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CUBIC ARC-TRANSITIVE k-MULTICIRCULANTS

MICHAEL GIUDICI, ISTVÁN KOVÁCS, CAI HENG LI, GABRIEL VERRET

Abstract. For an integer k > 1, a graph is called a k-multicirculant if its

automorphism group contains a cyclic semiregular subgroup with k orbits on
the vertices. If k is even, there exist infinitely many cubic arc-transitive k-

multicirculants. We conjecture that, if k is odd, then a cubic arc-transitive

k-multicirculant has order at most 6k2. Our main result is a proof of this
conjecture when k is squarefree and coprime to 6.

1. Introduction

All graphs in this paper are finite, simple and connected. A permutation group
is called semiregular if its only element fixing a point is the identity. For an integer
k > 1, we say that a graph is a k-multicirculant if its automorphism group con-
tains a cyclic semiregular subgroup with k orbits on the vertices. (Note that the
terminology surrounding this topic varies.)

Clearly, every graph is a k-multicirculant for some k, for example if k is the
order of the graph. Moving beyond this trivial observation is often quite difficult:
whether every vertex-transitive graph is a k-multicirculant for some other k is a
famous open problem (see [3, 28]). This question has been settled in the affirma-
tive for graphs of valency at most four [12, 30]. The question has also been set-
tled positively for vertex-quasiprimitive graphs [18], locally-quasiprimitive graphs
(and hence arc-transitive graphs of prime valency and 2-arc-transitive graphs) [19],
distance-transitive graphs [25], graphs of square-free order [13] and arc-transitive
graphs of valency 8 [33]. Finally, [4] proves that vertex-transitive cubic graphs
admit a semiregular automorphism of order at least three.

On the other hand, studying k-multicirculants for fixed k often yields interesting
results. For example, 1-multicirculants, usually called simply circulants, are exactly
Cayley graphs on cyclic groups. These graphs have been intensively studied. The
family of 2-multicirculants (sometimes called bicirculants) has also attracted some
attention.

In many cases, additional symmetry conditions are imposed on the graphs. In
particular, cubic arc-transitive k-multicirculants have been the focus of some recent
investigation. (A graph is called arc-transitive if its automorphism group acts tran-
sitively on ordered pairs of adjacent vertices. A graph is cubic if each of its vertices
has degree 3.) It is a rather easy exercise to show that a cubic arc-transitive circulant
is isomorphic to either K4 or K3,3. The classification of cubic arc-transitive bicircu-
lants can be deduced from [17, 29, 31], while cubic arc-transitive k-multicirculants
for k ∈ {3, 4, 5} are classified in [16, 23]. Rather than describe these classifica-
tions in detail, we would simply like to point out one striking feature: for k = 2 or
k = 4, there exist infinitely many cubic arc-transitive k-multicirculants, whereas for
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k ∈ {1, 3, 5}, there are only finitely many. This immediately suggests the following
question.

Question 1.1. Given a positive integer k, does there exist infinitely many cubic
arc-transitive k-multicirculants?

Investigating this question is the main topic of this paper. It follows by [24,
Theorem 1.2, Corollary 5.8] that, if k is an even positive integer, then there exist
infinitely many cubic arc-transitive k-multicirculants. We thus focus on the case
when k is odd. We are unable to settle Question 1.1 in full generality in this case,
but we prove the following, which is our main result.

Theorem 1.2. If k is a squarefree positive integer coprime to 6, then a cubic
arc-transitive k-multicirculant has order at most 6k2.

We would like to note that our proof of Theorem 1.2 relies on the Classification
of the Finite Simple Groups. We would also like to note that the methods used in
the proof of Theorem 1.2 can, with some more effort, yield a complete classification
of cubic arc-transitive k-multicirculants, for k squarefree and coprime to 6.

If k is an odd positive integer, then there exists a cubic arc-transitive k-multicirculant
of order 6k2. (See for example [24, Theorem 1.1], where such a graph is called a
I6k
k (3k)-path.) In particular, the bound in Theorem 1.2 is best possible. In view of

this and computational evidence gathered from the census of cubic arc-transitive
graphs of order at most 10000 [6, 7], we would like to propose the following conjec-
ture which would completely settle Question 1.1.

Conjecture 1.3. If k is an odd positive integer, then a cubic arc-transitive k-
multicirculant has order at most 6k2.

Question 1.1 has the following obvious but interesting generalisation.

Question 1.4. Given a pair of positive integers d and k, with d > 3, does there
exist infinitely many d-valent arc-transitive k-multicirculants?

Note that arc-transitivity plays an important role here. Indeed, for all d > 3
and all n > d + 1, not both odd, there exists a Cayley graph of valency d on a
cyclic group of order n. It easily follows that, if we relax from arc-transitivity to
vertex-transitivity in Question 1.4, then the answer is positive for all d and k.

