parallelisable code). One of his successes wasshowing someone how to do breadth-�rst traversal. His colleague was so takenwith the elegance of the solution that he immediately came back with the labellingproblem, expecting that it would be just as easy. Of course, it is once you haveseen how to do it, but it seems di�cult to explain how one might go about writingthe program.This calculation was hammered out with the assistance of the squiggolists atthe Programming Research Group in Oxford, without whom it would have takeneven longer; it �nally came together after a conversation in the Usenet newsgroupcomp.lang.functional. The notation and style are those of Richard Bird's Theoryof Lists (Bird, 1987).

Linear-time breadth-�rst tree algorithms 15ReferencesRichard S. Bird (1987). An introduction to the theory of lists. In M. Broy, editor,Logic of Programming and Calculi of Discrete Design, pages 3{42. Springer-Verlag. Also available as Technical Monograph PRG-56, from the ProgrammingResearch Group, Oxford University.JeremyGibbons (1991). Algebras for Tree Algorithms. D. Phil. thesis, ProgrammingResearch Group, Oxford University. Available as Technical Monograph PRG-94.Geraint Jones and Mary Sheeran (1990). Circuit design in Ruby. In J�rgenStaunstrup, editor, Formal Methods for VLSI Design. North-Holland.Lambert Meertens (1988). First steps towards the theory of rose trees. CWI,Amsterdam; IFIP Working Group 2.1 working paper 592 ROM-25.

