
J. Functional Programming 1 (1): 1{000, May 1995 c
 1995 Jeremy Gibbons 1Deriving tidy drawings of treesJeremy GibbonsyDepartment of Computer Science,University of Auckland,Private Bag 92019,Auckland, New Zealand.Email jeremy@cs.auckland.ac.nzAbstractThe tree-drawing problem is to produce a `tidy' mapping of elements of a tree to points inthe plane. In this paper, we derive an e�cient algorithm for producing tidy drawings oftrees. The speci�cation, the starting point for the derivations, consists of a collection ofintuitively appealing criteria satis�ed by tidy drawings. The derivation shows construc-tively that these criteria completely determine the drawing. Indeed, the criteria completelydetermine a simple but ine�cient algorithm for drawing a tree, which can be transformedinto an e�cient algorithm using just standard techniques and a small number of inventivesteps.The algorithm consists of an upwards accumulation followed by a downwards accumu-lation on the tree, and is further evidence of the utility of these two higher-order treeoperations.Keywords: Derivation, trees, upwards and downwards accumulations, drawing.1 IntroductionThe tree drawing problem is to produce a mapping from elements of a tree to pointsin the plane. This mapping should correspond to a drawing that is in some sense`tidy'. Our de�nition of tidiness consists of a collection of intuitively appealingcriteria `obviously' satis�ed by tidy drawings.We derive from these criteria an e�cient algorithm for producing tidy drawingsof binary trees. The derivation process is a constructive proof that the tidinesscriteria completely determine the drawing. In other words, there is only one tidydrawing of any given tree. In fact, the derivation of the algorithm is a completelyreasonable and almost routine calculation from the criteria: the algorithm itself,like the drawing, is essentially unique.y Partially supported by University of Auckland Research Committee grant numberA18/XXXXX/62090/3414013.

2 Jeremy GibbonsThe algorithm that we derive (which is due originally to Reingold and Til-ford (1981)) consists of an upwards accumulation followed by a downwards ac-cumulation (Gibbons, 1991; Gibbons, 1993b) on the tree. Basically, an upwardsaccumulation on a tree replaces every element of that tree with some function ofthat element's descendents, while a downwards accumulation replaces every ele-ment with some function of that element's ancestors. These two higher-order op-erations on trees are fundamental components of many tree algorithms, such astree traversals, the parallel pre�x algorithm (Ladner and Fischer, 1980), evalua-tion of attributes in an attribute grammar (Deransart et al., 1988), evaluation ofstructured queries on text (Skillicorn, 1993), and so on. Their isolation is an im-portant step in understanding and modularizing a tree algorithm. Moreover, workis progressing (Gibbons, 1993a; Gibbons et al., 1994) on the development of e�-cient parallel algorithms for evaluating upwards and downwards accumulations ona variety of parallel architectures. Identifying the accumulations as components ofa known algorithm shows how to implement that algorithm e�ciently in parallel.For the purposes of exposition, we make the simplifying assumption that treeelements are unlabelled or, equivalently, that all labels are the same size. It is easyto generalize the algorithm to cover trees in which the labels may have greatlydi�ering widths. A more interesting generalization covers the case in which treelabels may also have di�erent heights. Bloesch (1993) gives two algorithms for thiscase. It is slightly more di�cult to adapt the algorithm to cope with general trees,in which parents may have arbitrarily but �nitely many children. Radack (1988)and Walker (1990) present two di�erent approaches. Radack's algorithm is derivedby Gibbons (1991) and described by Kennedy (1995).The rest of this paper is organized as follows. In Section 2, we brie
y describeour notation. In Section 3, we summarize the ideas behind upwards and downwardsaccumulations on trees. In Section 4, we present the tidiness criteria, and outlinea simple but ine�cient tree-drawing algorithm. The derivation of an e�cient algo-rithm, the main part of the paper, is in Section 5.The diagrams in this paper were drawn `manually' using John Hobby's META-POST, rather than with the algorithms described here.2 NotationWe will use the Bird-Meertens Formalism or `bmf' (Backhouse, 1989; Bird, 1987;Bird, 1988; Meertens, 1986), a calculus for the construction of programs from theirspeci�cations by a process of equational reasoning. This calculus places great em-phasis on notions and properties of data, as opposed to program, structure. Theprograms we produce are in a functional style, and are readily translated into amodern functional language such as Haskell or ML.The bmf is known colloquially as `Squiggol', because its protagonists make heavyuse of unusual symbols and syntax. This approach is helpful to the cognoscenti, buttends to make their work appear unnecessarily obscure to the uninitiated. For thisreason, we will use a more traditional notation here. We will use mostly words rather

Deriving tidy drawings of trees 3than symbols, and mostly pre�x functions rather than in�x operators, simply tomake expressions easier to parse for those unfamiliar with the calculus. We hastento add two points. First, this translation leaves the bmf `philosophy' intact. Second,the presentation here, although more accessible, will be marginally less elegant thanit might otherwise have been.2.1 Basic combinatorsSectioning a binary operator involves providing it with one of its arguments, andresults in a function of the other argument. For example, (2+) and (+2) are twoways of writing the function that adds two to its argument. The constant functionconst a returns a for every argument; for example, const 1 2 = 1. (Function appli-cation is left-associative, so that this parses as `(const 1) 2', and tightest binding.)Function composition is written `�'; for example, const 1 � const 2 = const 1. Theidentity function is written `id'. The converse ~� of a binary operator � is obtainedby swapping its arguments; for example, x ~� y = y � x .The product type A� B consists of pairs (a; b) of values, with a ::A and b :: B .The projection functions fst and snd return the �rst and second elements of a pair.The fork fork (f ; g) of two functions f and g takes a single value and returns a pair;thus, fork (f ; g) a = (f a; g a). 2.2 PromotionThe notion of promotion comes up repeatedly in the bmf. We say that function fis `� to
 promotable' if, for all a and b,f (a � b) = f a
 f bPromotion is a generalization of distributivity: f distributes through � i� f is � to� promotable. We say that f `promotes through �' if there is a
 such that f is �to
 promotable. 2.3 ListsThe type list A consists of lists of elements of type A. A list is either a singleton�a� for some a, or the (associative) concatenation x ++y of two lists x and y . In thispaper, all lists are non-empty. We write `wrapl' for the function taking a to �a�, andwrite longer lists in square brackets too|for example, `�a; b; c�' is an abbreviationfor �a� ++ �b� ++ �c�. For every initial datatype such as lists, there is a higher-order function map, which applies a function to every element of a member of thatdatatype; for example, map (+1) �1; 2; 3� = �2; 3; 4�. We will use map for otherdatatypes such as trees later, and will trust to context to reveal which particularmap is meant.

