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ABSTRACT
This paper describes a system for the representation and
rendering of polyhedral scenes in which individual
components can have different user-specified amounts of
rounding applied to edges and corners. Objects are
represented by structures similar to CSG trees but with
arithmetic operators at internal nodes rather than set
membership operators. An object’s smoothing attribute
specifies the radius of a spherical smoothing filter, and
the smoothed object’s surface is defined by an iso-density
surface after low-pass filtering. The filtering is an
approximation to true convolutional filtering, but allows
rapid determination of iso-density surfaces. The rounded
surfaces are similar to those achieved by use of filleting
and surface blending techniques during modelling, but are
much easier to specify, far more economical in storage,
and simpler to compute. By varying the smoothing radii,
a wide range of effects can be obtained, from near-perfect
polyhedra through to “blobby models”.

1 INTRODUCTION
A large proportion of computer graphics scenes are
modelled with polyhedra, even where the natural objects
being modelled are themselves curved. Smooth shading
techniques readily eliminate the defects of polyhedral
approximations to curved surfaces, but synthetic images
usually have at least one significant flaw: edges and
corners of the models remain sharp, whereas natural
polyhedral objects usually have some smooth curvature
connecting adjacent planes. Apart from having a
generally softer appearance, curved edges and corners
often exhibit bright highlights or, where they are in
contact with other objects or the floor, associated
shadows. Such highlights and shadows help the eye
delineate the object and distinguish it from a similarly
coloured background.

The computer aided geometric design field has a rich
literature on the subject of blending surfaces; see for
example Hoffman and Hopcoft [8] or the review by
Woodwark [21]. The usual goal in this field is to
determine a mathematical description for a surface that
smoothly blends with two or more other surfaces. Many
modern CAD packages offer surface blending facilities.
For example, a user may be able to select two planar
surfaces, enter a blending radius, and have the system
automatically construct a blending surface where the
planes intersect. Such surfaces themselves need to be
blended at corner points, and the problem can become
mathematically intractable with some topologies.
Usually, though, a solution is possible, and the CAD

system outputs a polygonized representation of the
resultant surface. However, such surface blending is in
general mathematically difficult, hard to implement,
awkward for the user to control, and expensive in storage
space for the polygonized scene description.

Colburn [4][5] takes a different approach to rounding,
with what he calls a “global blending” method that
works on arbitrary solid models. He regards a solid
object as a classification function f x y z( , , ) , which has
value 1 at points inside the object and -1 outside it. That
function can be low-pass filtered by convolving it with a
smoothing filter, which has the effect of removing the
high frequencies associated with edges and corners. The
surface of the smoothed model is then defined to be all
points at which the filtered function value is 0.  Since
the method used in this paper starts from essentially the
same idea, it will be outlined in more detail in
Section 2.1.

Colburn’s application area is computer-aided
manufacturing, for which  he requires a polygon mesh
representation of the smoothed surface. He locates
surface points by tracing rays through an octree
approximation to the solid, using a root finding method
along each ray. Surface points are combined into a mesh
structure, which is subdivided in regions of high
curvature. The mesh can then be displayed using normal
polygonal rendering methods, or used as input to
numerically controlled machinery.

Bloomenthal and Shoemake [3] also used convolution to
construct surfaces. Their goal was very different from
Colburn’s: they were concerned with “fleshing out”
skeletons to represent complex smooth surfaces, such as
of a human limb. They describe an ingenious fast
rendering scheme that exploits the separability property
of a gaussian filter to allow them to  render images by
compositing convolution images of individual
components of the skeleton. A major restriction,
however, is that the skeleton components have to be
planar, though the resulting surfaces are decidedly three
dimensional. Their method does not create convolution
surfaces around solid skeletons, can not easily represent
planar surfaces, and is not suitable for general-purpose
modelling and display of synthetic scenes.

Our initial goal was to find a way of rendering standard
polygonal scenes with object edges and corners rounded.
However, it is difficult to recreate the original topology
from just the polygons, and furthermore the goal is too
restrictive, because:

(a) The rounding radius of edges in typical scenes varies
by many orders of magnitude from negligible to
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several millimetres: it is a property of a particular
object or even of a particular edge.

(b) Given two cuboids as in Figure 1(a), we wanted to
be able to produce at least the two different
roundings of Figures 1(b) and 1(c). 1(b) is
appropriate for a box sitting on a table, while 1(c),
with the same initial polygon topology, is
appropriate for a welded machine part.

To support these two requirements more information is
needed at scene construction time. Hence, the system we
describe is both a scene description method and a
rendering algorithm.

(a) (b) (c)

Figure 1. Two different rounding options (b and c) for
the same initial polygon configuration (a).

2 SCENE DESCRIPTION

2 . 1 Convolutional Smoothing
The underlying principle of our smoothing method is
very similar to that of Colburn’s. We restrict ourselves
to a polyhedral scene description and we associate with
each polyhedral component a spherical smoothing filter
with a given radius. The surface of the smoothed
polyhedron is then defined as all points such that when a
sphere of the specified radius is positioned at the point,
exactly half of the volume of the sphere is inside the
polyhedron and half is outside.