2. Preliminaries

We start with some notation and definitions. Let G be a group of automorphisms
of a graph Γ. We denote by Gv the stabiliser in G of the vertex v, by Γ(v) the

neighbourhood of v, and by G
Γ(v)
v the permutation group induced by the action of

Gv on Γ(v). We say that Γ is G-vertex-transitive (G-arc-transitive, respectively) if
G is transitive on the set of vertices (arcs, respectively) of Γ, and that it is G-locally-

transitive if G
Γ(v)
v is transitive for every vertex v. We define locally-primitive, etc.

similarly.
A t-arc of Γ is a sequence of t+ 1 vertices such that any two consecutive vertices

in the sequence are adjacent, and with any repeated vertices being more than 2
steps apart. We say that Γ is (G, t)-arc-transitive if G is transitive on the set of
t-arcs of Γ.

Given an integer n and a prime p, we will sometimes denote by np the p-part of
n (that is, the largest power of p dividing n) and by np′ the p′ part (that is, n/np).

Given a graph Γ and a group of automorphisms N of Γ, the quotient graph Γ/N
is the graph whose vertices are the N -orbits, and with two such N -orbits vN and
uN adjacent whenever there is a pair of vertices v′ ∈ vN and u′ ∈ uN that are
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adjacent in Γ. If the natural projection π : Γ→ Γ/N is a local bijection (that is, if
π|Γ(v) : Γ(v)→ (Γ/N)(vN ) is a bijection for every vertex v of Γ) then Γ is called a
regular N -cover of Γ/N . Such covers have many important properties that will be
used repeatedly, most of which are folklore. (See [32, Lemma 3.2] for example.)

Given a group G with subgroups H and K, we define[H,K] = 〈h−1k−1hk | h ∈
H, k ∈ K〉. Letting G(0) = G, we define G(i) = [G(i−1), G(i−1)]. Then

G = G(0) > G(1) > G(2) > G(3) · · · .

Since G is finite, there is some integer n such that G(k) = G(n) for all k > n, and we
write G∞ = G(n). We say that G is perfect if G = [G,G]. Note that G∞ is perfect.
We say that G is soluble if G∞ = 1, and insoluble otherwise. The soluble radical S
of G is the largest normal soluble subgroup of G. Note that G/S has trivial soluble
radical. We denote the centre of G by Z(G). Finally, G is called quasisimple if it is
perfect and G/Z(G) is simple.

The socle of a group is the subgroup generated by its minimal normal subgroups
(see [10, Section 4.3] for properties of the socle). A minimal normal subgroup is
the direct product of isomorphic simple groups hence the socle is a direct product
of simple groups.

A group G is called almost simple if it has a unique minimal normal subgroup
T and T is a nonabelian simple group. Identifying T with its group of inner auto-
morphisms, we have T 6 G 6 Aut(T ).

We now collect a few results that will be useful in the proof.

Lemma 2.1. Let p be an odd prime, let P be a p-group with a cyclic maximal
subgroup and let X be the group generated by elements of order p in P .

(1) If P = X, then P is elementary abelian.
(2) If X is cyclic, then so is P .
(3) If P is cyclic of order at least p2, then an automorphism of P of order 2

cannot centralise the maximal subgroup of P .

Proof. It is obvious that (1) and (2) hold if P is abelian, hence assume that P
is nonabelian. Since p is odd, it is well-known that P ∼= 〈a, b | apn = bp =

1, ab = ap
n−1+1〉, where n > 2 (see, e.g., [1, 23.4]). One can easily check that

X = 〈apn−1

, b〉 ∼= Z2
p. This completes the proof of (1) and (2). For (3), recall that

the automorphism group of a cyclic group of order the power of an odd prime is
itself cyclic, and that its unique involution acts by inversion (see, e.g., [1, 23.3]). �

Lemma 2.2. Let G be a group with a normal subgroup N and let T be a perfect
group acting on G and centralising N . If T acts trivially on G/N , then it acts
trivially on G.

Proof. Since T acts trivially on G/N , we have [G,T ] 6 N and thus [G,T, T ] 6
[N,T ] = 1. Similarly, [T,G, T ] = 1. By the three subgroups lemma (see, e.g., [1,
8.7]), it follows that [T, T,G] = 1 and, since T is perfect, [T,G] = 1. �

Lemma 2.3. Let Γ be a graph with every vertex having odd valency and let C be a
semiregular cyclic group of automorphisms of Γ. If C has an odd number of orbits,
then C has even order and the unique involution of C reverses some edge of Γ.

Proof. Let (C1, . . . , Ck) be an ordering of the orbits of C and let A = {aij} be the
k×k matrix such that aij is the number of vertices of Cj adjacent to a given vertex
of Ci. It is not hard to see that this is independent of the choice of the vertex,
hence A is well-defined and, moreover, aij = aji hence A is symmetric.

By hypothesis, k is odd and the sum of every row and column is odd. In par-
ticular, the sum of all the entries of A is odd. On the other hand, A is symmetric
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and thus the sum of the non-diagonal entries is even. This shows that at least one
diagonal entry of A, say ann, must be odd.

