Linear-time breadth-first tree algorithms:
An exercise in the arithmetic of folds and zips

GERAINT JONES* AND JEREMY GIBBONST

ABsTRACT. This paper is about an application of the mathematics of the zip, reduce (fold)
and accumulate (scan) operations on lists. Tt gives an account of the derivation of a linear-time
breadth-first tree traversal algorithm, and of a subtle and efficient breadth-first tree labelling
algorithm.

KeEYwoORDS. Derivation, functional programming, breadth-first, traversal, labelling.

1 Introduction

The algorithms which are developed in this paper relate trees to sequences in a way
that respects the breadth-first ordering of the nodes of the tree: nodes nearer the
root are earlier in the ordering, and nodes on the same level are ordered from left
to right.

We distinguish between finite and infinite sequences, which we call lists and
streams respectively. Lists of elements of type a are modelled as the least solution
list.a of the equation

list.ao = [] | a::list.a
That is, the empty list [] has type list.ar, and if x has type « and xs has type list.«
then x::xs has type list.ao. We abbreviate the list x :: (y :: (z:: [])) by [x,y,2].

Streams of elements of type « are modelled as the greatest solution stream.a of

the equation
stream.av = « ::stream.«

That is, every stream of type stream.a has a ‘head’ of type a and a ‘tail’ of type
stream.c«r. These components are extracted by the destructors hd and tl. (Strictly
speaking, we should use different constructors for lists and streams; instead, we will
trust to context to disambiguate ‘::7.)

If f takes objects of type a to objects of type [, then fx (pronounced ‘f map’)
takes objects of type list.a to objects of type list.3, and objects of type stream.«

Copyright (©1993 Geraint Jones and Jeremy Gibbons. Authors’ addresses: Oxford University
Programming Research Group, 11 Keble Road, Oxford OX1 3QD, England, email
geraint@prg.oxford.ac.uk (x); Dept of Computer Science, University of Auckland, Private
Bag 92019, Auckland, New Zealand, email jeremy@cs.aukuni.ac.nz (}). Presented at IFTP
WG2.1 meeting number 45, as working paper 705 WIN-2.

Linear-time breadth-first tree algorithms 2

to objects of type stream., by applying the function f to every element of the
sequence. For example,

fx.[x,y,z] = [fx fy f.z]
Note that function application is written with an infix *.7; it is right-associative
and tightest binding.

If @ is an associative operator from o« x o to «, then @/ (pronounced ‘plussle
reduce’) takes objects of type list.a to objects of type «, by ‘inserting” & between
adjacent elements. For example,

®/.[x,yz] = xByPz
The reduction @/ of the empty list is the unit of @, which is unique if it exists.

We also use directed reductions and accumulations on lists. The leftwards re-

duction @+« of a list is defined by
oel] = e

Dte.(x:1X8) = X B Déexs
For example,

Sfelxyz] = xd(y@(z0¢))
Note that the @ need not be associative.

The leftwards accumulation @<, of a list is defined by

Dok talls.xs = [Beexs| H Bfexs
Here, tails.xs is the list of suffixes of xs in order of decreasing length, from xs
itself to the empty list, and 4+ is list concatenation. (Later on, we will extend list
concatenation to concatenate a list with a stream, in the obvious way.) Note that
the accumulation of a list is the same length as the list itself, and that it does not
depend on the head of the list if the list is non-empty.

Rightwards reduction satisfies the equations

opel] = e
DFe.(X:1XS) = DBtegx-XS
and rightwards accumulation satisfies
DAk.inits.xs = BArexs H [DAe.xs
where inits returns the prefixes of a list.

The trees in this paper are non-empty homogeneous rose trees (Meertens, 1988);
every tree of type tree.a consists of a root labelled with an element of type «, and
a list of children each of which is itself a tree of type tree.ar. Trees are modelled as
the least solution tree.a of the equation

tree.a = «a —<list.tree.a

For example, the tree

Linear-time breadth-first tree algorithms 3

is represented by the expression
X1 < [Xz — [X5 — H,X@ — H],X3 — H,X4 — [X7 — H]]

We will call this tree seven, and use it as an example throughout.