4 Jeremy Gibbons2.4 HomomorphismsAn important class of functions on lists are those called homomorphisms. These arethe functions that promote through list concatenation. That is, h is a list homo-morphism i� there is an associative operator
 such that, for all x and y ,h (x ++ y) = h x
 h yThe condition of associativity on
 is no great restriction. If h is ++ to
 promotablethen
 is necessarily associative, at least on the range of h:h x
 (h y
 h z)= fh is ++ to
 promotablegh x
 h (y ++ z)= fpromotion againgh (x ++ (y ++ z))= f++ is associativegh ((x ++ y) ++ z)= fpromotion, twiceg(h x
 h y)
 h zIn fact, if h is ++ to
 promotable, then it is completely determined by its actionon singleton lists; for example,h �a; b; c� = h (�a� ++ �b�++ �c�) = h �a�
 h �b�
 h �c�If h is ++ to
 promotable and h � wrapl = f , then we write h as lh (f ;
) (`lh'stands for `list homomorphism').Stated another way, we have the Promotion Theorem on Lists, a special case ofthe Promotion Theorem (Malcolm, 1990):Theorem 1If h is � to
 promotable, thenh � lh (f ;�) = lh (h � f ;
)Since lh (wrapl ;++) = id , this gives us a vehicle for proving the equality of a functionh and a homomorphism lh (f ;
), in that we need only show that h is ++ to
promotable, and that h � wrapl = f .For each f , map f is a homomorphism, formap f (x ++ y) = map f x ++map f yIndeed, map f = lh (wrapl � f ;++), because map f �a� = �f a� = (wrapl � f) a.Another example of a homomorphism is the function len, which returns the lengthof a list: len = lh (const 1;+)The functions head and last , returning the �rst and last elements of a list, are also

Deriving tidy drawings of trees 5homomorphisms. For example,head (x ++ y) = head x = fst (head x ; head y)and so head = lh (id ; fst). Similarly, last = lh (id ; snd). Other examples that wewill encounter are the functions smallest and largest, which return the smallest andlargest elements of a list, respectively:smallest = lh (id ;min)largest = lh (id ;max)and the function sum , which returns the sum of the elements of a list:sum = lh (id ;+)2.5 Leftwards and rightwards functionsTwo generalizations of the notion of list homomorphism are the leftwards and therightwards functions. If there exist f and (not necessarily associative) � such that,for all a and x , h �a� = f ah (�a� ++ y) = a � h ythen we say that h is leftwards, and write it lw (f ;�). Similarly, if for all x and a,h �a� = f ah (x ++ �a�) = h x
 athen we say that h is rightwards, and write it rw (f ;
). Clearly, if h is a homomor-phism then it is both leftwards and rightwards. What is not so obvious is that theconverse holds: Bird's Third Homomorphism Theorem (Gibbons, 1993a; Gibbons,1994c) states that if h is both leftwards and rightwards, then it is a homomorphism.Consider the function inits, which takes a list and returns the list of lists con-sisting of its initial segments, in order of increasing length. For example,inits �a; b; c� = ��a�; �a; b�; �a; b; c��Now, inits is leftwards, becauseinits (�a� ++ x) = ��a��++map (�a�++) (inits x)In fact,inits = lw (wrapl � wrapl;�) where a � v = ��a�� ++map (�a�++) vIt is also rightwards, becauseinits (x ++ �a�) = inits x ++ �x ++ �a��= inits x ++ �last (inits x) ++ �a��since last (inits x) = x . In fact,inits = rw (wrapl � wrapl;
) where w
 a = w ++ �last w ++ �a��

6 Jeremy Gibbons
a

b c

d eFig. 1. The tree �veThus, by the Third Homomorphism Theorem, inits is a list homomorphism.2.6 Binary treesFinally, we come to binary trees. The type btree A consists of binary trees labelledwith elements of type A. A binary tree is either a leaf lf a labelled with a singleelement a, or a branch br (t ; a; u) consisting of two children t and u and a label a.For example, the expressionbr (lf b; a; br (lf d ; c; lf e))corresponds to the tree in Figure 1, which we will call �ve and use as an examplelater.Homomorphisms on binary trees bh (f ;�) (`binary tree homomorphism') pro-mote through br . That is, they satisfy the equations:bh (f ;�) (lf a) = f abh (f ;�) (br (t ; a; u)) = bh (f ;�) t �a bh (f ;�) uNote that, for binary trees, the second component of a homomorphism is a ternaryfunction. We write its middle argument as a subscript, for lack of anywhere betterto put it.When instantiated to trees, Malcolm's Promotion Theorem states:Theorem 2If h satis�es h (br (t ; a; u)) = h t �a h uthen h = bh (h � lf ;�).The function map on binary trees satis�esmap f (lf a) = lf (f a)map f (br (t ; a; u)) = br (map f t ; f a;map f u) (1)and so map f = bh (lf � f ;�) where v �a w = br (v ; f a;w)The function root is a binary tree homomorphism:root (lf a) = aroot (br (t ; a; u)) = a = root t �a root u where v �a w = a

Deriving tidy drawings of trees 7and so, with the same �, root = bh (id ;�)So are the functions size and depth :size = bh (const 1;�) where v �a w = v + 1 + wdepth = bh (const 1;�) where v �a w = 1 +max (v ;w)and the function brev , which reverses a binary tree:brev = bh (lf ;�) where v �a w = br (w ; a; v)2.7 Variable-naming conventionsTo help the reader, we make a few conventions about the choice of names. For alpha-betic names, single-letter identi�ers are typically `local', their de�nitions persistingonly for a few lines, whereas multi-letter identi�ers are `global', having the samede�nitions throughout the paper. Elements of lists and trees are denoted a; b; c; : : :.Unary functions are denoted f ; g ; h. Lists and paths (introduced in Section 3.2) aredenoted w ; x ; y ; z . Trees are denoted t ; u. The letters v and w are used as the `re-sults' of functions, for example, in the de�nitions of homomorphisms such as brevabove.We de�ne a few in�x binary operators such as � and �, just as we might usealphabetic names for variables and unary functions. Round binary operators suchas � and
 are `local', and square binary operators such as � and � are `global'.3 Upwards and downwards accumulations on treesThe material in this section is adapted from (Gibbons, 1993b), which is in turn asummary of (Gibbons, 1991).3.1 Upwards accumulationsUpwards and downwards accumulations arise from considering the list functioninits. On trees, the obvious analogue of inits is the function subtrees, which takes atree and returns a tree of trees. The result is the same shape as the original tree, buteach element is replaced by its descendents, that is, by the subtree of the originaltree rooted at that element. For example:subtrees �ve = br (lf (lf b);br (lf b; a; br (lf d ; c; lf e));br (lf (lf d);br (lf d ; c; lf e);lf (lf e)))