Let X be the graph induced on Cn. Since C is semiregular, it acts regularly on
X and we can view X as a Cayley graph Cay(C, S). Since X has odd valency, |S| is
odd, |C| is even and S contains the unique involution of C. The result follows. �

Lemma 2.4. Let Γ be a G-arc-transitive group and let N be a normal subgroup
of G. If N contains an element reversing some edge of Γ, then Γ is N -vertex-
transitive.

Proof. Let e be an edge of Γ. Since N is normal in the arc-transitive group G, N
must contain an element reversing e. In particular, the endpoints of e are in the
same N -orbit. By connectedness, N is vertex-transitive. �

Lemma 2.5. Let G be a transitive permutation group on the set Ω, let N be a
normal subgroup of G and let C be a semiregular subgroup of G with k orbits. If
|N | is coprime to |Gv|, then the induced action of C on the N -orbits is semiregular
with k′ orbits, where k′ divides k.

Proof. Since |N | is coprime to |Gv|, Nv = 1 and thus |N | = |vN | for every point v.

It follows that |(G/N)vN | = |G/N |
|Ω|/|vN | = |G|

|Ω| = |Gv|.
Let c ∈ C such that Nc (viewed throughout this proof as an element in the

quotient group G/N) fixes some vN . For the first part, it suffices to show that Nc
is the identity element of G/N . Note that, by the previous paragraph, the order of
Nc divides |Gv|. On the other hand, since vN is fixed by Nc, vN can be partitioned
in 〈c〉-orbits, but these all have the same size, namely |c|, and thus |c| divides |N |.
It follows that the order of Nc divides both |Gv| and |N | but these are coprime and
thus Nc is trivial.

As for the second claim, k = |Ω|
|C| while k′ = |Ω|

|vN |
|C∩N |
|C| thus k

k′ = |vN |
|C∩N | . Recall

that |N | = |vN | and thus k
k′ = |N |

|C∩N | which is an integer. �

Lemma 2.6. Let Γ be a G-arc-transitive graph. If G has a normal semiregular
subgroup with at most two orbits on vertices, then the subgroup of G fixing a vertex
and all its neighbours is trivial.

Proof. If G has a normal regular group, then the result follows by [20, Lemma 2.1].
Otherwise, it is not hard to see that Γ must be bipartite and the result follows by
applying [26, Lemma 2.4] with X = G and N the bipartition-preserving subgroup
of G. �

The structure of the vertex-stabiliser in a cubic G-arc-transitive graph has been
known for a long time (see [11] for example).

Theorem 2.7. Let Γ be a cubic graph. If Γ is G-arc-transitive, then it is (G, t +
1)-arc-regular for some 0 6 t 6 4. Moreover, the structure of Gv is uniquely
determined by t and is as in Table 1.

t 0 1 2 3 4
Gv Z3 Sym(3) Sym(3)× Z2 Sym(4) Sym(4)× Z2

Table 1. Vertex-stabilisers in cubic (t+ 1)-arc-regular graphs

Proposition 2.8. [27, Corollary 4.6] Let Γ be a cubic (G, t+1)-arc-transitive graph.
If G is soluble, then t 6 2. Moreover, if t = 2, then Γ is a regular cover of K3,3.
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Lemma 2.9. Let Γ be a cubic G-arc-transitive graph and let N be a normal sub-
group of G that is locally-transitive on Γ. If |Nv| 6 12, then |Gv| 6 12.

Proof. Suppose, by contradiction, that |Gv| > 12. By Theorem 2.7, Gv is isomor-
phic to either Sym(4) or Sym(4)×Z2. Now, Nv is a normal subgroup of Gv of order
divisible by 3. Since |Nv| 6 12, it is not hard to check that this implies Nv ∼= Alt(4).

Since N
Γ(v)
v is a quotient of Nv with order divisible by 3, we have that N

Γ(v)
v is

regular of order 3. As N is normal in a vertex-transitive group, this holds for every
vertex, but this implies that Nv itself has order 3, a contradiction. �

Lemma 2.10. Let Γ be a G-locally-primitive cubic graph. If N is a normal subgroup
of G such that G/N is insoluble, then N has at least three orbits and is semiregular
on the vertices of Γ. In particular, Γ is a regular cover of Γ/N .

Proof. If N has at most two orbits on vertices, then |G : N | divides 2|Gv|. Since
|Gv| is a {2, 3}-group, so is G/N and thus G/N is soluble, a contradiction. If follows
that N has at least three orbits on vertices.

Suppose that N
Γ(v)
v 6= 1. Since G is locally-primitive, it follows that N

Γ(v)
v is

transitive. In particular, vertices at distance 2 from each other are in the same
N -orbit. By connectedness, N has at most 2 orbits, which is a contradiction. We

conclude that N
Γ(v)
v = 1, thus Nv = 1 and N is semiregular. �

Lemma 2.11. Let C be a cyclic subgroup of a group G. If N is a normal subgroup
of G, then N ∩C is a cyclic subgroup of N and NC/N is a cyclic subgroup of G/N .
Moreover, |G : C| = |G/N : NC/N ||N : N ∩ C|.