The two tree destructors rt and ch are defined by

t = rt.t<cht

The two functions we will concern ourselves with in this paper are for breadth-
first traversal and labelling of a tree. As we shall see, they are in a sense each
other’s inverses, and we will derive an algorithm for relabelling by inverting one for
traversal.

Informally, breadth-first traversal takes a tree of elements and returns a list of
those elements in breadth-first order; for example, the breadth-first traversal of
the tree seven is [xy, X2, X3, X4, X5, Xe, X7 . Conversely, breadth-first labelling takes
a stream of elements and returns a tree whose breadth-first traversal is a finite
prefix of that stream. Since traversal destroys information about the ‘shape’ of a
tree, the labelling function must be provided with a tree—informally, the tree to be
relabelled—to determine the shape of its result. For example, labelling seven with
the stream [y1,y2,Y3,...] yields the tree

2 Breadth-first traversal

Breadth-first traversal is defined in terms of a close relative, levelorder traversal
(Gibbons, 1991). Levelorder traversal takes a tree of a's to a list of lists of as—in
fact, to a non-empty list of non-empty lists of as. The first element of the traversal
is a singleton list containing just the root of the tree, the second element of the
traversal consists of all the nodes of the tree at depth two, and so on. For example,
the levelorder traversal of seven is the list of lists

[(xa], [x2, X3, xa], [x5, X6, x7]]

Linear-time breadth-first tree algorithms 4

Formally, the function levels has type tree.a — list.list.a and is defined by
levels.(x <ts) = [x]:: Yy / levelsk.ts
Here, Yg 1s ‘long zip with plussle’; it combines corresponding elements of two lists
using @, returning a list as long as its longer argument. For example,
Xy 2] Yo [uv] = x&uyev,7
and in general,

xs Yo [] = xs
[[Yays = ys
(x::xs) Yo (y:iys) = (x@y)::(xs Yo ys)
(Later on, we apply long zips to pairs of sequences, rather than simply pairs of lists,
in the obvious way.)
The breadth-first traversal of a tree is obtained simply by concatenating the levels
of the tree:
bft = 4/ olevels
where o is backwards functional composition.
Together, these definitions give an executable program in a functional language
for computing the breadth-first traversal of a tree:
bft = +/clevels — (1)
where levels.(x < ts) = [x] :: Y./ levelsk.ts
This program has time complexity O(nlogn) in the size n of its output, which is
the size of the tree: the dominant factor is constructing the levels, each of which
has length O(n) and is built by a tree of concatenations.

3 A linear breadth-first traversal

It is well known—a ‘folk fact’—that the breadth-first traversal of a tree can be
computed in linear time in the length of its output. This linear-time algorithm can
be calculated straightforwardly from the characterisation of bft given above.
We observe that
bft.(x < ts)

= { bft }

H-/ levels.(x < ts)

= { levels }
H/.([x] 2 Yar / levelss.ts)

= { ®/.(x::xs) =x B D/.xs }
[X] H H/.Ya/ levelsx.ts

= {[x]—l—l—xs:x::xs}
x i/ Ya /[levelsk.ts

Linear-time breadth-first tree algorithms

= { introduce bfts = 4/ o Yy, / o levelsx }
x :: bfts.ts

Informally, bfts computes the traversal of a forest. Expanding bfts, we see that

bfts.|]

= { bfts |
H /.Y / levelsx.[]

= {&}=0}
H/ Yo/ (]

= { Ya has unit [] }
/.01

= { +H has unit [] }
[]

so bfts.[] =].