Figure 2 illustrates this in two dimensions. The circles
are shown centred at various points on the surface of the
smoothed polygon, shown shaded: half of each circle’s
area is inside the unsmoothed polygon.

More formally, given a smoothing filter of radius r and a
polyhedral region of space P defined by

P: (x,y,z) → density

where density has a value of 1 inside the polyhedron and
0 outside it1, the surface of the smoothed polyhedron is
all points (x,y,z) for which

P u v w h x u y v z w du dv dw( , , ) ( , , ) .− − − =∫ 0 5    (1)

where the integral is over all space,  and
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The term density should not be confused with the
physical density of an actual scene object; it is simply a

1We use values of 0 and 1 with an isosurface at 0.5, rather
than the more conventional -1 and +1 with an isosurface at
0, to allow the direct use of  arithmetic operators to simulate
set operations, as will become clear later.

convenient term for the real-valued quantity of
“insidedness” that can be manipulated as in equation (1).

From a signal-processing standpoint, our method
involves convolving the density function by a spherical
filter h, and displaying the isosurface of value 0.5. Since
the filter h  is a low-pass filter, the rounding of edges and
corners can be seen as the result of filtering out high-
frequency spatial components from the original density
function.

We use a ray-tracer for rendering, so one can imagine a
small sphere moving along a ray from the eye into the
scene, and being “reflected” at the first point where half
the volume of the sphere is inside a scene object.

In practice, two major problems occur.

(a) The volume of intersection of a sphere and a
polyhedron is difficult to compute, and is certainly
too expensive to allow equation (1) to be solved for
every ray during a ray traced rendering.

(b) For non-convex polyhedra, the surface of the
smoothed volume can lie outside the unsmoothed
volume, so that it is possible for a ray that misses
the unsmoothed object to hit the smoothed object.
This potentially makes it difficult to know where to
search for solutions to equation (1).

Before addressing these problems, it is necessary to be
more explicit about our scene definition data types.

Figure 2.  Convolutional smoothing of a polygon by
a circular filter.

2 . 2 Scene Object Data Types
Figure 3 shows, in the language Clean [13][14],
simplified versions of the data types we use for scene
construction. The syntax will be obvious to readers who
are familiar with modern functional languages such as
Haskell [9] or Miranda [19], but others should be able to
understand the notation with the help of some
explanatory comments. The type definitions, which are
indicated by a double colon, specify that a scene is just a
scene object, which itself is one of

(a) A Union, Intersection or SetDifference of two other
scene objects, or

(b) A Rounded (with a specified real radius value)
DensityTree, to be explained shortly, or

(c) A Halfspace defined by a plane (and its directed
normal).

A scene is thus a standard Constructive Solid Geometry
tree (CSG tree) structure whose leaves are either half
spaces or rounded density trees. We refer to the scene tree
as the primary CSG tree, to distinguish it from the
CSG-like structures that we will use for density trees.
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:: Scene = SceneObject;
:: Radius = Real;
:: Plane = (Vector, Real);

:: SceneObject
= Union SceneObject SceneObject
| Intersection SceneObject SceneObject
| SetDifference SceneObject SceneObject
| Rounded Radius DensityTree
| Halfspace Plane;

:: DensityTree
= Sum DensityTree DensityTree
| Product DensityTree DensityTree
| Difference DensityTree DensityTree
| DensityHalfspace Plane;

Figure 3: Scene definition data types.

PointInObject  :: Point     SceneObject –> Bool;
PointInObject p (Union objA objB) = (PointInObject p objA)     or (PointInObject p objB);
PointInObject p (Intersection objA objB) = (PointInObject p objA)    and (PointInObject p objB);
PointInObject p (SetDifference objA objB) = (PointInObject p objA) and not (PointInObject p objB);
PointInObject p (Rounded r densityTree) = (Density r p densityTree) > 0.5;
PointInObject p (Halfspace plane) = InsidePlane p plane;

Density :: Radius Point DensityTree –> Real;
Density r p (Sum objA objB) = (Density r p objA) + (Density r p objB);
Density r p (Product objA objB) = (Density r p objA) * (Density r p objB);
Density r p (Difference objA objB) = (Density r p objA) – (Density r p objB);
Density r p (DensityHalfspace plane)

| distance > r = 0.0
| distance < –r = 1.0
| otherwise = truncatedSphereVolume

where
distance = DistanceOfPointFromPlane p plane  /* In direction of plane normal */
truncatedSphereVolume = (1 - alpha)^2 * (2 + alpha) / 4 /* volume of sphere inside halfspace */
alpha = distance / r

Figure 4.  Functional code for point classification and density evaluation.

We focus on the geometry of scene objects and disregard
the issues of specifying surface reflectance properties.

Rounded density trees are used to represent
convolutionally smoothed polyhedra. They define a
density value at any point in space, with the
interpretation that a given point is inside the object if
and only if the density value at that point is greater than
0.5.