8 Jeremy Gibbons
a

b c

d e

b c

d e

d eFig. 2. The subtrees of �vewhich corresponds to the tree of trees in Figure 2. The function subtrees is a ho-momorphism, because it satis�essubtrees (lf a) = lf (lf a)subtrees (br (t ; a; u)) = br (subtrees t ; br (t ; a; u); subtrees u) (2)Since root (subtrees t) = t , we havesubtrees (br (t ; a; u)) = subtrees t �a subtrees uwhere v �a w = br (v ; br (root v ; a; root w);w)and so, with the same �, subtrees = bh (lf � lf ;�)The function subtrees replaces every element of a tree with its descendents. Anupwards accumulation replaces every element with some function of its descen-dents. In other words, an upwards accumulation is of the form map h � subtrees forsome h. In fact, we do not allow h to be an arbitrary function of the descendents.Rather, we insist that h is a tree homomorphism, to ensure that the accumulationcan be computed in linear time (assuming that the components of h take constanttime). Consider map h (subtrees (br (t ; a; u))):map h (subtrees (br (t ; a; u)))= f(2)gmap h (br (subtrees t ; br (t ; a; u); subtrees u))= f(1)gbr (map h (subtrees t); h (br (t ; a; u));map h (subtrees u))If this is to be computed in linear time, computing h (br (t ; a; u)) must take onlyconstant time. If h = bh (f ;�) where f and � take constant time, thenh (br (t ; a; u)) = h t �a h u

Deriving tidy drawings of trees 9
a

c

dFig. 3. The path in �ve to the element labelled dand h t and h u are available in constant time as the roots of map h (subtrees t)and map h (subtrees u). Stated another way,map (bh (f ;�)) � subtrees= bh (lf � f ;
) where v
a w = br (v ; root v �a root u; u)and is therefore both a homomorphism and computable in linear time.We write `up (f ;�)' for an upwards accumulation. This satis�esup (f ;�) = map (bh (f ;�)) � subtrees (3)but, as described above, requires no longer to compute than bh (f ;�) does. Thefunction subtrees is itself an upwards accumulation, since subtrees = map id �subtrees and id is a homomorphism; so is id , since id = map root � subtrees androot is a homomorphism. A more interesting example is the function ndescs , whichreplaces every element with the number of descendents it has. Letting � satisfyv �a w = v + 1 + w , so that size = bh (const 1;�), we havendescs = map (bh (const 1;�)) � subtrees= up (const 1;�)Note that the expression involving the map takes quadratic time to compute,whereas the accumulation takes linear time.3.2 Downwards accumulationsUpwards accumulations replace every element of a tree with some function of thatelement's descendents. For downwards accumulations, on the other hand, we con-sider an element's ancestors. The ancestors of an element form a path. For example,the ancestors of the element labelled d in �ve form the path in Figure 3, which couldbe thought of as a list with two di�erent kinds of concatenation, `left' and `right',or as a tree in which each parent has exactly one child. We choose the former view.The type path A consists of paths of elements of type A. A path is either a singleelement hai or two paths x and y joined with a `left turn', x ++ y , or a `right turn',x !++ y . The function taking a to hai is written `wrapp'. Just as ++ is associative,

10 Jeremy Gibbonsthe operations ++ and !++ satisfy the four lawsx ++ (y ++ z) = (x ++ y) ++ zx ++ (y !++ z) = (x ++ y)!++ zx !++ (y ++ z) = (x !++ y) ++ zx !++ (y !++ z) = (x !++ y)!++ zWe say that ` ++ cooperates with!++', or ` ++ and!++ cooperate with each other'. Thus,the path in Figure 3 is represented by hai!++ hci ++ hdi. Because of the cooperativityproperty, brackets are unnecessary.Path homomorphisms promote through both ++ and !++; if, for all a, x and y , thefunction h satis�es h hai = f ah (x ++ y) = h x � h yh (x !++ y) = h x
 h yand � cooperates with
, then we write ph (f ;�;
) for h.Just as for lists, we generalize path homomorphisms to upwards and downwardsfunctions on paths. If, for all a, x and y , the function h satis�esh hai = f ah (hai ++ y) = a � h yh (hai !++ y) = a
 h ythen we say that h is upwards, and write it uw (f ;�;
). The operators � and
need not enjoy any cooperativity properties. Similarly, if, for all a, x and y ,h hai = f ah (x ++ hai) = h x � ah (x !++ hai) = h x
 athen we say that h is downwards, and write it dw (f ;�;
). Path homomorphismsare clearly both upwards and downwards; a generalization of Bird's Third Homo-morphism Theorem states the converse.Theorem 3 (Third Homomorphism Theorem for Paths (Gibbons, 1993a))A path function that is both upwards and downwards is necessarily a path homo-morphism.The dual for downwards accumulations of the function subtrees is the functionpaths, which replaces each element of a tree with that element's ancestors. Forexample: paths �ve = br (lf (hai ++ hbi);hai;br (lf (hai !++ hci ++ hdi);hai !++ hci;lf (hai !++ hci !++ hei)))which corresponds to the tree of paths in Figure 4. The function paths is another

Deriving tidy drawings of trees 11
a

a

b

a

c

a

c

d

a

c

eFig. 4. The paths of �vetree homomorphism; it satis�espaths (lf a) = lf haipaths (br (t ; a; u)) = br (map (hai ++) (paths t);hai;map (hai!++) (paths u))and so paths = bh (lf � wrapp;�)where v �a w = br (map (hai ++) v ; hai;map (hai!++) w)A downwards accumulation replaces every element of a tree with some functionof that element's ancestors. In other words, downwards accumulations are of theformmap h � paths for some h. Again, we make a restriction on the choice of h, butthis time it is not so clear just what that restriction should be. On the one hand,we would like h to be upwards, formap (uw (f ;�;
)) (paths (br (t ; a; u)))= br (map (a�) (map (uw (f ;�;
)) (paths t));f a;map (a
) (map (uw (f ;�;
)) (paths u)))and so map (uw (f ;�;
)) � paths is a homomorphism:map (uw (f ;�;
)) � paths = bh (lf � f ;~)where v ~a w = br (map (a�) v ; f a;map (a
) w)In terms of the Promotion Theorem, this could be stated as follows:Theorem 4If g (lf a) = lf (f a)g (br (t ; a; u)) = br (map (a�) (g t); f a;map (a
) (g u))