As for non-empty forests, we note first that, for associative &,

B/ ((x:%5) Yo y5) = x & B/.(ys Yo x5)
For example,

B/ ((x1:: [x2, %3, X4]) Yo [y1, Y2, y3])
= { Y, reduction }

(X1 DY) ® (X2 BY2) ® (X3 D y3) D x4
= { associativity }

X1 B (y1 D x2) B (y2 B x3) B (ys B xa)
= { reduction, Y }

x1 @ ®/.([y1,¥2.¥3] Yo [X2, X3, X4])

The general proof, by induction on xs and ys, is straightforward and is omitted.
Returning now to the traversal of a non-empty forest, we have

bfts.((x < ts) :: us)

= { bfts }
H /.Yy / Jlevelsk.((x < ts) :: us)
= { map, reduce }

H/.(levels.(x < ts) Yy Yy /.levelsk.us)

= { levels }

H/(([X] 2 Yo/ levelsk.ts) Yy Yy /.levelsk.us)

Linear-time breadth-first tree algorithms 6

= { lemma }

[X] H# +H/.(Y4/ levelsk.us Yy Yy /. levelss.ts)
= { promotion }
[X] H# 4/. Y4/ levels*.(us H ts)

= { bfts }

[x] H bfts.(us H ts)

- ()
x :: bfts.(us 4t ts)

Noting that

bft.t = bfts.[t]
yields the program

bft.y = bfts.[t] where bfts.[] = []

bfts.((x < ts)::us) = x:: bfts.(us H ts)

This is essentially how breadth-first traversal is usually implemented in an impera-
tive programming language—using a queue of trees ‘yet to be traversed’. Executed
naively in a typical functional language, however, this program takes quadratic
time, because appending ts to us takes time proportional to the length of us,
which grows linearly in the size of the tree.

Fortunately, there is a standard technique for eliminating queues in functional
languages, provided that their use is only ‘single threaded’. This is the same tech-
nique that turns the naive quadratic program for reversing a list into the linear
‘fast reverse’. It involves representing a queue xs as a pair of lists (ys, zs) such that
xs = ys H rev.zs. We define

fastbfts.(us,vs) = bfts.(us 4 rev.vs)
(so that bfts.ts = fastbfts.(ts, [])) and calculate
fastbfts.([],[])

= { fastbfts }
bfts.|]

= { bfts }
[]

and

fastbfts.([], v :: vs)
= { fastbfts }

bfts.rev.(v :: vs)

Linear-time breadth-first tree algorithms 7

- { fastbfts }
fastbfts.(rev.(v:: vs), [])

and finally,
fastbfts.((x < ts) :: us, vs)

= { fastbfts }
bfts.((x < ts) :: us 4 rev.vs)

= { bfts }

x :: bfts.(us 4 rev.vs H ts)

= { reverse }

x :: bfts.(us 4 rev.(rev.ts 4 vs))
= { fastbfts }
x :: fastbfts(us, rev.ts 4 vs)

This program takes linear amortized time in the length of its output, assuming rev
is computed in linear time—the time is proportional to the time spent on rev, and
every list of children gets reversed once when it is placed on the second list and
once more when it migrates to the first list; the sum of the lengths of all lists of
children of a tree is one less than the size of the tree. More formally, if we define
f.([[]) =0
f.([],viivs) = #.(vivs)+f.(rev.(vivs), [])
f.((x<ts)::us,vs) = #.ts+ f.(us, rev.ts 4 vs)
(where # returns the length of a list), so that f.(us, vs) counts the ‘amount of time’
spent on rev in computing fastbfts.(us, vs), then we can show by induction that

f.(ts,[]) = 2 x +/.sx.ts where s.t = sizet — 1

4 A second linear breadth-first traversal

There is an entirely different linear program for breadth-first traversal, again arising
by calculation from the characterisation (1). This time the linearisation comes from
representing the levels in the levelorder traversal—non-empty lists—in such a way
that they can be concatenated in constant time.
One such representation uses the least solution join.av of the equation

join.a = O.a | join.a 44 join.«v
—that is, as non-empty leaf-labelled binary trees in which every parent has exactly
two children. The abstraction function is fringe : join.av — list.«, given by

fringe.0.x = [X]

fringe.(j H+ k) = fringe.j H fringe.k
Under this abstraction, levels is implemented by a function jlevels, of type tree.a —
list.join.cv, such that

Linear-time breadth-first tree algorithms 8

fringex o jlevels = levels
It is easy to see that the definition
Jlevels.(x <ts) = O.x:: Yy / jlevelsk.ts

satisfies this requirement. (There are other definitions of jlevels that satisfy, because
fringe is not injective, but this definition is the ‘simplest’.)