A rounded density tree is a leaf of the primary CSG tree.
It comprises the (unrounded) density tree together with
the radius value of a convolutional smoothing filter. The
density tree is like a CSG tree, but with the arithmetic
operations of addition, multiplication and subtraction of
other density trees used in lieu of union, intersection and
set difference. The leaves of a density tree are
DensityHalfspaces, defined to have a zero density on one
side of a plane and unit density on the other.

Unless stated otherwise, it will be assumed that, prior to
rounding, density trees define density values that are
either 0 or 1 at all points. This makes density
multiplication exactly equivalent to set intersection.
Density addition is equivalent to set union provided the
intersection of the two components is empty, and
density subtraction is equivalent to set difference
provided the intersection of the complement of the first
component with the second component is empty.

Looking ahead somewhat, Figure 12 shows the different
effects that can be produced by performing rounding at
different stages during CSG-style modelling. The
construction of this scene is discussed in Section 4.1.

2 . 3 The Density Tree
Figure 4 illustrates the meaning of the entire scene data
structure by specifying, in the language Clean 1.0 [14],
a point classification function PointInObject that tests
whether a given point is inside a given scene object.

Function PointInObject, which implements standard
CSG logic, is defined by a set of rules, exactly one of
which should “pattern match” any particular invocation.
For example, if the scene object is constructed from a
union of a list of components, the value to return is
given by:

(PointInObject p objA) Or (PointInObject p objB)

which in an imperative language would be written
PointInObject (p, objA) Or PointInObject (p, objB).

Of more interest is the case where the object being tested
is a rounded density tree. In this case, the density due to
the rounded object is calculated by function Density and
the result compared to 0.5 to classify the point. The
Dens i t y  function, which takes as parameters a
smoothing filter radius, a point in space and a density
tree to be evaluated at that point, thus precisely defines
the meaning of a rounded density tree. There are four
separate cases to be handled by the Density function, the
last of which if broken into three subcases by the use of
“guards”: the syntax   Density a b c | d = e | f = g
should be read as “the value of the density, given
parameters matching a , b , and c , is equal to e  if
condition d is satisfied, or else to g if condition f is
satisfied”.

There are two ways of viewing the operation of the
Dens i t y  function: as an approximation to true
convolutional filtering of a CSG model, or as an exact
evaluation of a density field constructed from
convolutionally-smoothed density halfspaces. The two
views are complementary, and are covered in the
following two sections.

2 . 3 . 1 Approximate Convolutional Filtering
In the first view, and with the assumptions of section
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2.2, the density operators are equivalent to the standard
set operators and the unsmoothed object is equivalent to
a standard CSG polyhedron. The Density function then
has the role of performing a convolution of that
polyhedron’s density with the simple spherical filter as
defined by the integral in equation (1).

If the density tree is a density halfspace, the integral in
equation (1) is equivalent to determining what fraction of
the volume of a sphere centred at (x,y,z) lies inside the
halfspace. The standard solid geometry formula for the
volume of a spherical cap of height h and radius r is

V h r h= π −1

3
32 ( ) . Dividing by the volume of the

sphere, and substituting h r d= − , where d  is the
distance of the point (x,y,z) from the plane of the
halfspace, with a positive sign outside the plane and a
negative sign inside, gives the result
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If the density tree is the sum or difference of two other
density trees, the integral in equation (1) equals the sum
or difference of the two subtree integrals, so the Density
function correctly handles Sum and Difference nodes.

However, the case of products of density trees, equivalent
to set intersection, is handled by a major and possibly
rather startling approximation: the convolution integral
of a product of two volume density functions is obtained
by multiplying the two separate convolution integrals.
This would seem to return very poor results under some
situations. For example, the density due to  the product
of two abutting antiparallel halfspaces would evaluate to
0.25 on the common plane rather than the expected
answer of 0.0. All is not lost however, since both those
density values are classified as outside the object, so the
PointInObject function ultimately returns the right
answer. The real question is: what are the properties of
the 0.5 isosurface obtained using this approximation, as
compared to the 0.5 isosurface obtained with true
convolution? For such purposes, the approximation has
the following useful properties:

(a) It is exactly correct at a Product node when the
spherical filter lies entirely outside either of the two
subtrees, since then one of the density functions is
zero at all points within the filter volume and the
result is zero.

(b) It is exactly correct at a Product node when the
spherical filter lies entirely inside the unsmoothed
solid volume of either of the two subtrees, since one
of the two density functions then equals 1 at all
points within the filter volume.

(c) It is exactly correct along the common edge of two
perpendicular intersecting halfspaces, where the
sphere has exactly one quarter of its volume inside
the intersecting halfspaces and half its volume inside
each halfspace.

(d) It is similarly correct at the common point of three
mutually perpendicular intersecting halfspaces.

Properties (a) and (b), plus continuity arguments, ensure
that with a radius of zero the isosurface equals the surface
of the unsmoothed polyhedron, and as the radius
increases from zero, the isosurface departs smoothly
from the original surface. Properties (c) and (d) suggest
that the approximate isosurface should be fairly close to
the true convolution surface around square edges and
corners.