12 Jeremy Gibbonsthen g = map (uw (f ;�;
)) � paths(We will use this theorem later.)On the other hand, mapping an upwards function over the paths of a tree takesquadratic time to compute, and so we would like h to be downwards, formap (dw (f ;�;
)) (paths (br (t ; a; u)))= br (map (dw (((f a)�);�;
)) (paths t);f a;map (dw (((f a)
);�;
)) (paths u))which can be computed in linear time, at the cost of no longer being homomorphic(since the result of applying map (dw (f ;�;
)) � paths to br (t ; a; u) depends onthe results of applying di�erent functions, map (dw (((f a)�);�;
)) � paths andmap (dw (((f a)
);�;
)) � paths to the children t and u). To satisfy both of theserequirements, we insist that h be both upwards and downwards. Theorem 3 con-cludes that h is therefore a path homomorphism. We write `down (f ;�;
)' for adownwards accumulation; it satis�esdown (f ;�;
) = map (ph (f ;�;
)) � paths (4)but again can be computed in linear time (if f , � and
 each take constant time).Note that � and
 must cooperate with each other.For example, consider the function plen , which returns the length of a path. Thefunction depths replaces every element of a tree with that element's depth in thetree, that is, with the length of its path of ancestors:depths = map plen � pathsAs it stands, it is not obvious whether depths is a homomorphism, nor whether itcan be computed e�ciently. However, plen is upwards,plen = uw (const 1;�;�) where a � v = 1 + vand so depths is a tree homomorphism. Moreover, plen is downwards,plen = dw (const 1;
;
) where v
 a = v + 1and so depths can also be computed in linear time. Writingdepths = down (const 1;+;+)(since + is associative, it cooperates with itself) shows that depths is both homo-morphic and e�ciently computable.We might ask, when can we generalize an upwards function h so that it is alsodownwards? This would give us an e�cient way of computing map h � paths .Suppose h is upwards but not downwards|we cannot write h (x ++ hai) andh (x !++ hai) in terms of h x and a. Suppose, however, that there is another functiong such that h (x ++ hai) and h (x !++ hai) can be computed from h x , g x and a: for

Deriving tidy drawings of trees 13some 	 and �, h (x ++ hai) = (h x ; g x) 	 ah (x !++ hai) = (h x ; g x) � aIn a sense, g is the `extra information' needed to compute h (x ++hai) and h (x!++hai)from h x and a. Now h could be computed downwards, if only we could somehowcompute g . This, of course, begs the question, how do we compute g? Supposefurther that g is `self-sustaining', in that no further information is required in orderto compute g : for some � and ~,g (x ++ hai) = (h x ; g x) � ag (x !++ hai) = (h x ; g x) ~ aThen fork (h; g) is downwards.Theorem 5If h hai = f1 a g hai = f2 ah (x ++ hai) = (h x ; g x)	 a g (x ++ hai) = (h x ; g x) � ah (x !++ hai) = (h x ; g x)� a g (x !++ hai) = (h x ; g x) ~ athen fork (h; g) = dw (f ;�;
) where f a = (f1 a; f2 a)(v ;w) � a = (v 	 a;w � a)(v ;w)
 a = (v � a;w ~ a)Then we have h = fst � fork (h; g), and so h is `almost' downwards|it is thecomposition of the projection fst with the downwards function fork (h; g). How-ever, it is not obvious whether fork (h; g) is still upwards. Fortunately, if g is itselfupwards, then so is fork (h; g), as shown by the following theorem.Theorem 6fork (uw (f1;	;�); uw (f2;�;~))= uw (f ;�;
) where f a = (f1 a; f2 a)a � (v ;w) = (a 	 v ; a � w)a
 (v ;w) = (a � v ; a ~ w)In this case, fork (h; g) is both upwards and downwards, and hence a path ho-momorphism. Thenmap h � paths = map fst �map (fork (h; g)) � pathswhich is a (cheap) map composed with a downwards accumulation, and is e�cientlycomputable. 4 Drawing binary trees tidilyIn this section, we de�ne `tidiness' and specify the function bdraw , which draws abinary tree. We make the simplifying assumption that all tree labels are the same

14 Jeremy Gibbonssize, because, for the purposes of positioning the elements of the tree, we can thenignore the labels altogether.The �rst property that we observe of tidy drawings is that all of the elementsat a given depth in a tree have the same y-coordinate in the drawing. That is, they-coordinate is determined completely by the depth of an element, and the problemreduces to that of �nding the x-coordinates. This gives us the type of bdraw , thefunction which draws a binary tree|its argument is of type btree A for some A,and its result is a binary tree labelled with x-coordinates:bdraw :: btree A! btree Dwhere coordinates range over D , the type of distances. We require that D includethe number 1, and be closed under subtraction (and hence also under addition)and halving. Sets satisfying these conditions include the reals, the rationals, andthe rationals with �nite binary expansions, the last being the smallest such set.We exclude discrete sets such as the integers, as Supowit and Reingold (1983) haveshown that the problem is NP-hard with such coordinates.Tidy drawings are also regular, in the sense that the drawing of a subtree is inde-pendent of the context in which it appears. Informally, this means that the drawingsof children can be committed to (separate pieces of) paper before considering theirparent. The drawing of the parent is then constructed by translating the drawingsof the children. In symbols:bdraw (br (t ; a; u)) = br (map (+r) (bdraw t); b;map (+s) (bdraw u))for some b, r and s.Tidy drawings also exhibit no left-to-right bias. In particular, a parent should becentred over its children. We also specify that the root of a tree should be givenx-coordinate 0. Hence, r+s and b in the above equation should both be 0, as shouldthe position given to the only element of a singleton tree:bdraw (lf a) = lf 0bdraw (br (t ; a; u)) = br (map (�s) (bdraw t); 0;map (+s) (bdraw u))for some s. Indeed, a tidy drawing will have the left child to the left of the rightchild, and so s > 0.This lack-of-bias property implies that a tree and its mirror image produce draw-ings which are re
ections of each other. That is, if we write `-' for unary negationy,then we also require bdraw � brev = map - � brev � bdrawThe fourth criterion is that, in a tidy drawing, elements do not collide, or evenget too close together. That is, pictures of children do not overlap, and no twoelements on the same level are less than one unit apart.y The presence of sectioning means that, strictly speaking, we should distinguish betweenthe number `minus one', written `-1', and the function `minus one', written `(�1)'.

Deriving tidy drawings of trees 15
0

-1⁄2 1⁄2

0 1

0

-1⁄2 1⁄2

-1 0Fig. 5. Drawings pic1 and pic2, for which pic1 � pic2 = -2Finally, a tidy drawing should be as narrow as possible, given the above con-straints. Supowit and Reingold (1983) show that narrowness and regularity cannotbe satis�ed together|there are trees whose narrowest drawings can only be pro-duced by drawing identical subtrees with di�erent shapes|and so one of the twocriteria must be made subordinate to the other. We choose to retain the regularityproperty, since it will lead us to a homomorphic solution.These last two properties determine s, the distance through which children aretranslated. That distance should be the smallest distance that does not cause vio-lation of the fourth criterion. Suppose the operator �, when given two drawings oftrees, returns the width of the narrowest part of the gap between the trees. (If thedrawings overlap, this distance will be negative.) For example, if pic1 and pic2 areas in Figure 5, then pic1 � pic2 = -2, the minimum of 0 � 0, -1=2 � 1=2 and -1 � 1.The drawings should be moved apart or together to make this distance 1, that is,s = (1� (bdraw t � bdraw u)) � 2(In the example above, s will be 11=2.)All that remains to be done to complete the speci�cation is to formalize thisdescription of �. 4.1 Levelorder traversalWe de�ne two di�erent `zip' operators, each of which takes a pair of lists and returnsa single list by combining corresponding elements in some way. These two operatorsare `short zip', which we write szip, and `long zip', written lzip. These operatorsdi�er in that the length of the result of a short zip is the length of its shorterargument, whereas the length of the result of a long zip is the length of its longerargument. For example:szip (�) (�a; b�; �c; d ; e�) = �a � c; b � d�lzip (�) (�a; b�; �c; d ; e�) = �a � c; b � d ; e�From the result of the long zip, we see that the � must have type A�A! A. Thisis not necessary for short zip, but we do not use the general case.