Computing jlevels.t involves linearly many applications of 4+ —in fact, size.t —
depth.t applications, since there is one application for each pair of adjacent elements
in the levelorder traversal—and so takes linear time.

In terms of join lists, bft is given by

bft = H/ ofringex o jlevels
and so it remains only to compute 4/ o fringex in time proportional to the length of
its result. This can be done by introducing a leftwards reduction: the Specialisation
Theorem (Bird, 1987) states that, for associative @,

B/ fxxs B e = Q«4exs wherex®y=~fxdy —(2)
In particular, if @ has unit e then
@/ fxxs = ®<exs —(3)

Thus,
+/ ofringex = @4 where j ® xs = fringe.j H xs
We can synthesize a definition of ® taking time proportional to the size of its left
argument:
0.x @ xs

- {e}
fringe.0.x H xs
= { fringe }
X 11 XS
and

(i k) @ xs

- {e}
fringe.(j +H k) + xs
= { fringe }
fringe.J H fringe.k 4+ xs
- {e}
J® (k®xs)
hence
bft = ®¢j0jlevels

where

Linear-time breadth-first tree algorithms 9

Jlevels.(x <ts) = O.x:: Yy / jlevelsk.ts

and
OX®Xs = X::Xs
(i Kkoxs = jokexs)

This program takes linear time.

5 Breadth-first labelling
The breadth-first labelling (bfl.t).xs of a tree t with a stream xs is determined by
two facts. The first is that the result is a tree of the same shape as t:
shape.(bfl.t).xs = shape.t
Here, shape takes a tree of as to a tree of 1s, 1 being the unit type:
shape = unitx where unit : a« — 1
The second fact is that the breadth-first traversal of (bfl.t).xs is a finite prefix
of xs. Since (bfl.t).xs and t have the same shape, their traversals have the same

length, and so the breadth-first traversal of (bfl.t).xs consists of the first #.bft.t
elements of xs:

bft.(bfl.t).xs = #.bft.t < xs
Here, - (pronounced ‘take’) takes a number n and a stream xs and returns the
list consisting of the first n elements of xs:

0-xs = []
(n+1)—(x:xs) = x::(n—xs)
The derivation of bfl proceeds by inverting the specification of bft. Recall that
levels.(x < ts)

= { levels }
[a] :: Vi / levelsx.ts

= { specialisation (3): let t @ xss = levels.t Y xss }

[a] : CD?L[].tS
Informally, t @ xss is the sequence of sequences obtained by placing the levelorder
traversal of t ‘beside’ the sequence of sequences xss. The operator @ is invertible,
in the sense that t and t @ xss determine xss; moreover, t @ xss and shape.t
determine t. That is, the equation
xss = (xssO1) D (xssSt) — (4)
—together with the requirement that xss ©t be the same shape as t—determines
xss Ot and xss©t.
The requirement that xss © t be the same shape as t suggests that there is some
connection between © and relabelling. For which xss, if any, does the equation

(bfl.t).xs = xssOt — (5)
hold?

Linear-time breadth-first tree algorithms 10

In answering this question, we will encounter streams as solutions to the equation
ys = xs Yg tlys — (6)
in ys. The solutions of such equations are leftwards accumulations—the stream
solutions are exactly streams ys of the form
ys = (xs Yo P4 exs)Hes where es=e::es
for various values of e. Further, the equation
y = hd.ys where ys = xs Yg tl.ys

has solutions in y

y = @®exs
for various e. This can be seen by writing out (6) as a series of equations on the
elements of ys; if xs = [x1,...,x,] and ys = [y1,y2,...], then (6) reduces to
Yi = X1 @Y

Yo = X2 @D Yys3

Yn = Xn) Yn+1
Y41 Yn42
Yn+2 = Yn43

which can be solved from last to first.