Proof. The first part follows from the fact that NC/N ∼= C/(N ∩ C). As for
the second part, note that |G : C| = |G : NC||NC : C| = |G/N : NC/N ||N :
N ∩ C|. �

Lemma 2.12. Let Γ be a cubic (G, t+1)-arc-regular graph such that G is insoluble
and let S be the soluble radical of G.

(1) If C is a semiregular cyclic subgroup of G with an odd number of orbits,
then |C ∩ S| is odd and |G/S : CS/S|2|S|2 = 2t.

(2) If a Sylow 2-subgroup of G has a cyclic subgroup of index at most 2t, then
G/S is almost simple.

Proof. We first prove (1). Suppose, by contradiction, that |C ∩ S| is even. This
implies that S contains the unique involution of C. By Lemma 2.3, this involution
reverses an edge of G and it follows by Lemma 2.4 that S is vertex-transitive,
contradicting Lemma 2.10. We conclude that |C ∩ S| is odd. Note that |G/S :
CS/S| = |G|/|CS| = |G||C ∩ S|/|S||C| = 3 · 2tk|C ∩ S|/|S|, where k is the number
of orbits of C. Since |C ∩ S| is odd it follows that |G/S : CS/S|2|S|2 = 2t. This
concludes the proof of (1).

We now prove (2). By Theorem 2.7, we have 0 6 t 6 4. By Lemma 2.10, Γ
is a regular cover of Γ/S and Gv ∼= (G/S)vS . Let N be the socle of G/S. Write
N = T1× · · · × Tm, such that the Ti’s are nonabelian simple and ordered such that
the exponent of their Sylow 2-subgroups is non-increasing. We suppose that m > 2
and will obtain a contradiction.

Let N2 be a Sylow 2-subgroup of N . Recall that the Sylow 2-subgroup of a
nonabelian simple group is never cyclic (see [1, 39.2]) and, in particular, has order
at least 4. Thus, any cyclic subgroup of N2 has index at least 2|T2|2 · · · |Tm|2.
By Lemma 2.11, N2 has a cyclic subgroup of index at most 2t. It follows that
2t > 2|T2|2 · · · |Tm|2 > 2 · 4m−1. Since t 6 4, we have m = 2, |T2|2 6 8 and t > 3.

Since G/S has trivial soluble radical, G/S can be embedded in the automorphism
group of N , and (G/S)/N can be embedded in the outer automorphism group of N .
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Since N = T1×T2, the Schreier Conjecture implies that the outer automorphism of
N is soluble, and thus so is (G/S)/N . If N has at least three orbits on the vertices
of Γ/S, then Γ/S is a regular cover of (Γ/S)/N and thus t 6 2 by Proposition 2.8, a
contradiction. It follows that N has at most two orbits. If N is semiregular, then it
follows by Lemma 2.6 that t 6 1. We may thus assume that N is locally-transitive.

We apply Lemma 2.10 to conclude that Γ/S is a regular cover of (Γ/S)/T1. In
particular, N/T1 is locally-transitive. Since N/T1

∼= T2, |T2|2 6 8 and (Γ/S)/T1

has even order, we find that |(N/T1)v|2 6 4, where v is a vertex in (Γ/S)/T1, and
thus |NvS | = |(N/T1)v| 6 12. By Lemma 2.9, this implies |Gv| = |(G/S)vS | 6 12
and thus t 6 2, a contradiction. �

Proposition 2.13. Let t be an integer with 0 6 t 6 4, let k be a squarefree positive
integer coprime to 6 and let G be an almost simple group with order divisible by 3.
If G has a cyclic subgroup C of even order and index dividing 3 · 2tk, then G, |C|
and log2 |G : C|2 are given in Table 2. (The meaning of the last two columns of
Table 2 will be explained in Section 3.2.)

G |C| log2 |G : C|2
Upper bound

on t
Upper bound
on log2 |S|2

(1) Alt(5) 2 1 1 0
(2) Sym(5) 2, 4 or 6 1 or 2 2 1
(3) Sym(6) 6 3 3 0
(4) Aut(Sym(6)) 6 4 4 0
(5) Alt(7) 6 2 3 1
(6) Sym(7) 6 or 12 2 or 3 4 2
(7) M11 6 3 3 0
(8) J1 2, 6 or 10 2 2 0
(9) Aut(2B2(8)) 4 or 12 4 0 –
(10) PSL(2, 24) 2 3 1 –
(11) PSL(2, 24).2 2, 4, 6 or 10 3 or 4 2 –
(12) PΓL(2, 24) 4, 8 or 12 3 or 4 2 –
(13) PSL(2, 25) 2 4 1 –
(14) PΓL(2, 25) 2 or 10 4 1 –
(15) PSL(2, r), r > 7 6 (r + 1)/2 > 1 3 2
(16) PGL(2, r), r > 7 6 r + 1 > 1 3 2
(17) PΣL(2, r2), r > 5 2r > 3 4 1
(18) PΓL(2, r2), r > 5 2r > 4 4 0

Table 2.