16 Jeremy GibbonsThe two zips are given formally by the equationsszip (�) (�a�; �b�) = �a � b�szip (�) (�a�; �b�++ y) = �a � b�szip (�) (�a� ++ x ; �b�) = �a � b�szip (�) (�a� ++ x ; �b�++ y) = �a � b�++ szip (�) (x ; y)lzip (�) (�a�; �b�) = �a � b�lzip (�) (�a�; �b�++ y) = �a � b�++ ylzip (�) (�a� ++ x ; �b�) = �a � b�++ xlzip (�) (�a� ++ x ; �b�++ y) = �a � b�++ lzip (�) (x ; y)They share many properties, but we use two in particular.Fact 7Both szip (�) (x ; y) and lzip (�) (x ; y) can be evaluated using justmin (len x ; len y)applications of �.Lemma 8If f is � to
 promotable, then map f is both szip (�) to szip (
) and lzip (�) tolzip (
) promotable.We use long zip to de�ne levelorder traversal of binary trees. This is given by thefunction levels :: btree A! list (list A):levels = bh (wrapl � wrapl;�) where x �a y = ��a��++ lzip (++) (x ; y)For example, the levelorder traversals of lf b and br (lf d ; c; lf e) are ��b�� and��c�; �d ; e��, respectively, and solevels �ve= ��a�� ++ lzip (++) (��b��; ��c�; �d ; e��)= ��a�� ++ ��b�++ �c�; �d ; e��= ��a�; �b; c�; �d ; e��We can at last de�ne the operator � on pictures, in terms of levelorder traversal.It is given byp � q = smallest (szip (~�) (map largest (levels p);map smallest (levels q)))If v and w are levels at the same depth in p and q , then largest v and smallest ware the rightmost point of v and the leftmost point of w , respectively, and sosmallest w � largest v is the width of the gap at this level. Clearly, p � q is theminimum over all levels of these gap widths. For example, with pic1 and pic2 as inFigure 5, we have map largest (levels pic1) = �0; 1=2; 1�map smallest (levels pic2) = �0; -1=2; -1�

Deriving tidy drawings of trees 17and so pic1 � pic2 = smallest �0� 0; -1=2 � 1=2; -1� 1� = -2This completes the speci�cation of �, and hence of bdraw :bdraw = bh (const (lf 0);�) (5)wherep �a q = br (map (�s) p; 0;map (+s) q) where s = (1� (p � q))� 2p � q = smallest (szip (~�) (map largest (levels p);map smallest (levels q)))This speci�cation is executable, but requires quadratic e�ort. We now derive alinear algorithm to satisfy it.5 Drawing binary trees e�cientlyA major source of ine�ciency in the program that we have just developed is theoccurrence of the two maps in the de�nition of �. Intuitively, we have to shift thedrawings of two children when assembling the drawing of their parent, and thenshift the whole lot once more when drawing the grandparent. This is because we arecomputing directly the absolute position of every element. If instead we were to com-pute the relative position of each parent with respect to its children, these repeatedtranslations would not occur. A second pass|a downwards accumulation|can �xthe absolute positions by accumulating relative positions.Suppose the function rootrel on drawings of trees satis�esrootrel (lf a) = 0rootrel (br (t ; a; u)) = (a � root t)� (root u � a)for some idempotent operator �. The idea here is that rootrel determines the po-sition of a parent relative to its children, given the drawing of the parent. Forexample, with pic1 as in Figure 5, we have:rootrel pic1 = (0� -1=2)� (1=2 � 0) = 1=2That is, if we de�ne the function sep bysep = rootrel � bdraw (6)then sep (lf a) = 0sep (br (t ; a; u)) = (1� (bdraw t � bdraw u)) � 2 (7)For example:sep �ve = (1� (bdraw (lf b)� bdraw (br (lf d ; c; lf e)))) � 2= (1� 0)� 2= 1=2

18 Jeremy GibbonsThenbdraw (br (t ; a; u)) = br (map (�s) (bdraw t); 0;map (+s) (bdraw u))where s = sep (br (t ; a; u))Now, applying sep to each subtree gives the relative (to its children) position ofevery parent. De�ne the function rel byrel = map sep � subtrees (8)From this, we calculate thatrel (lf a)= f(8)gmap sep (subtrees (lf a))= f(2)gmap sep (lf (lf a))= f(1)glf (sep (lf a))= f(7)glf 0and rel (br (t ; a; u))= f(8)gmap sep (subtrees (br (t ; a; u)))= f(2)gmap sep (br (subtrees t ; br (t ; a; u); subtrees u))= f(1)gbr (map sep (subtrees t); sep (br (t ; a; u));map sep (subtrees u)))= f(8)gbr (rel t ; sep (br (t ; a; u)); rel u)That is, rel (lf a) = lf 0rel (br (t ; a; u)) = br (rel t ; sep (br (t ; a; u)); rel u) (9)This gives us the �rst `pass', computing the position of every parent relative to itschildren. How can we get from this to the absolute position of every element? Weneed a function abs satisfying the conditionabs � rel = bdraw (10)We can calculate from this requirement a de�nition of abs . On leaves, the conditionreduces to abs (rel (lf a)) = bdraw (lf a)

Deriving tidy drawings of trees 19, f(9), (5)gabs (lf 0) = lf 0while on branches we requireabs (rel (br (t ; a; u))) = bdraw (br (t ; a; u)), f(9), (5); let s = sep (br (t ; a; u))gabs (br (rel t ; s; rel u)) = br (map (�s) (bdraw t); 0;map (+s) (bdraw u)), fassuming (10) holds on smaller treesgabs (br (rel t ; s; rel u)) = br (map (�s) (abs (rel t)); 0;map (+s) (abs (rel u)))These requirements are satis�ed ifabs (lf a) = lf 0abs (br (t ; a; u)) = br (map (�a) (abs t); 0;map (+a) (abs u))By Theorem 4, this implies thatabs = map (uw (const 0; ~�;+)) � pathsWe give the upwards function uw (const 0; ~�;+) a name, pabs (`the absolute posi-tion of the bottom of a path'), for brevity:pabs = uw (const 0; ~�;+)so that abs = map pabs � paths (11)Thus, we have bdraw = abs � rel (12)where rel = map sep � subtreesabs = map pabs � pathsThis is still ine�cient, as computing rel takes quadratic time (because sep is not atree homomorphism) and computing abs takes quadratic time (because pabs is notpath homomorphism). We show next how to compute rel and abs quickly.5.1 An upwards accumulationWe want to �nd an e�cient way of computing the function rel satisfyingrel = map sep � subtreeswhere sep (lf a) = 0sep (br (t ; a; u)) = (1� (bdraw t � bdraw u)) � 2We have already observed that rel is not an upwards accumulation, because sep isnot a homomorphism|more information than the separations of the grandchildren