Returning to investigate the consequences of (5), we note that one of the require-
ments on bfl is that bft.(bfl.t).xs be a prefix of xs, that is, there is a stream ys
such that

Xs

= { requirement }
bft.(bfl.t).xs H ys

- (o)
bft.(xss © t) 4 ys

— { bft }
H-/ levels.(xss © t) 4 ys

= { specialisation (2) }
H ¢ ys.levels.(xss © t)

= { observation above }
hd.yss where yss = levels.(xss © t) Yy tl.yss

= {0}

hd.yss where yss = (xss © t) O tl.yss

Linear-time breadth-first tree algorithms 11

Here, the xs is known and the equation is to be solved for xss and yss. Equation (4)
suggests a solution: if tl.yss = xss © t then yss = xss and hd.yss = xs. This
determines xss in terms of xs and t:

xss = xs:(xssOt)
and outlines a program for bfl:
(bfl.t).xs = xssO't where xss = xs :: (xss & 1) —(7)
It remains only to synthesize definitions of ® and &.
We have
hd.xss
= {W}
hd.((xss® 1) O (xss & 1))

- {o)
hd.(levels.(xss ® t) Yy (xss ©1))

= { hd and Y }
hd.levels.(xss ® t) H hd.(xss & t)

= { hd.levels.t = [rt.t] }
[rt.(xss ©t)] H hd.(xss© t)

whence we deduce that
rt.(xss©t) = hd.hd.xss
hd.(xss©t) = tl.hd.xss

Similarly, we have

tl.xss

= {w]
th((xss®t) O (xss S t))
- (o)
tl.(levels.(xss ® t) Yy (xss © 1))
= { tl and Y (and levels yields non-empty lists) }
tl.levels.(xss © t) Yy tl.(xss © t)
= { tl.levels.u = Y, /.levels*.ch.u }
Y4/ levelsk.ch.(xss © t) Yy tl.(xss & t)
= { specialisation (2) }
O 44 (xssot)-ch.(xss O 1)

in which
shapes.ch.(xss©®t) = shapex.ch.t

Linear-time breadth-first tree algorithms 12

This is a pair of equations of the form
u = Q%w.vs shapex.vs = shapex.ts
in which u and ts are known, and which we have to solve for w and vs. This can
be seen again as a series of equations

u = u; = viOu shape.v; = shape.t;
U, = vy Qus shape.v; = shape.t,
u, = v, Ow shape.v, = shape.t,

where u and each t; are known, and we must find w and each v;. By equation (4),
the pair of equations

u=vow shape.v = shape.t
is solved by

v = uot w = uot

Thus we have

Vi = u@®ty up = uot
Vo = U Ot uz = W ot

= (Uet) Ot = (uot) Bt

Vo = ((uB1t)6 - Bth_1) Oty w = (uet;))e--Sti_1)Bt,
That is,

vs = O-4k,.ts Yo ts W = O%,.ts
Thus, the pair of equations

tl.xss O+t (xssot)-ch.(xss © 1)
shapes.ch.(xss©®t) = shapex.ch.t
has solutions
ch.(xss©t) = O/ xss.ch.tYgch.t
tl(xss©t) = O4uxs-ch.t
Assembling these discoveries, we get
xssOt = rt.(xss@t) < ch.(xssO 1)
= hd.hd.xss < (O-4uxs.ch.t Yo ch.t)
xss©Ot = hd.(xss6t) :: tl.(xssOt)
= tlhd.xss :: ©4yxs.ch.t
There is some inefficiency involved in computing the accumulation separately from
the reduction that would be the next term in a longer accumulation. This can be
avoided by tupling the two computations and defining a function something like
8o.0-(6,x8) = (®Fexs Vg XS, ®Fe.XS)
As it happens, this g has a familiar form: it arises from work on VLSI layout
(Jones and Sheeran, 1990), where it is called row and has to do with a row of tiles
in a two-dimensional rectangularly connected grid:

Linear-time breadth-first tree algorithms 13

(row.f).(e,ys) = (@exs Yo XS, @Fe.XS)
where (a @ x,a ®x) = f.(a,x)
It might help to think of row in terms of an automaton whose state transition
function f takes a state a and an input x and produces an output a @ x and a
new state a ® x; then (row.f).(a,xs) produces a pair (ys,c) consisting of a list ys
of outputs and a final state c.