Proof. Let T be the socle of G. By Lemma 2.11, |T : T ∩ C| divides 3 · 2tk; this
will play a crucial role.

If T ∼= Alt(n), then n < 9 since the Sylow 3-subgroup of G contains a cyclic
subgroup of index dividing 3. The cases n ∈ {5, 6, 7, 8} yield rows (1 − 6) of
Table 2.

Suppose now that T is a sporadic simple group (including the Tits group). By
considering the order of elements in T (see [8]), one can check that T does not have
a cyclic subgroup of index dividing 3 · 2tk unless T is isomorphic to the Matthieu
group M11 or the Janko group J1. Both of these have trivial outer automorphism
group, hence G = T and it is easy to check that C must be as in rows (7) and (8)
of Table 2.

From now on, we may thus assume that T is a simple group of Lie type, of
characteristic r, say. We record the order and a crude upper bound on the exponent
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T |T |r Upper bound on r-exponent Condition

PSL(n, rf ) rfn(n−1)/2 r(n+1)/2 n > 2
PSU(n, rf ) rfn(n−1)/2 r(n+1)/2 n > 3

PSp(n, rf ) rfn
2/4 r(n+1)/2 n > 4, even

PΩ(n, rf ) rf(n−1)2/4 r(n+1)/2 n > 7, nr odd
PΩε(n, rf ) rfn(n−2)/4 r(n+1)/2 n > 8, n even
E8(rf ) r120f r8

E7(rf ) r63f r6

E6(rf ) r36f r5

2E6(rf ) r36f r5

F4(rf ) r24f r5

2F4(22m+1) 212f 25 m > 1
G2(rf ) r6f r2, r odd
G2(rf ) r6f r3, r = 2, f > 2
2G2(32m+1) 33(2m+1) 32 m > 1
2B2(22m+1) 22(2m+1) 22 m > 1
3D4(rf ) r12f r3

Table 3. Orders and exponents of Sylow r-subgroups of simple
groups of Lie type of characteristic r

of a Sylow r-subgroup of T in Table 3. The orders can be found in [8, p xvi]. Note
that an r-element in GL(n, rf ) has order at most re where e = dlogr ne(n+1)/2 (see
[21, §6.5] for example). We then use [22, Table 5.4C] to find the smallest value n
such that T (or some central extension of T by a cyclic subgroup of order coprime
to r) embeds as a subgroup of GL(n, F ) for F a field of characteristic r. The
maximum exponent of an r-element in GL(n, F ) then gives a crude upper bound
on the maximum exponent of an r-element in T .

Recall that |T : T ∩ C| divides 3 · 2tk. In particular, a Sylow r-subgroup of T
must contain a cyclic subgroup of index at most r if r is odd and at most 16 if r = 2.
Using this fact and Table 3, we deduce that T is isomorphic to one of PSp(4, 2),
PSU(4, 2), PSL(4, 2), 2B2(8), PSU(3, rf ), or PSL(n, rf ) with n 6 3.

It can be checked that PSU(4, 2) and PSL(4, 2) do not contain a cyclic subgroup
of index dividing 3 · 2tk, whereas the case T ∼= PSp(4, 2) ∼= Sym(6) has already
been dealt with. The group 2B2(8) has order coprime to 3 but its automorphism
group yields row (9) of Table 2.

Suppose now that T is isomorphic to PSL(3, rf ) or PSU(3, rf ). A Sylow r-
subgroup of T has order r3f and exponent 22 if r = 2, and r otherwise. It follows
that r = 2 and f 6 2. It can be checked that no example arise when f = 2, while
PSU(3, 2) is soluble. Finally, we will deal with T ∼= PSL(3, 2) ∼= PSL(2, 7) as part
of our next and last case.

It remains to deal with the case T ∼= PSL(2, rf ). Since PSL(2, 2) and PSL(2, 3)
are soluble, PSL(2, 4) ∼= PSL(2, 5) ∼= Alt(5) and PSL(2, 9) ∼= Alt(6), we may assume
that rf > 7 and rf 6= 9. The Sylow r-subgroup of T has order rf and exponent r.
In particular, f 6 2 unless r = 2 in which case f 6 5.

It can be checked that when r = 2 and f ∈ {3, 4, 5}, the examples that arise are
in rows (10− 14) of Table 2.

Suppose now that f = 1. In particular, r is odd and G = PSL(2, r) or G =
PGL(2, r). The orders of maximal cyclic subgroups of PSL(2, r) are (r + 1)/2,
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(r − 1)/2 and r, while the orders of maximal cyclic subgroups of PGL(2, r) are
(r + 1), (r − 1) and r [9]. Since |C| is even, we get rows (15) and (16) of Table 2.