20 Jeremy Gibbonsis needed in order to compute the separation of the children. How much moreinformation is needed? It is not hard to see that, in order to compute the separationof the children, we need to know the `outlines' of their drawings.Each level of a picture is sorted. Therefore,map smallest � levels = map head � levelsmap largest � levels = map last � levelsand so p � q = right p � left q (13)where left = map head � levelsright = map last � levelsand v � w = smallest (szip (~�) (v ;w))Intuitively, left and right return the `contours' of a drawing. For example, applyingthe function fork (left; right) to the tree pic1 in Figure 5 produces the pair of lists(�0; -1=2; 0�; �0; 1=2; 1�). These contours are precisely the extra information needed tomake sep a homomorphism.To show this, we need to show �rst that sep can be computed from the contours,and second that computing the contours is a homomorphism. De�ne the functioncontours by contours = fork (left ; right) � bdraw (14)How do we �nd sep t from contours t? By de�nition, the head of each contour is0, and (if t is not just a leaf) the second elements in the contours are -(sep t) andsep t . Thus, sep = spread � contours (15)where, for some idempotent �,spread (�0�; �0�) = 0spread (�0�++ x ; �0� ++ y) = -(head x) � head yon pairs of lists, each with head 0.Now we show that contours is a homomorphism. On leaves, we havecontours (lf a)= f(14)gfork (left ; right) (bdraw (lf a))= f(5)gfork (left ; right) (lf 0)= fleft, rightg(�0�; �0�)For branches, we will consider just the left contour, as the right contour is sym-

Deriving tidy drawings of trees 21metric. We haveleft (bdraw (br (t ; a; u)))= f(5), setting s = (1� (bdraw t � bdraw u)) � 2gleft (br (map (�s) (bdraw t); 0;map (+s) (bdraw u)))= fleftgmap head (levels (br (map (�s) (bdraw t); 0;map (+s) (bdraw u))))= flevelsgmap head (��0�� ++ lzip (++) (levels (map (�s) (bdraw t));levels (map (+s) (bdraw u))))= fmap, headg�0�++map head (lzip (++) (levels (map (�s) (bdraw t));levels (map (+s) (bdraw u))))= fhead is ++ to fst promotable; Lemma 8g�0�++ lzip fst (map head (levels (map (�s) (bdraw t)));map head (levels (map (+s) (bdraw u))))= flevels �map f = map (map f) � levelsg�0�++ lzip fst (map head (map (map (�s)) (levels (bdraw t)));map head (map (map (+s)) (levels (bdraw u))))= fhead �map f = f � headg�0�++ lzip fst (map (�s) (map head (levels (bdraw t)));map (+s) (map head (levels (bdraw u))))= fleftg�0�++ lzip fst (map (�s) (left (bdraw t));map (+s) (left (bdraw u)))Similarly, right (bdraw (br (t ; a; u)))= �0�++ lzip snd (map (�s) (right (bdraw t));map (+s) (right (bdraw u)))Now, bdraw t � bdraw u= f(13)gright (bdraw t)� left (bdraw u)= f(14)gsnd (contours t) � fst (contours u)and so contours (br (t ; a; u)) = contours t �a contours u

22 Jeremy Gibbonswhere (w ; x)�a (y ; z)= (�0�++ lzip fst (map (�s) w ;map (+s) y);�0�++ lzip snd (map (�s) x ;map (+s) z))where s = (1� (x � y))� 2 (16)Hence, contours = bh (const (�0�; �0�);�) (17)Thus, rel= f(8)gmap sep � subtrees= f(15)gmap spread �map contours � subtrees= f(17)gmap spread �map (bh (const (�0�; �0�);�)) � subtrees= f(3)gmap spread � up (const (�0�; �0�);�)That is, rel = map spread � up (const (�0�; �0�);�) (18)This is now an upwards accumulation, but it is still expensive to compute. Theoperation � takes at least linear e�ort, resulting in quadratic e�ort for the upwardsaccumulation. One further step is needed before we have an e�cient algorithm forrel.We have to �nd an e�cient way of evaluating the operator � from (16):(w ; x)�a (y ; z) = (�0� ++ lzip fst (map (�s) w ;map (+s) y);�0� ++ lzip snd (map (�s) x ;map (+s) z))where s = (1� (x � y))� 2One way of doing this is with a data re�nement whereby, instead of maintaining alist of absolute distances, we maintain a list of relative distances. That is, we makea data re�nement using the invertible abstraction function msi = map sum � inits,which computes absolute distances from relative ones. Under this re�nement, themaps can be performed in constant time, sincemap (+s) (msi x) = msi (mapplus (s; x))where mapplus (b; �a�) = �b + a�mapplus (b; �a�++ x) = �b + a� ++ x(19)Moreover, the zips can still be performed in time proportional to their shorterargument, since if len x � len y thenlzip fst (msi x ;msi y) = msi x

Deriving tidy drawings of trees 23and if len x < len y then, letting (y1; y2) = split (len x ; y) wheresplit (1; �a� ++ x) = (�a�; x)split (n + 1; �a� ++ x) = (�a� ++ v ;w) where (v ;w) = split (n; x)we have lzip fst (msi x ;msi y)= fmsi y = msi y1 ++map (+sum y1) (msi y2); len x = len y1gmsi x ++map (+sum y1) (msi y2)= fmap (+sum x) �map (�sum x) = idgmsi x ++map (+sum x) (map (�sum x + sum y1) (msi y2))= f(19)gmsi x ++map (+sum x) (msi (mapplus (sum y1 � sum x ; y2)))= fmsi (x ++ y) = msi x ++map (+sum x) (msi y)gmsi (x ++mapplus (sum y1 � sum x ; y2))By symmetry, lzip snd (msi x ;msi y) = lzip fst (msi y ;msi x)(Note that the guard len x � len y must also be evaluated in time proportional tothe lesser of len x and len y , and so cannot be done simply by computing the twolengths. In Figure 6 we de�ne the predicate nst (for `no shorter than'), for whichnst (x ; y) = (len x � len y) but which takes time proportional to the lesser of len xand len y .)The re�ned � still takes linear e�ort because of the zips, but the importantobservation is that it now takes e�ort proportional to the length of its shorterargument (that is, to the lesser of the common lengths of w and x and the commonlengths of y and z , when � is `called' with arguments (w ; x) and (y ; z)). Reingoldand Tilford (1981) show that, if evaluating h t �a h u from a, h t and h u takese�ort proportional to the lesser of the depths of the trees t and u, then the treehomomorphism h = bh (f ;�) can be evaluated with linear e�ort. Actually, whatthey show is that if g satis�esg (lf a) = 0g (br (t ; a; u)) = g t +min (depth t ; depth u) + g uthen g x = size x � depth xwhich can easily be proved by induction. Intuitively, g counts the number of pairsof horizontally adjacent elements in a tree.With this data re�nement, rel can be computed in linear time.