To indicate the nature of the convolution approximation,
Figure 5 shows three ways of rounding the edge
generated by two intersecting halfspaces, for three
different intersection angles. The heavy line is the
rounded corner produced by the algorithm in this paper.
The shaded region with a dotted boundary shows a
cylindrical fillet with radial lines to its centre; the
cylinder radius has been chosen so that the cylinder
meets the halfspace planes along the same lines as the
true convolution surface. The true convolution surface
itself is virtually indistinguisable from the cylindrical
fillet for the 90o and 135o cases, but is shown as a
separate dashed line in the 30o case.

All three methods are virtually equivalent for right-
angled edges. For acute angled edges the rounding
produced by the algorithm in this paper is somewhat
more elliptical (“pointier”) than the true convolution
surface which in turn is more elliptical than the
cylindrical surface. For both right-angled and acute
angled edges, the curved surface meets the planar surface
at the same points for all three blending methods. For
obtuse-angled edges, however, the region of curvature
produced by our algorithm extends further than one
radius from the corner, and in the limit, with a pair of
identical intersecting halfspaces, the entire isosurface is
inside the planes by about one quarter of the filter radius.

0 1

90
o

30
o

0 1 2

0 1
135

o

Figure 5:  Rounded intersecting halfspaces at
angles of 90o, 30o and 135o.

While the shapes of the rounded intersections are entirely
acceptable for our purposes, the surface displacement in
the case of duplicated intersecting halfspaces may seem
slightly disturbing, even though the situation is
improbable. The explanation is best understood in the
context of the following alternative interpretation of
density algorithm of Figure 4.

2 . 3 . 2 Modelling with smoothed halfspaces
Inspection of the Density function in Figure 4 shows
that it is simply an arithmetic expression tree evaluator,
in which the leaf nodes, which are density halfspaces,
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have values that are functions of r and p. For a given
fixed r, the leaf nodes represent convolutionally
smoothed halfspaces whose values at a given point p
determine the value of the entire arithmetic expression.
The density variation due to such a halfspace, as a
function of distance from the halfspace, is illustrated in
Figure 6. Our approximate method for convolutional
smoothing of polyhedra is thus an exact process of
approximating polyhedra by density arithmetic on
convolutionally smoothed halfspaces. A product of two
identical halfspaces produces the density profile shown
by the dashed line in Figure 6, so that displacement of
the isosurface away from the plane is to be expected.

-1.5 -1 -0.5 0.5 1 1.5
x

0.5

1

density

Figure 6. The density variation across a
smoothed halfspace and (shown as a dashed
line) the density squared.

The view of the algorithm as an approximation to
convolutional smoothing is simpler and more natural for
most purposes. However, some effects such as the
surface displacement just discussed are explicable only in
terms of modelling with smoothed halfspaces. The two
views are complementary, and throughout the remainder
of the paper we use the term quasi-convolutional
smoothing to embrace both views.

2 . 4 The Surface Normal
For display purposes we need the surface normal, which
is given by the (negative of) the direction of the density
gradient ∇ρ . For a smoothed density halfspace, ∇ρ  is
obtained by differentiating equation (2). Composite
objects are all built by adding, subtracting and
multiplying smoothed density halfspaces, each with a
density function defined by equation (2). Hence, the
density gradient due to a composite object represented as
a density tree can be obtained simply by recursively
applying the usual differentiation rules for arithmetic
expressions.

3 RENDERING

3 . 1 Introduction
Our goal is to provide more natural looking scene
objects for high-quality image rendering purposes, so
ray-tracing is the natural choice of rendering method.

Ray traced rendering of a standard CSG object, such as
our primary CSG tree, is well understood [16] [1].  Ray
tracing implicitly defined surfaces is also well
established, both in surface rendering [7][11] and volume
rendering [12]. This discussion focuses on the only
aspect of the algorithm that is new: identifying the

points where a ray crosses the 0.5 isosurfaces of a
density object.

3 . 2 Restricting the search space
As pointed out by Kalra and Barr [11], it is impossible
to reliably ray-trace a completely arbitrary implicit
surface: one needs to make use of additional information
about the surface in order to bound the regions in which
to search for surface crossings. We use the following
two facts:

(a) The smoothed polyhedron’s surface always lies
within one sphere radius of the unsmoothed surface.

(b) The filtering process which removes edges and
corners also limits the maximum rate of change of
the density and its gradient.

To exploit (a), we first trace rays through expanded and
contracted versions of the unsmoothed density tree, as
illustrated in Figure 7. The ray state variations marked
(a) and (b) show the intersection of the ray with the
expanded and the contracted object respectively. The
combination of the two gives (c), in which isosurface
crossings are confined to the shaded regions.

root search regions

(a)

(b)

(c)

Figure 7.  Identifying regions where a ray
may cross the 0.5 isosurface.

The expanded and contracted objects are normal CSG
models constructed from the original density tree by
replacing the arithmetic operators by the normal set
operators and by displacing the leaf halfspaces along
their surface normals by a suitable distance.