Finally, suppose that f = 2 and r > 5. Since k is squarefree and r2 divides
|PSL(2, r2)|, r must divide |PSL(2, r2)∩C|. On the other hand, a Sylow r-subgroup
S of PSL(2, r2) is elementary abelian hence |PSL(2, r2) ∩ C| = r. Moreover, for
each element c of order r in S, the centraliser of c in PGL(2, r2) is S [9]. Since |C|
is even, it follows that PΣL(2, r2) 6 G and |C| = 2r. Note that |PΣL(2, r2)|2 > 24

and |PΓL(2, r2)|2 > 25. This gives rows (17) and (18) of Table 2. �

3. Proof of Theorem 1.2

In view of the statement of Theorem 1.2, we will consider the following hypoth-
esis.

Hypothesis 3.1. Let k > 5 be a squarefree integer coprime to 6 and let Γ be a
cubic (G, t+ 1)-arc-regular graph such that C is semiregular with k orbits.

Our goal is to show that Γ has order at most 6k2. We introduce the following
notation which we will use whenever we assume Hypothesis 3.1.

Notation. For a prime p dividing |G|, we denote by Cp a Sylow p-subgroup of
C, and let Pp denote a Sylow p-subgroup of G containing Cp. (Note that we may
have Cp = 1.) Let c be the unique involution in C. (C has even order since Γ does

but k is odd.) We denote by S the soluble radical of G and write G = G/S and
C = CS/S. Let T be the socle of G.

We note a few obvious facts about G and C that will be very useful.

Lemma 3.2. Assuming Hypothesis 3.1, the following holds.

(1) |G| = 3 · 2tk|C|.
(2) |P2 : C2| = 2t.
(3) For every odd prime p, we have that |Pp : Cp| divides p.

Proof. Recall that |Gv| = 3 · 2t. (1) then follows by the Orbit-Stabiliser Theorem.
We get (2) and (3) by considering the 2-part and the p-part of the equation in (1),
respectively. �

3.1. G soluble. We first focus on the case when G is soluble.

Lemma 3.3. Assume Hypothesis 3.1. If G is soluble, then t 6 1 and, for every
prime p, we have |Pp : Cp| 6 p.

Proof. By Lemma 3.2, it suffices to show that t 6 1. Suppose that t > 2. By
Proposition 2.8, t = 2 and Γ is a regular cover of K3,3.

In particular, Γ/N ∼= K3,3 for some normal subgroup N P G. There is a chief
series for G through N . Let M be the member of this series immediately preceding
N (that is, M P N). Then, N/M is a minimal normal subgroup of G/M and,
since G is soluble, N/M ∼= Zaq for some prime q and some integer a > 1. Let
Γ∗ = Γ/M . Note that Γ is a regular cover of Γ∗ which is itself a regular Zaq -cover
of K3,3. Since t = 2, it follows by [27, Proposition 3.3] (see also [14, Theorem 4.1]
and [15, Theorem 1.1]) that a > 4, or q = 3 and a 6= 2.

By Lemma 3.2, Pq has a cyclic subgroup of index dividing q or 4. In particular,
every elementary abelian section of Pq has rank at most 2, unless q = 2, in which
case it has rank at most 3. By the previous paragraph, we get that q = 3 and
a = 1 and, by [15, Theorem 1.1], Γ∗ is isomorphic to the Pappus graph. Since
t = 2 and the Pappus graph is 3-arc-regular, Aut(Γ∗) is a quotient of G. This is
a contradiction because the Sylow 3-subgroup of Aut(Γ∗) does not have a cyclic
maximal subgroup. �
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Lemma 3.4. Assume Hypothesis 3.1, and let p > 5 be a prime dividing the order
of Γ. If Pp is normal in G then

(1) c does not centralise Pp, and
(2) |Pp : Cp| = p and |Cp| 6 p.

Proof. (Recall that, by definition, c is the unique involution of C.) We first
prove (1). Suppose, by contradiction, that c centralises Pp. Let Z be the cen-
traliser of Pp in G. This is a normal subgroup of G. By the Schur-Zassenhaus
Theorem, we can write Z = Z(Pp) × Y where Y is a p′-group. Note that Y is
characteristic in Z and thus normal in G. Since p is odd, we have c ∈ Y . By Lem-
mas 2.3 and 2.4, it follows that Y is transitive on the vertices of Γ, a contradiction,
as p divides the order of Γ. This concludes the proof of (1).

We now prove (2). By (1), Pp � C and thus Lemma 3.2 implies |Pp : Cp| = p.
In particular, Pp is a p-group with a cyclic maximal subgroup.

Let X be the group generated by elements of order p in Pp. This is a charac-
teristic subgroup of Pp and thus normal in G. Suppose first that X = Pp. By
Lemma 2.1(1), P is elementary abelian. This implies immediately that P ∼= Zp or
Z2
p, and in either case, |Cp| 6 p, as required.
Suppose next that CpX < Pp. Since Cp is maximal in Pp, this implies that

X 6 Cp. It follows by Lemma 2.1(2) that Pp is cyclic. By (1), c centralises Cp but
not Pp and thus |Pp| = p by Lemma 2.1(3).