24 Jeremy Gibbons5.2 A downwards accumulationWe now have an e�cient algorithm for rel . All that remains to be done is to �ndan e�cient algorithm for abs , whereabs = map pabs � pathspabs = uw (const 0; ~�;+)We note �rst that computing abs as it stands is ine�cient. No operator � can satisfya + const 0 b = const 0 a � b for all a and b, and so pabs cannot be computeddownwards, and abs is not a downwards accumulation. Intuitively, pabs starts atthe bottom of a path and discards the bottom element, but we cannot do this whenstarting at the top of the path.What extra information do we need in order to be able to compute pabs down-wards? It turns out thatpabs (x ++ hai) = pabs x � bottom xpabs (x !++ hai) = pabs x + bottom x (20)where bottom returns the bottom element of a path:bottom = uw (id ; snd ; snd)Now, pabs and bottom together can be computed downwards, because of (20) andbottom (x ++ hai) = abottom (x !++ hai) = aLet pabsb = fork (pabs ; bottom) (21)Then, by Theorem 6, pabsb is upwards:pabsb = uw (f ;�;
) where f a = (0; a)a � (v ;w) = (v � a;w)a
 (v ;w) = (v + a;w)Moreover, by Theorem 5, pabsb is downwards:pabsb = dw (f ;�;
) where f a = (0; a)(v ;w)� a = (v � w ; a)(v ;w)
 a = (v + w ; a)Finally, by Theorem 3, pabsb is a path homomorphism:pabsb = ph (f ;�;
)where f a = (0; a)(v ;w) � (x ; y) = (v � w + x ; y)(v ;w)
 (x ; y) = (v + w + x ; y) (22)Putting all this together gives usabs= f(11)g

Deriving tidy drawings of trees 25map pabs � paths= f(21)gmap fst �map pabsb � paths= f(22), with f , � and
 as de�ned theregmap fst �map (ph (f ;�;
)) � paths= f(4)gmap fst � down (f ;�;
)That is, abs = map fst � down (f ;�;
) (23)which can be computed in linear time.5.3 The programTo summarize, the program that we have derived is as in Figure 6.6 Conclusion6.1 SummaryWe have presented a number of natural criteria satis�ed by tidy drawings of unla-belled binary trees. From these criteria, we have derived an e�cient algorithm forproducing such drawings.The steps in the derivation were as follows:1. we started with an executable speci�cation (5)|an `obviously correct' butine�cient program;2. we eliminated one source of ine�ciency, by computing �rst the position ofevery parent relative to its children, and then �xing the absolute positions ina second pass (12);3. we made a step towards making the �rst pass e�cient, by turning the functioncomputing relative positions into an upwards accumulation (18), computingnot just relative positions but also the outlines of the drawings;4. we made a data re�nement on the outline of a drawing (19), allowing us toshift it in constant time; and5. we made the second pass e�cient by turning the function computing absolutepositions into a downwards accumulation (23), computing not just the abso-lute positions but also the bottom element of every path. (In fact, we couldhave calculated, using the technique of strengthening invariants (Gries, 1982)and no invention at all, thatfork (pabs ; uw (id ; ~�;+))

26 Jeremy Gibbonsbdraw = abs � relrel = map spread � up (const (�0�; �0�);�)(w ; x)�a (y ; z) = (�0�++ lzipfst (mapplus (-s;w);mapplus (s; y));�0�++ lzipsnd (mapplus (-s; x);mapplus (s; z)))where s = (1� (x � y)) � 2mapplus (b; �a�) = �a + b�mapplus (b; �a�++x) = �a + b� ++ xlzipfst (x ; y) = x ; if nst (x ; y)= x ++mapplus (sum v � sum x ;w); otherwisewhere (v ;w) = split (len x ; y)lzipsnd (x ; y) = lzipfst (y ; x)nst (x ; �b�) = truenst (�a�; �b�++ y) = falsenst (�a� ++ x ; �b�++ y) = nst (x ; y)split (1; �a� ++ x) = (�a�; x)split (n + 1; �a� ++ x) = (�a�++ v ;w) where (v ;w) = split (n; x)spread (�0�; �0�) = 0spread (�0�++x ; �0�++y) = -(head x)� head y where a � a = av � w = lh (id ;min) (szip (~�) (v ;w))abs = map fst � down (f ;�;
)where f a = (0; a)(v ;w)� (x ; y) = (v � w + x ; y)(v ;w)
 (x ; y) = (v + w + x ; y)Fig. 6. The �nal programis downwards, and hence also a path homomorphism; this would have donejust as well.)The derivation showed several things:1. the criteria uniquely determine the drawing of a tree;2. the criteria also determine an ine�cient algorithm for drawing a tree (step 1in the derivation), and only three or four small inventive steps (steps 2 to 5in the derivation) are needed to transform this into an e�cient algorithm;3. the algorithm (due to Reingold and Tilford (1981)) is just an upwards accu-mulation followed by a downwards accumulation, and is further evidence ofthe utility of these higher-order operations;4. identifying these accumulations as major components of the algorithm maylead, using known techniques for computing accumulations in parallel, to anoptimal parallel algorithm for drawing unlabelled binary trees.