The expansion and comtraction distances must be
sufficient to ensure that if a point lies inside the
comtracted approximation it also lies within the true
rounded object, and if it lies outside the expanded
approximation it also lies outside the true rounded
object. If those conditions are satisfied, any isosurface
crossings of the rounded object lie in regions that are
outside the contracted approximation and inside the
expanded approximation. Values of +r and -r would
certainly satisfy the required conditions, but much tighter
bounds are possible. For example, the isosurface of a
rounded convex polyhedron always lies on or within the
unrounded polyhedron, so an expansion of +r would be
very wasteful in this case.

3 . 3 Tighter Density Bounds
Let ρ( )x  be the density function of a quasi-
convolutionally-smoothed object, where x  is the
position vector of a point in space. Define an



6 University of Auckland, Department of Computer Science, Technical Report No. 117, May 1995.

OuterBound O t( , )ρ  of the density with respect to a
given non-negative real-valued density threshold t to be
any set with the property

x x∉ ⇒ ≤O t t( , ) ( )ρ ρ            (3)

Similarly, we can define an Inner Bound I t( , )ρ  to be
any set with the property

x x∈ ⇒ ≥I t t( , ) ( )ρ ρ            (4)

From these definitions we can derive, as shown in the
Appendix, the following three theorems on outer
bounds:

1) If ρ ρ ρ( ) ( ) ( )x x x= 1 2 , with ρ ρ1 2 0 1, [ , ] ∈ , then
S O t O t= ∩( , ) ( , )ρ ρ1 2  is an outer bound of ρ with
respect to threshold t.

2) If ρ ρ ρ( ) ( ) ( )x x x= +1 2  then
S O t O t= ∪( , ) ( , )ρ ρ1 22 2  is an outer bound of ρ
with respect to threshold t.

3) If ρ ρ ρ( ) ( ) ( )x x x= −1 2 , with ρ ρ1 2 0 1, [ , ] ∈ , then
S O t I t= − −( , ) ( , )ρ ρ1 2 1  is an outer bound of ρ with
respect to threshold t.

These three theorems allow us to calculate a CSG object
guaranteed to include the 0.5 isosurface using the
algorithm of Figure 8, with an initial threshold density
of 0.5. The function Displacement, used in Figure 8,
returns the distance of the isosurface of value t from the
plane of a density halfspace that has been smoothed with
a filter of radius r. In effect, Displacement solves the
cubic equation (2) for α given  ρ , as follows.

Equation (2), when α  is between -1 and +1, can be
rearranged to give:

α α ρ3 3 2 4 0− + − =( )

This equation has a standard trigonometric solution—see
for example [20]. The root of interest in our case is the
one in the range -1 to +1, given by

α ϕ

ϕ ρ

= + π⎛
⎝

⎞
⎠

= −( )

2
4

3

2 1

cos

arccos

                           (5)

where 

OuterBounds :: Real DensityTree –> SceneObject;

OuterBounds t (Product objA objB)
= Intersection (OuterBounds t objA) (OuterBounds t objB);

OuterBounds t (Sum objA objB)
= Union (OuterBounds (t/2) objA) (OuterBounds (t/2) objB);

OuterBounds t (Difference objA objB)
= SetDifference (OuterBounds t objA) (InnerBounds (1–t) objB);

OuterBounds t  (DensityHalfspace (n,d))
=Halfspace (n, d+(Displacement  filterRadius t))

Figure 8.  The outer bound of a density tree for a
given density threshold.

Three further theorems relating to inner bounds, given in
Appendix 1, lead to a similar InnerBounds function for
calculating a CSG object guaranteed to lie entirely
within the 0.5 isosurface.

3 . 4 Root finding
Within the possible isosurface regions along the ray path
we use a root finder to locate all points where the density
given by the algorithm of Figure 4 equals 0.5. The root
finding algorithm, which is given  in Figure 9, is a
refinement of that of Kalra and Barr [11]: it exploits the
band-limited nature of the density function to control and
limit recursive subdivision of the root-search region of
the ray while guaranteeing that all roots are correctly
identified. A ray segment that may contain roots is
recursively subdivided until it can be proved to be
sufficiently short that it can contain at most one root. A
simple regula falsi root finder [15], interleaved with
binary search to improve worst case performance, is then
used on any segment that has endpoints with opposite
signs, indicating the presence of a root.

Kalra and Barr’s method is applicable to what they call
LG functions, for which one can determine the Lipschitz
bound L  and the equivalent bound G  on the scalar
gradient of the function, both bounds being calculated
over a specific ray segment. L is just the maximum
absolute value of the gradient of the function (i.e., a
bound on how quickly the density can change along the
ray) and G is the maximum value of the gradient of the
gradient (i.e., a bound on how quickly the gradient itself
can change).

The following two sections explain how to calculate LG
values over a ray segment within a density tree and how
to use those values to determine whether a segment
needs to be further subdivided.