From now, we assume that X < Pp = CpX. This implies that 1 6= Pp/X 6
CX/X and thus Pp/X is a non-trivial normal Sylow p-subgroup of G/X. By
Lemma 2.5, CX/X is a semiregular cyclic subgroup with k′ orbits for some divisor
k′ of k. Since p divides the order of CX/X, it follows that p divides also the order
of Γ/X, and Γ/X is a (G/X)-arc-transitive cubic graph. If k′ = 1, then Γ/X is an
arc-transitive cubic circulant hence its order divides 6, a contradiction. Since k′ is
coprime to 6, it follows that k′ > 5 and Hypothesis 3.1 is satisfied with (k,Γ, G,C)
replaced by (k′,Γ/X,G/X,CX/X). In particular, we may apply (1) to conclude
that cX does not centralise Pp/X, contradicting the fact that Pp/X 6 CX/X. �

Theorem 3.5. Assume Hypothesis 3.1. If G is soluble, then Γ has order at most
6k2.

Proof. By Lemma 3.3, every Sylow p-subgroup of G is metacyclic. It follows by [5,
Theorem 1] that G = N oA, where A is a Hall {2, 3}-subgroup of G and N has a
normal series

1 = N0 P N1 P · · · P Nn = N

where Ni+1/Ni ∼= Ppi . For every i ∈ {0, . . . , n}, |Ni| is coprime to 6 and thus
semiregular.

Suppose that i < n. Then pi+1 divides the order of Γ but not |Ni| hence Ni
has at least 3 orbits and Γ is a regular cover of Γ/Ni. By Lemma 2.5, CNi/Ni
is semiregular and has ki orbits for some divisor ki of k. Note that ki = 1 is
impossible, for otherwise, Γ/Ni would be a cubic arc-transitive circulant and its
order would not be divisible by pi+1. Since ki is coprime to 6, it follows that
ki > 5 and that (Γ/Ni, G/Ni) satisfies Hypothesis 3.1 with (k,Γ, G, t, C) replaced by
(ki,Γ/Ni, G/Ni, t, CNi/Ni). Note that Ni+1/Ni is a normal Sylow pi-subgroup of
G/Ni and we may thus apply Lemma 3.4 to conclude that |Cpi | 6 |Ppi : Cpi | = kpi .
Finally, k is coprime to 6 but G/Nn = G/N ∼= A is a {2, 3}-group and thus kn = 1.
It follows that Γ/N has order dividing 6 and that |C2||C3| 6 6 hence |C| 6 6k,
which concludes the proof. �

3.2. G not soluble. We now consider the remaining case, namely when G is not
soluble.
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Lemma 3.6. Assume Hypothesis 3.1. If G is insoluble, then G, |C|, log2 |G : C|2
and upper bounds for t and log2 |S|2 are as in rows (1− 8) or (15− 18) of Table 2.

Proof. By Lemma 2.10, Γ/S is a cubic (G, t + 1)-arc-regular graph. In particular,
3 divides |G|. By Lemma 2.12, |C ∩S| is odd, C is a cyclic group of even order and
G is an almost simple group. Recall that |G : C| = 3 · 2tk hence by Lemma 2.11
|G : C| divides 3 · 2tk. By Proposition 2.13, G, |C| and log2 |G : S| are as in one of
the rows of Table 2.

We now compute upper bounds on t and record them in Table 2. We do this by
using the fact that the isomorphism type of the vertex-stabiliser GvS is uniquely
determined by t (see Theorem 2.7). For example, Alt(7) does not contain a subgroup
isomorphic to Sym(4)×Z2 and thus t 6 3 when G ∼= Alt(7). The fact that PSL(2, r)
does not contain a subgroup isomorphic to Sym(4)×Sym(2) follows from Dickson’s
classification of the subgroups of PSL(2, r) [9].

We then combine this upper bound on t with Lemma 2.12(1) to obtain an upper
bound on log2 |S|2, which we also record in Table 2. (When log2 |G : C|2 > t, we
obtain a contradiction and record this as a –.) �

Theorem 3.7. Assume Hypothesis 3.1. If G is insoluble, then Γ has order at most
6k2.

Proof. By Lemma 3.6, G, |C|, log2 |G : C|2 and upper bounds for t and |S|2 are
as in Table 2. Write G = S.T.A. Note that G ∼= T.A and we can read off A from
Table 2. In fact, |A| 6 2, unless G ∼= PΓL(2, r2), in which case |A| = 4. Since A is
soluble, G∞ ∼= Y.T for some normal subgroup Y of S. Let

1 = S0 P S1 P · · · P Sn = S

be a characteristic series for S maximal subject to its length. For every i ∈
{0, . . . , n − 1}, let φi : G → Aut(Si+1/Si) be the homomorphism induced by the
action of G on Si+1/Si by conjugation and let Ki = kerφi ∩G∞.