Deriving tidy drawings of trees 276.2 Related workThe problem of drawing trees has quite a long and interesting history. Knuth (1968;1971) and Wirth (1976) both present simple algorithms in which the x-coordinate ofan element is determined purely by its position in inorder traversal. Wetherell andShannon (1979) �rst considered `aesthetic criteria', but their algorithms all producebiased drawings. Independently of Wetherell and Shannon, Vaucher (1980) gives analgorithm which produces drawings that are simultaneously biased, irregular, andwider than necessary, despite his claims to have `overcome the problems' of Wirth'ssimple algorithm. Reingold and Tilford (1981) tackle the problems in the algorithmsof Wetherell and Shannon and of Vaucher, by proposing the criteria concerning biasand regularity. Their algorithm is the one derived for binary trees here. Supowitand Reingold (1983) show that it is not possible to satisfy regularity and minimalwidth simultaneously, and that the problem is NP-hard when restricted to discrete(for example, integer) coordinates. Br�uggemann-Klein and Wood (1990) implementReingold and Tilford's algorithm as macros for the text formatting system TEX.The problem of drawing general trees has had rather less coverage in the litera-ture. General trees are harder to draw than binary trees, because it is not so clearwhat is meant by `placing siblings as close as possible'. For example, consider a gen-eral tree with three children, t , u and v , in which t and v are large but u relativelysmall. It is not su�cient to consider just adjacent pairs of siblings when spacing thesiblings out, because t may collide with v . Spacing the siblings out so that t and vdo not collide allows some freedom in placing u, and care must be taken not to in-troduce any bias. Reingold and Tilford (1981) mention general trees in passing, butmake no reference to the di�culty of producing unbiased drawings. Bloesch (1993)(who adapts the algorithms of Vaucher and of Reingold and Tilford to cope withnode labels of varying width and height) also does not attempt to produce unbiaseddrawings, despite his claims to the contrary. Radack (1988) e�ectively constructstwo drawings, one packing siblings together from the left and the other from theright, and then averages the results. That algorithm is derived by Gibbons (1991)and described by Kennedy (1995). Walker (1990) uses a slightly di�erent method;he positions children from left to right, but when a child touches against a leftsibling other than the nearest one, the extra displacement is apportioned amongthe intervening siblings. 6.3 Further workGibbons (1991) extends this derivation to general trees. We have yet to apply themethods used here to Bloesch's algorithm (Bloesch, 1993) for drawing trees in whichthe labels may have di�erent heights, but do not expect it to yield any surprises.It may also be possible to apply the techniques in (Gibbons et al., 1994) to yieldan optimal parallel algorithm to draw a binary tree of n elements in logn time on

28 Jeremy Gibbonsn= logn processors, even when the tree is unbalanced|although this is complicatedby having to pass non-constant-size contours around in computing �.We are currently exploring the application to graphs of some of the generalnotions|homomorphisms and accumulations|used here on lists and trees. See(Gibbons, 1994b) for further details.6.4 AcknowledgementsThanks are due to Sue Gibbons and the anonymous referees, whose suggestionsimproved the presentation of this paper considerably.ReferencesRoland Backhouse (1989). An exploration of the Bird-Meertens formalism. In InternationalSummer School on Constructive Algorithmics, Hollum, Ameland. STOP project. Alsoavailable as Technical Report CS 8810, Department of Computer Science, GroningenUniversity, 1988.Richard S. Bird (1987). An introduction to the theory of lists. In M. Broy, editor, Logicof Programming and Calculi of Discrete Design, pages 3{42. Springer-Verlag. Alsoavailable as Technical Monograph PRG-56, from the Programming Research Group,Oxford University.Richard S. Bird (1988). Lectures on constructive functional programming. In ManfredBroy, editor, Constructive Methods in Computer Science. Springer-Verlag. Also avail-able as Technical Monograph PRG-69, from the Programming Research Group, OxfordUniversity.Anthony Bloesch (1993). Aesthetic layout of generalized trees. Software|Practice andExperience, 23(8):817{827.Anne Br�uggemann-Klein and Derick Wood (1990). Drawing trees nicely with TEX. In Mal-colm Clark, editor, TEX: Applications, Uses, Methods, pages 185{206. Ellis Horwood.Pierre Deransart, Martin Jourdan, and Bernard Lorho (1988). LNCS 323: AttributeGrammars|De�nitions, Systems and Bibliography. Springer-Verlag.Jeremy Gibbons, Wentong Cai, and David Skillicorn (1994). E�cient parallel algorithmsfor tree accumulations. Science of Computer Programming, 23:1{18.Jeremy Gibbons (1991). Algebras for Tree Algorithms. D. Phil. thesis, ProgrammingResearch Group, Oxford University. Available as Technical Monograph PRG-94.Jeremy Gibbons (1993a). Computing downwards accumulations on trees quickly. In GopalGupta, George Mohay, and Rodney Topor, editors, 16th Australian Computer ScienceConference, pages 685{691, Brisbane. Revised version submitted for publication.Jeremy Gibbons (1993b). Upwards and downwards accumulations on trees. In R. S. Bird,C. C. Morgan, and J. C. P. Woodcock, editors, LNCS 669: Mathematics of ProgramConstruction, pages 122{138. Springer-Verlag. A revised version appears in the Pro-ceedings of the Massey Functional Programming Workshop, 1992.Jeremy Gibbons (1994a). How to derive tidy drawings of trees. In C. Calude, M. J. J.Lennon, and H. Maurer, editors, Proceedings of Salodays in Auckland, pages 53{73,Department of Computer Science, University of Auckland.Jeremy Gibbons (1994b). An initial-algebra approach to directed acyclic graphs. De-partment of Computer Science, University of Auckland. Accepted for publication inMathematics of Program Construction 1995.

Deriving tidy drawings of trees 29Jeremy Gibbons (1994c). The Third Homomorphism Theorem. In C. Barry Jay, editor,Computing: The Australian Theory Seminar. University of Technology, Sydney. Sub-mitted for publication.David Gries (1982). A note on a standard strategy for developing loop invariants andloops. Science of Computer Programming, 2:207{214.Andrew Kennedy (1995). Drawing trees. Journal of Functional Programming, to appear.Donald E. Knuth (1968). The Art of Computer Programming, Volume 1: FundamentalAlgorithms. Addison-Wesley.Donald E. Knuth (1971). Optimum binary search trees. Acta Informatica, 1:14{25.Richard E. Ladner and Michael J. Fischer (1980). Parallel pre�x computation. Journal ofthe ACM, 27(4):831{838.Grant Malcolm (1990). Algebraic Data Types and Program Transformation. PhD thesis,Rijksuniversiteit Groningen.Lambert Meertens (1986). Algorithmics: Towards programming as a mathematical activity.In J. W. de Bakker, M. Hazewinkel, and J. K. Lenstra, editors, Proc. CWI Symposiumon Mathematics and Computer Science, pages 289{334. North-Holland.G. M. Radack (1988). Tidy drawing ofM-ary trees. Technical Report CES-88-24, Depart-ment of Computer Engineering and Science, Case Western Reserve University, Cleve-land, Ohio.Edward M. Reingold and John S. Tilford (1981). Tidier drawings of trees. IEEE Trans-actions on Software Engineering, 7(2):223{228.David B. Skillicorn (1993). Parallel evaluation of structured queries in text. Draft, Depart-ment of Computing and Information Sciences, Queen's University, Kingston, Ontario.Kenneth J. Supowit and Edward M. Reingold (1983). The complexity of drawing treesnicely. Acta Informatica, 18(4):377{392.Jean G. Vaucher (1980). Pretty-printing of trees. Software|Practice and Experience,10:553{561.John Q. Walker, ii (1990). A node-positioning algorithm for general trees. Software|Practice and Experience, 20(7):685{705.Charles Wetherell and Alfred Shannon (1979). Tidy drawings of trees. IEEE Transactionson Software Engineering, 5(5):514{520.Niklaus Wirth (1976). Algorithms + Data Structures = Programs. Prentice Hall.