::  RaySegment  = (Real, Real)
// start and end distances along ray

::  DensityFunction = (Real -> (Real, Real))
// function from  a distance along a ray to density and gradient

::  MLGFunction = (RaySegment -> (Real, Real, Real))
// function to return maximum  values of density, density
// gradient, and density gradient gradient within a ray segment

Roots :: MLGFunction DensityFunction RaySegment –> [Real];
Roots mlg f (x1, x2)

| shortEnough && noRoot = []
| shortEnough = RegulaFalsiRoot f (x1,x2)
= (Roots mlg f (x1, xmid)) ++ (Roots mlg f (xmid, x2)

where
shortEnough = ShortEnough mlg (x1, f1, f1’) (x2, f2, f2’)
noRoot = f1 * f2 > 0.0
( f1, f1 ’ ) = f x1
(f2, f2’) = f x2
xmid = (x1 + x2)/2

Figure 9.  The algorithm for identifying all roots
(isosurface crossings) in a given ray segment.

3.4.1 LG values for density trees
Density values in our method are defined by an
arithmetic expression tree, with leaves taking the form
of equation (2). For a ray segment through a leaf, the
value of L is obtained by differentiating (2) at the point
where the ray segment comes closest to the halfspace:



University of Auckland, Department of Computer Science, Technical Report No. 117, May 1995. 7

L

r

d

r

d

=
−( ) <⎧

⎨
⎪

⎩⎪

=

= ⎛
⎝⎜

⎞
⎠⎟

=
=
=

3

4
1 12α α

α

min min

min

.

min

R N

R

N

0 otherwise

where filter radius

distance from halfspace

ray direction vector

halfspace normal

A further differentiation gives us a formula for G, which
is evaluated at a point where the ray segment is furthest
from the halfspace (but is zero if the ray-segment is
always further than r from it):

G
r

= 3

2 2 α max .R N

For a general density tree, the values of L and G are
obtained by recursively descending the tree, applying
appropriate bounds-combining formulae at each internal
node. That involves also calculating a bound M on the
density itself. We use the following bounds-combining
formulae:

L L L

G G G

L M L M L
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min ,1 1 2

1 2 1

1 2 1 2

M M

M M

M M M

ρ ρ

ρ ρ ρ

ρ ρ ρ ρ

3.4.2 Using LG values in root-finding
This section is concerned with the function
ShortEnough in Figure 9, which returns true if a ray
segment is sufficiently short that multiple roots cannot
exist within the segment; such segments do not need to
be subdivided. The method uses the ray segment end-
point densities and density gradients ( ρ1, ′ρ1 ) and

( ρ2 , ′ρ2 ), together with the LG bounds for the segment,
calculated as in the previous section. We improve upon
the method of Kalra and Barr [11] by exploiting the
known density and gradient values at the end of the ray
segment to obtain a tighter criterion than that of Kalra
and Barr.

The condition for the existence of multiple roots is
derived from the following observations, illustrated in
Figure 10:

(a) The existence of multiple roots implies at least one
turning point after the first root and before the last.

(b) The distance along the ray to get from the start point
to the turning point in (a) is at least the greater
of ρ1 L or ′ρ1 G , as shown in Figure 10(a)

(c) If the signs of ρ1 and ′ρ1  are the same, the density
along the ray must first pass through a turning point
and back to the original value (and with the gradient
negated) before heading towards the root. This

requires a distance of at least 2 ′ρ1 G  in addition to

that of (b). See Figure 10(b)

(d) A lower bound on the distance along the ray to get
from the turning point of (a) to the end point of the
segment can be determined as in (b) and (c).

From the above four observations, if we denote the
distance term in (c) as the “Turn-Around Distance”, or
TAD, a necessary condition for the existence of multiple
roots in a ray segment of length l is:
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                               (6)  

where  

Function ShortEnough returns True if equation (6)
evaluates to False, or if l is negligibly small.
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Figure 10.  Ray Segment Length Constraints for
Multiple Roots.

3 . 5 Space subdivision
To improve the performance of the ray tracer, we use a
Binary Space Partitioning tree (BSP tree) space
subdivision scheme, similar in principle to that described
by Jansen [10].

We can classify CSG subtrees as “inside”, “outside”, or
“straddling” with respect to a partitioning plane provided
that the leaves of the tree can be so classified. To make
this possible we allow convex intersections of
halfspaces, and the density-tree equivalent, to be tagged
as boundable. The vertices of such convex objects can
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be calculated from their constituent halfspaces and used
to classify the objects. One must be careful when
classifying density trees, since they have non-zero
density at distances of up to one filter radius outside their
defining planes.

4 RESULTS

4 . 1 . Images
Figure 12 shows the rounding effects produced by
different combinations of normal CSG objects and
density CSG objects; slightly simplified definitions for
the objects, starting at the back left, are given in
Figure 11. In the definition of obj3, note the use of an
extra clipping plane to satisfy the density difference
requirement of Section 2.2. Simply subtracting box1
would also be valid, but produces an “overhang” in the
y = 1 plane, around the hole.

Figure 13 shows the effects of different rounding radii on
the “rounded difference” object (obj4) of Figure 12. It can
be seen that the method provides a smooth transition
between pure polyhedral modelling and “blobby” or “soft
object” modelling [2] [22] [3].