Suppose that φi(G
∞) is insoluble for some i. Since Si+1/Si is characteristically

simple, it is elementary abelian, say Si+1/Si ∼= Zap. By Table 2, |S|2 6 4. Together
with Lemma 3.2, this implies that a 6 2. Since φi(G

∞) is insoluble, a = 2, p > 5
and Aut(Si+1/Si) ∼= GL(2, p). By Dickson’s classification of subgroups of PSL(2, p)
[9], either SL(2, p) 6 φi(G

∞) or SL(2, 5) 6 φi(G
∞) 6 φi(G) 6 SL(2, 5) ◦ Zp−1. In

the latter case, G ∼= Alt(5) and |S| is even, contradicting Table 2. Thus SL(2, p) 6
φi(G

∞) and T = PSL(2, p). By [2, Table I], an extension of Z2
p by SL(2, p) splits

hence G contains a group of order p3 and exponent p as a section, contradicting
Lemma 3.2.

It follows that G∞/Ki
∼= φi(G

∞) is soluble for every i. Since G∞ is perfect,
it follows that G∞ = Ki, φi(G

∞) = 1 and G∞ acts trivially on Si+1/Si. Using
Lemma 2.2 and induction on i, we conclude that G∞ acts trivially on Sn, that is,
G∞ 6 CG(S) and G∞ ∩ S 6 Z(G∞).

On the other hand, Z(G∞) is an abelian normal subgroup of G hence Z(G∞) 6
S and thus G∞ ∩ S = Z(G∞). In particular, G∞/Z(G∞) = G∞/(G∞ ∩ S) ∼=
G∞S/S = T . Since T is simple, we conclude that G∞ is quasisimple. In particular,
Z(G∞) is equal to a homomorphic image of the Schur multiplier of T (see [1, 33.8]).

We want to show that the order of Γ is at most 6k2. This is equivalent to

|C| 6 6k = 6|G|
|Gv||C| = |G|

2t−1|C| and thus to |G| > 2t−1|C|2. On the other hand,

|C| = |C||C ∩ S| but |C ∩ S| is odd by Lemma 2.12(1) hence |C| 6 |C||S|2′ . Since
|G| = |G||S| > |G||S|2′ , it thus suffices to show that

(1) |G| > 2t−1|C|2|S|2′ .
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Suppose first that G∞ is semiregular on the vertices of Γ. This implies that
|G/G∞|2 > 2t. On the other hand, G/G∞ ∼= (S/Y ).A therefore |G/G∞|2 6
|S|2|A|. Combining this with Lemma 2.12(1), we get |G/G∞|2|G : C|2 6 2t|A| 6
|G/G∞|2|A| and thus |G : C|2 6 |A|. By running through Table 2, we find that
G ∼= PGL(2, r) with r > 5 and |A| = |G : C|2 = 2. (Note that this includes the
case G ∼= Sym(5).) Using the previous inequalities, this implies that |G/G∞|2 = 2t,
and thus |G∞|2 = |C|2. Since Γ has order k|C| and G∞ is semiregular, this further
implies that G∞ has an odd number of orbits. If G∞ has at least three orbits, then
Γ/G∞ is a cubic graph on an odd number of vertices, a contradiction. It follows
that G∞ is transitive, hence |(S/Y ).A| = |G/G∞| = |Gv| = 3 · 2t and Lemma 2.6
implies t 6 1. Since |A| = 2, we have t = 1 and |S/Y | = 3. On the other hand,
since the Schur multiplier of PSL(2, r) has order 2, we see that |Y |2′ = 1 and thus
|S|2′ = 3. Now, |G| = (r + 1)r(r − 1) while |C| 6 r + 1 hence (1) is satisfied.

We may thus assume that G∞ is not semiregular on the vertices of Γ. In par-
ticular, G∞ is locally transitive and has at most two orbits on the vertices of Γ.
It follows that G/G∞ is a 2-group hence so is S/Y and thus |S|2′ = |Y |2′ . By
considering the Schur multiplier of T , we find that |Y |2′ = 1 unless T is isomorphic
to Alt(6) or Alt(7), when we may have |Y |2′ = 3. It is then a matter of routine to
go through Table 2 and verify that (1) is satisfied. �
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Transitive permutation groups without semiregular subgroups, J. London Math. Soc. 66

(2002), 325–333.
[4] P. Cameron, J. Sheehan, P. Spiga, P. Semiregular automorphisms of vertex-transitive cubic

graphs, European J. Combin., 27 (2006), 924–930.

[5] D. Chillag, J. Soon, Sylow-metacyclic groups and Q-admissibility, Israeli J. Mathematics 40
(1981), 307–323.

[6] M. Conder, Trivalent (cubic) symmetric graphs on up to 10000 vertices, http://www.math.
auckland.ac.nz/~conder/symmcubic10000list.txt.
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