An efficient characterisation of row can be synthesized in the usual way:

(row.f).(a, [])

= { row }
(®7a.[1 Yo [, ©4a.[1)

= { reduction and accumulation }

([1.2)

and
(row.f).(a,x :: xs)

= { row }
(@#a.(x::x8) Yo (X ::X8), ®+a.(x::x5))

= { reduction and accumulation }
((a:: @Fagx-Xs) Yo (X ::1XS), @Fagx-XS)

= Y]
((a ®x) :: (@7ragx-Xs Yo XS), @7rapx-XS)
= { row }
((a®x):ys,c) where (ys,c) = (row.f).(a ® x, xs)
= { @ and ®, from definition of row }
(y:ys,c) where (y,b) = f.(a, x)
(ys,c) = (row.f).(b,xs)
If we define f by
f.(xss,t) = (xss@t,xssSt)

then
(&4 txss-ch.t Yo ch.t, ©Ayxss.ch.t) = (row.f).(tl.xss, ch.t)

and so

f.(xss, t)

- {1}

(xss @ t,xss S 1)

- {oe)

(hd.hd.xss ~< (6&-4rixss-ch.t Yo ch.t), tl.hd.xss :: ©+4y xss.ch.t)

Linear-time breadth-first tree algorithms 14

- {1}

(hd.hd.xss < ts, tl.hd.xss :: yss) where (ts, yss) = (row.f).(tl.xss, ch.t)

Moreover,

(bfl.t).xss

= 1My

xss ©t where xss = xs :: (xss & 1)
= 1fy

yss where (yss, zss) = f.(xss, 1)

XSS = XS ::ZSS

= { substituting xss }

yss where (yss,zss) = f.(xs::zss,t)

which completes the derivation—the program

(bfl.t).xss = yss where (yss, zss) = f.(xs :: zss, t)

where
f.((x::xs) :: xss, w < ts)
= (x < us,xs::yss) where (us, yss) = (row.f).(xss, ts)
where
(rowf).(a,[]) = ([],2)

(row.f).(a,x::xs) = (y:ys,c) where (y,b) = f.(a,x)
(ys,c) = (row.f).(b,xs)

implements bfl with a cost which is linear in the size of the tree.

6 Acknowledgements

The problem of breadth-first labelling was originally posed to us by Joe Fasel.
He had been selling functional programming to sceptical imperative programmers
(perhaps as a technique for writing parallelisable code). One of his successes was
showing someone how to do breadth-first traversal. His colleague was so taken
with the elegance of the solution that he immediately came back with the labelling
problem, expecting that it would be just as easy. Of course, it is once you have
seen how to do it, but it seems difficult to explain how one might go about writing
the program.

This calculation was hammered out with the assistance of the squiggolists at
the Programming Research Group in Oxford, without whom it would have taken
even longer; it finally came together after a conversation in the Usenet newsgroup
comp.lang.functional. The notation and style are those of Richard Bird’s Theory
of Lists (Bird, 1987).

Linear-time breadth-first tree algorithms 15

References

Richard S. Bird (1987). An introduction to the theory of lists. In M. Broy, editor,
Logic of Programming and Calculi of Discrete Design, pages 3—-42. Springer-
Verlag. Also available as Technical Monograph PRG-56, from the Programming
Research Group, Oxford University.

Jeremy Gibbons (1991). Algebras for Tree Algorithms. D. Phil. thesis, Programming
Research Group, Oxford University. Available as Technical Monograph PRG-
94.

Geraint Jones and Mary Sheeran (1990). Circuit design in Ruby. In Jorgen
Staunstrup, editor, Formal Methods for VLSI Design. North-Holland.

Lambert Meertens (1988). First steps towards the theory of rose trees. CWI,
Amsterdam; IFIP Working Group 2.1 working paper 592 ROM-25.