Figure 14 shows the use of small amounts of rounding
to produce a softer more-natural look. The front stapler
is geometrically the same as the back stapler but with
rounding enabled, and various rounding radii used on
different subcomponents. As well as softening the
appearance, the rounding eliminates the Mach band along
the middle of the side face of the upper portion of the
stapler, and helps delineate component boundaries,
particularly where the base touches the ground plane and
at the bottom of the steel staple holder.

obj1 =  SetDifference UnitCube box1;
obj2 =  SetDifference (Rounded r UnitCube) box1;
obj3 =  SetDifference UnitCube

(Product (topClip (Rounded r box2)));
obj4 =  Rounded r (Difference UnitCube box1);
obj5 =  Union (Rounded r UnitCube) (Rounded r box3);
obj6 =  Rounded r (Sum (UnitCube box3));

where
 r = 0.07;
 box1 = Shift (0.25,0.8,0.25) (Scale (0.5,0.5,0.5) UnitCube);
 box2 = Shift (0.25,0.8,0.25) (Scale (0.5,1.0,0.5) UnitCube);
 box3 = Shift (0.25,1.0,0.25) (Scale (0.5,0.5,0.5) UnitCube);
 topClip = DensityHalfspace ((0,1,0) ,1);

Figure 11 : Scene object descriptions for Figure 12.

4 . 2 Other effects
It is possible to extend the data structures to allow
different smoothing radii on different halfspaces of a
polyhedron. Figure 15(a) illustrates an extreme example
of this: the unit height object is constructed from the
intersection of four planes with a rounding radius of 0.3
and two with a rounding radius of 0.03. This gives the
appearance of greatly different rounding radii on different
edges. However, the “rounds” on the end faces are
actually almost elliptical with semi-major axis lengths
of 0.3 and 0.03. This shape defect highlights the
fundamental limitation of quasi-convolutional
smoothing as compared to surface blending techniques:
lack of precise control of the geometry of rounded edges
and corners.

Figure 15(b) shows the result of adding four slightly-
overlapping cubical density objects: a bulging “seam” is
created, due to density values of 2 and 4 in the region of
intersection. Such an effect is probably unintended, and
potentially interferes with the correctness of the
algorithm by displacing isosurfaces outside the calculated
bounding object (section 3.3). It does, however, suggest
the possibility of deliberately introducing density
variations to model surface detail or texture. This is a
topic for future research.

The assumption throughout this paper is that density
trees always produce density values in the range 0 to 1.
This constraint is not enforced by the program, but is
achieved manually during scene modelling by the
addition of suitable clipping planes. A completely
automatic solution is mathematically trivial—just
implement a CSG union a b∪ as a density expression
a b a b+ − × —but expensive. Finding a low-cost
automatic solution is another topic for future research.

4 . 3 . Performance
A key aspect of the work described in this paper, as
compared to that of Colburn [5], is the use of a fast
approximation for the convolution integral and the
associated density gradient (or isosurface normal).

Our prototype ray tracer is written in the lazy functional
language Clean 1.0. On a Macintosh Quadra 700,
rendering times for some of the 600 380×  pixel images
in this paper are shown in Table 1. Also shown are the
rendering times using the same program but with all
rounded density objects replaced by their polyhedral CSG
equivalent. The times should be interpreted with
considerable caution for the following reasons.

The use of Clean, as compared to C, typically imposes a
run-time penalty of around a factor of three [13]. The
penalty may be higher in our context, since various low-
level optimization techniques, such as the use of table
look-up methods for the calculations of equation (6),
were not feasible in the early version of Clean (Clean
0.8) that was used for most of the development. Also,
the timings are strongly dependent on the structure of the
BSP tree, which is necessarily different for the rounded
and non-rounded scenes. The time for a non-rounded
rendering of the CSGExamples scene is anomalously
high because of a poor BSP tree in this case; altering the
heuristics that control BSP tree construction might
significantly reduce this time, but increase others.
Optimisation of BSP tree construction for ray tracing is
not well understood and is a high priority for future
work, though we are starting to suspect that BSPtree
space subdivision is fundamentally less efficient than a
spatial enumeration method like that of Fujimoto et al
[6].

Despite the above reservations, comparing the rendering
times for rounded images with those for unrounded
images should still give a reasonable indication of the
inherent speed of the rounding algorithm as compared to
normal CSG ray tracing algorithms.

The rounded images cost from 1.5 to 5 times as much to
compute as the unrounded equivalents. The cost factor
depends primarily on how many pixels in the image lie
on rounded surfaces, which is why the variable rounding
image is relatively so expensive. A factor of 2 to 3 is
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typical for small scenes, with small amounts of
rounding. It must be admitted, however, that the tracer is
designed for rendering rounded objects, not unrounded
objects; higher performance on unrounded objects is
undoubtedly achievable, so that the cost factor of 2 to 3
is probably a lower bound.

F i g . Description Time
(mins)

Time w/o
rounding

10 CSG Examples 55 45

11 Variable rounding 105 20

12 Staplers 240 70

Table 1.  Image rendering times, without
antialiasing. Also shown are the rendering times for
identical scenes without rounding.

5 DISCUSSION AND CONCLUSIONS
We have described a new method for defining and
rendering polyhedra with smoothly rounded edges and
corners. The goal was to provide more natural looking
polyhedral scene objects, for which purposes geometric
precision is not generally an issue. The method achieves
a similar effect to that of the surface blending sometimes
performed during modelling, but with several advantages:

(a) it handles any arbitrary polyhedral topology, such as
vertices with many incident edges

(b) the extra cost in scene description memory of a
smoothed polyhedron over an unsmoothed
polyhedron is negligible: one extra floating point
number, as compared to the large number of
polygon mesh elements used to approximate
surfaces generated by surface blending algorithms.

(c) when both modelling and rendering are taken into
account, the method is much simpler to implement,
involving only a fairly straightforward extension to
a normal CSG ray tracer.

The amount of smoothing can be set separately for each
scene component, and further CSG operations can then
be performed using the smoothed components, so that a
wide range of effects is possible. Using small smoothing
radii gives a softer more natural look to polyhedra, and
delineates their boundaries more clearly. Larger radii lead
ultimately to “soft object” modelling effects.

Quasi-convolutional smoothing does not compete with
surface blending techniques where geometric precision is
an issue, for example in engineering design. The only
parameter the user can vary is the rounding radius, so the
precise shape of the rounding surface is not controllable.

Rendering is by ray tracing and typically from 2 to 5
times as long as for an equivalent scene without any
rounding—the factor increases as the visible effects of
the rounding increase. During modelling, the underlying
CSG model, with rounding ignored, could be converted
to a boundary representation in the usual way [18] [17]
for fast polygon display.

As described, our method uses a simple spherical version
of a “box” filter. In a signal-processing context, this is
undoubtedly an inferior low pass filter as compared to
weighted filters such as a Gaussian. In our context,
however, we doubt whether the choice of filter is very
relevant, since its only effect is to alter the shape of the

actual blend surface. Nonetheless, our method can easily
be altered to use an arbitrary spherical filter, using table-
look methods for obtaining densities, gradients etc. It
can be noted that Colburn[4][5] and Bloomenthal and
Shoemake [3] both used Gaussian filters in order to
exploit their separability property, rather than for signal-
processing reasons.

6 FURTHER WORK
The system outlined in this paper opens up several
interesting avenues for further research, particularly into:

(a) The exact mathematical properties of the quasi-
convolutional surfaces

(b) The full extent of the modelling potential of the
method

(c) The effects of using a differently shaped or weighted
filter than the simple constant-value sphere assumed
throughout this paper

(d) Polygonization of the rounded surfaces to allow high
speed rendering

(e) Extension of the method to allow smoothing of
non-polyhedral objects
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APPENDIX

Theorems on Density Bounds
Given here are the proofs of the theorems used in section
3.3, plus equivalent theorems for use in calculating an
Inner Bound CSG object. The definitions for Inner and
Outer Bounds have already been given in equations (3)
and (4).

Theorem 1. If ρ ρ ρ( ) ( ) ( )x x x= 1 2 , with

ρ ρ1 2 0 1, [ , ] ∈ , then S O t O t= ∩( , ) ( , )ρ ρ1 2  is an outer

bound of ρ with respect to threshold t.

Proof.
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Theorem 2. If ρ ρ ρ( ) ( ) ( )x x x= +1 2  then

S O t O t= ∪( , ) ( , )ρ ρ1 22 2  is an outer bound of ρ with

respect to threshold t.
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Proof.
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Theorem 3. If ρ ρ ρ( ) ( ) ( )x x x= −1 2 , with
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Theorem 4. If ρ ρ ρ( ) ( ) ( )x x x= +1 2 , with ρ ρ1 2 0,  ≥ ,
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Theorem 5. If ρ ρ ρ( ) ( ) ( )x x x= 1 2  then

S I t I t= ∩( , ) ( , )ρ ρ1 2  is an outer bound of ρ with
respect to threshold t.
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Theorem 6. If ρ ρ ρ( ) ( ) ( )x x x= −1 2 , with ρ ρ1 2 0,  ≥ ,
then S I t O= −( , ) ( , )ρ ρ1 2 0  is an outer bound of ρ with
respect to threshold t.
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Figure 12. Illustrating the use of different set
operations on rounded objects.

Figure 13. Illustrating the effects of increasing the
radius of the smoothing filter on the object obj4 from
Figure 12. Successive radii values, from the back left
corner, are: 0.01, 0.05, 0.1, 0.2, 0.3, and 0.5.

Figure 14. The use of rounding to achieve a softer
more natural appearance. The two staplers are defined by
the same CSG operations, but the front stapler has had
various different roundings used on its sub-components.

  

Figure 15. Some other effects. (a) shows the use of
different roundings on different planes of a cuboid. (b)
shows the result of illegally summing four cubes with
non-empty intersections.


